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Abstract. Genetic programming based hyper-heuristic (GP-HH) approaches that
evolve ensembles of dispatching rules have been effectively applied to dynamic
job shop scheduling (JSS) problems. Ensemble GP-HH approaches have been
shown to be more robust than existing GP-HH approaches that evolve single dis-
patching rules for dynamic JSS problems. For ensemble learning in classifica-
tion, the design of how the members of the ensembles interact with each other,
e.g., through various combination schemes, is important for developing effective
ensembles for specific problems. In this paper, we investigate and carry out sys-
tematic analysis for four popular combination schemes. They are majority vot-
ing, which has been applied to dynamic JSS, followed by linear combination,
weighted majority voting and weighted linear combination, which have not been
applied to dynamic JSS. In addition, we propose several measures for analysing
the decision making process in the ensembles evolved by GP. The results show
that linear combination is generally better for the dynamic JSS problem than the
other combination schemes investigated. In addition, the different combination
schemes result in significantly different interactions between the members of the
ensembles. Finally, the analysis based on the measures shows that the behaviours
of the evolved ensembles are significantly affected by the combination schemes.
Weighted majority voting has bias towards single members of the ensembles.

1 Introduction

Job shop scheduling (JSS) problems are types of combinatorial optimisation problems
that model manufacturing environments [1]. In a JSS problem, there is a shop floor
with machines that are used to process arriving jobs. Although both academics and in-
dustry experts have interest in JSS problems, there has always been a gap between the
classical research to JSS (from an academic perspective) and its application (from an
industrial perspective) [2]. In classical research to JSS, many approaches handle static
JSS problems, where the properties of the shop are known a priori [3]. However, in
practice the properties of the shop are extremely variable and it is commonly believed
that any change to the shop floor can cause ripple effects [2]. To bridge the gaps be-
tween the static JSS problems that have been handled by academics (where the prob-
lems are predictable and can be optimised in advance) and unpredictable real-world sce-
narios encountered in the industry, researchers have focused on matching the problem



more closely with real-world manufacturing environments by incorporating unforeseen
events into the problem [4]. JSS problems that have real-time unforeseen events that
affect the properties of jobs, machines and shop floor are called dynamic JSS problems
[4]. Examples of unforeseen events include dynamic job arrivals, where job arrivals are
unknown until they reach the shop floor, and machine breakdowns [4–6]. In real-world
manufacturing environments, it is likely that last minute (and potentially urgent) jobs
can arrive that require attention [4, 5]. In general, dynamic JSS problems are much more
difficult than static JSS problems, and conventional optimisation methods cannot solve
dynamic JSS problems due to the unpredictable changes in the shop floor [7]. Instead,
dispatching rules [3] are studied by both academics and industry experts for dynamic
JSS problems due to their interpretability [6], short reactions times and their ability to
cope well with the unforeseen events in dynamic JSS problems [8]. To automate the
design of effective dispatching rules, many genetic programming based hyper-heuristic
(GP-HH) approaches to dynamic JSS problems have been proposed in the literature [6].
GP-HH approaches have successfully evolved dispatching rules for various dynamic
JSS problems which are more effective than the man-made counterparts [6].

In addition to the primary motivation of automatically generating effective dispatch-
ing rules for dynamic JSS problems [6], many GP-HH approaches have focused on
evolving robust dispatching rules for the dynamic JSS problems [9], i.e., rules that
function reliably and effectively despite noise and unexpected changes in the problem
domain. However, many approaches focus on evolving dispatching rules with a single
constituent component, and are often not sufficiently robust for dynamic JSS problems.
This issue was addressed by evolving ensembles [13] of dispatching rules [10–12]. En-
semble learning has been shown to be effective at training robust high quality rules
for JSS problems [10–12] and problems outside of JSS (e.g. classification problems
[13]) because ensemble members are able to minimise errors made by other ensemble
members [13]. This makes ensemble approaches a promising direction to improve the
robustness of rules evolved by GP-HH for dynamic JSS problems. However, the exist-
ing ensemble GP-HH approaches to JSS [10–12] only use majority voting combination
scheme [13] to combine the outputs of the subcomponents of the ensembles together.
Design of interactions between the ensemble members is an important factor in ensem-
ble learning [13]. It is clearly evidenced on some classification problems that different
combination schemes, such as linear combination and weighted combination schemes,
can be more effective than majority voting [13]. Therefore, it may be possible that bet-
ter rules can be evolved by GP using combination schemes besides majority voting. In
addition, by analysing the rules evolved by the different combination schemes, one can
observe the behaviour of ensembles that are applied to dynamic JSS problem instances.
This allows for future ensemble GP-HH approaches which may generate higher quality
and more robust rules than the current state-of-the-art GP-HH approaches for dynamic
JSS problems.

1.1 Goal

For the scope of this paper, the analysed combination schemes are majority voting,
weighted majority voting, linear combination and weighted linear combination [13].
The goal of this paper is to investigate and analyse the combination schemes to further
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improve the robustness of ensemble GP-HH approaches for dynamic JSS problems.
Majority voting was previously used by the existing ensemble GP-HH approaches to
dynamic JSS problems [10–12]. However, linear combination, weighted majority vot-
ing and weighted linear combination, which have extensively been used in the clas-
sification literature [13], have not been explored in any existing research on dynamic
JSS. The members of the evolved ensembles are analysed by their behaviours and in-
teractions on complex decision situations [14]. For this paper, we propose new analysis
measures to compare specific behaviours between the evolved ensembles from the dif-
ferent combination schemes: the diversity in the decisions made by ensemble members,
the bias towards specific ensemble members, and how the different members of the en-
sembles rank in the ensembles. Overall, this investigation into the combination schemes
for GP-HH to dynamic JSS problems is broken down into the objectives given below.

(a) Extend an existing ensemble GP-HH approach by incorporating the four different
combination schemes.

(b) Investigate the performances of evolved ensembles against each other and the state-
of-the-art results [8, 15].

(c) Analyse in detail the behaviour of the evolved ensembles against complex decision
situations from different perspectives.

1.2 Organisation

The organisation of the paper is as follows. Section 2 includes a background into dy-
namic JSS and related work which provide approaches to dynamic JSS problems. This
section also includes a description of ensemble learning proposed in the literature. Sec-
tion 3 describes the combination schemes investigated and modifications made to an
existing ensemble GP approach to incorporate the combination schemes. Afterwards,
Section 4 provides a description of the analysis procedure to measure how the rules
behave in the problems. Section 5 covers the experimental design, Section 6 covers the
evaluation procedure, the experimental results, the discussions of the results and the
analysis. Section 7 gives the conclusions and the future works.

2 Background

This section gives the dynamic JSS problem definition investigated in this paper, and
approaches in the literature for tackling dynamic JSS problems, including GP-HH ap-
proaches. It also gives a brief description of ensemble learning and their applications to
JSS problems.

2.1 Problem Definitions for Dynamic JSS

In a dynamic JSS problem instance, there areM machines on the shop floor. An arriving
job j has a sequence of Nj operations denoted as σ1j , . . . , σNjj . The ith operation
of job j, denoted as σij , needs to be processed at machine m(σij). The operations
need to be processed in the order of their indices, e.g., operation σ2j cannot start until
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operation σ1j has been processed and completed on machine m(σ1j). The duration
of time operation σij is processed on the machine is called the processing time [3],
and is denoted as p(σij) (abbreviated to pij). In addition, a machine can only process
one operation at a time. There is no re-entry (job has two or more operations on the
same machine) and preemption (a job’s operation being processed on a machine can
be interrupted) [3]. The time when job j arrives at the relevant machine that the job’s
operation is currently up to is called the operation ready time [3], and is denoted as
r(σij) (abbreviated to rij). The time when the job j arrives on the shop floor is the
operation ready time of the first operation of job j (denoted as rj), and is called the
release time of job [3]. The goal of JSS is to complete all arriving jobs by processing
the operations of the jobs on the machines. The sequence of times and jobs that are
processed on the machines is called a schedule, and the goal is to generate a schedule
that is optimal given an objective function [3]. For this paper, we focus on the objective
of minimising the mean tardiness (MT) of the schedule. In a problem instance with
a tardiness related objective, a job j also has a due date dj . The time when all of a
job’s operations have been completed is called the job completion time. If a job j’s
completion time Cj is greater than its due date dj , then the job is considered tardy and
has a tardiness Tj = Cj − dj . Otherwise, a job completed before its due date has a
tardiness value of zero, i.e., Tj = 0 if Cj ≤ dj . Afterwards, the mean tardiness of a
schedule which has processedN jobs arriving on the shop floor is given by 1

N

∑N
j=1 Tj ,

i.e., is the average tardiness over the N jobs completed in the schedule. JSS problems
with tardiness related objective has been extensively investigated in the literature as
they are strongly NP-hard [16]. In addition, we focus on dynamic JSS problems with
dynamic job arrivals. This means that a job j’s properties such as its operations and
due date are unknown until it arrives on the shop floor at time rj . In other words, a
scheduling algorithm has limited information about properties of the shop floor during
processing, i.e., the problems have constrained information horizon [17].

2.2 Related Work

Dispatching Rules for Dynamic JSS: Due to the constrained information horizon [17]
in dynamic JSS problems, conventional optimisation techniques, which require exact
information about the shop floor in advance, are completely impractical [7]. Therefore,
heuristic approaches that make effective real-time decisions to unforeseen events are
the prominent methods for handling dynamic JSS problems [6]. Many approaches focus
on handling a very small number of dynamic events at a time, focusing on generating
robust solutions to DJSS problem instances that are insensitive to the disruptions caused
by the dynamic events [4]. However, we focus on dispatching rule based approaches to
dynamic JSS problems. This is because dispatching rules can cope well with frequent
dynamic job arrival events that occur in the dynamic JSS problem covered in this paper,
and have been prominently applied to other DJSS problems with a large number of
dynamic events in the literature [6, 18]. Dispatching rules are local decision makers
that select jobs to be processed when the machines required by the jobs are available
[3]. At every decision situation [14], when a machine m∗ is available and there are
jobs waiting at machine m∗, the dispatching rule selects a job out of the waiting jobs.
The selection criteria for the jobs by the dispatching rules are based on the shop floor
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attributes at the time of processing. The selected job is then processed by machine m∗.
A partial schedule generated by dispatching rules during processing only consists of the
operations that are currently being processed or have been completed. This means that
dynamic events such as unforeseen job arrivals do not affect previously made decisions
for the dispatching rules.

Dispatching rules range in complexity, and their relative effectiveness vary across
JSS problems [19, 20]. The most simple dispatching rules incorporate single job at-
tributes for the decision making procedure, e.g., shortest processing time (SPT), first-
in-first-out (FIFO) [3]. On the other hand, composite dispatching rules [21–23] com-
bine the decisions of multiple smaller dispatching rules to construct a dispatching rule
that can handle a JSS problem more effectively than their component rules. However,
dispatching rules have no guarantee that they remain effective for dynamic JSS prob-
lems outside of the specific problems they were designed for [8, 19, 20, 24], and there
is a tradeoff in the performances of dispatching rules over the different dynamic JSS
problems [19, 20]. Therefore, new rules often need to be designed as new dynamic JSS
problems are encountered, which requires human experts to carry out extensive trial-
and-error tests to verify the effectiveness of the dispatching rules [25].

Evolving Dispatching Rules using GP-HH: Because manually designing effective
dispatching rules is difficult, a major motivation behind many GP-HH approaches is
to develop an effective hyper-heuristic approach that can then automatically evolve
high quality dispatching rules from building blocks [6]. Designing building blocks
for specific dynamic JSS problems is significantly less difficult than designing com-
plete dispatching rules [25]. The term “hyper-heuristics” have been frequently used by
researchers in the literature to describe the automatic design of dispatching rules us-
ing evolutionary computation (e.g. GP) and machine learning techniques [5, 6, 12, 14,
18]. This includes the GP-HH approach proposed by Nguyen et al. [8], who investi-
gated three different GP representations to evolve different types of dispatching rules.
They found that the GP evolved rules performed competitively with the state-of-the-
art heuristics in the literature for some static JSS problems, and outperform man-made
dispatching rules. Hildebrandt et al. [5] and Hunt et al. [26] evolved dispatching rules
for dynamic JSS problems and showed that they perform better than man-made dis-
patching rules. Branke et al. [6] and Nguyen et al. [18] provide comprehensive surveys
of evolutionary scheduling approaches in the literature, including GP-HH approaches
that evolve dispatching rules. Finally, Nguyen et al. [27] provides a unified framework
for the GP-HH for production scheduling and link the existing GP-HH approaches to
specific parts of the framework.

To evolve high quality dispatching rules using GP-HH, several different design de-
cisions need to be made. This paper focuses on the design of the GP process and how
its output is converted to a dispatching rule. In particular, we focus on cooperative co-
evolutionary GP-HH approaches to dynamic JSS problems. In cooperative coevolution,
multiple interacting subcomponents are evolved that can be combined together to form
a rule [28]. To apply cooperative coevolutionary algorithms to a dynamic JSS problem,
the problem is first decomposed into smaller subproblems, where each subproblem can
be solved by specialised agents. Approaches that incorporate cooperative coevolution
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aim to evolve different individuals that can fill different “ecological niches” [29] and can
work together to solve difficult problems more effectively. Coevolutionary GP-HH ap-
proaches are not standard in the literature, and many GP-HH approaches evolve single
dispatching rules that work independently [5, 6, 8, 15, 26, 30–32]. Although cooperative
coevolutionary GP-HH approaches are often more complex and computationally inten-
sive than the standard GP-HH approach of evolving single rules, various coevolutionary
GP-HH approaches have produced high quality dispatching rules that are significantly
better than the standard GP single rules. Nguyen et al. [9] proposed a coevolutionary
GP-HH approach for a multi-objective JSS problem, where individuals from the first
subpopulation predict the due dates of the jobs at decision situations, and the individu-
als from the second subpopulation incorporate the due date information to calculate the
priorities of the jobs. They showed that the approach performs favourably compared to
good multi-objective GP approaches such as NSGA-II [33] and SPEA2 [34]. In addi-
tion, there are cooperative coevolutionary GP approaches that evolve ensembles in the
literature.

Ensemble Learning and Ensemble GP-HH in Dynamic JSS: Although many effec-
tive ensemble approaches have been applied to a number of problems outside of JSS
(e.g. classification, regression [13]), only a few ensemble approaches have been pro-
posed for JSS. Park et al. [10] proposed a GP-HH approach for evolving ensembles
of dispatching rules using Potter and De Jong’s Cooperative Coevolution framework
[29], and found that the evolved ensembles outperform the standard GP-HH approach
for a static JSS problem. Park et al. [11] then adapted multi-level genetic programming
(MLGP) proposed by Wu and Banzhaf [35] to evolve ensembles for a dynamic JSS
problem, which evolves better rules than standard GP-HH with comparable evolution
times. Hart and Sim [12] proposed an ensemble approach for a static JSS problem where
artificial immune network is used to evolve highly specialised dispatching rules. They
showed that the ensembles evolved by this approach outperform the ensembles evolved
by Park et al. [10] for the static JSS problems.

One major design consideration when developing an ensemble learning approach is
the scheme used to combine the multiple outputs of the members of the ensemble into a
final decision [13]. The evolutionary approaches that evolve ensembles described above
[10–12] use majority voting [13] to combine the outputs of the ensemble members to-
gether. In classification, various studies have shown that the effectiveness of different
aggregation techniques depend on the properties of the problem such as noise, the ef-
fectiveness of ensemble members, classifiers used to generate the ensemble members,
etc. [36–38]. Overall, there are specific scenarios in classification where combining the
outputs of the ensemble members discretely (e.g. majority voting) is more effective
than a numeric combination (e.g. linear combination), and other scenarios where linear
combination is more effective [36, 37, 13]. In other words, the effectiveness of a combi-
nation scheme is specific to the properties of the classification problem [13]. Therefore,
it may be the case that a combination scheme that has not been investigated in dynamic
JSS works better than majority voting for a specific dynamic JSS problem domain.
Parallels can be made between applying ensembles to classification problems and to
dynamic JSS problems, as handling a decision situation that occurs during processing
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for a JSS problem instance shows similarities to classifying an instance in a classifica-
tion problem as a specific job is selected off the list of waiting jobs to be processed at a
machine. Because of this, it is unclear which combination scheme will likely work best
for handling dynamic JSS problems. Another major design consideration is diversify-
ing ensemble members, where a balance needs to be made between the members being
able to cover for each others’ errors, but also avoid making poor decisions as often as
possible [13]. In summary, Polikar [13] provides a comprehensive survey of ensemble
learning and the various ensemble learning approaches to classification.

Final Remarks on Related Work: In summary, many GP-HH approaches have been
proposed for dynamic JSS that evolve high quality dispatching rules that generally
outperform man-made dispatching rules [6]. However, they focus on evolving sin-
gle dispatching rules, which may not be sufficiently robust to handle noise and un-
expected changes in dynamic JSS problems. In addition, the existing ensemble GP-HH
approaches to dynamic JSS that evolve ensembles have shown to outperform bench-
mark GP-HH approaches that evolve single dispatching rules [10–12]. On the other
hand, existing ensemble GP-HH approaches to dynamic JSS have not investigated com-
bination schemes (outside of majority voting) that may be more effective for specific
dynamic JSS problem domains. In addition, they have not carried out extensive be-
havioural analysis, nor proposed analysis measures to compare the different ensemble
GP-HH approaches. Therefore, comparing combination schemes over a dynamic JSS
problem and developing various analysis measures may also allow us to understand
ensemble GP-HH approaches for dynamic JSS and develop methods that can evolve
higher quality and more robust rules.

3 Modified EGP-JSS Approach and Combination Schemes

The combination schemes investigated are majority voting, linear combination, weighted
majority voting and weighted linear combination [13]. Ensemble GP-HH approaches
that use linear combination, weighted majority voting and weighted linear combina-
tion schemes have not been investigated in the literature for dynamic JSS problems. An
existing ensemble GP-HH called Ensemble Genetic Programming for JSS (EGP-JSS)
adapted from the literature so that the investigated combination schemes can be incor-
porated to the GP’s training process [10]. However, the original EGP-JSS approach
needs to be modified to evolve the weighted majority voting and linear combination
schemes. Therefore, the modified EGP-JSS (mEGP-JSS) extends the GP-HH approach
by simultaneously evolving the weights for the weighted ensemble by incorporating a
genetic algorithm (GA) [39] to the cooperative coevolutionary procedure. This section
first provides descriptions of the combination schemes and how they are applied to the
decision situations. Afterwards, we cover the changes made by mEGP-JSS for weighted
combination schemes and to the fitness evaluation.

3.1 Job Selection by Combination Schemes

The combination schemes are used by the ensembles during job sequencing decisions
at decision situations. The majority voting scheme is adapted from existing ensemble
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Fig. 1: Example of majority voting for ensembles being applied to a decision situation.

GP-HH approaches to dynamic JSS [10–12], and the apparent tardiness cost (ATC) rule
[40] is used as a tiebreaker. Figure 1 shows an example of majority voting with three
ensemble members being applied jointly to a decision situation with five jobs.

For the linear combination scheme, the members of the ensemble assign “scores”
to the different jobs, and the job with the highest sum score is selected to be processed.
The score of a job assigned by a member is calculated from the assigned priorities using
min-max normalisation. Given that a member ω assigns priorities δ1,ω, . . . , δL,ω to the
L jobs waiting at the machine, the priority assigned to job j is converted into a score
sj,ω as shown in Equation (1). In the Equation, δmin and δmax are the minimum and
maximum priorities assigned to any jobs waiting at the machine by member ω.

sj,ω =
δj,ω − δmin

δmax − δmin
(1)

For the weighted majority voting scheme, each member ω has a weight νω . This
means that the member assigns a score equal to its weight to the job that it votes for.
For the weighted linear combination scheme, an intermediate value is first calculated for
a job j by ensemble member ω by normalising the priorities (Equation (1)). Afterwards,
the intermediate value is multiplied by the member’s weight νω to get the final score for
the job.

When applied to a decision situation, different combination schemes can potentially
select different jobs for processing. For example, Table 1 shows ensembles with combi-
nation schemes being applied to a decision situation with five jobs. In the tables, the six
ensemble members have the weights 3.5, 1.0, 2.0, 1.2, 2.5, 6.5. For the majority voting
scheme, job 1 is selected as rules 2, 3 and 4 vote on job 1. For the linear combina-
tion scheme, job 4 is selected because rules 1 and 5 heavily favour job 4 and job 4 has
the second highest priorities for rules 2 and 3, resulting in job 4 having a higher score
than job 1 overall. For the weighted majority voting scheme, job 3 is selected because
rule 6 has a high weight compared to the other rules, resulting in a higher score. Like-
wise, job 3 is selected for the weighted linear combination because of the high weight
of rule 6 contributing towards the total score towards the job. The different outcomes
for the decision situations encountered by the ensembles using the different combina-
tion schemes may lead to the ensembles generating significantly different schedules
and performances overall. It may also lead to significantly different rule structures and
behaviours being evolved by mEGP-JSS.
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Table 1: Examples of the combination schemes for an ensemble with three members
being applied to a decision situation with five jobs waiting at the machine. The weights
of the members are ν = 3.5, 1.0, 2.0, 1.2, 2.5, 6.5 respectively.

Rules/Members Waiting Jobs Selected Jobs
Job 1 Job 2 Job 3 Job 4 Job 5

Priorities

1 0.10 0.10 0.20 0.80 0.10

-

2 0.80 0.10 0.10 0.70 0.60
3 0.90 0.20 0.40 0.60 0.10
4 0.60 0.50 0.10 0.20 0.30
5 0.20 0.10 0.30 0.90 0.70
6 0.10 0.10 0.90 0.10 0.10

Job Scores

Majority
voting

1 0.00 0.00 0.00 1.00 0.00

Job 1

2 1.00 0.00 0.00 0.00 0.00
3 1.00 0.00 0.00 0.00 0.00
4 1.00 0.00 0.00 0.00 0.00
5 0.00 0.00 0.00 1.00 0.00
6 0.00 0.00 1.00 0.00 0.00

Linear
combination

1 0.00 0.00 0.14 1.00 0.00

Job 4

2 1.00 0.00 0.00 0.86 0.71
3 1.00 0.13 0.38 0.63 0.00
4 1.00 0.80 0.00 0.20 0.40
5 0.13 0.00 0.25 1.00 0.75
6 0.00 0.00 1.00 0.00 0.00

Weighted
majority
voting

1 0.00 0.00 0.00 3.50 0.00

Job 3

2 1.00 0.00 0.00 0.00 0.00
3 2.00 0.00 0.00 0.00 0.00
4 1.20 0.00 0.00 0.00 0.00
5 0.00 0.00 0.00 2.50 0.00
6 0.00 0.00 6.50 0.00 0.00

Weighted
linear
combination

1 0.00 0.00 0.50 3.50 0.00

Job 3

2 1.00 0.00 0.00 0.86 0.71
3 2.00 0.25 0.75 1.25 0.00
4 1.20 0.96 0.00 0.24 0.48
5 0.31 0.00 0.63 2.50 1.88
6 0.00 0.00 6.50 0.00 0.00

3.2 Incorporating Weighted Combination Scheme to EGP-JSS

To evolve ensembles that use weighted combination schemes, EGP-JSS’s GP process is
modified to evolve weights for the members of the ensembles and the ensemble mem-
bers simultaneously in a single evolutionary run. This allows us to evolve weighted
ensembles with similar computation times as the computation times required to evolve
unweighted ensembles, as other approaches (such as a two-step procedure) would re-
quire added computation after the GP process is completed. Given that there are Ψ GP
subpopulations of size Φ, an additional (Ψ +1)th GA subpopulation of size Φν are also
initialised along with the GP population. The GA individuals in the additional subpop-
ulation are real-valued vectors of length Ψ , where the gene value at index i corresponds
to the weight νi of an individual from subpopulation i. The gene values have a lower
bound of zero, which prevents the member weights from being negative. On the other
hand, from pilot experiments we found that the choice in the upper bound did not make
a significant difference in the performance of the weighted ensembles during the pre-
liminary experiments. Therefore, the upper bound of ten is selected as a rule of thumb.
During the evaluation procedure, the GP individual being evaluated is grouped with the
representatives from other subpopulations, i.e., the individuals with the best fitnesses
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Fig. 2: Example of mEGP-JSS generating an ensemble with weighted members.

from each subpopulations [29], and the representative of the GA subpopulation to form
a weighted ensemble.

Similar to how a GP individual in EGP-JSS is evaluated, a GA individual is evalu-
ated by grouping it up with the representatives from the GP subpopulations to form a
weighted ensemble. An example of this is shown in Fig. 2, where the ensemble consists
of GP individuals Ind 1, Ind 2 and Ind 3 from the three GP subpopulations. Afterwards,
Ind 1, Ind 2 and Ind 3 are weighted using the values from GA 1. The weighted en-
semble is then applied to the training instances. However, the fitness calculation for the
GP and the GA individuals is modified from the original EGP-JSS approach, and is
described below (Section 3.3). After all GP and GA individuals have been evaluated,
the GA representative is updated to the individual with the best performance. After-
wards, standard one point crossover operator and a gaussian mutation operator [39] are
used for breeding the next generation of individuals. The output of the GP process is
the representatives from the GP subpopulations that form an ensemble, along with the
representative from the GA subpopulation that assigns the weights to the members of
the ensemble.

3.3 mEGP-JSS Performance and Fitness Calculation

The fitness calculation in mEGP-JSS is modified from the original EGP-JSS. After
an ensemble E containing a GP individual ω is applied to the dynamic JSS training
instances, the fitness f(ω) of individual ω is calculated by normalising the performances
of the ensemble over the problem instances using the ATC as a reference rule. First, both
the ensembleE and the reference ruleR is applied to a problem instance γ to obtain the
schedules with the objectives values MT(E, γ) and MT(R, γ) respectively. Afterwards,
the normalised objective value MT′(E, γ) of the ensemble over the instance is given in
Equation (2).

MT′(E, γ) =
MT(E, γ)
MT(R, γ)

(2)
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In the literature, normalisation of performances over the problem instances have
been adopted in fitness calculation for GP-HH approaches to dynamic JSS to reduce
the bias towards specific training instances [5, 41]. If a particular JSS problem instance
has a greater optimal mean tardiness value than another JSS problem instance, we can
expect many dispatching rules to obtain higher mean tardiness values on this problem
instance. This results in the first problem instance having a greater effect on the fitness
of an individual than the second problem instance if the mean tardiness values are not
normalised. After the normalisation, the normalised performance of the ensemble E
over the instances in the training set Ttrain is the average normalised mean tardiness
values of the schedules as shown in Equation (3), which is also used as the fitness f(ω)
of the individual ω.

Perf(E, Ttrain) =
1

|Ttrain|
∑

γ∈Ttrain

MT′(E, γ) (3)

4 New Measures of Behaviour Analysis of the Evolved Ensembles

Based on the mEGP-JSS algorithm, we carry out several behavioural analyses of the
evolved ensembles that are evolved with the different combination schemes. Many GP-
HH approaches in the literature to dynamic JSS have both analysed the structures (i.e.
genotype [42]) and the behaviours (i.e. phenotype [42]) of evolved rules [6]. However,
due to the limited ensemble evolutionary scheduling approaches to dynamic JSS in the
literature [10–12], the amount of analysis on the behaviours of evolved ensembles is
limited. For example, Hart and Sim [12] have carried out both structural and behavioural
analysis of ensembles evolved by their hyper-heuristic approach. They performed ex-
tensive analysis on ensembles’ performances when they are limited (or not limited) in
size and analyse the relation between the structural make-up of the ensembles (using
the terminal distributions) and how well it solves specific problem instances. While the
structural analysis is quite extensive, the analysis of the behaviours of the ensembles
evolved by Hart and Sim is limited, with the scope of the paper being focused on the
effectiveness of particular ensembles for specific problem instances.

Analysing and observing the behaviours of the evolved ensembles is important
for understanding exactly how ensemble GP-HH can outperform standard GP-HH ap-
proaches, allowing us to exploit the advantages of ensemble based approaches while
avoiding the disadvantages. In an ensemble, the dispatching rule members that collab-
orate with each other need to behave in specific ways for the ensemble to be effective.
The members of the ensemble need to be able to sufficiently buffer for each other [13].
In other words, for complex decision situations, where the selection of a job that may
lead to good solutions is ambiguous, the ensembles need to be able to make diverse
sets of good decisions. In classification, complex decisions occur at the class bound-
aries, where it is ambiguous whether an instance belongs to one class or another [13].
Research in classification has shown that classifiers with single constituent components
often cannot cope with complex decisions and is unable to map the class boundaries
effectively [13]. If an ensemble in JSS is not diverse enough, it would perform no better
than a single dispatching rule, and make potentially bad decisions that single constituent

11



rules are likely to make [13, 10]. However, it is unlikely that analysing the ensembles
through structural analysis will give clear results on the interactions between the dif-
ferent members of the ensembles. The arithmetic trees in the GP evolved dispatching
rules often have redundancies in the tree [6], and multiple different tree structures can
potentially lead to rules with similar behaviour. Multiple sources in the literature have
shown that comparing the behaviours of the trees is more effective than comparing the
structures of the tree when used to calculate the fitnesses of the individual in the GP
population for surrogate modelling [14] and diversity measures [43]. Therefore, we in-
troduce and justify the following analysis measures to quantify the interactions between
the members of an ensemble: the level of “conflicts” between the decisions made by the
individuals, the highest level of “contribution” that a member of an ensemble makes
towards the overall ensemble decisions (i.e. an ensemble’s “bias” towards a specific
member), and the spread of the members “importance” on the scale of the ensemble as
a whole.

4.1 Measuring Behaviours of Evolved Ensembles

For calculating the different analysis measures for an evolved ensemble, the ensemble
is first applied to decision situations directly sampled from the dynamic JSS problem
instances will be performed together with evaluation. These decision situations are gen-
erated by applying a sampling dispatching rule over a problem instances. The selected
decision situations encountered by the sampling rule have at least ε jobs waiting at the
machines. Afterwards, out of the decision situations with at least ε jobs,D decisions are
selected with equal probabilities to be the sample decision situations that the evolved
ensembles are applied to when calculating the analysis measures. ε parameter allows us
to tune the complexity of the decision situations (due to the greater number of jobs the
ensemble needs to account for) and its potential impact on the quality of the schedule. It
is possible that a decision situation with a greater number of jobs has a greater impact on
the quality of the final schedule than a decision situation with a smaller number of jobs
due to the greater number of potentially “bad” decisions that can be made by the ensem-
ble. Directly sampling decision situations is advantageous because generating decision
situations manually is difficult, and using a sampling rule allows us to sample decision
situations directly from the problem instances that the evolved rules will be evaluated
on. In addition, it is likely that the sampling method gives a better representation of
the decision situations encountered by the evolved rules than manually generating de-
cision situations. Given a set of decision situations, we design the following three new
measures to analyse the behaviours of the ensemble.

4.2 New Measure 1 – Decision Conflict (M1)

M1 calculates the proportion of sampled decision situations where the members of the
ensembles have assigned highest priorities equally between two or more jobs in decision
situations, i.e., how often the top decisions “conflict” with each other. For a decision
situation d out ofD sampled decisions, suppose there areLd jobs waiting at the machine
and the member ω of ensemble E assigns the highest priority to a job jd,ω . Then the
number Vd,j∗ of members that assign the highest priority to job j∗ at decision d is given
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by Equation (4). From this, we get M1(E) in Equation (5), where it is the proportion
of decisions out of D decisions where there are at least two jobs are tied for the highest
number of top priority assignment.

Vd,j∗ = |{ω ∈ E|j∗ = jd,ω}| (4)

M1(E) =
1

D
|{d ∈ [1, . . . , D],∃i, j[i 6= j ∧max

k
{Vd,k} = Vd,i = Vd,j ]}| (5)

For the majority voting combination scheme, M1 calculates the proportion of times
when a tie in the number of votes occurs between the members of the ensemble. This re-
sults in the tiebreaker (the ATC rule) being used to resolve the tie between the top voted
jobs for the majority voting scheme. For the other combination schemes, tiebreaker
is unlikely to be used, as the jobs are selected based on the total scores that are real-
number values. However, M1 measures how often members’ “biases” towards specific
jobs at the decision situations conflict with the other members of the ensembles. If the
members of the ensemble are diverse, then it is likely that the different members of
the ensembles are biased towards different jobs for a high number of complex decision
situations.

4.3 New Measure 2 – High Contribution Members (M2)

M2 calculates the proportion of sampled decision situations where the decisions of the
highest contributing member match-up with the decisions made by the ensemble E,
i.e., member whose decisions most align with the decisions made by the ensemble. For
a decision situation d out of D decisions, suppose that a member ω of an ensemble E
assigns the highest priority to job jd,ω . If job is selected by ensemble E, then the deci-
sion between member ω and ensemble E itself can be considered to be “overlapping”
for decision d. In other words, given that ensemble E selects job jd,E at decision d, the
overlap qM2

ω,E between member ω and ensemble E over D decisions is given by Equa-
tion (6). Afterwards, we get M2(E) in Equation (7), where it is equal to the member
with the most overlap with the ensemble over D decisions.

qM2
ω,E =

1

D
|{d ∈ [1, . . . , D]|jd,ω = jd,E}| (6)

M2(E) = max
ω
{qM2
ω,E} (7)

This measure is useful for determining the effectiveness of evolved ensembles which
have strong biases towards specific members in the ensembles. For example, having en-
sembles with high M2 values but with poor test performances indicates that ensembles
are biased towards single members and hence lose effectiveness. This would support
the idea that the ensembles that behave similar to single rules and are not able to handle
different types of complex decisions which may arise during a dynamic JSS problem
instance by itself. On the other hand, the converse (i.e. high M2 and good test perfor-
mance) will show that having a single highly biased member in the evolved ensembles
may be more effective for scheduling.
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Table 2: Normalised rank calculation for a member ω of an ensembleE overD decision
situations.

Decision Jobs Priorities by Member ω Rank by ensemble E r′d,ω

1
1 0.9 1 1

22 0.2 2

2

1 0.1 4

1
5

2 0.1 5
3 0.2 3
4 0.8 1
5 0.1 2

. . . . . . . . . . . . . . .

D
1 0.2 1

2
3

2 0.7 2
3 0.1 3

4.4 New Measure 3 – Low Job Ranks Members (M3)

M3 calculates the worst average ranks of the ensemble members using a rule rank-
ing system modified from Hildebrandt and Branke [14], i.e., the “spread” of the deci-
sions made by the ensemble members. First, at decision d the jobs are ranked based
on the scores assigned to them by an ensemble E. In other words, the top job, i.e., the
job selected by the ensemble to be processed, is ranked 1, the second highest scored
job ranked 2, and such. Afterwards, for a member ω of ensemble E it is assigned a
“decision-rank”, denoted as rd,ω based on the rank of the job that it assigned the highest
priority to. Member rank rd,ω is then normalised based on the number of jobs waiting
at the machine (Ld) at decision d, i.e., r′d,ω = rd,ω/Ld. An example of how a member’s
normalised ranks for the decision situations are calculated is shown in Table 2.

After the normalised member ranks are calculated, M3 is given by the member of
the ensemble which has the worst average normalised member rank values, i.e., the
member whose biases towards specific jobs in decision situations are ranked poorly by
the ensemble. This is given in the equation as follows.

M3(E) = max
ω
{ 1
D

D∑
d=1

r′d,ω} (8)

M3 is proposed to measure the diversity in decisions made by the ensemble mem-
bers. High M3 value for an ensemble implies a high distribution in the ranks, which
may show that ensemble members are highly diversified. Combined with the results
from the ensembles’ performances, this may allow us to observe whether the diversity
of the ensembles’ decisions through combination schemes either positively or nega-
tively correlate with the performances of the ensembles over the dynamic JSS problem
instances.
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5 Experiment Design

This section covers the experimental design to evaluate the mEGP-JSS approach with
the different combination schemes. First, we introduce the GP-HH benchmark used for
comparison and the parameter settings for the benchmark and mEGP-JSS approaches.
The mEGP-JSS that uses a particular combination scheme is denoted as follows: mEGP-
MV for majority voting, mEGP-LC for linear combination, mEGP-wMV for weighted
majority voting and mEGP-wLC for weighted linear combination. Afterwards, the sim-
ulation model used to evolve and evaluate the GP rules is described.

5.1 Baseline Approach

We modify a GP-HH approach that has been proposed by Park et al. [11], denoted as
GP-JSS, that evolves single dispatching rules as the baseline approach for evaluating
the mEGP-JSS approach. Although EGP-JSS has been shown to outperform GP-HH
that evolve single rules [10, 11], evolving single dispatching rules using GP-HH is very
prominent for DJSS problems [27]. GP evolved single rules have also shown to con-
sistently outperform man-made dispatching rules [6]. For consistency, the GP-JSS uses
the same fitness function as the mEGP-JSS approaches (Equation (2)), and the same
terminals, arithmetic operators and GP parameters provided below to evolve the single
rules.

5.2 GP Terminal and Function Sets

The terminal set used by GP-JSS and mEGP-JSS approaches consist of a mixture of
terminal sets used by existing GP-HH approaches in the literature [5, 8, 15]. These ter-
minals range from common attributes (e.g. operation processing time PT) to more com-
plex terminals that utilise multiple common attributes (e.g. remaining processing time
of job RT) and the previous states of the shop floor (e.g. average wait time at next
machine NQW). These terminals have been shown to evolve high quality dispatching
rules in the literature [15]. The function set consists of the arithmetic operators +, −,
×, protected /, if, max and min. The protected / works as a division operator if the
denominator is non-zero, but returns a value of 1 if the denominator is zero. if is a
ternary operator which returns the value of the second argument if the first argument is
greater than or equal to zero, and the value of the third argument otherwise. The full list
of terminal and function sets is given in Table 3.

5.3 GP and GA Parameter Settings

The parameters used for GP-JSS, mEGP-MV, mEGP-LC, mEGP-wMV and mEGP-
wLC approaches are shown in Table 4. The GP parameters for mEGP-MV and mEGP-
LC are kept consistent as the parameters used by Park et al. [10] for the mEGP-JSS
approach, where the total population size (1024) is the same as the population size of
GP-JSS. These parameters are modified from Koza’s parameter setting [42], which is
a standard set of parameters used for GP. For GP process in mEGP-wMV and mEGP-
wLC, the four GP subpopulation sizes at 231 and the GA subpopulation size at 100
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Table 3: The terminal and function sets used for EGP-JSS, where job j is one of the
jobs waiting at the machine m∗ to process operation σij .

Terminal Description
RJ Operation ready time
RO Remaining number of operations of job j
RT Remaining total processing times of job j
PT Operation processing time of job j
RM Machine m∗ ready time
NJ Non-delay jobs waiting at machine m∗

DD Due date of job j
NPT Next operation processing time
NNQ Number of idle jobs waiting at the next machine
NQW Average waiting time of last 5 jobs at the next machine
AQW Average waiting time of last 5 jobs at all machines
# Constant real-value in the interval [0, 1]
Function +, −, ×, /, if, max, min

add to total population size of 1024. Since the number of GP subpopulations is four,
the sizes of the GA individuals are also four. The GA parameters for mEGP-wMV and
mEGP-wLC are based on common GA parameters used in the literature [?] with slight
adjustments, i.e., the lower and upper bound are set to 0 and 10 respectively.

5.4 Dynamic JSS Simulation Model

An existing simulation model proposed by Hunt et al. [15] is used in this paper, where
discrete-event simulations are used to represent dynamic JSS problem instances. Discrete-
event simulations have been used to evaluate various GP-HH approaches for dynamic
JSS in the literature [5, 9, 44, 8, 26, 15]. In a discrete-event simulation, the jobs arriving
on the shop floor are generated stochastically. This means that a dynamic JSS problem
instance is generated from a seed value and a set of simulation configurations. In Hunt
et al.’s simulation model [15], two training sets 4op and 8op are used to evolve the rules.
At every generation, a different seed is used in conjunction with the training set’s sim-
ulation configuration, resulting in different dynamic JSS training instances being used
to evaluate the GP individuals. This has been shown to improve the quality of the rule
output from the GP process compared to fixing the seed [5]. The parameter values for
Hunt et al’s simulation model [15] are given in Table 5.

6 Results and Analysis

This section covers the evaluation of mEGP-JSS approaches and the combination schemes
integrated with the mEGP-JSS processes in this paper. The rules are evolved by the
benchmark GP-JSS approach and the different combination schemes of the mEGP-JSS
approach. First, we provide the plot of the fitnesses of the individuals in the different
GP approaches as they are applied to the two training sets 4op and 8op to evolve the
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Table 4: GP parameters used by the GP-HH approaches for evolving ensembles of dis-
patching rules

Approach Parameters Value
GP-JSS parameters Population Size 1024

mEGP-MV & mEGP-LC
parameters

Number of GP subpopulations 4
Subpopulation size 256

mEGP-wMV &
mEGP-wLC parameters

Number of GP subpopulations 4
GP subpopulation size 231
GA subpopulation size 100
GA crossover rate 90%
GA mutation rate 10%
GA reproduction rate 0%
GA genome value range [0, 10]
Crossover type One-point
Mutation distribution type Gaussian
Mutation distribution std. 0.5

Common parameters

Number of generations 51
GP crossover rate 80%
GP mutation rate 10%
GP reproduction rate 10%
GP initial depth 8
GP maximum depth 17
Selection method Tournament selection
Selection size 7

dispatching rules. This is done thirty times to evolve a set of dispatching rules that are
compared based on their performance over the simulation model described in Section
5.4. Afterwards, the analysis procedure described in Section 4 is carried out on mEGP-
JSS to measure the values of M1, M2 and M3 from the evolved rules. The discussion
of the results from Sections 6.1 and 6.2 can also be found in Section 4, i.e., after all the
results have been provided.

6.1 Training Fitness Convergence Curves

To get the training performances of the different GP approaches, we first get the training
performances of the independent runs. For a GP-JSS run, the training performance at a
specific generation is the individual with the best fitness in the population. For a mEGP-
JSS run, the training performance at a specific generation is the average performance
of the individuals with the best fitness in each subpopulation, i.e., the individuals that
will be updated as the representative of the next generation. The training performances
over the generations are then averaged out over the multiple independent runs, and are
shown in Figure 3.

For the rules evolved over 4op, we can see that the different GP approaches except
mEGP-wMV roughly converge to the same output, whereas mEGP-wMV consistently
has worse training performance over the generations than the other approaches. On
the other hand, for the rules evolved over 8op, mEGP-LC rules have significantly worse
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Table 5: Simulation configurations used for the generating arriving jobs in dynamic JSS
problem instances.

Parameter 4op 8op Test
Warm-up period 500
Max jobs completed 2500
Mean processing time (µ) 25 25, 50
Utilisation rate (ρ) 0.85, 0.95 0.90, 0.97
Tightness factor (h) {3, 5, 7} {2, 4, 6}
# of operations per job (Nj) 4 8 4, 6, 8, 10, X ∼ Unif (2, 10)

# of configurations 2 2 20

4op 8op
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Fig. 3: The average fitnesses of the GP approaches over the training sets.

training performance than the other rules over generations between 10 and 30. However,
mEGP-LC rules converge to similar training performances as the other GP rules after
generation 30.

6.2 Test Performance

The sets of evolved rules are used to generate schedules for the instances in the training
and the test sets. We examined 20 different test scenarios, each with different processing
times (µ), utilisation rates (ρ) and number of operations per job (Nj). For each test
scenario, thirty replications were randomly generated. The test performance of a rule on
a test scenario is defined as the average mean tardiness obtained by applying the rule to
the thirty corresponding replications. In addition, for each test scenario, we test whether
one set of evolved rules is significantly better than another by using two tailed t-test at
α = 0.05 for the pair of results. The performances of rules over the entire simulation
model is shown in Table 6 for the rules evolved from 4op and in Table 7 for the rules
evolved from 8op. In the tables, “Training Set” shows the average mean tardiness over
the four simulation configurations from both 4op and 8op. The test set is partitioned
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Table 6: Comparison of the performances of mEGP-JSS (with the different combination
schemes) and GP-JSS over the simulation model. Rules are evolved from 4op.

mEGP-JSS
Data Subset

mEGP-MV mEGP-LC mEGP-wMV mEGP-wLC
GP-JSS

MT
(×102)

Training Set 1.78 ± 1.86 1.63 ± 1.70 1.89 ± 1.97 1.71 ± 1.79 1.73 ± 1.86

〈25, 0.90, 4〉 1.49 ± 0.06 1.39 ± 0.09 1.60 ± 0.11 1.44 ± 0.10 1.49 ± 0.20
〈25, 0.90, 6〉 2.22 ± 0.11 2.06 ± 0.12 2.45 ± 0.23 2.15 ± 0.19 2.38 ± 0.74
〈25, 0.90, 8〉 3.30 ± 0.22 2.96 ± 0.38 3.24 ± 0.61 3.08 ± 0.46 2.99 ± 0.56
〈25, 0.90, 10〉 6.03 ± 0.37 5.56 ± 0.66 6.17 ± 0.91 5.73 ± 0.65 5.99 ± 2.14
〈25, 0.90, X〉 1.32 ± 0.07 1.23 ± 0.09 1.46 ± 0.15 1.30 ± 0.11 1.37 ± 0.29

〈50, 0.90, 4〉 2.86 ± 0.19 2.64 ± 0.20 3.31 ± 0.39 2.87 ± 0.29 3.25 ± 1.27
〈50, 0.90, 6〉 5.11 ± 0.31 4.69 ± 0.62 5.12 ± 0.72 4.84 ± 0.60 4.82 ± 0.84
〈50, 0.90, 8〉 7.95 ± 0.50 7.30 ± 0.84 8.27 ± 0.90 7.61 ± 0.65 8.11 ± 3.01
〈50, 0.90, 10〉 1.60 ± 0.11 1.49 ± 0.14 1.85 ± 0.24 1.62 ± 0.20 1.75 ± 0.47
〈50, 0.90, X〉 3.30 ± 0.23 3.05 ± 0.29 3.79 ± 0.43 3.32 ± 0.42 3.84 ± 1.72

〈25, 0.97, 4〉 7.96 ± 0.55 7.35 ± 1.10 7.88 ± 1.22 7.52 ± 1.01 7.47 ± 1.50
〈25, 0.97, 6〉 13.18 ± 0.80 12.54 ± 1.66 13.90 ± 1.55 12.92 ± 1.20 13.90 ± 4.82
〈25, 0.97, 8〉 1.40 ± 0.12 1.33 ± 0.18 1.66 ± 0.26 1.45 ± 0.21 1.58 ± 0.49
〈25, 0.97, 10〉 2.27 ± 0.23 2.11 ± 0.28 2.73 ± 0.46 2.38 ± 0.45 2.89 ± 1.82
〈25, 0.97, X〉 9.10 ± 0.67 8.64 ± 1.41 9.19 ± 1.25 8.76 ± 1.11 8.91 ± 1.77

〈50, 0.97, 4〉 13.95 ± 1.00 13.19 ± 1.80 14.96 ± 1.35 13.75 ± 1.36 15.16 ± 5.48
〈50, 0.97, 6〉 1.52 ± 0.09 1.44 ± 0.12 1.71 ± 0.17 1.54 ± 0.16 1.64 ± 0.33
〈50, 0.97, 8〉 2.54 ± 0.17 2.38 ± 0.22 2.95 ± 0.35 2.59 ± 0.28 2.95 ± 1.16
〈50, 0.97, 10〉 5.07 ± 0.37 4.69 ± 0.67 4.97 ± 0.85 4.79 ± 0.68 4.72 ± 0.91
〈50, 0.97, X〉 9.20 ± 0.65 8.63 ± 1.12 9.40 ± 1.32 8.83 ± 0.99 9.28 ± 3.37

into four subsets of configurations based on the expected processing time (µ) and the
utilisation rate (ρ). In the tables, 〈x, y, z〉 categories denote that the configuration has
µ = x, ρ = y and Nj = z. The sections highlighted with red mean that the mEGP-JSS
with the particular combination scheme is significantly worse than the benchmark GP-
JSS approach for the simulation configuration, and the sections highlighted with blue
mean that mEGP-JSS rules performed significantly better than the GP-JSS rules.

From the results of the test set, mEGP-LC rules evolved on both 4op and 8op out-
perform the benchmark GP-JSS approach, where they perform significantly better than
the GP-JSS rules for many simulation configurations. For the 4op rules, mEGP-MV
has comparable performance to GP-JSS. On the other hand, for the 8op rules, mEGP-
MV is generally better than GP-JSS and mEGP-wLC is generally worse than GP-JSS.
Finally, mEGP-wMV performs the worst out of the mEGP-JSS approaches, with poor
performance in comparison to than the GP-JSS approaches.

In addition to the comparisons to the benchmark GP-JSS rules, results in Tables 6
and 7 also enables us to perform pairwise comparisons between the mEGP-JSS rules.
The results of the pairwise comparison are given in Appendix A.1. The pairwise results
show that the unweighted mEGP-JSS approaches (mEGP-MV and mEGP-LC) gener-
ally perform better than the weighted counterpart (mEGP-wMV and mEGP-wLC).
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Table 7: Comparison of the performances of mEGP-JSS (with the different combination
schemes) and GP-JSS over the simulation model. Rules are evolved from 8op.

mEGP-JSS
Data Subset

mEGP-MV mEGP-LC mEGP-wMV mEGP-wLC
GP-JSS

MT
(×102)

Training Set 1.91 ± 2.01 1.81 ± 1.93 2.22 ± 2.36 1.98 ± 2.09 1.86 ± 1.97

〈25, 0.90, 4〉 1.57 ± 0.07 1.50 ± 0.16 1.80 ± 0.27 1.63 ± 0.18 1.56 ± 0.17
〈25, 0.90, 6〉 2.27 ± 0.10 2.16 ± 0.18 2.61 ± 0.33 2.33 ± 0.20 2.37 ± 0.22
〈25, 0.90, 8〉 3.83 ± 0.36 3.76 ± 0.90 4.77 ± 1.30 4.33 ± 1.04 3.67 ± 1.07
〈25, 0.90, 10〉 6.83 ± 0.54 6.67 ± 1.31 8.41 ± 2.01 7.66 ± 1.46 6.82 ± 1.60
〈25, 0.90, X〉 1.31 ± 0.06 1.25 ± 0.12 1.48 ± 0.17 1.33 ± 0.11 1.29 ± 0.10

〈50, 0.90, 4〉 2.81 ± 0.12 2.70 ± 0.25 3.27 ± 0.39 2.89 ± 0.22 2.99 ± 0.33
〈50, 0.90, 6〉 5.66 ± 0.40 5.53 ± 1.03 6.70 ± 1.34 6.11 ± 1.13 5.47 ± 1.18
〈50, 0.90, 8〉 8.69 ± 0.55 8.29 ± 1.37 10.30 ± 1.92 9.28 ± 1.45 8.60 ± 1.61
〈50, 0.90, 10〉 1.50 ± 0.07 1.44 ± 0.13 1.66 ± 0.16 1.51 ± 0.11 1.52 ± 0.15
〈50, 0.90, X〉 3.15 ± 0.14 3.02 ± 0.30 3.55 ± 0.37 3.21 ± 0.22 3.25 ± 0.36

〈25, 0.97, 4〉 8.73 ± 0.62 8.41 ± 1.42 9.92 ± 1.60 9.13 ± 1.51 8.21 ± 1.63
〈25, 0.97, 6〉 14.12 ± 0.84 13.63 ± 1.92 16.45 ± 2.21 14.95 ± 1.79 14.25 ± 2.00
〈25, 0.97, 8〉 1.27 ± 0.08 1.22 ± 0.13 1.41 ± 0.15 1.30 ± 0.11 1.30 ± 0.14
〈25, 0.97, 10〉 1.99 ± 0.15 1.94 ± 0.26 2.29 ± 0.28 2.10 ± 0.22 2.11 ± 0.34
〈25, 0.97, X〉 9.79 ± 0.62 9.28 ± 1.33 10.70 ± 1.34 9.93 ± 1.43 9.29 ± 1.42

〈50, 0.97, 4〉 14.39 ± 0.81 13.64 ± 1.56 16.00 ± 1.52 14.59 ± 1.36 14.42 ± 1.52
〈50, 0.97, 6〉 1.48 ± 0.06 1.44 ± 0.12 1.68 ± 0.18 1.54 ± 0.12 1.54 ± 0.14
〈50, 0.97, 8〉 2.48 ± 0.11 2.40 ± 0.22 2.85 ± 0.32 2.59 ± 0.23 2.65 ± 0.29
〈50, 0.97, 10〉 5.67 ± 0.42 5.53 ± 1.05 6.68 ± 1.45 6.19 ± 1.19 5.42 ± 1.21
〈50, 0.97, X〉 10.16 ± 0.67 9.76 ± 1.68 12.09 ± 2.26 10.98 ± 1.77 10.11 ± 2.00

6.3 Behavioural Analysis and Further Discussion

For each test simulation configuration in the simulation model, a problem instance is
generated and M1, M2 and M3 are calculated for mEGP-JSS approaches using the pro-
cedure described in Section 4. The parameters that need to be set are the minimum
number of jobs waiting at a decision situation (ε) and the number of decision situations
(D). After parameter tuning, ε = 10 and D = 50, i.e., 50 decision situations sampled
from a problem instance are used to calculate M1, M2 and M3 and the decision situa-
tions have at least 10 jobs. The results of applying the analysis measures are shown in
Fig. 4.

From the figure, the M1 values, which is used to measure the level of conflict be-
tween the different ensemble members, do not significantly differ from each other. In
addition, with the exception of the mEGP-MV rules evolved over 4op and the mEGP-
wMV rules evolved over 8op, the GP rules evolved over both training sets have M1
values over 0.39 on average. This means that for all decision situations, the average
proportions of conflicting decisions made by members of the ensembles are above 39%.
For example, mEGP-MV rules evolved from 4op have an average M1 value of 0.39 and
mEGP-MV evolved from 8op have an average M1 value of 0.43. This means that out
of decision situations sampled for the 8op rules, the majority voting scheme resulted in
a tie for approximately 43% of the decision situations, where this results in the ATC
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Fig. 4: The analysis measures for the mEGP-JSS approaches plotted against the perfor-
mance over the problem instances. 4op and 8op denotes that the GP rules are evolved
from the respective training sets.

tiebreaker rule being used. The relatively high M1 value is significant for the mEGP-
MV rules compared to the other mEGP-JSS rules. mEGP-LC, mEGP-wMV and mEGP-
wLC rules use numeric score values instead of discrete votes to determine which jobs
are selected during decision situations. This means that the ties among the top scoring
jobs are unlikely to happen in mEGP-LC, mEGP-wMV and mEGP-wLC even if there
are conflicts between the decisions made by the ensemble members. Therefore, a deci-
sion situation with conflicting decisions made by the ensemble members would affect
the decision making process of mEGP-MV rules more than the other mEGP-JSS rules.
This may explain why the linear combination schemes generally perform better than
the respective majority voting schemes for the dynamic JSS problem instances used in
this paper.

On the other hand, mEGP-wMV rules have high M2 compared to other GP rules
evolved over the training sets, whereas the other GP rules have similar M2 values. M2
is used to measure the bias of an ensemble towards a specific ensemble member. There-
fore, for mEGP-wMV rules there is a single member that participates highly actively in
the majority of the decision making process. Further considering the performance re-
sults from Section 6.2 (Tables 6 and 7), where the mEGP-wMV rules generally perform
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worse than other mEGP-JSS combination schemes, it is clear that having high M2 value
negatively affects the quality of the GP evolved ensembles. As expected, we found that
the mEGP-wMV rules behave similarly to single rules given their high M2 values. It
increases the difficulty for other members of an mEGP-wMV ensemble to cover for the
“high-contribution” rules’s errors. This is reflected in the performance results, where
mEGP-wMV generally perform worse than the other GP evolved rules. In addition, it
is likely that the unweighted combination schemes perform better than the weighted
combination schemes because our combination of GP and GA is unable to explore
the search space effectively and find a good configuration of weights and ensemble
members simultaneously from the search space. This may potentially cause an under-
fitting problem, which is evidenced by the convergence curves for mEGP-wMV and the
test performance of mEGP-wMV rules. In the results for the training performances of
the GP individuals, mEGP-wMV shows generally worse training performances when
trained over 4op, and has slightly worse training performances near the end of the gen-
eration when trained over 8op. In other words, the current results show that evolving
individuals that contribute equally towards job selection may be more beneficial than
having the individuals be weighted during the evolutionary process.

Finally, mEGP-LC and mEGP-wLC rules have high M3 values, i.e., likely have high
“spread” in the decisions made by the ensemble members. In addition, the rules that
use the weighted combination schemes (mEGP-wMV and mEGP-wLC) have higher
M3 values than the unweighted counterpart (mEGP-MV and mEGP-LC respectively).
The differences in the M3 values for the GP rules that use the linear combination and
weighted linear combination schemes against the majority voting and weighted major-
ity voting schemes is likely because of the information loss from converting priorities
to scores in the decision making process. At a decision situation for mEGP-MV and
mEGP-wMV rules, the number of jobs that are assigned votes is at most the number
of members in the ensemble, i.e., at most four with the current GP parameter settings.
Therefore, the rest of the waiting jobs that do not have a vote will have zero scores. This
means that the worst rank for any given voted job (a job with non-zero score) will still
be near one. On the other hand, at a decision situation for mEGP-LC and mEGP-wLC,
the waiting jobs are likely to have been assigned non-zero score values by the members
of the ensemble, meaning that a job assigned the highest priority by a member can still
have a worse rank than a job which has not been assigned the highest priority by any
members of the ensemble. This may then lead to more ensembles that can accommo-
date for a more diverse ensemble members. From the results, mEGP-LC rules perform
well against mEGP-MV rules for 4op and comparably for 8op. In addition, mEGP-wLC
rules perform well against mEGP-wMV rules.

One additional observation made from the performance evaluation is that the per-
formance of mEGP-MV rules have comparable performance to GP-JSS rules. This is
contrary to previous results in the literature [10, 11], which state that EGP-JSS with ma-
jority voting generally outperform standard GP-HH approaches. However, this is due to
the case that previous works considered mainly to train the GP rules on static JSS prob-
lem instances [10], or use the same dynamic JSS training instances in every generation
[11]. Generating dynamic JSS training instances that are different for any consecutive
generations have been shown to improve the generalisation ability of the rules evolved
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by the GP-HH approaches in the literature [5], and may be the reason why mEGP-
MV rules have comparable performances to GP-JSS rules. Additional supplementary
experiments in Appendix A.2 confirms that using same dynamic JSS instances every
generation results in better evolved mEGP-MV rules than GP-JSS rules.

6.4 Summary

From the results, the following findings were made in this paper:

(a) Out of the different combination schemes for mEGP-JSS, mEGP-LC rules gener-
ally perform better than mEGP-MV, mEGP-wMV and mEGP-wLC rules. In addi-
tion, mEGP-LC rules also outperform the benchmark GP-JSS rules. From the anal-
ysis results, the average M1 values for all mEGP-JSS approaches are quite high,
which means that members assign high priorities to different jobs. This means that
combination schemes that effectively exploit decision diversity among ensemble
members by reducing information loss are more desirable. This may be likely the
reason why mEGP-LC performs better at handling complex decision situations than
other combination schemes.

(b) The rules that use weighted combination schemes (mEGP-wMV and mEGP-wLC)
generally perform worse than the unweighted counterpart (mEGP-MV and mEGP-
LC respectively). For example, the performance of mEGP-wMV is generally worse
than the other mEGP-JSS rules and the benchmark GP-JSS rules. From the M2
analysis, it is likely that decisions made by mEGP-wMV rule ensembles are sig-
nificantly biased by individual ensemble members. In other words, mEGP-wMV
rules that are evolved by the mEGP-JSS approach may be behaving similarly to
single dispatching rules, and that ensembles evolved by mEGP-JSS for dynamic
JSS that use combination schemes with equal weights is more effective than en-
sembles evolved by mEGP-JSS for dynamic JSS that use weighted combination
schemes.

(c) Finally, the analysis results show that mEGP-LC and mEGP-wLC have higher M3
values than mEGP-MV and mEGP-wMV. Therefore, it is possible that mEGP-LC
and mEGP-wLC can produce more diverse ensemble members because less in-
formation is lost when the priority values for jobs are converted to scores. It may
also be the case that higher M3 can also be partially correlated to better perfor-
mances, as mEGP-LC rules have better performance than mEGP-MV rules for 4op
and mEGP-wLC rules have better performance than mEGP-wMV rules.

In summary, this paper provides an investigation into combination schemes, which
has not yet been carried out for ensemble GP-HH approaches (EGP-JSS) to dynamic
JSS. We found that mEGP-LC can generate the best rules out of the four mEGP-JSS
approaches to the dynamic JSS problem. In addition, it provides a comprehensive be-
havioural analysis which has not been carried out for ensemble GP-HH approaches to
dynamic JSS by developing new behavioural measures and analysing the evolved en-
sembles using the measures.
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7 Conclusions and Future Work

In this paper, we investigate the effect of combination schemes in evolving ensem-
bles of dispatching rules for dynamic JSS using GP-HH. Four different combination
schemes have been investigated: majority voting, linear combination, weighted major-
ity voting and weighted linear combination [13]. The modified EGP-JSS, denoted as
mEGP-JSS, which incorporate the combination schemes are denoted as mEGP-MV,
mEGP-LC, mEGP-wMV and mEGP-wLC. The results show that the mEGP-JSS which
uses the linear combination scheme (mEGP-LC) generally performs better compared to
the other mEGP-JSS approaches and the baseline GP-HH approach. In addition, further
analysis shows that the current weighted combination schemes have worse performance
than the unweighted combination schemes. This is likely because the weighted ensem-
bles are too biased towards specific ensemble members (particularly for mEGP-wMV
rules), which results in the ensembles behaving like single dispatching rules.

There are many further directions that can be investigated from the findings made in
this paper. To circumvent the issue where there can be too much bias towards specific
members of an ensemble, a two-step approach where good members are first evolved
before the weights are assigned to the members could be promising. Another method
that may be promising is to assign weights depending on the properties of the shop
floor environment at decision situations. Certain rules may be more useful in decision
situations with a large number of urgent jobs than a decision situation with less number
of jobs, and vice versa. This would likely require a function that takes into account
properties of the shop floor as a whole. In addition, linear combination schemes may
be effective for other ensemble GP-HH approaches to dynamic JSS problems outside
of the EGP-JSS approach. For example, another ensemble GP-HH approach that has
evolved effective rules for dynamic JSS is Multilevel Genetic Programming for Job
Shop Scheduling (MLGP-JSS) [11], which uses the majority voting to combine the
ensemble members’ priority assignments. Finally, the analysis measures used in the
experiments may potentially be used as a diversity measure in an ensemble GP-HH
approach to improve the quality of the evolved ensembles.

A Auxiliary Results for the mEGP-JSS Approaches

This section covers auxiliary results that are used to supplement the results, analysis
and discussion provided in Section 6. First, we provide the pairwise comparison of the
performances between the mEGP-JSS rules from the results in Section 6.2, and is used
as additional material for the analysis and discussion in Section 6.3. Afterwards, to sup-
plement the discussion in Section 6.3, additional experiments are carried out to analyse
why mEGP-MV does not evolve rules that are significantly better than the benchmark
GP-JSS approach (which differs from the previous results in the literature [10, 11]).

A.1 Pairwise Comparison between the mEGP-JSS Rules

After the performance of the rules have been evaluated in Section 6.2, further pair-
wise comparisons are made between the rules evolved from the different combination
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Table 8: The pairwise comparison between the rules evolved using the different mEGP-
JSS combination schemes over 4op.

mEGP-MV mEGP-LC mEGP-wMV mEGP-wLC
mEGP-MV − (0, 20) (12, 0) (0, 7)
mEGP-LC (20, 0) − (17, 0) (12, 0)

mEGP-wMV (0, 12) (0, 17) − (0, 14)
mEGP-wLC (7, 0) (0, 12) (14, 0) −

Table 9: The pairwise comparison between the rules evolved using the different mEGP-
JSS combination schemes over 8op.

mEGP-MV mEGP-LC mEGP-wMV mEGP-wLC
mEGP-MV − (0, 8) (20, 0) (8, 0)
mEGP-LC (8, 0) − (20, 0) (20, 0)

mEGP-wMV (0, 20) (0, 20) − (0, 13)
mEGP-wLC (0, 8) (0, 20) (13, 0) −

schemes for mEGP-JSS to determine whether one set of rules is significantly better than
another using the results from Tables 6 and Tables 7. This is shown in Table 8 for 4op
and Table 9 for 8op. In the table, the number of times one combination scheme is bet-
ter or worse than another combination scheme over the 20 simulation configurations in
the test set is counted. (x, y) denotes that combination scheme 1 is better on x number
of instances than combination scheme 2, and is worse on y number of instances. For
example, (0, 8) for mEGP-MV and mEGP-LC means that the mEGP-MV rules does
not perform significantly better than mEGP-LC rules on any of the simulation config-
urations, but mEGP-LC rules perform significantly better on eight different simulation
configurations. To assist in visualising the results, a mEGP-JSS approach that performs
better than another mEGP-JSS approach on ∆ different simulation configurations is
highlighted in blue. Otherwise, if it is worse on average on at least ∆ different simu-
lation configurations, then it is highlighted in red. After some adjustments, ∆ = 5 is
selected for the comparison to be highlighted either red or blue.

From the pairwise comparisons, mEGP-LC rules evolved over both training sets
outperform all other rules. In addition, mEGP-wLC rules outperform mEGP-MV rules
evolved over 4op, but mEGP-MV rules outperform mEGP-wLC rules evolved over
8op. Finally, mEGP-wMV performs poorly in comparison to the other mEGP-JSS ap-
proaches. The discussion of the pairwise results are covered in the analysis section that
also provides the behavioural measures (Section 6.3).

A.2 Effects of Seed Rotation on mEGP-MV

To test the effects of using a fixed set of dynamic JSS training instances across genera-
tion on the qualities of mEGP-MV and GP-JSS rules, new sets of rules are evolved using
the GP-HH approaches. During the evaluation procedure, instead of rotating the seed
every generation as described in Section 5.4, a fixed seed is used to generate the train-
ing instances. The convergence curves that show the training performances of the GP
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individuals over the training set is shown in Figure 5. Afterwards, the evolved mEGP-
MV and GP-JSS rules are applied to the problem instances in the test set. The perfor-
mance of the mEGP-MV and GP-JSS rules evolved without seed rotation and the rules
evolved with seed rotation (i.e. the results shown in Tables 6 and 7) over test problem
instances is given in Table 10. For the ‘no seed rotation’ columns, if the mEGP-MV
rules performed significantly better than the GP-JSS rules over a simulation configura-
tion, then the corresponding results is highlighted in blue. Otherwise, if the mEGP-MV
rules performed significantly worse, then the result is highlighted in red. For the ‘with
seed rotation’ columns, if the seed rotation has improved the rules significantly over a
simulation configuration (e.g. mEGP-MV rules evolved with seed rotation performed
better than mEGP-MV rules evolved without rotation), then the corresponding results
is highlighted in blue. Otherwise, the result is highlighted in red.

4op 8op

0 10 20 30 40 50 0 10 20 30 40 50

1

2

3

1.0

1.5

Generation

N
o

rm
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W
T

Approach GP−JSS mEGP−MV

Fig. 5: The convergence curves showing the training performances of the GP-JSS and
mEGP-MV individuals.

The convergence curves in the Figure 5 shows that although training performances
of the mEGP-MV approach are initially worse than the training performances of the
GP-JSS approach, they converge to a better training performance by the end of the
GP processes. In addition, the results of the evolved rules over the test set show that
the mEGP-MV rules perform significantly better than the GP-JSS rules. Finally, both
GP-JSS and mEGP-MV rules trained on the training sets that rotate the seed perform
significantly better in comparison to corresponding rules that are trained on fixed DJSS
problem instances. In other words, the results shows that the rotating the problem in-
stances can improve the GP-JSS rules significantly. This result is consistent with the
findings in the literature [5], which states that rotating the seed used to generate the
training instances improves the generalisation abilities of the evolved rules. However,
an interesting observation is that the improvement of the qualities of the evolved rules
is disproportionate for the GP-JSS and mEGP-MV rules. Particularly, GP-JSS evolved
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over 4op is able to outperform the mEGP-MV rules for certain simulation configura-
tions. This may be due to the fact that mEGP-MV approach has smaller subpopulation
sizes, which may result in less genetic diversity among the individuals in a subpopu-
lation to evolve more generalised rules. In addition, the individuals in a subpopulation
for the mEGP-MV approach needs to interact with the representatives of the other sub-
populations. This means that individuals that behave differently in a subpopulation may
still result in similar behaving ensembles when grouped up with the representatives of
the other subpopulations. Consequently, using different training instances every gener-
ation may have less of an influence on improving the generalisation abilities of the rules
evolved by the mEGP-MV process than the GP-JSS process.
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31. Jakobović, D., Budin, L.: Dynamic scheduling with genetic programming. In: EuroGP
’06: Proceedings of the 9th European Conference on Genetic Programming. Volume 3905 of
Lecture Notes in Computer Science., Springer Berlin Heidelberg (2006) 73–84

32. Dimopoulos, C., Zalzala, A.M.S.: Investigating the use of genetic programming for a classic
one-machine scheduling problem. Advances in Engineering Software 32(6) (2001) 489–498

33. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic
algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2) (2002) 182–197

34. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength pareto evolutionary
algorithm. In: Proceedings of Evolutionary Methods for Design, Optimization and Control
with Applications to Industrial Problems (EUROGEN 2001). (2001) 1–21

29



35. Wu, S.X., Banzhaf, W.: Rethinking multilevel selection in genetic programming. In: Pro-
ceedings of the 13th Annual Conference on Genetic and Evolutionary Computation. (2011)
1403–1410

36. Alkoot, F.M., Kittler, J.: Experimental evaluation of expert fusion strategies. Pattern Recog-
nition Letters 20(11) (1999) 1361–1369

37. Duin, R.P.W., Tax, D.M.J.: Experiments with classifier combining rules. In: Proceedings of
International Workshop on Multiple Classifier Systems (MSC 2000). (2000) 16–29

38. Kuncheva, L.I.: Switching between selection and fusion in combining classifiers: An ex-
periment. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 32(2)
(2002) 146–156

39. Kramer, O.: Genetic Algorithm Essentials. Volume 679. Springer (2017)
40. Vepsalainen, A.P.J., Morton, T.E.: Priority rules for job shops with weighted tardiness costs.

Management Science 33(8) (1987) 1035–1047
41. Mei, Y., Zhang, M., Nguyen, S.: Feature selection in evolving job shop dispatching rules with

genetic programming. In: Proceedings of the 2016 Conference on Genetic and Evolutionary
Computation. (2016) 365–372

42. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural
Selection. MIT Press (1992)

43. Nguyen, Q.U., Nguyen, X.H., O’Neill, M., Agapitos, A.: An investigation of fitness sharing
with semantic and syntactic distance metrics. In: Genetic Programming. Lecture Notes in
Computer Science. (2012) 109–120

44. Pickardt, C.W., Hildebrandt, T., Branke, J., Heger, J., Scholz-Reiter, B.: Evolutionary gen-
eration of dispatching rule sets for complex dynamic scheduling problems. International
Journal of Production Economics 145(1) (2013) 67–77

30


