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A Simple Model of Speech Communication and
its Application to Intelligibility Enhancement

W. Bastiaan Kleijn Fellow, IEEE, Richard C. Hendriks Member, IEEE,

Abstract—We introduce a model of communication that in-
cludes noise inherent in the message production process as well
as noise inherent in the message interpretation process. The
production and interpretation noise processes have a fixed signal-
to-noise ratio. The resulting system is a simple but effective
model of human communication. The model naturally leads to
a method to enhance the intelligibility of speech rendered in a
noisy environment. State-of-the-art experimental results confirm
the practical value of the model.

Index Terms—Enhancement, speech, intelligibility

I. INTRODUCTION

Modern communication technology allows a user to com-
municate from almost anywhere to almost anywhere. As the
physical environment of the talker and the listener is not
controlled, noise often affects the ability of the parties to
communicate. We can distinguish two separate problems. On
the one hand, the signal recorded by the microphone can be
noisy. A large research effort has been dedicated to reducing
the noise in the recorded signal either at the transmitter, e.g.,
[1]–[3], or at the receiver [4]. On the other hand, the sound is
played back for the listener in a noisy environment. In recent
years, a significant effort has been made towards improving the
intellibility of the sound played back in a noisy environment,
e.g., [5]–[11]. We introduce a new paradigm for improving the
intelligibility of speech played out in noisy environments.

The main innovations in this contribution are that i) we
consider noise inherent in the message production process as
well as noise inherent in the message interpretation process,
ii) we consider the case where such inherent noise has a fixed
signal-to-noise ratio. When production and interpretation noise
are considered, information theory can be used to define a
simple but effective model of human communication. It can
be used to design a state-of-the-art algorithm to optimize the
intelligibility of speech in a noisy environment.

Production noise is typical of biological communication
systems. For human communications, this can be seen at
various levels of abstraction. The word choice to convey a
message varies between occasions and talkers. At a lower level
of abstraction, speech can be seen as a sequence of discrete set
of phonemes and the pronunciation of these phonemes varies
significantly from one utterance to the next. This variation
is reflected in the fact that speech recognition uses statistical
acoustic models, e.g., [12], [13]. The interpretation process
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for speech is also noisy: speech signals that are ambiguous in
their pronunciation may be interpreted in various ways.

Information theoretical concepts have been used in the
analysis of human hearing [14] and for the definition of
measures of intelligibility [15]. These models do not have the
notion of production noise, but the model of [14] considers
sensory noise, which corresponds to our interpretation noise.
The models of [14] and [15] appear not to have been used for
optimizing intelligibility.

II. MODEL OF THE COMMUNICATION CHAIN

We consider the transmission of a message S that is rep-
resented by a K-dimensional stationary discrete-time random
process. The process is composed of real or complex scalar
variables Sk,i, where k ∈ κ is the dimension index and i ∈ Z is
the time index. In the context of speech specified as a sequence
of speech spectra, the variables Sk,i, may describe the complex
amplitude or the gain in a particular time-frequency bin.

A. Model with Production and Interpretation Noise

Let the message have a “production” noise, representing the
natural variation in its generation. The transmitted signal for
dimension k at time i is then

Xk,i = Sk,i + Vk,i, (1)

where Vk,i is production noise. The received signals satisfy

Yk,i = Xk,i +Nk,i (2)

where Nk,i is environmental noise. Finally, the received sym-
bols are interpreted, which is also a noisy operation:

Zk,i = Yk,i +Wk,i, (3)

where Wk,i is “interpretation” noise. Note that S → X →
Y → Z is a Markov chain.

The mutual information rate between the original multi-
dimensional message sequence S and the received multi-
dimensional message sequence Z describes the effectiveness
of the communication process. In this first description, we
assume the processes to be memoryless, which is reason-
able for time-frequency signal representations. The mutual
information rate is then equal to the mutual information
I(Si;Zi) between the multi-dimensional symbols Si and Zi
at a particular time instant i. We furthermore assume that
the individual component signals of the multi-dimensional
sequence are independent. Then we can write

I(Si;Zi) =
∑
k∈κ

I(Sk,i;Zk,i). (4)
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Let us consider the behavior of the production and interpre-
tation noises for the speech application. Speech production is
a probabilistic process. A speech sound is never exactly the
same. This variability is largely independent of the power level

at which it is produced. That is, the production SNR
σ2
Sk

σ2
Vk

is

constant (with σ2
Sk

= E[S2
k], where E denotes expectation and

where we omit the time subscript i to simplify notation). It
follows that the correlation coefficient between the message
signal Si,k and the actual signal Xi,k, denoted as ρSkXk , is a
fixed number on [0, 1].

A fixed SNR for the interpretation noise is also reasonable.
The auditory system contains a gain adaptation for each critical
band [16], which means that the precision of the interpretation
scales with the signal over a significant dynamic range. Thus,
the interpretation SNR σ2

Y k

σ2
Wk

and the correlation coefficient
ρYkZk can be modeled as fixed.

The constant-SNR production and/or interpretation noise
has a significant effect on a power constrained communication
system. In a conventional communication system with parallel
channels (without production and/or interpretation noise) the
best information throughput is obtained by waterfilling [17]:
more signal power is provided to communication channels
with high SNR. In the present communication system there is

generally little benefit to having a channel SNR,
σ2
Xk

σ2
Nk

, that is
significantly beyond the production SNR or the interpretation
SNR. The usefulness of a particular communication channel
“saturates” near the production SNR or the interpretation SNR,
whichever is lower.

When the new communication model is applied to speech,
we must consider the particularities of the human auditory
system. We distinguish the acoustic and auditory representa-
tion of the signal. The mapping A from the acoustic to the
auditory representation is surjective. The frequency resolution
of both the speech features and the auditory system varies with
frequency. A typical scale is the ERB (equivalent rectangular
bandwidth) scale, e.g., [18], [19]. It is natural, e.g., [15], to
consider the auditory-domain signal to have one independent
component signal per ERB. Auditory models provide a manner
of deriving such component signals. We assume conceptually
that the component signals associated with the ERB bands
all have identical bandwidth. For example we can reduce the
ERB bands to one characteristic bandwidth ω0 (which can
remain unspecified in our application) by frequency translating
bands of bandwidth ω0, within an ERB band to the baseband
and summing or integrating them. If we assume that the
component frequencies of the original signal are independent,
the component signal of bandwidth ω0 representing an ERB
band retains the power of the original signal within that ERB
band.

B. Tractable Model that Includes Enhancement

We now insert a machine-based enhancement operator G
in the Markov chain. If we mark by˜ all signals affected by
the enhancement operator we get a Markov chain S → X →
X̃ → Ỹ → Z̃, where X̃ = G(X).

To formulate a tractable optimization problem, let us make
the assumption that all processes are jointly Gaussian, station-
ary, and memoryless. For ease of notation, we omit the time
index i from here-on forward. For the Gaussian case it can be
shown that

I(Sk; Z̃k) = −
1

2
log(1− ρ2

SkZ̃k
). (5)

We can make several simplifications. Exploiting the Markov
chain property, we see that ρSkZ̃k = ρSkX̃kρX̃kỸkρỸkZ̃k .
The fixed interpretation SNR implies ρỸkZ̃k = ρYkZk . If
the enhancement operator G is an affine function for each
component signal, then we also have ρSkX̃k = ρSkXk .

Next, we consider how the theory is affected if the signal
is interpreted in its auditory representation. In section II-A
we described a mapping A from the acoustic to the auditory
representation. Within each ERB band a number of Gaussian
variables are combined into a single process. Our model
without enhancement within a particular ERB band with index
m consists of i) the generation of a set of variables Sk,
k ∈ κm, ii) the addition of independent noise variables
Uk = Vk + Nk + Wk to each generated variable, and iii)
the summation (in the ear) of all variables to the single ERB
band random variable: Zm =

∑
k∈κm Sk + Uk. Assuming

ρ2Sk,Sk+Uk is constant for k ∈ κm, it can then be shown that

I({Sk}k∈κm ;Zm) = −1

2
log(1− ρ2Sn,Sn+Un), n ∈ κm. (6)

which is similar to (5) before the enhancement operator is
added. Thus, we have found that under the forementioned
assumptions the above theory carries over to the case where the
final receiver is the human auditory system, which integrates
within signal bands.

C. Relation to Classical Measures of Intelligibility

The measure (4) is related to existing heuristically-derived

measures. If we write the channel SNR as ξk =
σ2
X̃k

σ2
Nk

and
ρ0,k = ρSk,XkρYk,Zk we can use (5) to rewrite (4) as

I(S; Z̃) = −
∑
k∈κ

1

2
log

(
(1− ρ20,k)ξk + 1

ξk + 1

)
. (7)

Using Ik = − 1
2 log(1 − ρ20,k) and the sigmoid Ak(ξk) =

log
(1−ρ20,k)ξk+1

ξk+1

log(1−ρ20,k)
we obtain

I(S; Z̃) =
∑
k∈κ

Ik Ak(ξk). (8)

If we identify Ik as the band-importance function and Ak(·)
as the weighting function the mutual information can be
interpreted as the classical articulation index (AI), e.g., [20],
[21], or the more recent speech intelligiblity index (SII) [22],
[23]. While the sigmoid Ak(ξk) differs from the heuristically
selected curves used in AI and SII, the similarity is well within
the precision of the reasoning used to arrive at the AI and SII
formulation. Thus, (8) forms a theoretical justification for this
classical work on speech intelligibility.
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III. OPTIMIZING INFORMATION THROUGHPUT

Our objective is to optimize the effectiveness of the com-
munication process by selecting a good enhancement operator
G. Let us consider a common time-frequency representation
such as that obtained with a paraunitary Gabor or DCT filter-
bank. For this representation, the assumption of a memoryless
stationary process is reasonable. We consider a memoryless
linear and time-invariant operator (G(X))k =

√
bkXk, which

is affine, and redistributes signal power by multiplying each
frequency channel with a gain

√
bk. The redistribution is

subject to an overall signal power preservation constraint.
The intelligibility optimization problem is now

max
{bk}

I(S; Z̃)

subject to
∑
k∈κ

bkσ
2
Xk
−B = 0 and bk ≥ 0 ∀k,

(9)

where B is the power of the vector X . The problem can be
solved using the Karush-Kuhn-Tucker (KKT) conditions.

While the correlation coefficients ρSkXk and ρYkZk are
fixed, the correlation coefficient ρX̃kỸk varies with the coeffi-
cient bk as follows:

ρX̃kỸk =
1√

1 +
σ2
Nk

bkσ2
Xk

. (10)

Denoting ρ20,k = ρ2SkXkρ
2
YkZk

, the objective is

max
{bk}

∑
k∈κ

1

2
log

(
bkσ

2
Xk

+ σ2
Nk

(1− ρ20,k)bkσ2
Xk

+ σ2
Nk

)
subject to

∑
k∈κ

bkσ
2
Xk
−B = 0 and bk ≥ 0 ∀k,

(11)

which is a convex optimization problem as the objective
function is concave. From (11) we construct the Lagrangian

L({bk}, λ, {µk}) =∑
k∈κ

1

2
log

(
bkσ

2
Xk

+ σ2
Nk

(1− ρ20,k)bkσ2
Xk

+ σ2
Nk

)
+ λbkσ

2
Xk

+ µkbk.

(12)
The µk are nonnegative and λ is nonpositive (as the mutual
information is monotonically increasing as a function of bk).

Differentiating the Lagrangian to the bk and setting the
results to zero leads to the stationarity conditions of the KKT
conditions:

0 =
1

2

σ2
Xk

bkσ2
Xk

+ σ2
Nk

−

1

2

(1− ρ20)σ2
Xk

(1− ρ20)bkσ2
Xk

+ σ2
Nk

+ λσ2
Xk

+ µk, ∀k. (13)

Multiplying by the denominators leads to a quadratic in bk:

αb2k + βbk + γ = 0 (14)

with

γ =
1

2
ρ20,kσ

2
Xk
σ2
Nk

+ (λσ2
Xk

+ µk)σ
4
Nk
, (15)

β = (λσ2
Xk

+ µk)(2− ρ20,k)σ2
Xk
σ2
Nk
, (16)

α = (λσ2
Xk

+ µk)(1− ρ20,k)σ4
Xk
. (17)

Let us study the behavior of the quadratic (14). It is guaranteed
to have real roots if β2−4αγ ≥ 0. We consider what happens
when µk = 0. First we notice that 4αγ consists of two terms:
1
2ρ

2
0σ

2
Xk
σ2
Nk
α, which is negative for and (λσ2

Xk
+ µk)σ

4
Nk
α,

which is positive for µk = 0. If the latter term is smaller than
β2 we have that bk has real roots:

4(1− ρ20,k) ≤ (2− ρ20,k)2, (18)

which is always true as ρ20,k ∈ [0, 1]. The roots may, however,
both be negative and in this case the term µkbk must be
sufficiently negative to force the root to bk = 0. This leads
to the standard KKT solution. A simple line search algorithm
for the λ that provides the correct overall power is:

1) select λ;
2) solve (14) with µk = 0 for all bk;
3) set any negative bk to zero;
4) check if the power

∑
k∈κ bkσ

2
Xk

is sufficiently close to
the desired overall power B. If not, then adjust λ to be
more negative if the power is too high and more positive
if the power is too low.

The algorithm is easily extended to a bi-section algorithm.
It can now be seen that, in contrast to the case where

the production and interpretation noise are not considered,
increasing a single σ2

Nk
can either decrease or increase bk.

Based on the standard quadratic root formula we see that for
a given ρ20 and σ2

Xk
the change in value for bk depends on the

term −4γα in the root. Consider again µk = 0. The behavior
depends on whether the positive term − 1

2ρ
2
0σ

2
Xk
σ2
Nk
α or the

negative term −(λσ2
Xk

+ µk)σ
4
Nk
α is larger. The first term

being larger corresponds to the “saturated” case discussed at
the end of the introduction and the case where the second
terms is larger to the “unsaturated” case.

IV. RESULTS

In this section we provide both illustrative results that
provide insight in how the algorithm works, and the results
of a formal listening test. We contrast mutual information for
models with and without observation and interpretation noise
and also compare our results to the state-of-the-art.

The experiments were performed on 16 kHz sampled speech
and frequency dependent gains were implemented with a
Gabor analysis and synthesis filterbanks with oversampling by
a factor two and a Fourier transform size of 512 and a square-
root Hann window. Note that while the selected gains may
result in the processed complex signal not to be in the space
spanned by the forward transform, the inverse Gabor implicitly
performs an orthonormal (i.e., optimal) projection onto that
space. To obtain the auditory representation, 64 gammatone
filters were used, uniformly distributed on the ERB scale.

The illustrative figures show the results for an eight-second
utterance spoken by a German male speaker with a noise that
was recorded in a train. The channel SNR for the examples
in the figures is -5 dB, measured over the entire utterance and
the value ρ0,k = 0.2 for all bands.

For the listening experiments we used speech-shaped noise.
In this case the values for ρ0,k were computed from the band-
importance tables in the SII standard [22]. Only the auditory
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Fig. 1: Optimization of mutual information: power of enhanced
signal σ2

X̃k
(red), noise signal σ2

Nk
(blue), and their sum

(green). Linear scale (left) and ERB scale (right) are shown.

domain optimization version of the algorithm was used in the
listening experiments. Nine native Dutch speakers listened to
96 five-word sentences created from a closed set of words and
had to select each word from a set of 10.

Figure 1 shows results for the maximization of the mutual
information between S and Z for the case of zero production
and observation noise (ρ0,k = 1). The left figure is for opti-
mization in the linear frequency domain and the right figure
for the auditory representation case. The results correspond
to the standard waterfilling solution of communication theory
(e.g., [17]). It is seen that for the higher frequency bands, the
optimal gains bk for each band k of the observable signal Xi

are selected to make σ2
X̃k

+ σ2
Nk

constant.
Importantly, it can be observed that for this type of noise

(and commonly for most noise types), the channel SNR in the
high frequency bands is high. If the production SNR is lower
than the channel SNR in these frequency bands, and if a power
constraint applies, then resources are not used effectively. In
other words, the signal intelligibility would not be reduced if
the power would be reduced in these bands. Thus, this power
can be spent elsewhere. This would be the case for ρk,0 < 1.

Figure 2 shows what happens to the scenarios of Figure 1
if the production and interpretation SNR are considered (the
figures are on the same scale). As mentioned, we set ρ0,k =
0.2 for all k. It is seen that for the higher frequency bands,
the power σ2

X̃k
= bkσ

2
Xk

is essentially proportional the noise
power σ2

Nk
. This allows more of the signal energy to be used

Fig. 2: Optimization of mutual information with production
and interpretation noise: power of enhanced signal σ2

X̃k
(red),

noise signal σ2
Nk

(blue), and their sum (green). Linear scale
(left) and ERB scale (right) are shown.

in the lower energy bands as compared to Figure 1.
The listening test results shown in Figure 3 confirm that the

illustrative results of Figure 2 correspond to an improvement
in intelligibility. The figure shows results for unprocessed
speech (Un), mutual-information optimization (MI), and mu-
tual information optimization considering production and in-
terpretation noise (MI-B). Additionally it shows the results for
the reference state-of-the-art result of Taal et al. [10]. For a
significance level of α = 0.05, all processed speech is more
intelligible than unprocessed speech, except MI at -12 dB.
For -12 dB and -15 dB, MI-B is significantly more intelligible
than MI. Thus, consideration of production and interpretation
noise improves intelligibility when using mutual information
as criterion. The differences between MI-B and the reference
are not statistically significant. This is to be expected as i) the
reference is based on the SII relation (7) (in contrast to MI-B,
the reference uses a heuristically derived weighting function)
ii) in this first experiment we used ρ0,k that were computed
from the band importance function Ik of the SII standard,
which is also used by the reference.

Fig. 3: Listening test results.

V. CONCLUSION

A simple information-theory based model of speech com-
munication suffices for state-of-the-art enhancement of the
intelligibility of speech played out in a noise environment. The
model makes the plausible assumption that both the production
and the interpretation process in the speech communication
chain are subject to noise that scales with the signal level.

The model suggests that the impact of the noise in the
production and interpretation processes is similar. If pro-
duction and interpretation fidelity have increasing marginal
cost, then similar signal-to-noise ratios for the production and
interpretation processes would minimize overall cost. More-
over, our model suggests that it is reasonable to surmise that
the average spectral density of speech matches typical noise
in the environment.

Our approach can be refined in a number of aspects. Regu-
larization can be applied to reduce intelligibility enhancement
if no noise is present. Other distributions than the Gaussian
distribution can be used for the speech. We used fixed or SII-
standard derived settings for the production and interpretation
noise. This can be replaced by direct measurements of the
variability of the observable speech signal for a given set of
utterances. The simple enhancement operator can be replaced
by more effective nonlinear enhancement methods.
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