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Abstract
Spatial simulation of land-use change scenarios in metropolitan areas is essential for ana-
lyzing both the causes and consequences of various future scenarios and is also valuable 
for land-use planning and management. However, current simulation models primarily 
focus on spatial and rarely on quantitative driving factors. This article aims to simulate 
future scenarios of land-use changes in the Tehran metropolitan region (TMR) by combin-
ing different models to fill this gap. Thus, in the first step, land-use changes were analyzed 
in the period 1985, 2000, and 2015. Then, by identifying the impact of driving factors 
and land-use transition potentials with Logistic regression (LR), land-use changes were 
allocated using the Cellular Automata (CA) method. Finally, with the validation of the 
model, four scenarios of the current trend(CT), socioeconomic growth(SEG), ecological-
oriented(EO), and integrated development(ID) were suggested with the combination of the 
System Dynamic (SD) model. The results show that the trend of land-use changes in TMR 
has led to the destruction of grassland, agricultural, and uncultivated lands and the continu-
ation of this trend will increase the damage of built-up areas on valuable natural and eco-
logical resources. In this way, proximity to roads, distance from built-up areas, and natural 
factors had the greatest impact on changes. Based on future scenarios in 2030, the change 
in the SEG-scenario shows a rapid increase in built-up areas  (2858km2) and encroachment 
on agricultural lands  (2171km2). In the EO-scenario, destruction of grassland and agricul-
tural lands and the growth of built-up areas will be limited, while CT-scenario leads to the 
high growth of built-up areas along with destructive impacts on natural and open spaces. In 
the ID-scenario, the built-up areas and grasslands will increase to  2808km2 and  7438km2, 
respectively. Accordingly, policy-makers can use simulation of different scenarios to miti-
gate probable consequences of land-use changes in the metropolitan regions.
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1 Introduction

The rapid growth of population, economic development, and subsequent increase in urban-
ization cause extensive influences on environmental resources and valuable agricultural 
lands through transforming them into built-up areas (Han et  al. 2015). These influences 
take place in three local, regional, and global levels including changes in natural resources 
(Rounsevell et al. 2006), the ecosystem (Arunyawat and Shrestha 2018), agricultural land 
(Verburg et al. 2002), soil performance (Moein et al., 2018), environment quality of settle-
ments (Al-shalabi et al 2013), and regional spatial structure (Henríquez-Dole et al., 2018). 
Over the last decades, these influences have destroyed the environment in metropolitan 
regions, especially in developing countries, due to changes in the land use of the surround-
ing areas (Hosseinali et al. 2013; Q. Wu et al. 2006; Dadashpoor et al. 2019a).

Sprawl growth and development of the metropolitan regions have transformed the agri-
cultural lands, gardens, open spaces, and grasslands into the newly built-up areas in the 
suburbs (Arsanjani et  al. 2011). Most of these land-use changes occur with complexity 
and high speed. Along with these massive changes, the lack of proper planning processes 
leads to the destruction of agricultural and green lands, increased environmental pollution, 
and ecological damages. On the other hand, the lack of a proper understanding of the envi-
ronmental consequences of land-use changes poses a threat to the balance of sustainable 
development (Senes and Toccolini, 1998; Dadashpoor et  al. 2019a, b; Dadashpoor and 
Ahani 2021). The continuation of such a trend will make it necessary to draw an optimal 
pattern for metropolitan regions according to different scenarios appropriate to the natural, 
economic, and social environment.

Currently, land-use/cover change, and its impacts have become a major area of the 
debate in environmental changes and sustainable development (Sun et al. 2016). The trend 
of land-use changes is a dynamic and complicated process resulting from the interaction 
of natural, social, and economic factors (Han et al. 2015). A comprehensive understanding 
of these dynamics can help identify the trend of past changes and predict future changes. 
Simulation is used as an efficient way to understand these changes (Verburg et al. 2002). In 
recent years, several studies have addressed the modeling of land-use changes in different 
regions, and have provided useful achievements for sustainable development. Thus, devel-
oping scenarios based on effective and efficient land-use models (Deng and Li 2016) can 
determine the optimal spatial patterns of regional land use (X. Sun et al. 2012; Zarei et al. 
2016) aiming to preserve the ecology and environment (Verburg et al. 2006). In the mean-
time, Geographical Information System (GIS) and Remote Sensing (RS), with advanced 
capabilities in analyzing and processing spatial data, are recognized as effective tools for 
analyzing past changes and modeling future potential changes and a combination of these 
two are an appropriate framework to obtain, store, process, analyze and finally modeling 
the data.

Scenario simulation has been previously adopted in many studies in land-use changes 
(Han et al. 2015; Li and He 2008; X. Liu et al. 2017; Rounsevell et al. 2006). Some studies 
have investigated the trend/historical scenario (Abuelaish and Olmedo 2016; Bihamta et al. 
2015). Some other studies have focused on the ecology, environment, landscape, and agri-
culture scenarios (M. Liu et al. 2011; P. Sun et al. 2016). However, few studies have used 
integrated development scenarios to explain the land-use change (X. Liu et al. 2017). In the 
meantime, due to the scale of studies and different characteristics of case studies, schol-
ars have adopted various spatial driving factors (Arsanjani et al. 2011), while quantitative 
driving factors such as gross domestic product (GDP) and population changes are rarely 
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studied. On the other hand, various models have been developed to conduct different sce-
narios. These models are mainly Cellular Automata (CA) based (Berberoğlu at al. 2016) 
such as CA-Markov(Al-sharif and Pradhan 2014), CA-Logistic Regression (Arsanjani 
et al. 2011), ANN_CA(X. Yang et al. 2016), CLUE-S (Verburg et al. 2002) and SLEUTH 
(Al-shalabi et al. 2013). Although these models are effective in spatial simulation, there is 
a lack in combining the quantitative data in the simulation process. Therefore considering 
various driving factors with different kinds of data requires an integrated model that simu-
lates land-use changes in both spatial and quantitative dimensions. In this research, with 
a focus on socioeconomic and climate change factors, SD as a quantitative model in the 
prediction of land-use demand in different scenarios is combined with LR and CA models.

This study’s focus is on metropolitan regions where land-use changes are perceptible 
and can have significant effects on urbanization (Dadashpoor et al. 2019b), fragmentation 
of natural resources, and climate changes (Azadi et al. 2016). Tehran Metropolitan Region 
(TMR), adopted as a case study, has witnessed a widespread expansion of urban areas over 
the past decades (Dadashpoor and Nateghi 2017), destroying agricultural lands and enor-
mous environmental problems in the region (Arsanjani at al. 2012). Thus, it is necessary to 
understand the past trend of the changes and its main driving factors, as well as providing 
an integrated scenario for optimal planning and policy of land use. Furthermore, metro-
politan areas are complex systems that simultaneously influence the spatial and quantita-
tive factors in their changes and affect their various feedback processes. Thus, integrated 
modeling and combining of spatial and quantitative factors are needed into an integrated 
model. In this paper, with emphasis on socioeconomic and climate change driving fac-
tors, the combination of the System Dynamics (SD) as a quantitative model and Logistic 
Regression (LR) and Cellular Automata (CA) models in the spatialization of the scenarios 
is proposed as an integrated spatially model for future land-use change. By changing the 
impact level in each of the indicators (as a driving factor of land-use change in the mod-
eling process), probable future patterns of land use can be obtained according to environ-
mental, economic, social, and integrated perspectives. With these in mind, this study aims 
to identify the future patterns of land-use changes in four scenarios: current trend(CT), 
socioeconomic growth(SEG), ecological-oriented(EO), and integrated development(ID) in 
TMR, by combining the quantitative models (SD) and spatial models (LR and CA).

2  Data and material

2.1  Study area

TMR, in the northern region of Iran, includes two provinces of Alborz and Tehran (Fig. 1). 
This region is the most populated and most important social, economic, cultural, and politi-
cal center in Iran (Dadashpoor and Alidadi 2017) with an area of over 18,813  km2 extended 
between the Alborz Mountains in the north and desert areas in the south. In the northern 
regions of the study area, due to the Alborz mountain range, they have a high slope and are 
mainly located in grasslands, and the southern regions of the lands are suitable for agricul-
ture. The climate of the northern regions is mountainous and has a semi-humid climate. 
The middle regions are the semiarid and southern regions with a dry climate. The water 
bodies of the region include three main rivers of Karaj, Shur, and Jajrood which provide 
the needed water of the region. 
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The population in TMR in 1976 and 1996 was 5,245,591 and 10,343,965, respectively. 
In the latest Iran census in 2016, the region’s population reached 15,980,037 people (Sta-
tistical Center of Iran 2016). The largest population in the metropolitan region belongs to 
Tehran, with 8,693,706 people, and Karaj with 1,592,492 people.

In the economic activity, TMR generates more than 25 percent of GDP, and most of 
Iran’s major industries are concentrated in this region, and the main focus of Iran’s high 
services is in this region. In the past decades, TMR has experienced high urbanization and, 
consequently, major land-use changes due to the natural growth of population, rural–urban 
migration, development of large industries, and population recruitment, and political and 
administrative centrality of the country (Dadashpoor and Nateghi 2017). These changes 
threaten valuable agricultural lands in the south, natural resources in the north, and the 
environment in the west and east of Tehran, and have witnessed a steady decline in green 
and open lands in favor of built-up areas. In TMR, especially around Tehran and Karaj, the 
growth of built-up lands and population density in the south, dry and salt marshlands in the 
north, topography, and soil erosion are three significant restrictions for valuable lands.

2.1.1  Spatial data

Topography maps were obtained from the National Cartographic Center of Iran, and envi-
ronmental data were collected from Tehran Spatial Planning Document. To draw the spa-
tial–temporal patterns of land use in the studied area, remote sensing archives’ data were 
employed. Related multispectral images of Landsat 5 (TM) for 1985, Landsat 7 (ETM +) 
for 2000, and Landsat 8 (OLI) for 2015, with 30 × 30 m spatial resolution, were obtained 
for the TMR. The region includes six types of land use: built-up lands, agricultural and 
garden lands, urban green and open spaces, grasslands, unused lands, and water bodies. 
After extracting the land use by the support vector machine (SVM), the results were val-
idated. To this end, 417 points were selected randomly on images and the use of these 
points was determined through field observations, Google Earth images, and topography 
maps of the National Cartographic Center of Iran. The overall accuracy reached 86, 90, and 
88, and the Kappa coefficient was used for accuracy assessment of the classified images, 
which was 85, 86, 85% for 1985, 2000, and 2015, respectively, and in comparison with 
other studies (Lamine et al. 2017; Puertas et al. 2014), indicating the high accuracy of the 
produced maps. Based on the land-use maps for 1985, 2000, and 2015, land-use changes in 

Fig. 1  Location of TMR in Iran
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each period are specified. These changes are indicated by the binary map 0 and 1, in such a 
way that 1 indicates the change of this use and zero indicates no change.

A set of driving factors were selected based on the data collected through interview 
with several experts in this field as well as the information provided in scientific studies on 
the studied area (Arsanjani et al. 2012; Shafizadeh-Moghadam et al. 2017a, b; Zarei at al. 
2016). The selection of the factors was based on specialized knowledge, methodological 
orientation, and access to data. These data include topographic factors, height, and slope 
to take the effects of geographical, environmental, and natural factors into consideration 
in the land-use change process. The existing pixels in these factors were weighed against 
the actual values of height and slope. The distance factor includes the distance to existing 
built-up areas, distance to agricultural lands, distance to existing unused lands, distance 
to grasslands, distance to population centers, distance to a surface water body, distance to 
main roads, and distance to the railway (Fig. 2).

The mentioned driving factors were valued according to the distance of each pixel to the 
existing feature (Fig. 2). These factors were normalized and acquired numbers between 0 
and 1 (Sakieh et al. 2015). They were then converted to a grid network, with the grid equal 
to that in the land-use maps. In these factors, each grid has a value that indicates the value 
of that grid in the given factor. The factors were generated from the existing raw data, using 
ArcGIS software (Verburg et al. 2002).

2.1.2  Quantitative data

Demographic changes in the TMR were examined to measure the influence coefficient of this 
variable on land-use changes from 1995 to 2016. In 1996, TMR included 10,343,965 inhabit-
ants, which increased to 13,422,366 in 2006. In this period, the annual population growth rate 
of the region was 2.64. In 2016, the population grew to 15,980,037, with an annual growth 
rate of 1.75 compared to 2006 (Statistical Center of Iran 2016). Accordingly, for this study, 
the average annual growth rate of the population was taken as the annual growth rate of the 

Fig. 2  Raster map of driving factors in the TMR
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population from 1996 to 2016. Gross domestic product (GDP) in TMR—which is the highest 
GDP in the country—was investigated from 2000 to 2015. During this period, annual GDP in 
the TMR grew by 17.1 (Statistical Centre of Iran, 2015), which was considered in the model. 
The average annual precipitation in the region was 320 mm per year, and the average tem-
perature was 16.4 °C. In this study, data from the Iran Environment Department and the Inter-
national Report on Climate Change in Iran were used. In this report, Iran’s climate changes 
were divided into ten regions by 2100, according to the UNDP and UNFCCC scenarios (Iran 
department of environment 2015) (Table 1).

2.2  Analytical method

In this study, future land-use change scenarios in TMR by 2030 are simulated by combining 
spatial and quantitative factors. The model consists of three parts of the LR, SD, and CA. In 
the influence of spatial factors on land-use changes, LR is entered and based on socioeco-
nomic and climate factors SD model is combined at the quantitative demand for each land use 
to the scenarios. CA processes spatial allocation of land use over time and based on demand 
for each use, emphasizing transition potentials and neighborhoods. The overall process of 
these methods in conjunction with each other is depicted in (Fig. 3).

2.2.1  Transition potential and logistic regression

LR model output is used to provide potential transmission maps. In the modeling process, the 
influence coefficient of each factor needs to be measured. LR is an empirical estimation model 
that evaluates the relationship between a set of independent variables and a classified depend-
ent variable, showing the transition potential map on the horizon (Puertas et al. 2014). One of 
the features of this model is its ability to use many independent variables in its implementa-
tion. The dependent variable in this model has a binary nature (0 and 1); independent vari-
ables can be continuous or binary. The basic assumption in this method is that the dependent 
variable gains value 1 (Mahmoodzadeh and Khoshroy 2015). The value 1 indicates the occur-
rence of an event, and the value 0 indicates the non-occurrence of the event. Therefore, Eq. (1) 
derived from LR is as follows (P. Sun et al. 2016):

Here,  Pi is the probability of occurrence for the land-use type i; X indicates the driving 
factors; n is the number of the driving factors; βn is the regression coefficient; and β is the 

(1)log

(

Pi

1 − Pi

)

= �0 + �1X1i + �2X2i +…+ �nXni

Table 1  Spatial and quantitative data in the modeling process

Spatial Data Quantitative Data

Land use in 1985, 2000 and 2015 Distance to population centers Gross domestic product (GDP)
Slope Distance to a surface water body Demographic changes
Height Distance to main roads Average annual precipitation
Distance to the existing built-up areas Distance to railway Average temperature
Distance to agricultural lands Distance to existing unused lands
Distance to grasslands
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constant coefficient. The LR model’s output will be the transition potential map of land 
uses and the coefficient of the effect of each factor on the land-use change. The transition 
potential map spatially shows the transition probability of land use through modeling. The 
transition potential map is a map with grid values between 0 and 1. The higher the grid 
value indicates a higher tendency to change. LR at the training stage determines the effec-
tive coefficient of each independent variable by using the transition map of each land use 
from 1985 to 2000. Then, the transition potential map of each land use is generated based 
on these coefficients, factors map, and implementation of LR.

2.2.2  Land‑use demand and SD model

In this study, land-use demand has been explained in different future scenarios using the 
SD model. Scenarios illustrate how the future is shaped. Identifying trends describes the 

Fig. 3  The general structure of the simulation of future land-use change scenarios
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future trend of the issue and provides the necessary strategies for change. The most appro-
priate strategy is selected by examining the effects of different model interventions (X. Liu 
et  al. 2017). This model can be used to identify and predict the evolution of a complex 
system through feedback and interaction among different factors (Costanza and Ruth 1998; 
Haghani et al. 2003). Currently, the SD model is widely used in analyses and policy-mak-
ing. This study has developed an SD model for different land-use demands in various sce-
narios according to socioeconomic factors and natural factors. Interaction and feedback of 
the SD model are illustrated in Fig. 4. In the generated SD model, four major issues are 
considered: population, economy, climate, and land use. The population is regarded as the 
most important factor affecting the increase in built-up areas (D. Liu et al. 2018). It, also, 
influences production and agricultural land, through the increase in demand for food provi-
sion. GDP is the most important indicator of economic growth accompanied by increased 
investments. Investments in various service and industrial sectors directly impact built-up 
areas and agricultural land (P. Sun et al. 2016). The two environmental factors of precipi-
tation and temperature, which are subject to climate change, have a long-term effect on 
economic and social factors (Henareh Khalyani et al. 2013). These factors affect the grass-
lands, agricultural, and water bodies and increase/decrease these resources. Similarly, a 
proper increase in precipitation and temperature is effective on plants and leads to changes 
in cultivation and influence the amount of the product (Fig. 4).

Therefore, the relationships mentioned above and previous studies in identifying the 
land-use demand with SD (Geng et al. 2017), the interactive model, were obtained accord-
ing to Fig. 4. Also, to validate the model and the relationships between factors, first, the 
value of each of the factors and the change of land use was entered into the model in the 
years 1985 and 2000, and the relationship between them was determined. Then, based on 
the data model, by 2015, the demand for each use was obtained. The result is the model 
validation with the correspondence of the modeling results with the reality of the land use. 
To assess the degree of error, the threshold value was defined. If the error is less than the 
threshold, the model is effective, and the result is reliable. However, if large distortions 

Fig. 4  The interaction of land-use types driven by socioeconomic and climate changes in the SD
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occur between similar and actual values, more modifications are required (Y. Wu, Zhang 
and Shen, 2011).

2.2.3  Simulation of land‑use change using CA

The regions adjacent to the existing land use have a greater tendency to change in land 
use. These events can be simulated effectively using CA models. According to predefined 
transition rules, cellular networks in the CA model independently determine their states 
and adjacent neighbors. Different methods of defining the transition potentials operate dif-
ferently in the CA model and generate different outputs (Cheng and Masser, 2004; Shafiza-
deh-Moghadam et al. 2017a, b). In the CA model, space is separated as the ordered cells, 
and the state of each specific cell is determined according to the state of the cell itself 
and its neighboring cells over the past time, through a set of transition rules that are tran-
sition potential maps (Arsanjani et  al. 2012). It is also important that the spatial filters’ 
size is determined; this size is effective in the CA process and the neighboring effect. The 
Von Neumann setting with four neighbors and the Moore neighborhood setting with eight 
neighbors are the most well-known neighborhood settings. Various filter sizes have been 
incorporated in CA and tested in the land change science literature. CA’s most common 
filter sizes in the literature are 3 × 3, 5 × 5, or 7 × 7(Liao et al. 2016). Previous studies have 
shown that the difference between these filter sizes was marginal in LUC simulations. A 
5 × 5 filter had the best accuracy among other neighborhood sizes (Shafizadeh-Moghadam 
et al. 2017a, b). So we used this filter size as well.

The Integrated CA model with other models is an available method to overcome the 
CA model’s limitation (Aburas, Ho, Ramli, & Ash’aari, 2016). The integration model 
is strongly valid for simulating spatial and temporal processes. In recent studies, many 
integrated models have been developed, e.g., CA-MC, CA-LR, CLUE-s, and SLEUTH 
in Berberoğlu et al. (2016) study. In this study, by applying the LR model, the transition 
potential of each land use is entered as a part of the CA model. The combination of the CA 
and LR models in many studies has been used, and the accuracy and validity of the model 
are examined (Arsanjani et al. 2012; Goodarzi et al. 2017). Hence based on Eq. (2), the CA 
model was run (Y. Liu and Feng 2012):

where Pt
i
 represents the probability of conversion of the cell i in time t, Pt

di
 is the transition 

potential of land use based on LR maps,Pt
Ni

 is conversion probability due to neighborhood 
rules, and C is a set of constraints in land-use changes.

2.2.4  SD and CA_LR models

In the land-use modeling process, spatial issues are simulated by combining LR and CA, 
but for quantifying the demand of each land use in the scenarios, the SD model is applied 
(Liu et al. 2018). Over time, land-use demand is used from the SD model as an input of the 
CA-LR model for simulating land-use patterns. This cross-input–output feedback contin-
ues to meet demand in each scenario and ultimately simulates the land-use pattern at the 
end of the selected period. The demand in each scenario is determined based on the differ-
ent inputs and outputs of the SD. Accordingly, by combining with CA, scenario simulation 
maps result (X. Liu et al. 2017).

(2)Y = Pt
i
= Pt

di
× Pt

Ni
× C
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Here, four scenarios are defined based on these variables. As shown in Fig.  5, these 
scenarios are organized based on two axes: the vertical axis indicates the socioeconomic 
effects and the horizontal axis represents the climate changes (Fig. 5). In the CT-scenario, 
the changes have been made in the metropolitan region based on the previous trend. In this 
scenario, the economic growth rate (GDP), has increased with the past trend. Similarly, in 
population growth rate, the current trend is ongoing. Two variables of climate change also 
maintain the current annual average.

The increase in population and the development process has many consequences, 
including the expansion of cities and villages, the growing demand for food, agricul-
tural and industrial development, unprincipled and unreasonable exploitation regardless 
of land capability and ecological carrying capacity (Walsh et  al. 2006). In recent years, 
environmental degradation has accelerated and has caused irreparable damage to natural 
resources. In the EO-scenario, to protect nature and natural resources and control the lower 
growth rates of built-up areas, the average values of the climate variables are higher, and 
the population and GDP growth rates are lower than in the past. As the country’s politi-
cal and administrative capital, Tehran has the largest activity and employment opportuni-
ties; it is also considered the center of services in the country (Alidadi and Dadashpoor 
2018). Accordingly, in the SEG-scenario, the axis of the socioeconomy has the greatest 
impact. The economy and population have the highest pace of growth. In the ID-scenario, 
the emphasis is on the integrated development of all factors and sustainable development 
goals. In this way, the result will be socioeconomic development and the improvement of 
the climate factors.

2.2.5  Validation

Validation of LR and CA models with Relative Operating Characteristic (ROC) and Kappa 
coefficient has widely been used to highlight the validity of simulation (Azari et al. 2016; 
Ku 2016). These criteria represent the correspondence between reality and the simulated 
model. In LR, the ROC criterion is a value between 0 and 1. Value 1 represents a complete 
spatial agreement. The value of 0.5 represents the spatial randomness of the uses, showing 
that the transition potential was created in this method as random spaces. In the studied 

Fig. 5  Structure of the four scenarios by the driving factors of socioeconomic and climate changes in the 
SD model



Exploring an integrated spatially model for land-use scenarios…

1 3

region, the simulated and real maps for 2015 were adopted. The benefits of the Kappa coef-
ficient are to use all the values of the comparison matrix to calculate the accuracy. The 
following relationships show how to obtain the overall accuracy and kappa coefficient from 
the comparison matrix:

Here, i = 1,…,c represents the existing uses in the region;  Pii represents the pixels of the 
use i in the reality and simulated model;  Pij represents the pixels of the use i in the real-
ity that is in the use j in the simulation;  PiT represents the total number of pixels of class i 
in reality, and  PTi represents the total number of pixels of class i in the simulated model. 
Overall accuracy varies between 0 and 1. The value closer to 1 indicates that the model is 
more in line with reality. Kappa coefficient of less than 0.4 shows that the model is weak, 
and the Kappa coefficient higher than 0.8 represents the model’s power in the simulation.

3  Results

3.1  Land‑use change detection

The land-use change in the case study between 1985 and 2015 shows that these changes 
have increased significantly (Fig.  6). While the area of agricultural land, grassland, and 
unused land as valuable natural resources decreased, the area of built-up land had an 
increasing trend during the studied period. The area of the built-up land in 1985 was 353 
km2, which reached 1327 km2 in 2015. The share of built-up areas has risen from 2.1 
percent to 7.88 percent, indicating major urban expansions over the period. The area of 

(3)Kappa =

c
∑

i=1

Pii −

c
∑

i=1

PiT .PTi

1 −
c
∑

i=1

PiT .PTi

Fig. 6  Land-use changes in the TMR between 1985, 2000 and 2015
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grasslands decreased by 2 percent. This kind of land covered 47.44 percent  (7997km2) of 
the total area in 1985, which reduced to 45.43 percent  (7657km2) of the total area of the 
TMR in 2015. The share of agricultural land of the total land decreased from 16 to 14% 
and the unused areas decreased from 34 to 31% from 1985 to 2015.

Spatial changes in the built-up areas show that most of these changes have occurred 
around urban areas, especially in Tehran and Karaj’s peripheral areas. Land-use changes 
between 1985 and 2000 show that most of these changes have occurred in Tehran’s South-
ern green corridor, mainly agricultural lands, leading to the destruction of these lands, 
especially between Tehran and Karaj. In the years 2000 to 2015, the trend of change has 
been transferred to the east and the southeast of Tehran and has intensified the destruction 
of natural lands in these areas (Table 2).

3.2  Driving factors of land‑use changes

The influence coefficient of each of these variables was determined using LR (Table 3). 
In agricultural land change, the driving factors including height, distance from population 
centers, distance from the built-up areas, and land slope are the most influential factors, 
respectively. Regarding unused land, distance from unused lands, height, and distance from 
built-up lands have the highest influence. There is a direct relationship between reduced 
agricultural and unused lands and proximity to built-up areas. Because the built-up areas 
are generally spread around the metropolises and cities due to the continuous growth. 
Therefore, the closer the land uses are to the built-up areas, the more likely they are to 
change. Meanwhile, the slope is a limiting factor for developing the built-up areas with a 
coefficient of -5.12, which is effective in changing these areas. The position of the main 
roads is the third factor that influences change. Areas closer to the road network have more 
potential to change in the built-up areas. In the grassland change of the region, the distance 
from the existing grasslands and the main rivers running in the northern parts of the region 
and the built-up areas that have destroyed the grassland, have had the greatest impact on 
the change.

3.2.1  Transition potential maps

In the land-use transition potential maps (Fig. 7), the unused areas indicate the greatest 
transition potential. The east and southeast areas have the greatest potential for change. 

Table 2  Area and percentage of land-use changes in 1985, 2000, and 2015

Land use 1985 2000 2015

Area(km2) Percent Area(km2) Percent Area(km2) Percent

Built-up area 353.32 2.1 644.94 3.83 1327.6 7.88
Agricultural land 2744.47 16.28 3113.45 18.47 2497.45 14.82
Urban green and open space 48.16 0.29 82.16 0.49 91.64 0.54
Grasslands 7997.06 47.44 7673.73 45.52 7657.4 45.43
Unused land 5707.5 33.86 5337.77 31.67 31.23 31.23
Waterbody 6.18 0.04 4.64 0.03 0.1 0.1
Sum area 16,856.73 100 16,856.73 100 100 100
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In the west of the TMR, the main axis of the Tehran-Karaj, Eslamshahr axis, and the 
western part of Karaj have the most potential to transform from unused into other types 
of land use. In the future, these areas could be used as potential areas for the expansion 
of the built-up areas due to the appropriate slope, proximity to the road, and built-up 
areas. In the use of grassland, the northern parts of these areas have the greatest tran-
sition potential. By the way, the southern parts of the region have the least potential 
for grassland conversion. These areas are mostly arid, semiarid, and desert, and cannot 
expand vegetation, as can be seen in the transition potential maps.

Table 3  The influence coefficient of driving factors on land-use changes

Driving factors/land use Grassland Built-up area Unused land Agricultural land

Distance to agricultural lands 0.2729 1.1681 0.7834 0.9549
Distance to unused lands − 0.1284 0.0125 6.5813 − 1.9788
Distance to the built-up area 2.7512 13.6859 2.5099 2.8546
Distance to population centers 0.8462 1.0527 − 1.5736 5.0628
Distance to the main road − 0.3856 3.1001 0.3851 − 0.6458
Distance to railway − 0.8098 0.7554 − 2.7983 − 0.0209
Distance to grassland 6.6276 0.9115 − 0.4722 − 3.1559
Distance to river 2.2944 0.3771 − 0.2105 − 0.9295
Height − 2.3598 − 2.8938 3.8101 8.8603
Slope − 3.1232 − 5.1202 0.5504 1.6886
Intercept − 8.8726 − 14.7295 − 7.454 − 3.532

Fig. 7  Potential transition map of land-use changes in the TMR
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3.3  Validation of LR and CA

The output of LR is the potential transition maps, in which the minimum to maximum 
transition potential is specified in each land use. Thus, the places with the most transition 
in the future are more likely to change land use. Validation of LR maps was performed by 
the ROC method (Table 4). The ROCs greater than 0.8 for all land-use types show high 
accuracy of the method to explain land-use changes. The highest accuracy is observed in 
built-up lands.

According to the coefficients of ROC in (Table 4), the accuracy of agricultural lands 
modeling is less than the other three uses, which is justified by the fact that this use is 
changing over the year; and also another reason may relate to the low accuracy of the 
classification of this use. Built-up use has higher accuracy than other uses, which can be 
because the new areas are created by certain rules, but in other uses, there are no specific 
rules for creating changes (Dadashpoor & Salarian 2020). Accordingly, the land-use map 
in 2015 was modeled. To validate the model, the classified land-use map was compared to 
the modeled land-use map. Kappa coefficient in this comparison was 0.845. This percent-
age indicates a high degree of modeling accuracy, which now can be modeled for the year 
2030 based on this method.

3.4  Scenarios and quantitative changes

Using the SD model, the influence of each driving factor (population, GDP, precipitation, 
and temperature) on the land-use demand was determined in each scenario from 2015 to 
2030. As mentioned, four parameters are introduced to the SD model. Each of these fac-
tors and the extent of its changes in land-use scenarios for the TMR in 2030 are listed 
in Table 5. In the CT-scenario, the annual population growth rate of 2.2 continues as in 
the past. GDP growth of 17.1, as well as the climate changes (precipitation and tempera-
ture), remains unchanged. In the ecologically oriented scenario, socioeconomic dimensions 
and climate changes take a different trend. The population growth rate in the metropolitan 
region is assumed to be 2 per annum. The GDP growth rate is 15% and the average annual 
precipitation increases by 1.5% over the entire 15-year period. The temperature drops by 

Table 4  ROC coefficient in 
transition potential maps in the 
LR model

Land use Agricultural Unused Built-up Grassland

ROC 0.9248 0.9563 0.9628 0.9352

Table 5  Socioeconomic and climate changes in scenario simulation

Scenario GDP 
rate(percent)

Population 
grow rate

Average annual pre-
cipitation change

Average 
annual tem-
perature

Current trend 17.1 2.2 0 16.4
Ecological-oriented 15 2 1.5 16.3
Socioeconomic growth 19 2.4 − 1.2 16.5
Integrated development 18 2.3 1 16.3
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0.1 degrees Celsius. In the SEG-scenario, population and GDP growth rates increase by 
2.4 and 19 percent, respectively. The average variations in precipitation decreases by -1.2 
percent and the temperature rises 0.1 °C from the average annual. In the ID-scenario, all 
factors and their changes are considered interactively and homogeneously.

3.4.1  Land‑use demand in scenarios

The SD model is performed in each scenario for land-use demand. Land-use demand in 
each scenario is illustrated in Fig 8. The built-up areas in all four scenarios will take an 
increasing trend to different degrees until 2030. In the trend scenario, the built-up area 
increased by 2709  km2, and the grassland and agricultural lands decreased by  7356km2 
and  2231km2, respectively. In the SEG-scenario, on the one hand, the built-up area rap-
idly grows, covering the area of 2858  km2. The rapid growth of this land use is due to 
the rapid urban population and economic growth that requires an increase in urban areas 
to accommodate this population. On the other hand, agricultural land and grassland 

Fig. 8  Land-use demands under different scenarios from 2015 to 2030
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decrease by  2171km2 and  7201km2. On the contrary, the lowest growth of built-up areas 
is seen in the EO-scenario by 2560  km2. In the ID-scenario, the built-up area will reach 
2808  km2 in 2030. The grassland area will moderately decrease to 7438  km2 in this sce-
nario, but the amount of decrease is relatively less than SEG and CT-scenario.

3.5  Spatial simulation of scenarios

According to the defined scenarios, each land use will have a specific area in 2030. Each 
spatial scenario has been spatially developed based on the potential transmission maps 
in the LR model and neighborhood rules in the CA model. In comparison with 2015, 
changes in the built-up areas in the scenarios occur around Tehran and Karaj.

In the CT-scenario, changes are mainly witnessed in the built-up areas. TMR has 
had a wide urbanization process in the past, and this trend can be imagined in the 
future. The changes from 1985 to 2015 show rapid growth in urban and rural areas and 
a decrease in green land use. Accordingly, the changes in built-up lands by 2030 will 
also increase and go through as in the past. Spatial changes in this use will take place in 
the west of Tehran and the Tehran-Karaj axis. Tehran-Varamin axis in the southeast and 
Eslamshahr-Shahryar axis in the southwest show the most changes. In this challenge, 
the conversion of other land uses into built-up land is more visible, and areas in the 
proximity of urban and rural areas are destroyed and converted into residential, indus-
trial, and service areas. Most of the agricultural areas are located in the south of Tehran, 
which has a severe decreasing trend in this scenario so that a large part of agricultural 
resources in the south of Tehran will be destroyed. The region’s grasslands are mostly 
extended in the north and east of the region where most reduction of this type of land 
use occurs in the new town of Pardis and the north of Tehran.

In the EO-scenario, although urban areas will generally grow, the main growth will 
occur near the main cities, specifically in the Tehran-Karaj axis. In this scenario, urban 
areas’ growth rate will be the lowest compared to other scenarios, and urban disper-
sion in the east and west of the region will occur with less intensity. Also, agricultural 
lands in the southwest will remain stable, and grassland will not decrease except for the 
region’s eastern part. This may be due to sufficient rainfall and the right temperature in 
this scenario.

In the SEG-scenario, which shows the socioeconomic growth in the TMR, the built-
up areas will have significant growth along the main roads. Edge growth pattern will 
occur near industrial areas in the west and southeast, as well as adjacent to the exit-
ing manufactured areas. In the eastern part of the region, spots made from areas that 
are signs of leapfrog growth will also be observed. The agricultural and unused lands 
located in the south and west will be threatened by the growth of the built-up areas and 
will convert into new built-up areas. In this scenario, the largest destruction of natural 
resources will take place. Agricultural lands rapidly will convert into built-up areas; 
Climate change will have a reverse trend in this scenario.

The ID-Scenario is more human-centered and pursues sustainable development 
goals. The grassland pattern of this scenario will be similar to the EO-scenario, even 
though the influence of socioeconomic factors on this scenario is different. Also, water 
bodies, including dams and artificial lakes, will remain unchanged. The built-up areas 
will increase slightly, and more urban growth will occur in the south of the region where 
unused land is adjacent to major cities and main roads (Fig. 9).
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4  Discussion

This study attempted to simulate the future scenario of land-use changes based on socio-
economic and climate change factors in the TMR between 1985 and 2030. At first, land-
use changes and their driving factors were analyzed. In the past three decades, the TMR 
has faced with urban sprawl and unmanageable growth of the built-up areas. The spatial 
structure of land-use changes were characterized by the decline in grassland, agricultural 
land, unused land, and the increase in built-up areas and urban open spaces. The spatial 
pattern of land use indicates that most changes have occurred in the west and south of 
Tehran metropolis where the industrial areas and suburban areas are located. Urban sprawl 
tends to occur close to the industrial areas and main roads. Also, the expansion of the built-
up areas has damaged the natural open lands and degraded the region’s ecological areas. In 
the spatial analysis, as shown in the studies carried out on the TMR ( Alaei Moghadam and 
Karimi 2016; Arsanjani et al. 2012), the built-up areas, first, expanded around the Tehran 
and Karaj and, then, in southwest and west of Tehran metropolis in the form of a linear and 
leapfrog expansion. This result reveals that land-use changes in the metropolitan regions 
are mostly rooted in expanding urban areas (Dadashpoor 2019a). Under the current cir-
cumstances, the land-use change will lead to unsustainable development, making scenario 
building necessary for exploring and managing these changes.

In this study, driving factors have been analyzed using the LR model, which has high 
accuracy and validity in analyzing these factors (Arsanjani et al. 2012; Luo and Wei 2009). 
As results indicate, proximity to roads and population centers significantly impact urban 
growth and built-up areas, leading to a decrease in unused and agricultural lands in the 
region. In TMR, the high transition potential of western areas, specifically the Tehran-
Karaj axis, demonstrates this issue. These results comply with other studies who believe 
that accessibility to the main roads and proximity to cities play a significant role in 

Fig. 9  Scenario simulation maps in 2030, a: CT-scenario, b: EO-scenario, c: ID-scenario, d: SEG-scenario
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land-use changes where new built-up areas tend to grow continuously along with existing 
cities (Dadashpoor and Azizi 2019b; Dadashpoor and Nateghi 2017; Maimaitijiang et al. 
2015; Shafizadeh-Moghadam et al. 2017a, b; Xiaojun Yang and Lo 2003). Moreover, prox-
imity to population centers and built-up areas have significant impacts on agricultural land 
change. The destruction of agricultural lands in metropolitan areas mainly occurs due to 
the expansion of built-up areas (Moein et  al. 2018). Also, height and slope have always 
been influential in the development of agricultural lands. In the south and west of the 
region where there are appropriate soil, water, and slope, agricultural lands have developed 
further. The results in this section indicate that LR was effective and efficient in explaining 
the influence of driving factors.

Accordingly, four scenarios were modeled by focusing on socioeconomic factors (popu-
lation and GDP) and climate change factors (precipitation and temperature). The spatial 
simulated scenarios include the CT-scenario, SEG-scenario, EO-scenario, and ID-scenario. 
The analysis of the spatial pattern of these scenarios indicates that in comparison with the 
land-use pattern in 2015, the expansion of built-up areas in will occur all four scenarios 
until 2030. This expansion will primarily locate in proximity to existing built-up areas, 
especially in SEG-scenario and CT-scenario. In TMR, agricultural and grassland lands (as 
the valuable natural lands) will be destroyed with an increase in built-up lands. This trend 
occurs at different rates in Quadruple scenarios. In the EO-scenario, agricultural and grass-
land lands will have the lowest reduction. In the SEG-scenario, the decline will be more 
destructive. The change of unused land will remain steady in all scenarios. Thus, urban 
changes will affect other land uses in the TMR. Scenarios simulation indicates that while 
the CT-scenario can lead to high growth in the built-up areas with destructive impacts 
on natural and green open spaces, the ID-scenario will positively impact agricultural and 
grassland and economic and social betterment. The ID-scenario focuses on the sustainabil-
ity of natural resources in parallel with addressing economic growth and social equity. This 
scenario can be explained in various ways; economic sustainability seeks more efficient 
allocation and management of resources and social sustainability. It improves social equity 
and fair distribution of the population and services in the TMR. Previous scenario-based 
studies conducted in the metropolitan areas in China (Han et al. 2015; X. Liu et al. 2017), 
Iran (Bihamta et  al. 2015; Dadashpoor and Azizi 2019a), Latin America (Puertas et  al. 
2014) and Europe (Mancosu et al. 2015; Silva and Clarke 2005) demonstrate that the urban 
expansion has occurred around existing built-up areas and close to the main roads, causing 
destructive impacts on natural areas. Therefore, policy-makers must consider driving fac-
tors of future scenarios and the consequences of different scenarios.

This study indicates that the simulation of land-use changes in metropolitan regions 
based on just one specific model is difficult since these regions have high complexity. 
Therefore, the combination of models is necessary to simulate future scenarios. In this 
study, the CA model was combined with SD and LR models to develop a comprehensive 
and efficient model for the simulation of land-use changes in the TMR, focusing on socio-
economic and climate changes. The LR model has a high potential for explaining the rela-
tionship between land-use change and the driving factors and has an effective contribution 
to explain the influential variables. However, this model has also limitations in the mod-
eling of quantitative changes and allocation of changes (Arsanjani et  al. 2012). The CA 
model has also been recognized as an efficient model for simulation of land-use changes 
(Batty et  al. 1999; Liu et  al. 2019) which has been widely used in most studies. Due to 
extensive land-use changes in the TMR as well as the high complexity of socioeconomic 
factors influencing this region, modeling based on both socioeconomic and natural-envi-
ronmental factors was responsive. Thus, in the scenario-making process for future land-use 
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changes, the SD (as an efficient model) modeled land-use demands focusing on socioeco-
nomic and climate change factors.

This article attempted to show that the combined method (LR-SD-CA) offers certain 
advantages over traditional methods. Initially, this combined method can consider and 
integrate natural (climate changes) and socioeconomic factors that are not considered in 
the CA-based models such as SLEUTH (Silva and Clarke, 2002). Secondly, any spatial 
factor can be introduced to this approach to measure its impact on land-use change such 
as distance from existing artificial elements, slope, and height. Finally, the approach was 
validated and approved in two stages: preparing the transition potential maps by ROC and 
comparing the actual and simulated map for 2015 which increases the reliability of land-
use maps in future land-use changes. In this study, the results of ROC and Kappa coef-
ficients indicate high validity and demonstrate that the proposed model can simulate land-
use changes in a dynamic process.

5  Conclusion

In the present article, land-use changes of the TMR in the past decades were initially 
explored. The study revealed the significant growth of the built-up areas from 1985 to 
2015. This growth can be attributed to the growth of economic and industrial activities 
in the TMR and as a consequence, its demographic attraction and, with the need of this 
population for housing, the built-up areas have increased. The expansion of built-up areas 
to provide the land needed for growth has invaded green and valuable open spaces, leading 
to destroy these uses in the region. Therefore, the main reason for the decrease in natural 
lands has been increased residential and industrial uses. In this study, the influence of spa-
tial factors on land-use change was explained. In natural area changes; height, proximity to 
population centers, slope, and proximity to built-up areas have been most impacted. The 
distance to the main road is another influential factor in land-use change.

In this study, the LR, SD, and CA models were combined with three major purposes: 
First, LR is useful for building probability levels and exploring places with the highest 
probability of change for the development of each land use and identifying the extent to 
which each factor affects the change in land use. Second, the SD model was used to obtain 
quantitative changes in the area of each land use in different scenarios based on socioeco-
nomic and climate changes. Third, the CA model is a powerful tool for allocating the prob-
ability changes to pre-determined rules. CA allocates the rate of changes with the high-
est probability. Thus, this integrated method can simulate scenarios under quantitative and 
spatial models. The proposed model was applied to simulate four scenarios of land-use 
changes in the TMR to show the applicability of the model. The scenario results demon-
strate that this integrated model can be used to explain the important factors of changes and 
the core area of changes. It is also very effective to recognize the impacts of the socioeco-
nomic factors on land-use changes, which can help urban and regional planners and policy-
makers understand current and future problems in land-use changes and choose the most 
appropriate strategies for managing these changes.

However, despite its strengths, this method has some limitations. Although this com-
bined method can accommodate various driving factors, certain limitations include a lack 
of focus on individuals’ behavior, political economy, and government measures to change 
the land use, which cannot be modeled with this combined method. Extensive studies car-
ried out in different metropolitan regions worldwide can provide an integrated view of the 
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main driving factors of change in these regions. Also, by studying the qualitative dimen-
sions of land use, we can reach more probable scenarios covering all driving factors. 
Therefore, further studies are needed to combine quantitative and qualitative factors for 
understanding and managing land-use change in metropolitan areas.
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