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Abstract—This paper analyzes the performance of a multi-
user multihop relay network using a low complexity decentralized
relay selection (DRS) scheme for decode-and-forward cooperative
networks. We carry out a rigorous diversity order analysis, with
Nakagami-m fading and pathloss and show that the DRS scheme
achieves full diversity while maintaining a complexity that is
quadratic in the number of users, quadratic in the number of
relays and independent of the number of hops. For a special case
of two-user networks we derive exact closed-form expressions
for the outage probability by considering the order statistics.
Furthermore, we extend our analysis to consider interfering relay
networks and derive an accurate lower bound on the outage of
an arbitrary network user. Based on the lower bound we also
show how the outage probability saturates in the high signal-to-
interference-plus-noise ratio (SINR) regime. Extensive numerical
examples are used to illustrate the accuracy of the analysis and
to highlight the use of the DRS scheme in multi-user multihop
relay networks.

Index Terms—Decode-and-forward, multihop networks, outage
probability, relay selection.

I. INTRODUCTION

Cooperative communication networks - comprised of mul-
tiple nodes distributed across the network forming virtual
multiple antenna arrays - have recently emerged as a promis-
ing technique to broaden network coverage, enhance net-
work reliability, and mitigate the effect of fading in wireless
communication networks [1]–[7]. Cooperative communication
networks with multiple relay nodes, known as cooperative
relay networks, typically arise in sensor mesh and ad hoc
communications. For such networks, the careful selection of
relays is extremely important in order to achieve full spatial
diversity with low complexity and overhead. As a result,
relay selection (RS) in cooperative relay networks has gained
considerable research attention during the past few years.
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There exists a rich body of literature on RS for two-hop
networks where each source experiences a link from the source
to relay and relay to destination [8]–[17]. There are various
protocols proposed to choose the serving relay from among
a collection of available relays, such as best relay selection
where the relay whose path has the maximum signal-to-noise
ratio (SNR) is selected [8], [16], nearest neighbor selection
where the relay that is nearest to the base station is selected
[10], best harmonic mean selection where the relay with
the largest harmonic mean is selected [9]. In [17], authors
consider a two-path relay channel where two relays take turns
to decode-and-forward (DF) the transmissions from source to
destination. All these works consider networks with single
source-destination pairs. In [18], the authors extended RS
to multi-user networks where, due to the user competition
for relays, the RS problem becomes more challenging when
compared to the single source-destination case. An optimal
RS (ORS) algorithm which maximizes the minimum end-to-
end received SNR of all users is investigated. The complexity
of ORS is quadratic in both the number of relays and the
number of users. The authors also propose a suboptimal RS
(SRS) scheme with complexity linear in the number of relays
and quadratic in the number of users. Based on amplify-and-
forward (AF) relaying, the authors derive the diversity order
of both the ORS and SRS schemes and compare it against the
single source-destination case.

Recently, there has been increasing interest in multihop
cooperative relay networks where the signal from source to
the destination traverses through multiple clusters of relay
nodes [19]–[25]. It is a promising technique to increase the
transmission range in wireless networks. In [19], a novel
optimization metric is derived to select the best relay on a
per-hop basis. A suboptimal hop-by-hop RS is proposed that
utilizes the mean channel state information (CSI) of the current
hop. In [20], the authors present three RS schemes, optimal,
adhoc and N-hop, to achieve the full diversity gain provided
by the cooperation between relays in each hop. Similar to
the dual-hop network, in ORS, serving relays were selected
to maximise the received SNR at the destination while in
adhoc and N-hop schemes, RS is conducted independently
in each hop and set of N hops, respectively. Based on
DF relaying, the outage analyses of the proposed three RS
schemes were conducted for Rayleigh fading channels. In [21],
an approximate lower bound on the average bit error rate
(BER) for ORS was derived based on the probability density
function (PDF) of a max-min exponential random variable.
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More recently in [22], the exact BER of ORS in Rayleigh
fading was analyzed based on a convergent power series of
gamma functions and a tight approximation of the Gaussian
Q-function. It is again noted that the ORS is a centralized
algorithm that selects the best relay path with a full diversity
performance at the cost of high complexity and high signaling
overheads to obtain CSI of all links. In [23]–[25], authors
consider the interesting application of multihop relaying in
cognitive radio networks and analyse the end-to-end outage
probability. However, all aforementioned works over multihop
relaying consider only a single source-destination pair.

When we have multiple source-destination pairs the amount
of research work available in the open literature is limited.
For such networks, spectral-efficient half-duplex transmission
schemes with interference alignment were proposed in [26] to
minimize the impact of the interference between the relays.
However, the authors did not provide a RS scheme to select
the multihop relay paths for each user pair. In [27], a low-
complexity decentralized RS scheme is proposed for a two-
user multihop relay network. Based on DF relaying, the
authors derive exact closed-form expressions for the outage
probability of each user and show that the proposed decen-
tralized RS scheme can achieve full diversity. However, the
results and the analysis is limited to the case with only two
source-destination pairs. Thus, there remains a critical need
to design new multihop RS algorithms for a more general
multiuser network to select the best relays in each hop and
assign these relays to each user pair. Finding such optimal
paths is very challenging and our motivation is to design a mul-
tihop multiple RS strategy that can support multiple source-
destination users with low overheads while still achieving a
full diversity order.

In this paper, we consider a multi-user multihop relay
network where each hop is equipped with multiple relays that
assist users to communicate with their designated destinations.
We assume that at each hop, each user can only be helped by
a single relay and one relay can help at most one user. The
main contributions of this paper are listed as follows.
• We propose a decentralized RS (DRS) algorithm for

multi-user multihop relay networks, that maximizes the
minimum received SNR or signal-to-interference-plus-
noise ratio (SINR) for all users. In the ORS algorithm
where the path through the relay network for each user
is found by an exhaustive search, the end-to-end network
performance is maximized. However, it requires global
CSI and a joint optimization of all possible paths through
the network, which adds significant processing complex-
ity. Our proposed DRS is a more practical hop-by-hop
routing scheme where RS is performed independently in
each hop and the complexity is quadratic with the number
of relays but independent of the number of hops.

• The diversity order of the proposed DRS algorithm is
analyzed theoretically based on the DF relaying protocol.
Considering a general Nakagami-m fading model, it is
shown that the DRS algorithm can achieve full spatial
diversity, i.e., for a network with Ns source nodes and
N relays, all source nodes have diversity order mN ,

Fig. 1. A multi-user multihop relay network.

when receiving nodes have complete interference can-
cellation capability. Thus, with the DRS algorithm user
competition for relays does not affect diversity order.
Furthermore, we derive a closed-form expression for the
array gain of the system. For the special case of two-user
networks, an exact closed-form expression for the outage
probability is derived using order statistics.

• We extend our analysis of the DRS algorithm to interfer-
ing multi-user multihop relay networks where the signals
transmitted by active nodes in each hop interfere with
each other. The introduction of interference causes the
SINRs of users to be correlated with each other resulting
in a more challenging mathematical problem. Based on
the DRS algorithm we derive a tight lower bound on
the outage probability of interfering users. We clearly
illustrate how interference degrades the outage probability
performance and using the lower bound we show that
the outage probability enters a saturation regime at high
SINRs.

• Extensive numerical examples are used to simulate the
outage probability performance, illustrating the accuracy
of our analytical derivations. Furthermore, the perfor-
mance of our proposed DRS algorithm is compared
against three performance benchmarks that were identi-
fied based on well-known RS algorithms, namely, opti-
mal, naive and random RS [18]. Interestingly, we reveal
that the performance gap between DRS and ORS is small
for a low number of relays and hops.

The rest of the paper is organized as follows. The system
model is presented in Section II. The RS schemes, including
the ORS, naive RS and the proposed sub-optimal DRS, are
introduced and detailed in Section III. In Section IV the
analysis for DRS without user interference is provided along
with the special case of two-user relay networks. The case
with interfering relay networks is investigated in Section V.
Finally, the numerical examples are provided in Section VI
followed by the concluding remarks in Section VII.

II. SYSTEM MODEL

We consider a multihop wireless relay network, shown in
Fig. 1, where Ns source nodes (S1, S2, . . . SNs ) send informa-
tion to Ns corresponding destination nodes (D1, D2, . . . DNs )
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via a general L-hop network with N DF relays in each hop.
We have Ns user pairs, denoted as user u, u ∈ {1, 2, . . . Ns},
where user u corresponds to the Su−Du pair. There are (L+1)
node clusters: a source cluster, (L − 1) relay clusters and a
destination cluster. We assume that each user pair is assisted by
only one relay in each cluster (and each relay assists at most
one user) to minimize the synchronization requirement and
avoid creating too much processing complexity in any single
relay. Thus, we need N ≥ Ns relays in each cluster and the
communication takes place between nodes in two neighboring
clusters at a time. Each node is equipped with a single antenna
and operates in half-duplex mode with a power budget of P
for each transmission. We denote the ith node of the lth hop as
Ri,l where i = 1, 2, . . . Ns for l = 0 and L, and i = 1, · · · , N
for l = 1, 2, · · · , L − 1. Here, the 0th hop and Lth hop
correspond to the source and destination clusters, respectively.
In the first part of the paper, we consider an interference free
network. As such, we assume either the active nodes in each
hop are assigned orthogonal channels or receiving nodes have
complete interference cancellation capabilities. In Section V,
this assumption is removed allowing the users to interfere.

We consider DF relaying at the relays, and each relay has
a sufficient SNR level for error-free decoding. Let si,l denote
the information symbol for transmission at Ri,l which has unit
average energy. The transmit signal undergoes both multipath
fading and distance-dependent path loss1. The channel coef-
ficient and distance between node Ri,l−1 and node Rj,l are
hij,l and dij,l, respectively. The received signal at node Rj,l
from node Ri,l−1 can be written as

yj,l =

√
P

dβij,l
hij,lsi,(l−1) + nj,l (1)

where β is the path loss exponent, and nj,l is the additive noise
at Rj,l, which is assumed to be independent and identically
distributed (i.i.d.) complex Gaussian with zero mean and σ2

variance. We assume that the distance between hops is much
larger than the distance between the relay nodes in each hop.
Therefore, the channel gains between transmit nodes in the
(l − 1)th hop and the receiving nodes in the lth hop are
i.i.d. However, the channel gains between different consecutive
hops are independently but non-identically distributed., i.e.,
the channel gains between transmit nodes in the (l− 1)th hop
and the receiving nodes in the lth hop and the channel gains
between transmit nodes in the (k−1)th hop and the receiving
nodes in the kth hop, where l 6= k, are non-identically
distributed.

The corresponding received SNR is given as

γ̃ij,l =
Pgij,l

dβij,lσ
2

(2)

where gij,l = |hij,l|2. This SNR is valid for any hop l =
1, · · · , L, and the SNR matrix of the each hop which includes

1We model large scale fading as a pure distance based path loss model. The
absence of shadow fading is motivated by the fact that in a multihop relay
network, relay nodes can be placed in such a way that shadowing is avoided.

all possible connections can be given as

Γ̃l =

 (γ̃ij,l) ∈ RNs×N ; l = 1
(γ̃ij,l) ∈ RN×N ; l = 2, · · · , L− 1
(γ̃ij,l) ∈ RN×Ns ; l = L.

(3)

We assume that the amplitude of the channel gain, |hij,l|,
follows a Nakagami-m distribution and all wireless channels
are i.i.d. Then, gij,l follows a gamma distribution, and the
corresponding cumulative distribution function (CDF) of γ̃ij,l
can be given as

Fγ̃ij,l(x) =
γ
(
m, mx

Ω̃l

)
Γ(m)

(4)

where m is a parameter related to the Nakagami fading
channel, Ω̃l = P/(dβij,lσ

2), and Γ(.) and γ(., .) are the gamma
and incomplete gamma functions, respectively [28].

III. MULTI-HOP RELAY SELECTION SCHEMES

The main challenge in a multi-user multihop relay network
is to select the best path for each source to traverse through
the network to the corresponding destination. In this section,
we discuss possible RS schemes for a multi-user multihop
network with multiple DF relays by focusing on the outage
probability performance. It is important to note that for DF
relaying the outage probability of a given path is limited by
the minimum SNR of L hops [20, eq. (3)]. Therefore, to
minimize the outage probability of each user, the RS scheme
should select the paths by maximising the minimum SNR
of each user. Also, the RS scheme used for selecting relay
nodes in each hop should be designed in such a way that user
fairness is maintained while keeping the network complexity
low. Considering the energy constraints at the relay node we
make the practical assumption that relay nodes cannot be
shared between users, i.e., a given relay node cannot serve
more than one source node. In the following, we define RS
schemes that take into account the individual performance as
well as user fairness.

A. Optimal RS Scheme and Challenges

The ORS involves an exhaustive search through all possible
paths from source nodes to destination nodes. If we consider
user 1 who needs to pass through L hops to reach its
destination, we can find NL−1 possible paths to traverse. Thus,
for Ns users we have NsN

L−1 possible paths from source
nodes to destination nodes. Since a relay cannot be shared
between both users, for a given path assigned to one user, there
are (N − 1)L−1 possible paths for the other user. Thus, we

have
[∏Ns−1

i=0 (N − i)
]L−1

paths for Ns users, and we need
to find the Ns paths that maximize the minimum end-to-end
SNR of all users. Although this exhaustive search approach
leads to an ORS scheme, it has an exponential complexity
with the number of hops. For example, a small network with
Ns = 2, N = 3 and L = 4, results in 216 possible path
pairs. Furthermore, the ORS scheme should be implemented
by a centralized system with a master node (which may be an



4

external node) that has access to global CSI of all the links in
the network. This increases the complexity and overhead for
channel training/estimation making the implementation of the
ORS scheme virtually impossible.

B. Naive RS Scheme

In the naive RS, user 1 first selects the best path from among
all possible paths. Then, user 2 selects its best path that does
not conflict with user 1 and so on. In each hop, user i selects
one relay from among (N − i) relays that are not used by the
first (i−1) users, i.e., user 1 to user (i−1). As such, the user
fairness is compromised, and in a system with Nakagami-m
fading channels user i can only achieve a maximum diversity
order of (N−i)×m. However, the complexity of the selection
algorithm is lower than the ORS scheme as we only have
NL−1 paths for user 1 and (N − 1)L−1 paths for user 2 and
so on.

C. Proposed Decentralized RS (DRS) Scheme

In this paper, we consider a DRS scheme which performs
RS independently at each hop. As opposed to the optimal and
naive RS schemes, this scheme achieves user fairness while
maintaining lower network complexity.

Note that, the (l−1)th hop has a set of N relays which we
denote as Rl−1 = {R1,l−1, · · · , RN,l−1}. After the RS at the
(l − 1)th hop, a set of Ns relays is selected from Rl−1 and
we denote this asR∗l−1 = {R(1)

1,l−1, · · · , R
(u)
u,l−1, · · · , R

(Ns)
Ns,l−1}

where R(u)
u,l−1 is the selected relay for the user u at the (l−1)th

hop. Then, the SNR matrix from R∗l−1 to Rl can be formed
by first extracting the corresponding rows from Γ̃l in eq. (3),
and then arranging them according to the user index u. Thus,
the RS matrix at the lth hop may be given as

Γl = (γuj,l) ∈ RNs×N ; l = 1, · · · , L. (5)

It is important to note that Γ1 = Γ̃1; for l = 2, · · · , L − 1,
the entry γuj,l represents the SNR at Rj,l given that R(u)

u,l−1 is
selected for the user u at the (l − 1)th hop which can be
extracted from entries in Γ̃l; and ΓL = Γ̃TL which is the
transpose of Γ̃L. Based on Γl, we perform the following steps.

• RS at the lth hop (l = 1, · · · , L− 2): We need to select
Ns relays at the lth hop that will maximize the minimum
SNR of Ns users at the lth hop. To do so, we apply
the optimal single-hop RS algorithm proposed in [15]
and extended in [18], in which the worst-case complexity
is O(N2

sN
2). While this RS algorithm is detailed for a

dual-hop (L = 2) relay network in [15], for the sake of
completeness, we include the main steps applicable for a
general multi-hop (L ≥ 2) relay network, as given below.

Steps of the DRS scheme for l = 1, · · · , L− 2

1. Generate Γl using (5).
2. Sort all γuj,l’s in descending order as γ(1),l ≥
γ(2),l ≥ . . . ≥ γ(NsN),l, where γ(k),l denotes the kth
largest element among NsN independent entries in
Γl.
3. Generate a temporary matrix Γ̂l with Ns rows and
N columns. Fill Γ̂l starting from γ(1),l until each
row and at least Ns columns have entries. Having
an entry in each row make sure that there is a
selection available for each user. Having entries in at
least Ns columns make sure that the relays are not
shared between users. This filling process results in
maximizing the minimum SNR assigned to each user.
4. Assign the last entry for the corresponding user and
remove the row and the column.
5. Repeat step 4 until all users have a relay assigned.
If an assignment cannot be made go back to step 3
and add the next entry to Γ̂l.
6. Repeat steps 4 and 5 until all users have assigned
relays.

We apply this selection criterion for each SNR matrix
sequentially starting from Γ1 to ΓL−2. As such, the
complexity of each selection is quadratic in the number
of relays but independent of the number of hops.

• RS at the (L−1)th hop: In the final two clusters of relays
(i.e., the (L− 1)th and Lth hop), we perform a joint RS
by using ΓL−1 in (5) and Γ̃L in (3) and construct ΓL−1,L

as
ΓL−1,L = min (γuj,L−1, γ̃ju,L) ∈ RNs×N .

We repeat the algorithm for the (L − 1)th hop by using
ΓL−1,L. The motivation for the joint RS is because if we
apply the RS algorithm directly to ΓL−1, we will select
Ns relays in the (L−1)th hop, and the selected relays will
directly communicate with the corresponding destination
nodes in the Lth hop. As such, Γ̃L is not involved in the
selection which results in a degradation in the diversity
order [20].

Our proposed DRS scheme can be implemented in a de-
centralized manner where a master node is assigned in each
hop (which may be one of the relays) that has access to local
CSI of the links in the given hop. Thus, the DRS scheme will
lead to a significant decrease in the complexity and overhead
compared with the ORS scheme based on exhaustive search.

D. Examples

We consider a network with Ns = 2, N = 2 and L = 3.
Each relay cluster has two relays N = 2. For one channel
realization, we assume the SNR matrices for three hops Γ̃1,
Γ̃2 and Γ̃3, respectively, are given by[

0.52 0.69
0.40 0.78

]
;

[
0.58 0.97
0.07 0.45

]
; and

[
0.03 0.62
0.10 0.44

]
.

• Optimal RS: Applying an exhaustive search, we have
selections S1−R2,1−R2,2−D1 and S2−R1,1−R1,2−D2.
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Then, the effective end-to-end SNRs are 0.10 for user 1
and 0.40 for user 2, where the minimum SNR of the
network is 0.10.

• Naive RS: Applying the naive RS scheme, we have
selections S1−R1,1−R2,2−D1 and S2−R2,1−R1,2−D2.
Then, the effective end-to-end SNRs are 0.10 for user 1
and 0.07 for user 2, where the minimum SNR of the
network is 0.07.

• Proposed DRS: To maximize the minimum SNR of Γ1,
we select R1,1 for S1 and R2,1 for S2. For the last two
hops, we maximize the minimum SNR by using the joint
selection based on Γ2 and Γ̃3. Then, we have selections
S1 −R1,1 −R2,2 −D1 and S2 −R2,1 −R1,2 −D2. The
effective end-to-end SNRs are 0.10 for user 1 and 0.07
for user 2, where the minimum SNR is 0.07.

• Proposed DRS without joint selection: To maximize the
minimum SNR of Γ1 and Γ2, we select R1,1 for S1 and
R2,1 for S2; and R1,2 for R1,1 and R2,2 for R2,1 which
means, so far, we have selections S1 − R1,1 − R1,2 and
S2−R2,1−R2,2. Since there are no remaining options in
the last hop, R1,2 transmits to D1 and R2,2 transmits to
D2. As such, the effective end-to-end SNRs are 0.03 for
user 1 and 0.44 for user 2, where the minimum SNR is
0.03. This highlights the performance advantage of joint
selection in the last two hops.

Interestingly, if we consider the channel realizations of the
SNR matrices Γ̃1, Γ̃2 and Γ̃3, respectively, are given by[

0.60 0.89
0.82 0.23

]
;

[
0.16 0.52
0.69 0.49

]
; and

[
0.86 0.85
0.11 0.79

]
,

a minimum SNR of the network of 0.52 is achieved for all
three RS schemes. This illustrates that for some example
scenarios both naive RS and proposed DRS give optimal
results. But for many other example scenarios the minimum
SNR of the network with naive RS or proposed DRS is smaller
that that of the ORS. Hence, naive RS and proposed DRS are
sup-optimal schemes.

IV. PERFORMANCE ANALYSIS FOR DRS WITHOUT
USER-INTERFERENCE

In this section, we first derive the outage probability, di-
versity order and array gain of a general multihop network
based on the DRS scheme discussed in Section III. Then, we
consider the performance of a two-user network as a special
case.

A. Outage Probability

For notational simplicity, let us define the effective SNR
between nodes Ri,l−1 and Rj,l as γ́ij,l. Note that, for l =
1, · · · , L − 2, we can write that γ́ij,l = γ̃ij,l where γ̃ij,l
is in (2). In the last two hops, i.e., hop L − 1 and L, we
apply the joint selection such that the SNR of the channel
between nodes Ri,L−2 and Rj,L via Rk,L−1 can be given by
min(γ̃ik,L−1, γ̃kj,L). Recall that j ∈ {1, 2, . . . , Ns} is for the
Ns destination nodes. Then, we denote the effective SNR of

the (L−1)th hop as γ́ij,L−1 = min(γ̃ik,L−1, γ̃kj,L). Based on
(4), we can derive the corresponding CDF of γ́ij,l as

Fγ́ij,l(x)

=

{
Fγ̃ij,l(x); l = 1, · · · , L− 2
1−

(
1− Fγ̃ij,L−1

(x)
) (

1− Fγ̃ij,L(x)
)

; l = L− 1.
(6)

Here the expression for l = L − 1 results due to the joint
processing in the last two hops. For presentation simplicity, we
assume that the (L− 1) relay clusters are placed between the
source and destination pairs with equal distances, i.e., dij,l =
d/L; ∀i, j, l where d is the distance between the source and
destination pairs. Since all channels are identical, we set Ω̃l =
Ω = P/((d/L)βσ2) for l = 1, · · · , L. However, it is important
to note that the following derivation applies to the general case
where the (L−1) relay clusters are placed randomly between
the source and destination pairs such that the distance between
clusters in not identical.

Since we maximize the minimum SNR for each hop in the
channel matrix we need to apply the order statistics of γ́ij,l.
The CDF of the kth largest element among NsN independent
entries in Γl, denoted as γ(k),l, can be written as [18, eq. 8]

Fγ(k),l
(x) =

k−1∑
i=0

(NsN)!
(
k−1
i

)
(−1)iFγ́ij,l(x)NsN−k+i+1

(NsN − k + i+ 1)(NsN − k)!(k − 1)!

(7)

where Fγ́ij,l(x) is chosen from (6) depending on the hop. For
the DF multihop relay network the end-to-end SNR of user u,
γ(u), can be written as

γ(u) = min{γu,1, · · · , γu,l, · · · , γu,L−1}, (8)

where γu,l is the selected SNR for user u at the lth hop, i.e,
the SNR selected from among Ns SNRs in the uth row of
Γl. With the DRS scheme, we can write an expression for
the outage probability of user u such that the end-to-end SNR
falls below a certain predetermined threshold SNR γth as

P (u)
o = P[γ(u) ≤ γth]

= P[min{γu,1, · · · , γu,l, · · · , γu,L−1} ≤ γth]

= 1−
L−1∏
l=1

(1− P[γu,l ≤ γth]) . (9)

Based on our DRS scheme which maximizes the minimum
SNR for each Γl, we note that γu,l can take γ(1),l, γ(2),l, · · · ,
or γ(NsN−N+1),l. Thus, we can re-write (9) as

P (u)
o

= 1−
L−1∏
l=1

(
1−

NsN−N+1∑
k=1

P[γu,l = γ(k),l]P[γ(k),l ≤ γth]

)

= 1−
L−1∏
l=1

(
1−

NsN−N+1∑
k=1

P[γu,l = γ(k),l]Fγ(k),l
(γth)

)
,

(10)

where Fγ(k),l
(γth) is defined in (7) and P[γu,l = γ(k),l]

denotes the probability of each event γu,l = γ(k),l where
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k = 1, · · · , NsN − N + 1. For the general case with Ns
users, deriving analytical expressions for the probability of
each event is challenging, however, these probabilities can
be calculated numerically, via Monte Carlo simulations. We
provide analytical expressions of P[γu,l = γ(k),l]s only for a
two-user network in Section IV-C.

B. Diversity Order and Array Gain

Diversity order determines how fast the outage probability
decreases in the high transmit power regime. It is defined
as δ , limP→∞

logP (u)
o

logP [29]. Then the array gain can be

defined as ε = lim
P→∞

(
P δP (u)

o

)−1

. In this section, we analyze
the achievable diversity order and the array gain of the DRS
scheme.

Theorem 1. In a multi-user multihop relay network with the
DRS scheme, the achievable diversity order δ and array-gain
ε of each user, respectively, are given by

δ = mN

ε =


(L−2+2N )(NsN)!mmN

∏N−1
i=1

N−i
NsN−i

NsN !(NsN−N)!(m!)N
(
γth( dL )

β
σ2
)−mN ; Ns < N

2(L−2+2N )(NsN)!mmN
∏N−1
i=1

N−i
NsN−i

NsN !(NsN−N)!(m!)N
(
γth( dL )

β
σ2
)−mN ; Ns = N,

where m is the Nakagami shape parameter and N is the
number of relays in each hop.

A detailed proof of Theorem 1 is given in Appendix A. From
Theorem 1 we understand that our DRS scheme achieves full
diversity order.

If we do not perform joint processing in the last two hops,
i.e., if the signal in the last hop is transmitted directly to the
corresponding destination node without any node selection,
then γ́ij,l = γ̃ij,l for all the hops and we get Fγ́ij,l(x) =
Fγ̃ij,l(x),∀l ∈ {1, 2, . . . , L}. Thus, the outage probability
expression in (10) reduces to

P (u)
o = 1−

(
1− γ

(
m,

mγth

Ω̃l

))
×
L−1∏
l=1

(
1−

NsN−N+1∑
k=1

P[γu,l = γ(k),l]Fγ(k),l
(γth)

)
.

(11)

Following the same steps as given in Appendix A, we can
separate the higher order terms in (11) as

P (u)
o =

(
mγth

(
d
L

)β
σ2
)m

m!
P−m +O

(
1

Pm+1

)
, (12)

and observe that without joint processing the diversity order
reduces to m.

C. Special Case: Two-User Networks

In this section, we consider a special case with only two
users and N ≥ 2 relays. Then, the RS matrix of the network

can be written as

Γl =

[
γ11,l · · · γ1n,l · · · γ1N,l

γ21,l · · · γ2n,l · · · γ2N,l

]
2×N

. (13)

When Ns = 2, the outage probability can be written by using
(10) as

P (u)
o = 1−

L−1∏
l=1

(
1−

N+1∑
k=1

P[γu,l = γ(k),l]Fγ(k),l
(γth)

)
.

(14)

Now we consider the analytical expressions for P[γu,l =
γ(k),l]. Although they are presented in [27], for the sake of
completeness, we briefly summarize the results as follows.

It is important to note that each event occurs with equal
probability for each user pair u. Hence, we use a factor 1/2 to
calculate the outage of a particular user pair u. Using γmax
and γmin to denote the maximum and minimum of the selected
SNRs, we consider the probability of the following cases:
• γu,l = γ(1),l happens only if γmax = γ(1),l, and thus
γmin can take any value of γ(2),l, γ(3),l, . . . , or γ(N+1),l.
Subsequently, we consider the following three scenarios:
i) γmax = γ(1),l and γmin = γ(2),l happens when γ(1),l

and γ(2),l are in two distinct rows and two distinct
columns of Γ. This event has probability 1

2
N−1
2N−1 ; ii)

γmax = γ(1),l and γmin = γ(3),l happens when γ(1),l

and γ(2),l are in the same column, or γ(1),l and γ(2),l

are in the same row and γ(3),l in the other row and
a column different to γ(1),l. This event has probability
1
2

N
2(2N−1) ;and iii) For N > 2, γmax = γ(1),l and

γmin = γ(k),l (k = 4, 5, . . . , N + 1) happens when all
γ(2),l, γ(3),l, . . . , γ(k−1),l are in the same row and γ(k),l

in the other row and a column different to γ(1),l. This
event has probability 1

2
N−1

2N−(k−1)

∏k−2
i=1

N−i
2N−i .

• γu,l = γ(2),l happens when γmax = γ(2),l or γmin =
γ(2),l. Since we have only two source nodes, γmax

can either be γmax = γ(1),l or γmax = γ(2),l. Thus,
P[γmax = γ(2),l] = 1

2 − P[γu,l = γ(1),l] which can
be calculated with the aid of the previous case. Further,
γmin = γ(2),l happens only when γ(1),l and γ(2),l are in
two distinct rows and two distinct columns of Γl. This
event has probability 1

2
N−1
2N−1 .

• γu,l = γ(3),l is equivalent to γmin = γ(3),l which happens
when γ(1),l and γ(2),l are in the same column, or γ(1),l

and γ(2),l are in the same row and γ(3),l is in a different
row. This event has probability 1

2
N+2

2(2N−1) .
• For N > 2, γu,l = γ(k),l for k = 4, · · · , N + 1 is

equivalent to γmin = γ(k),l for k = 4, · · · , N + 1 which
happens when all γ(1),l, γ(2),l, · · · , γ(k−1),l are in the
same row and γ(k),l is in a different row. This event has

probability 1
2

2N( N
k−1)

(2N−(k−1))( 2N
k−1)

.

By considering all possible cases and substituting the corre-
sponding event probabilities in (14), the exact outage proba-
bility of user u, P (u)

o , can be derived in closed-form as (15),
given at the top of next page. Moreover, following the similar
steps as in Section IV-B, we can derive the diversity order and
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P (u)
o =


1−

∏L−1
l=1

(
1− 1

3

∑3
k=1 Fγ(k),l

(γth)
)

;N = 2

1−
∏L−1
l=1

[
1−

(
3N−2
8N−4 + 1

2

∑N+1
k=4

(N−1)
∏k−2
i=1

N−i
2N−i

2N−(k−1)

)
Fγ(1),l

(γth)−
(N+2)Fγ(3),l

(γth)

4(2N−1)

−
(

3N−2
8N−4 −

1
2

∑N+1
k=4

(N−1)
∏k−2
i=1

N−i
2N−i

2N−(k−1)

)
Fγ(2),l

(γth)−
∑N+1
k=4

2N( N
k−1)Fγ(k),l

(γth)

2(2N−(k−1))( 2N
k−1)

]
;N > 2.

(15)

array-gain as
δ = mN

ε =


(L−2+2N )(2N)!mmN

∏N−1
i=1

N−i
2N−i

(N !)2(m!)N
(
γth( dL )

β
σ2
)−mN ; N = 2

(L−2+2N )(2N)!mmN
∏N−1
i=1

N−i
2N−i

2(N !)2(m!)N
(
γth( dL )

β
σ2
)−mN ; N > 2,

This results is also consistent with Theorem 1 when Ns = 2.

V. PERFORMANCE ANALYSIS FOR DRS WITH
USER-INTERFERENCE

In this section, we consider a network with interfering users.
Note that so far in this paper, we have assumed that the
active nodes in each hop are assigned orthogonal channels
or the receiving nodes have complete interference cancellation
capability. As a result, the signal received by each user at each
relay node was interference free. However, in a multiple-access
system or a frequency-reused cell, interference from other
transmitting sources may cause performance degradation and,
therefore, cannot be ignored. When the users are interfering
with each other the corresponding received signal at node Rj,l
can be written as

yj,l =

Ns∑
u=1

√
P

(d
(u)
uj,l)

β
h

(u)
uj,ls

(u)
u,(l−1) + nj,l, (16)

where d(u)
uj,l and h(u)

uj,l denotes the channel coefficients between
node Rj,l and R(u)

u,l−1 and s(u)
u,l−1 is the information symbol at

R
(u)
u,l−1. The corresponding received SINR of user u at node

j in hop l is given as

γuj,l =
ωuj,l∑Ns

q=1,q 6=u ωqj,l + σ2
, (17)

where ωqj,l = Pg
(u)
qj,l/(d

(u)
qj,l)

β with g(u)
qj,l = |h(u)

qj,l|2. From (17),
we learn that the received SINRs of different users at a given
node, i.e., the SINRs in each column of (5), are now correlated
due to the effect of interfering channels.

Based on the proposed DRS algorithm, the outage probabil-
ity of user u can be found from (10), even in the interfering
case. However, the analytical expression for Fγ(k),l

(γth) in
(17) is no longer valid as Fγ(k),l

(γth) in the interfering case
corresponds to the CDF of the kth largest SINR from among
NsN correlated SINRs. As discussed below, deriving an
expression for Fγ(k),l

(γth) is mathematically challenging due
to the complexity of resulting order statistics. Based on [30,
eq. 5.3.1], the CDF of the kth largest element among NsN

correlated SINRs, denoted as γ(k),l, can be written as

Fγ(k),l
(x) =

NsN∑
j=NsN−k+1

(−1)j−NsN+k−1

(
j − 1

NsN − k

)
Hj:j(x),

(18)

where

Hj:j(x) =
∑

1≤ij+1<...<iNsN≤NsN

F
ij+1,...,iNsN
γ(1),l

(x), (19)

with F
ij+1,...,iNsN
γ(1),l

(x) denoting the CDF of the largest of
j correlated random variables picked from the sample of
NsN SINRs in the lth hop. Let us denote this set of j
correlated random variables picked from the sample of NsN
SINRs by γi1,l, . . . , γij ,l. The superscript notation in (19)
indicates that γij+1,l, . . . , γiNsN ,l have been dropped from the

sample of NsN SINRs. By noting that F
ij+1,...,iNsN
γ(1),l

(x) =
Fγi1,l,...,γij ,l(x, . . . , x), where Fγi1,l,...,γij ,l(x, . . . , x) denotes
the joint CDF of the selected j SINRs, we can reexpress (18)
as

Fγ(k),l
(x) =

NsN∑
j=NsN−k+1

[
(−1)j−NsN+k−1

(
j − 1

NsN − k

)

×
∑

1≤i1<...<ij≤NsN

Fγi1,l,...,γij ,l(x, . . . , x)

 . (20)

As such, we need to know the joint CDF of all possible subsets
of SINRs in Γl in order to compute the CDFs of ordered
SINRs. This is explained in detail in Appendix B using a
simple example of Ns = 2 and N = 2. As a result deriving
a general expression for Fγ(k),l

(x), and therefore for outage
probability, is mathematically challenging in the interfering
case. As the exact results are intractable, in the following, we
derive an accurate lower bound on the outage probability of
an arbitrary user in interfering relay networks.
Remark: In the interfering case, all hops are processed indi-
vidually, including the last two hops that were jointly analysed
in the interference free case. This is because in the interfering
case the SINRs in the Lth hop depends on the relay nodes that
were selected in the (L− 1)th hop. As such, the master node
has to consider all possible combinations of selected relay
nodes in the (L − 1)th hop and compare the SINRs. This
significantly increases the processing complexity. Furthermore,
the effect of interference causes the performance to saturate
in the high SINR regime. Therefore the loss of diversity gain
that motivated the joint processing in the interference free case
does not apply in the interfering case.
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A. Lower Bound for Outage Probability

From (17), we learn that each term in a given column in Γl
is correlated and the elements in a given row are independent.
Let γ(u)

(N),l denote the best SINR from among all the SINRs in

the uth row of Γl, i.e., γ(u)
(N),l = max(γu1,l, γu2,l, . . . , γuN,l). If

γ
(u)
(N),l is assigned for user u, ∀u ∈ {1, 2, . . . , Ns} then all the

users experience the best SINR at hop l. However, this happens
only if γ(1)

(N),l, γ
(2)
(N),l, . . . , γ

(Ns)
(N),l are in different columns in

Γl, because according to the proposed DRS scheme relays
cannot be shared among users. Observing the structure of the
SINR expression in (17), we argue that the probability of two
SINRs of γ(1)

(N),l, γ
(2)
(N),l, . . . , γ

(Ns)
(N),l being located in the same

column is very small in the interfering case, especially when
N � Ns. This is because the received signal power that acts as
the desired signal for one user becomes the interfering signal
for other users. For example, for a two-user case the received
SINR of user 1 at relay node j in the lth hop is given by,

γ2j,l =
ω1j,l

ω2j,l + σ2
, (21)

and the received SINR of user 2 at relay node j in the same
hop is given by

γ2j,l =
ω2j,l

ω1j,l + σ2
. (22)

Note how the signal power that appears in the numerator
in (21) changes to the interfering power that appears in the
denominator in (22) and vice versa. This structure makes the
probability of γ1j,l and γ2j,l being the two best SINRs in rows
one and two, respectively, very small. As such, we can write
a lower bound on the outage probability of user u based on
(9) as

P (u)
o ≥ 1− (1− P[γu,L ≤ γth])

L−1∏
l=1

(
1− P[γ

(u)
(N),l ≤ γth]

)
(a)
= 1− (1− P[γu,L ≤ γth])

L−1∏
l=1

(
1− (P[γuj,l ≤ γth])

N
)
,

(23)

where γu,L denotes the SINR of user u at the last hop and
j ∈ {1, 2, . . . , N}. The result in (a) follows from the fact that
γ

(u)
(N),l is the maximum of N i.i.d. SINRs. Based on the proof

of P[γuj,l ≤ γth] given in Appendix C, the outage probability
of user u can be lower bounded as (24), given at the top of next

page, where Φl = P/(d
(u)
uj,l)

β and Θl =
γqth

(
m
Φl

)(Ns−1)m

Γ(q+1)Γ((Ns−1)m+q) .
In section VI, we illustrate that the expression in (24) provides
an accurate lower bound for the outage probability of user u
when the number of relays is large compared to the number
of users.

B. Outage Probability Saturation

In the high SINR regime this outage probability lower
bound saturates due to the effect of interference. This can be

illustrated as follows. Let us reexpress the exponential function
in (24) in a series expansion as

P (u)
o ≥ 1−

m−1∑
q=0

q∑
k=0

∞∑
r=0

Υ

(
(d

(u)
uj,L)β

P

)r+q−k
×
L−1∏
l=1

1−

1−
m−1∑
q=0

q∑
k=0

∞∑
r=0

Υ

(
(d

(u)
uj,l)

β

P

)r+q−kN
 ,

(25)

where Υ =
(
q
k

) (−1)rmr+q−kγr+qth σ2(r+q−k)Γ((Ns−1)m+k)

r!(γth+1)(Ns−1)m+kΓ(q+1)Γ((Ns−1)m)
con-

tains all the terms that are independent from P . Then we
consider the lowest exponent for 1/P which gives r = 0 and
k = q as

P (u)
o ≥ 1−

(
m−1∑
q=0

Υ0 +O(P−1)

)

×

1−

(
1−

m−1∑
q=0

Υ0 +O(P−1)

)NL−1

,

(26)

where Υ0 =
∑m−1
q=0

γqthΓ((Ns−1)m+q)

(γth+1)(Ns−1)m+qΓ(q+1)Γ((Ns−1)m)
. Then,

applying the binomial expansion to expand the powers fol-
lowed by some mathematical manipulations the smallest order
term of P in (26) can be separated as

P (u)
o ≥ 1−Υ0

(
1− (1−Υ0)

N
)L−1

+O(P−1). (27)

As can be seen by (27) the smallest order of P is zero and
the outage probability lower bound has an error floor in the
high SINR regime.

VI. NUMERICAL AND SIMULATION RESULTS

In this section, we present simulation results to validate
our analysis and evaluate the performance of the sub-optimal
DRS scheme. All nodes have the same power P which varies
between 15 dBm–30 dBm (≈ 30 mW–10 W), and the noise
variance is set to one. We consider equal distances between
the L clusters, i.e., dij,l = d/L, where d is the the distance
between the source and the destination which is set to 2 km.
The value of the path loss is 140 dB for the first kilometer
with path-loss exponent β = 3.8 which corresponds to built-
up areas. The SNR threshold γth is set to 5 dB unless otherwise
stated.

Fig. 2 plots the simulated outage probability with transmit
power for the DRS scheme with those of the optimal (ex-
haustive search) RS , naive RS and random RS schemes of
a two-user network (Ns = 2) with N = 2 and L = 3 over
Rayleigh fading (m = 1) channels. In the random RS, each
user randomly chooses a relay at each hop without conflict.
For the DRS, ORS, or random RS schemes, both users have
the same outage probability. For the naive RS scheme, user 1
first selects the best path in each hop (similar to the DRS).
Then, user 2 selects its best path that does not conflict with
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P (u)
o ≥ 1−

exp

(
−mγth

ΦL

)m−1∑
q=0

q∑
k=0

(
q

k

)
ΘLσ

2(q−k)Γ((Ns − 1)m+ k)(
mγth
ΦL

+ m
ΦL

)(Ns−1)m+k



×
L−1∏
l=1

1−

1− exp

(
−mγthσ

2

Φl

)m−1∑
q=0

q∑
k=0

(
q

k

)
Θlσ

2(q−k)Γ((Ns − 1)m+ k)(
mγth

Φl
+ m

Φl

)(Ns−1)m+k


N
 ,

(24)
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Fig. 2. User outage probability for two-user networks for ORS, DRS, naive
RS, and random RS schemes when Ns = 2, N = 2, and L = 3.

user 1. As such, the outage probabilities of user 1 and user 2
are different. user 1 actually achieves the performance of the
single-user DRS since it has all N relays to choose from. As
such, in this example the performance of user 1 with naive
RS is even larger than the ORS scheme. User 2 has a worse
performance since it has only (N − 1) relays to choose from.
This demonstrates the unfairness of the naive RS scheme.
The DRS, ORS and naive RS (user 1) schemes achieve the
same diversity order of two. The naive scheme (user 2) and
the random RS provide the same performance and achieve
a diversity order of only one because when there are only
two relays, user 2 has no option for the RS as one relay has
already been selected by user 1. At P = 30 dBm, while the
ORS (user 1 or user 2) and naive RS (user 1) outperform the
DRS (user 1 or user 2) by approximately 1 dB and 2.5 dB,
respectively, the DRS (user 1 or user 2) outperforms naive RS
(user 2) and random RS (user 1 or user 2) by approximately
8 dB. Since both users have the same outage probability, the
DRS scheme provides fairness among users.

Fig. 3 plots the outage probability with transmit power for
each user of a two-user network with N = 2, 3 or 4, and
L = 4 over Nakagami-m fading channels when m = 2. The
simulation curves are shown as discrete marks and the exact
analytical outage probability curves generated from (15) are
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Fig. 3. User outage probability for two-user networks with N = 2, 3, 4,
m = 2 and L = 4 for the proposed DRS scheme.

shown as continuous lines. The asymptotic analytical outage
probability lines generated from (32) are shown as dashed
lines. For the entire simulated power range, we can see that our
exact analytical results match the simulation for all network
settings and the system archives a diversity order of 2, 3 and
4 as we change N = 2, 3 and 4. This confirms the accuracy
of our analysis for two-user multihop relay networks. This
figure also shows the fairness of the DRS scheme as both
users achieve similar outage probability performances.

Fig. 4 plots the outage probability with the transmit power
for user 1 of a three-user network (Ns = 3) with N = 3 or
6, and L = 3 or 4 over Rayleigh fading (m = 1) channels.
Only the simulated outage probability of user 1 is shown in
the figure as all users have the same outage probability. The
outage probability approximation in (32) is accurate for large
P which confirms the validity of our analysis of the diversity
order and array gain. We also observe that the DRS scheme
has diversity order 3 or 6 for N = 3 or 6, respectively, which
is the full diversity order. We further investigate the effect
of the number of hops on array gain. For N = 3 at P =
28 dBm, the L = 3 has 13 dB loss in array gain compared
with L = 4. Similarly, for N = 6 at P = 26 dBm, the L =
3 has 27 dB loss in array gain compared with L = 4, which
is a significant performance loss. For this example, when the
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Fig. 4. User outage probability for multi-user networks with Ns = 3,
N = 3, 6, and L = 3, 4 for the proposed DRS scheme.
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Fig. 5. User outage probability for multi-user networks with Ns = 3,
N = 3, m = 2, 3 and L = 4 for the proposed DRS scheme.

number of relays is doubled (N = 3 to N = 6), the array
gain is also approximately doubled. Furthermore, the distance
dependent path-loss has a major impact on the user outage as
well.

Fig. 5 plots the outage probability with the transmit power
for user 1 of a three-user network (Ns = 3) for N = 3 and
L = 4 over Nakagami-m fading channels when m = 2 or 3.
Based on the RS at last two hops, we consider two scenarios:
i) with joint processing, and ii) without joint processing.
With joint processing, the DRS has diversity order 6 and 9
when m = 2 and 3, respectively, which is the full diversity
order Nm, confirming the accuracy of (32). Without joint
processing, the DRS has diversity order 2 and 3 when m = 2
and 3, respectively, which is a reduced diversity order m which
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Fig. 6. User outage probability lower bound for interfering multi-user
networks with Ns = 2, 3, N = 3, 4, m = 1 and L = 4 for the proposed
DRS scheme.

is independent of number of relays N . This also confirms the
accuracy of (12), and clearly illustrates the importance of joint
processing in DRS scheme. For example, when we apply joint
processing at m = 2 we can achieve P (u)

o = 2 × 10−3, with
approximately 7 dBm less power when compared to without
joint processing. Similarly, when we apply joint processing at
m = 3 we can achieve P (u)

o = 2× 10−3, with approximately
5 dBm less power when compared to without joint processing.

Fig. 6 plots the outage probability lower bound for a multi-
user multihop relay network with interfering users, for Ns = 2
and 3, N = 3 and 4 and L = 4. Assuming a Rayleigh faded
environment the Nakagami shape parameter m is set to one.
The SINR threshold γth is set to -5 dB2. The simulation curves
for the exact outage probability and the lower bound are shown
as dotted lines with discrete marks and the analytical outage
probability lower bound curves generated from (24) are shown
as continuous lines. For the entire simulated power range, we
can see that our analytical lower bound exactly matches the
simulation lower bound for all network settings. This confirms
the accuracy of our analysis. For Ns = 2, we observe that the
lower bound is almost on top of the exact outage probability
curve when N = 3 and 4. For Ns = 3, we observe that the
lower bound is lose when N = 3 but it is almost on top of
the exact outage probability as soon N is as large as 4. We
also observe that due to the effect of interference the outage
probability performance is significantly degraded. In the high
SINR regime the outage enters a saturation highlighting the
importance in interference cancellation in multi-user relay
networks.

2Note that the outage probability is significantly degraded due to the effect
of interference. As such, we selected a lower SINR threshold to clearly
illustrate the effect of interference on outage probability.
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VII. CONCLUSION

The relay selection problem in a network with multiple
source-destination pairs with multiple hops is analysed in this
paper. A sub-optimal DRS scheme is proposed and analysed
under general channel conditions with Nakagami-m fading and
path loss. As opposed to ORS whose complexity increases
exponentially with the number of hops, the complexity of the
proposed decentralized RS scheme is quadratic in the number
of users, linear in the number of relays and independent of the
number of hops. Based on a rigorous theoretical analysis the
proposed scheme was shown to achieve full spatial diversity.
For a two-user network the exact closed-form expression of
the outage probability was derived and tested against simula-
tions. Extending the analysis to interfering relay networks, an
accurate lower bound on the outage probability was derived
in closed-form. Due to the effect of interference the outage
probability was shown to enter a saturation in the high SINR
regime.

An interesting extension to this work is to apply this system
model to a cognitive radio network and study routing protocols
for path selection. While in [23]–[25] the authors consider
multihop relaying in cognitive radio networks only a single
secondary source and destination is considered. However,
extending to multiple secondary sources and secondary des-
tinations would formulate interesting research problems. The
analysis in this paper was based on DF relaying. An extension
to AF relaying would formulate another challenging analytical
problem. While error accumulation in AF relaying limits its
extension to multihop relaying, a comparison would lead to
interesting insights. It is also desirable to extend the analysis
to full-duplex relays to gain more interesting insights.

APPENDIX A
PROOF OF THEOREM 1

In this section we provide a detailed proof of Theorem 1.
Note that the SNR elements of Γl are i.i.d.. Thus there are
in total (NsN)! possible orderings of the SNR elements, each
with probability 1/(NsN)!. For any given k, we can count the
number of orderings that result in γu,l = γ(k),l and denote it as
εk. Thus P[γu,l = γ(k),l] = εk/(NsN)!. For the DRS scheme,
only the relay ordering matters i.e., εk depends only on Ns, N
(the dimensions of Γl) and k, and is independent of Fγ́ij,l(x)
which is the CDF of each element of Γl. Therefore, P[γu,l =
γ(k),l] is independent of Fγ́ij,l(x), and does not include P .

Based on the previous outage probability analysis in (10),
we can write

P (u)
o = 1

−
L−1∏
l=1

(
1−

NsN−N+1∑
k=1

k−1∑
i=0

Ψlki

(
Fγ́ij,l(γth)

)NSN−k+i+1

)
,

(28)

where (28) follows by substituting Fγ(k),l
(γth) in (7) into

(10) and Ψlki =
P[γu,l=γ(k),l](NsN)!(k−1

i )
(−1)i(NsN−k+i+1)(k−1)!(NsN−k)! . From

(28) we learn that only the term Fγ́ij,l(γth) depends on
P . Therefore, we proceed to reexpress Fγ́ij,l(γth) based on

(6) and (4) to write (29) given at the top of the next
page, where we have separated the product terms in (28)
based on the outage probability of the first L − 2 hops and
the last two hops. Next, we use the infinite series expan-
sion of the incomplete gamma function, which is given by

γ
(
m, mx

Ω̃l

)
=
(
mx
Ω̃l

)m
exp (−mx

Ω̃l
)
∑∞
q=0

(mx/Ω̃l)
q

m(m+1)...(m+q) , and
express the exponential function therein using [28, eq. (1.211)]
to write (30) given at the top of next page. Based on (30), we
identify that the effective terms at high power region, i.e.,
the terms with the lowest exponent for 1/P as P → ∞, are
obtained when t = q = i = 0 and k = NsN − N + 1.
Using this, and the fact that Ω̃l = Ω = P/((d/L)βσ2) for
l = 1, · · · , (L), we next apply the binomial expansion and
write the product of L − 2 terms as a summation given by
(31) at the top of the next page. Note that in (31) we have
only expressed the dominant terms in the high SNR regime.
As P[γu,l = γ(NsN−N+1),l] = P[γu,z = γ(NsN−N+1),z] for
any l 6= z, l ∈ 1, 2, . . . , L− 1 we can further simplify (31) as

P (u)
o

≈
(L− 2 + 2N )P[γu,l = γ(NsN−N+1),l](NsN)!mmN

N !(NsN −N)!(m!)N
(
γth
(
d
L

)β
σ2
)−mN

︸ ︷︷ ︸
ε

P−mN

+O
(

1

PmN+1

)
, (32)

where

P[γu,l = γ(NsN−N+1),l] =

{
1
Ns

∏N−1
i=1

N−i
NsN−i ; Ns < N

2
Ns

∏N−1
i=1

N−i
NsN−i ; Ns = N,

(33)

for all l ∈ 1, 2, . . . , L− 1 and the array gain of user u denoted
as ε.

APPENDIX B
EXAMPLE: DERIVATION OF Fγ(k),l

(x) IN INTERFERING
RELAY NETWORKS

In this section, we provide a detailed derivation of Fγ(k),l
(x)

for a simple example. Let us consider the lth hop of a relay
network with two users and two relays in each hop. Let the
channel be subjected to Rayleigh fading. Assuming that the
users interfere with each other we can write the received SINR
matrix as

Γl =

[
γ11,lγ12,l

γ21,lγ22,l

]
, (34)

where γuj,l =
ωuj,l

ωvj,l+σ2 , v ∈ {1, 2}, v 6= u. Based on (20) the
CDF of the largest, second largest and the third largest SINRs
from among the four SINRs in (34) can be written as follows.
For the ease of notation let S = {γ11,l, γ21,l, γ12,l, γ22,l}.

Fγ(1),l
(x) =

∑
γp,γq,γr,γs∈S

Fγp,γq,γr,γs(x, x, x, x), (35)
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P (u)
o = 1−

L−2∏
l=1

1−
NsN−N+1∑

k=1

k−1∑
i=0

Ψlki

γ
(
m, mγth

Ω̃l

)
Γ(m)

NSN−k+i+1


×

1−
NsN−N+1∑

k=1

k−1∑
i=0

Ψ(L−1)ki

1−

1−
γ
(
m, mγth

Ω̃L−1

)
Γ(m)

1−
γ
(
m, mγth

Ω̃L

)
Γ(m)

NSN−k+i+1

 ,

(29)

P (u)
o = 1−


L−2∏
l=1

1−
NsN−N+1∑

k=1

k−1∑
i=0

Ψlki


(
mγth

Ω̃l

)m∑∞
t=0

∑∞
q=0

(−1)t
(
mγth

Ω̃l

)t+q
t!m(m+1)...(m+q)

Γ(m)


NSN−k+i+1



×

1−
NsN−N+1∑

k=1

k−1∑
i=0

Ψ(L−1)ki

1−

1−

(
mγth
Ω̃L−1

)m∑∞
t=0

∑∞
q=0

(−1)t
(
mγth
Ω̃L−1

)t+q
t!m(m+1)...(m+q)

Γ(m)


1−

(
mγth
Ω̃L

)m∑∞
t=0

∑∞
q=0

(−1)t
(
mγth
Ω̃L

)t+q
t!m(m+1)...(m+q)

Γ(m)



NSN−k+i+1


 .

(30)

P (u)
o ≈

L−2∑
l=1

P[γu,l = γ(NsN−N+1),l](NsN)!mmN

N !(NsN −N)!(m!)N

(
γth
(
d
L

)β
σ2

P

)mN

+
2NP[γu,L−1 = γ(NsN−N+1),L−1](NsN)!mmN

N !(NsN −N)!(m!)N

(
γth
(
d
L

)β
σ2

P

)mN
+O

(
1

PmN+1

)
.

(31)

Fγ(2),l
(x) =

∑
γp,γq,γr∈S

Fγp,γq,γr (x, x, x)

− 3
∑

γp,γq,γr,γs∈S
Fγp,γq,γr,γs(x, x, x, x), (36)

Fγ(3),l
(x)

=
∑

γp,γq∈S
Fγp,γq (x, x)− 2

∑
γp,γq,γr∈S

Fγp,γq,γr (x, x, x)

+ 3
∑

γp,γq,γr,γs∈S
Fγp,γq,γr,γs(x, x, x, x). (37)

As such, we need the joint CDF of all possible combinations
of two, three and four SINRs in (34) in order to find the above
order statistics. The joint CDF of two independent SINRs in S,
which we denote by F(ind)(x, x), can be evaluated following
the steps in Appendix C which results in

F(ind)(x, x) =

(
1− exp(−xσ2)

1 + x

)2

. (38)

The joint CDF of two correlated SINRs in S, which we denote
by F(corr)(x, x), can also be found based on some mathemat-
ical manipulations as given in (39). Then the expressions for

Fγ(1),l
(x), Fγ(2),l

(x) and Fγ(3),l
(x) can be expressed in closed

form in-terms of F(ind)(x, x) and F(corr)(x, x) as

Fγ(1),l
(x) =

(
F(corr)(x, x)

)2 (40)

Fγ(2),l
(x) = 4

(
F(ind)(x, x)

) (
F(corr)(x, x)

)2
− 3

(
F(corr)(x, x)

)2
, (41)

Fγ(3),l
(x) = 4

(
F(ind)(x, x)

)
+ 2

(
F(corr)(x, x)

)
− 2

(
F(ind)(x, x)

) (
F(corr)(x, x)

)2
+ 3

(
F(corr)(x, x)

)2
.

(42)

Note that based on (20), (38) and (39) the ordered SINRs
Fγ(1),l

(x), Fγ(2),l
(x) . . . Fγ(N+1),l

(x) required for a two-user
network with N relays can be found. However, when the
number of users is large deriving general expressions for order
statistics is mathematically challenging as we have to consider
a large number of subsets of joint CDFs.

APPENDIX C
PROOF OF P[γuj,1 ≤ γth]

In this section we derive an expression for P[γuj,1 ≤ γth].
First, we reexpress γuj,1 based on (17) and rewrite P[γuj,1 ≤
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F(corr)(x, x) =


exp(−x(3+x))

1+x

(
(1 + x) exp (x2 + 3x) + exp

(
x+ x2(1+x)

x−1

)
−2 exp (x2 + 2x)− x exp

(
x2 + 3x+ 2x

1−x

))
; x < 1

1− 2 exp (−x)
1+x ; x ≥ 1.

(39)

γth] as

P [γuj,1 ≤ γth] = P

ωuj,l ≤ γth
 Ns∑
k=1,k 6=u

ωkj,l + σ2


= E∆

1− exp

(
−mγth(∆ + σ2)

Φl

)m−1∑
q=0

(
mγth(∆+σ2)

Φl

)q
Γ(q + 1)

 ,
(43)

where E∆[.] indicates the expectation taken over the distribu-
tion of ∆ =

∑Ns
k=1,k 6=u ωkj,l. Note that ωkj,l has a gamma dis-

tribution with shape parameter m and rate parameter (m/Φl).
The sum of (Ns−1) random variables with such independent
and identical gamma distributions again results in a new
gamma distribution with shape parameter (Ns− 1)m and rate
parameter (m/Φl). As such, the expectation in (43) can be
reexpressed as

P [γuj,1 ≤ γth] = 1− exp

(
−mγthσ

2

Φl

)m−1∑
q=0

[Θl

×
∫ ∞

0

(∆ + σ2)q∆(Ns−1)m−1 exp

(
−∆m

Φl
(1 + γth)

)
d∆

]
.

(44)

Expanding (∆ + σ2)q using binomial expansion and solving
the resultant integral based on [28, eq. 3.351,3] results in the
closed-form expression fo P [γuj,1 ≤ γth] given by

P [γuj,1 ≤ γth] = 1−
[
exp

(
−mγthσ

2

Φl

)

×
m−1∑
q=0

q∑
k=0

(
q

k

)
Θlσ

2(q−k)Γ((Ns − 1)m+ k)(
mγth

Φl
+ m

Φl

)(Ns−1)m+k

 . (45)
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