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Abstract Classification on high-dimensional data with

thousands to tens of thousands of dimensions is a chal-

lenging task due to the high dimensionality and the

quality of the feature set. The problem can be addressed

by using feature selection to choose only informative

features or feature construction to create new high-level

features. Genetic programming (GP) using a tree-based

representation can be used for both feature construc-

tion and implicit feature selection. This work presents

a comprehensive study to investigate the use of GP for

feature construction and selection on high-dimensional

classification problems. Different combinations of the

constructed and/or selected features are tested and com-

pared on seven high-dimensional gene expression prob-

lems, and different classification algorithms are used

to evaluate their performance. The results show that
the constructed and/or selected feature sets can sig-

nificantly reduce the dimensionality and maintain or

even increase the classification accuracy in most cases.

The cases with overfitting occurred are analysed via

the distribution of features. Further analysis is also per-

formed to show why the constructed feature can achieve

promising classification performance.

Keywords Genetic programming · Feature con-

struction · Feature selection · Classification · High-

dimensional data.
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1 Introduction

Classification is a major supervised machine learning

task that aims to classify an instance into its corre-

sponding category [20,28,31]. A classification problem

is typically described by a set of features and the class

labels. The quality of the feature set is a key factor influ-

encing the performance of a classification/learning algo-

rithm [28]. Irrelevant and redundant features may neg-

atively affect the classification accuracy, increase com-

plexity of the learnt classifier and the running time.

Feature selection and feature construction are data

preprocessing techniques used to enhance the quality

of the feature space. Feature selection aims at select-

ing only useful features from the original feature set.

Feature construction combines original features to ob-

tain new high-level features that may provide better

discrimination for the problem [22].

Three different types of feature selection and con-

struction approaches have been proposed: wrapper, fil-

ter and embedded approaches [7]. While the classifica-

tion performance of a learning algorithm is used as the

evaluation criterion in wrapper methods, intrinsic char-

acteristics of the data is used in filter methods. Wrap-

per methods thereby usually require a higher compu-

tation time, but the selected or constructed features

usually have better performance than those selected or

constructed by filter methods. Embedded methods si-

multaneously select or construct features and learn a

classifier.

Evolutionary computation has been widely used for

feature selection [8,23] as well as feature construction

[26]. Among many evolutionary algorithms, genetic pro-

gramming (GP) is a very flexible technique that can au-

tomatically evolve mathematical models without a pre-

defined template such as linear or non-linear. GP allows
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us to use complex representations such as trees with any

kind of operators or functions to represent the model.

These properties make GP an excellent choice for fea-

ture construction where the learnt model is a math-

ematical function used to generate new features based

on the original ones. GP constructed features have been

used to effectively augment the original feature space of

the problem [17,22].

GP is not only used to construct new high-level fea-

tures, it is also used as a feature selection method [2,

18]. Since a GP tree does not use all the original fea-

tures to construct the high-level features, the features

that are used in leave nodes of the tree, i.e. terminal

features, are useful/informative features. Feature selec-

tion can be achieved by using the terminal (original)

features for classification [24]. Although many GP al-

gorithms have been proposed for feature construction

and feature selection, most studies have been applied

on small datasets with about tens of features.

Recently, Ahmed et al proposed a GP-based fea-

ture construction method in [3] to construct multiple

features by forming new features based on all possible

subtrees in the best individual. The method was applied

on mass spectrometry data with thousands to tens of

thousands of features. A comparison of the constructed

features with the selected features in the best individ-

ual was conducted. The results showed that the con-

structed feature achieved better performance on com-

mon classification algorithms. However, no investiga-

tion has been done on different combinations of GP con-

structed and/or selected features using this approach.

In addition, in order to achieve the best classification

performance with these GP generated feature sets, it is

important to know which combination of selected and

constructed features works better than others in general

or for a specific learning algorithm.

Goals

In this study, we aim to investigate the potential of

GP in feature construction and feature selection for

classification on high-dimensional data. A feature con-

struction embedded approach is used here, where a GP

tree itself is a constructed high-level feature and also a

classifier. Since each possible subtree also represents a

constructed high-level feature, a GP tree implicitly con-

struct multiple new high-level features [3]. Furthermore,

feature selection can be achieved by using only the ter-

minal (original) features for classification. Therefore, an

embedded GP for feature construction approach pro-

duces new high-level features, a set of original useful

features, and a classifier. In this work, we aim to inves-

tigate the following questions:

1. Whether GP can select informative features from

thousands of original features.

2. Whether GP can construct features that improve

the performance of common classification algorithms

on gene expression data.

3. Which combinations of the constructed and/or se-

lected features can work better for common learning

algorithms.

2 Background

2.1 Genetic programming algorithm

GP is a domain-independent method that genetically

breeds a population of computer programs to solve a

problem. As a population-based evolutionary computa-

tion technique, GP typically follows these steps:

1. Generate an initial population of individuals (trees

or programs) composing of primitive functions and

terminals of the problem.

2. Iteratively perform the following sub-steps until a

stopping criterion is met:

(a) Evaluation: Each individual is executed and its

fitness is calculated based on a predefined fitness

function.

(b) Selection: Select one or two individuals from the

population with a probability based on fitness to

participate in the evolution step.

(c) Evolution: Create new individuals for the new

population by applying the following genetic op-

erators with specific probabilities:

i. Reproduction: Copy the selected individuals

to the new population.

ii. Crossover: Create new offsprings by recom-

bining randomly chosen parts from two se-

lected programs.

iii. Mutation: Create a new offspring program

by randomly mutating a randomly chosen

part of one selected program.

3. Return the program with the highest fitness as the

best solution.

Applying GP to solving problem has to specify a termi-

nal set, a function set, a fitness function, a stopping cri-

terion and control parameters such as population size,

crossover and mutation probabilities.

2.2 GP for feature construction and selection

Although application of GP for inducing classifiers usu-

ally implies a feature selection and construction process
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[10], this section is restricted to studies that use GP ex-

plicitly for preprocessing purposes.

When using GP for feature selection or feature con-

struction, the terminal set comprises of features chosen

from the original features and/or random constants.

The function set typically comprises of mathematical

operators.

As feature selection is an intrinsic characteristic of

GP, some studies have attempted to use GP for feature

selection. Features appeared in the best GP individuals

are used to form a feature subset [2]. Feature ranking

or feature weighting is also achieved by counting the

occurrence of features in the good individuals [25]. Al-

though these methods obtained promising results, the

most fruitful application of GP in preprocessing task is

still feature construction thanks to its ability to com-

bine original features in such a flexible way that can

create better discriminating features.

GP has been proposed as filter or wrapper feature

construction using single or multiple-tree representa-

tion to construct a single or multiple features.

2.2.1 GP for Single Feature Construction

GP has been proposed to construct a single new feature

for a given problem. These methods used the single-

tree GP representation. Each individual program in the

population is represented by a single tree and forms

a constructed feature. In [22], a filter GP-based single

feature construction was proposed using four different

measures in fitness evaluations including information

gain, the gini index, a combination of information gain

and gini index, and chi-square. The augmented feature

sets were evaluated using three decision tree algorithms

(C5, CHAID, CART) and a multilayer perceptron. Re-

sults on five datasets with 4 to 21 features showed that

the constructed feature in general improved the per-

formance of all classifiers without any bias toward the

fitness measures used in feature construction process. A

similar single-tree GP approach to [22] but using scat-

tering between class as a fitness measure was proposed

in [12]. Results on Breast cancer dataset with 30 fea-

tures showed that the one constructed feature by GP

outperformed two to five features extracted by princi-

ple component analysis and three other methods based

on Fisher linear discriminant analysis. Although these

methods have shown promises, applying them on high-

dimensional data needs further investigation.

2.2.2 GP for Multiple Feature Construction

Unlike single-feature construction methods, multiple-

feature construction methods employ different strate-

gies in GP. A straight forward strategy is to use multi-

tree GP in which a GP individual program comprises

a number of trees, each corresponding to a constructed

feature. In [16], each GP individual represents prede-

fined numbers of constructed features and hidden fea-

tures. Hidden features were used as an elitist repository

which were updated from constructed features that had

highest usage frequency in the decision tree learnt in the

fitness function. A similar multi-tree GP feature con-

struction method was proposed in [11] without using

hidden features. Results of these methods showed that

the proposed methods achieved competitive prediction

rates and significantly reduced the dimensionality of the

problems with tens of features. However, it is difficult

to set an appropriate number of features especially in

high-dimensional problems. Another multi-tree GP was

also used in [29] to construct as many new features as

original numeric features. DT was used in fitness func-

tion. Experiments on 10 UCI datasets with 5 to 60 fea-

tures showed that the proposed method improve the

performance of C4.5 on 8 datasets. However, on top of

the high computational cost of wrapper approach, the

GP representation of this method is not suitable for

problems with thousands of features.

Another strategy for constructing multiple features

is to use cooperative coevolution [19], where m con-

current populations of single-tree individuals were used

to evolve m constructed features. Another method pro-

posed in [13] also used single-tree GP to construct mul-

tiple features, however, without needing to predefine

the number of constructed features. It included a spe-

cial primitive function in the function set to automat-

ically define a new feature based on the subtree under

this function node. K-Nearest Neighbour was used to

evaluate GP individuals.

Constructing one feature for each class of the prob-

lem is another approach. A multiple feature construc-

tion method using filter approach was proposed in [26]

by running a single-tree GP program multiple times.

Each time GP constructed one feature for each class.

Constructed features were evaluated based on the impu-

rity of the intervals using information measures which

were formed by applying class dispersion to the trans-

formed datasets.

Instead of using multiple GP runs, Ahmed et al pro-

posed to use only one GP run to construct multiple

features from all possible subtrees of the best individ-

ual [3]. Fisher criterion is used in fitness function to

maximize the between-class scatter and minimize the

within-class scatter of the constructed feature. P-value

is also combined to ensure a significant separation be-

tween feature values. The method was evaluated on
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mass spectrometry datasets with several hundreds to

more than ten thousand features.

3 Methodology

To answer the raised questions, we use standard GP

with an embedded approach to feature construction and

selection on binary classification problem.

The GP algorithm includes a population of individ-

uals. Each individual is a tree. Leaf nodes or terminal

nodes of the tree are either original feature values or

random constant values. Its internal nodes are opera-

tors or functions chosen from a predefined function set.

Each individual is considered a constructed high-level

feature because it can generate a new value from the

original feature values.

An individual also works as a simple classifier that

can classify binary problem: if an instance x has a neg-

ative value on the constructed high-level feature, GP

will classify x to Class 1; otherwise to Class 2. The

classification accuracies of GP will be used as a fitness

measure to guide the search.

Because many of gene expression datasets have un-

balanced data, the balanced accuracy [6,27] as shown

in Equation 1 is used to evaluate the fitness of each GP

individual. TP, TN, FN, FP are the numbers of true

positive, true negative, false negative and false positive

respectively. We choose the same weight 1/2 to treat

the two classes equally important.

fitness =
1

2

(
TP

TP + FN
+

TN

TN + FP

)
(1)
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Fig. 1 An example of GP tree.

At the end of each GP run, the best GP tree is

used to create six different feature sets. Figure 1 shows

a simple GP tree, which uses Feature 4 (F4), Feature

11 (F11), Feature 22 (F22), and Feature 4 (F15) as the

terminal nodes. We take Figure 1 as an example to

illustrate how we generate six feature sets as follows:

1. Set 1: The single constructed feature only (“CF”),

which is F
′

0 = F4 ∗ F11 − (F22 + F15);

2. Set 2: The original feature set augmented by the

constructed feature (“FullCF”), which is {F ′0, F1,

F2,, ..., Fn}, where n is the total number of original

features;

3. Set 3: Terminal feature set that are used to con-

struct the new feature (“Ter”), which is {F4, F11,

F22, F15};
4. Set 4: The combination of Sets 1 and 3 (“CFTer”),

which is {F ′0, F4, F11, F22, F15};
5. Set 5: Multiple constructed features from all pos-

sible subtrees of the GP tree (“mCF”), which is

{F ′0, F
′

1, F
′

2}, where F
′

1 = F4 ∗ F11, and F
′

2 = F22 +

F15; and

6. Set 6: The combination of Sets 3 and 5 (“mCFTer”),

which is {F4, F11, F22, F15, F
′

0, F
′

1, F
′

2}.

In general, the proposed method uses single-tree GP

to generate six different feature subsets. It can be seen

that Set 1 and Set 2 have been used in many existing

methods [22,26]. Set 3 and Set 5 have been proposed in

[3]. The other subsets have not been proposed. In addi-

tion, no investigation has been done to compare the per-

formance of these sets. Further more, this method takes

the embedded approach instead of filter as in many ex-

isting methods for feature construction and selection on

high dimensional data. While filter methods are said to

be faster than wrapper methods, their performance is

usually not as good as wrappers. Embedded approach

is a compromise of these two. Since a GP tree can be

used as a classifier, GP can be employed as an embed-

ded method for feature construction and selection.

Table 1 Description of seven microarray datasets

Dataset # Features #Instances # Classes
Colon 2,000 62 2
DLBCL 5,469 77 2
Leukemia 7,129 72 2
CNS 7,129 60 2
Prostate 10,509 102 2
Breast 24,188 96 2
Ovarian 15,154 253 2

4 Experimental Design

Seven binary-class gene expression datasets1 are used to

test the performance of the six feature sets. The Breast

dataset has a smaller number of features than the down-

loaded dataset since 293 features with identical values

in all instances have been removed. One instance with

more than 10,000 missing values is also deleted. Details

1 http://www.gems-system.org,
http://csse.szu.edu.cn/staff/zhuzx/Datasets.html
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Fig. 2 GP for feature construction using 10-CV.

about the datasets used in this experiment are shown

in Table 1.

All datasets are discretised in the same way as in [9]

to reduce noise. Each feature is discretised into three

category values (-1, 0 and 1) using mean (µ) and stan-

dard deviation (σ) of the feature values. A feature value

x is set to 0 if it falls into the interval [(µ − σ)/2 ..

(µ+ σ)/2]. x will be set to -1 if x < (µ− σ)/2 and set

to 1 if x > (µ+ σ)/2.

Since the number of instances in these datasets are

very small, we split the datasets into 10 folds and per-

form 10-fold cross validation (10-CV) to test the perfor-

mance of GP for feature construction. Figure 2 shows

the process of performing GP with 10-CV, where the

same GP algorithm is run 10 times on different 10 train-

ing sets.

Since GP is a stochastic method, the process in Fig-

ure 2 is repeated for 30 independent runs with 30 dif-

ferent random seeds for GP. Therefore, totally 300 GP

runs are executed. Note that performing experiments

using this way is different from many papers in GP

(or EC) for feature construction or selection [1,21,32],

where GP is performed for 30 (or slightly more) times

and 10-CV on the whole dataset is used in each fitness

evaluation during the GP (or EC) evolutionary process.

The results reported are “optimistically biased and are

a subtle means of training on the test set” [15]. This

issue is called selection bias in feature selection and

has caught much attention from researchers [4,30]. Al-

though the bias issue in feature construction has not

been thoroughly studied, since feature selection and

construction play a similar role in classification, the

construction bias should also be seriously considered

and avoided.

Table 2 describes the parameter settings in GP. The

number of features in these datasets varies from thou-

sands to tens of thousands; therefore, the search spaces

of these problems are very different. As a result, the

population size should be proportional to the number

of features to explore more areas of the search space [5].

Table 2 Parameters in GP feature construction method

Parameters Parameter value
Initial Population Ramped Half-and Half
Maximum Tree Depth 17
Generations 50
Mutation Rate 0.2
Crossover Rate 0.8
Elitism 1
Population Size #feature x β
Selection Method Tournament Method
Tournament Size 7
Function set +, −, ×, %,

√
, max, if

Terminal set Features of a dataset,
random constant value

However, due to the limitation of computer memory, we

set the population size equal to the number of features

multiplied by β where β = {3, 2, or1} if the number of

features is less than 5,000, between 5,000 and 20,000,

or more than 20,000 respectively.

The function set comprises of arithmetic operators

(+, −, ×, %,
√

) in which protected division (%) results

in zero when dividing by zero. max(x1, x2) returns the

maximum of the two inputs. if function takes three

values and return the second if the first value is greater

than zero, otherwise it returns the third value.

The performance of the feature sets that obtained

from GP is tested on the test set using K-nearest Neigh-

bour (KNN) (K=1), Naive Bayes (NB), Decision tree

(DT) and GP as a classification algorithm (GPCA).

GPCA is run 30 times for each created feature set on

each dataset and the average classification accuracy is

reported. Since the created feature sets are not as big

as the original feature sets, the maximum tree depth

is set to 5, the number of maximum generations is set

to 30 and the population size is set to 2000. The Weka

package [14] is used to run KNN (IB1), NB and DT

(J48) with default settings. The ECJ library is used to

run GP. Experiment runs on PC with Intel Core i7-4770

CPU @ 3.4GHz, running Ubuntu 4.6 and Java 1.7 with

a total memory of 8GB.
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In order to compare the classification accuracies of

different GP created feature sets against using full fea-

ture set, in each dataset, a statistical significance test,

Wilcoxon test, is performed with the significance level

0.05. Friedman test is also used to compare the perfor-

mance of different feature sets for each learning algo-

rithm over all datasets.

5 Results and Discussions

The results are shown in Tables 3 and 4, where “B”

shows the best and “A±Std” shows the average and the

standard deviation of the accuracy achieved through

the 30 independent runs. “+” or “-” means the result

is significantly better or worse than using all features

and “=” means they are similar in Wilcoxon tests. The

numbers under the dataset name is the number of in-

stances in the dataset followed by the average CPU run-

ning time (in minutes) used by a single run comprising

of 10 folds cross validation execution.

5.1 Created feature set size and GP running time

It can be seen from Table 3 that the average numbers

of selected and constructed features are much smaller

than the original feature number. These proportions are

smaller than 1% on all datasets except Colon with 1%

to 3%. Beside “CF” with the size of one, “Ter” is al-

ways the smallest among the created sets with the av-

erage size ranging from 10 in Ovarian to 35 in Breast

dataset. The small size of the resulting feature sets is

consistent with previous studies that although gene ex-

pression data has a large number of features, only a

small number of features (less than 100 for two-class

datasets) are relevant to the problems [33]. By using

embedded approach, the running time of our method

is relatively fast. This can be observed in the recorded

running time in Table 3. The smallest dataset (Colon)

takes about 6 minutes and the largest datasets (Ovar-

ian) require about 5.25 hours to finish one run.

5.2 Training Results

To analyse the performance of GP and different gener-

ated feature sets, first we show the training results in

Table 3. These accuracies are obtained by firstly using

each of the six features sets to transform the training

set (i.e. 9 folds), then applying each classification algo-

rithm on these transformed training set. The best and

average training accuracies of the learnt models over 30

runs are reported.

KNN is a lazy learning algorithm, in theory, its

training accuracies should be 100%. However, it can be

seen that the accuracies of using the constructed fea-

ture on five datasets are less than 100%. The reason of

this strange phenomenon is that the constructed fea-

tures have the same values for multiple instances which

belong to different classes. These inconsistent instances

obviously affect the quality of these feature sets as well

as the learning algorithm performance. Solution of this

problem should be further investigated. One possible

solution can be applying penalty to these GP individ-

uals during the evolutionary process.

For NB algorithm, all the six created sets can ei-

ther obtain similar or significant better accuracies than

using all features on six out of seven datasets. Among

these feature sets, “Full” and “FullCF” have the worst

results on all datasets. This indicates that these datasets

contain many redundant or correlated features which

degrade NB performance because the conditional in-

dependence assumption no longer holds [28]. On the

Prostate dataset, NB can achieve an increase of 25% in

accuracy using GP selected features and 30% using only

the constructed feature. The results show that GP has

the ability to select only informative features and con-

struct better discriminating features. Using these fea-

tures, NB can significantly improve its performance on

datasets which have many correlated features.

Similarly, the created feature sets also help DT and

GP achieve nearly maximum classification accuracies.

However, unlike in NB, not all the created sets can out-

perform the results of DT and GP using full feature set.

A clear pattern can be seen in Table 3 with the minus

signs shown in parentheses consistently appear in the

“Ter” rows of DT column, as well as in the “FullCF”

and “Ter” rows of GP column. It is also observed in

NB that “Ter” accuracies on all datasets are always

smaller than the other four created sets which comprise

the constructed feature (“CF”, “CFTer”, “mCF” and

“mCFTer”). This indicates that the constructed fea-

ture perform better than the selected features on the

training data.

In general, the training results from NB, DT and

GP show that GP has the ability to select informa-

tive features and construct new high-level features that

provide a much better discriminating power than the

original features.

5.3 Test Results

The test accuracy is achieved by firstly transforming

the training and test sets according to the six feature

sets. Then a classifier is learnt based on the transformed

training set and tested on the transformed test set. The
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Table 3 Training Results

Dataset Subset #F A±Std-KNN B-NB A±Std-NB B-DT A±Std-DT B-GP A±Std-GP

Colon
(62)
5.89(m)

Full 2000 100.0 ±0.00 84.96 84.96 ±0.00 97.13 97.13 ±0.00 100.0 99.87 ±0.21
CF 1 99.83 ±0.47 – 97.14 91.62 ±3.87 + 100.0 99.87 ±0.21 + 100.0 99.88 ±0.21 =
FullCF 2001 100.0 ±0.00 = 86.75 85.65 ±0.37 + 100.0 99.92 ±0.14 + 99.88 99.74 ±0.11 (–)
Ter 22 100.0 ±0.00 = 89.80 87.17 ±1.58 + 96.24 94.21 ±1.07 (–) 96.62 95.65 ±0.42 (–)
CFTer 23 100.0 ±0.00 = 94.45 92.12 ±1.57 + 100.0 99.87 ±0.21 + 100.0 99.91 ±0.18 +
mCF 37 99.99 ±0.05 = 94.28 92.58 ±1.42 + 100.0 99.87 ±0.21 + 100.0 99.91 ±0.17 +
mCFTer 59 100.0 ±0.00 = 94.10 92.57 ±1.13 + 100.0 99.87 ±0.21 + 100.0 99.91 ±0.17 +

DLBCL
(77)
12.35(m)

Full 5469 100.0 ±0.00 90.91 90.91 ±0.00 98.85 98.85 ±0.00 100.0 100.0 ±0.00
CF 1 100.0 ±0.00 = 100.0 98.24 ±1.15 + 100.0 100.0 ±0.00 + 100.0 100.0 ±0.00 =
FullCF 5470 100.0 ±0.00 = 91.34 91.02 ±0.11 + 100.0 100.0 ±0.00 + 99.99 99.97 ±0.01 (–)
Ter 15 100.0 ±0.00 = 98.70 96.43 ±1.23 + 98.70 97.13 ±0.57 (–) 99.59 98.91 ±0.42 (–)
CFTer 16 100.0 ±0.00 = 99.71 98.36 ±0.81 + 100.0 100.0 ±0.00 + 100.0 100.0 ±0.00 =
mCF 25 100.0 ±0.00 = 98.85 97.35 ±1.00 + 100.0 100.0 ±0.00 + 100.0 100.0 ±0.00 =
mCFTer 40 100.0 ±0.00 = 98.99 97.58 ±1.00 + 100.0 100.0 ±0.00 + 100.0 100.0 ±0.00 =

Leukemia
(72)
14.22(m)

Full 7129 100.0 ±0.00 98.15 98.15 ±0.00 99.38 99.38 ±0.00 100.0 100.0 ±0.00
CF 1 100.0 ±0.00 = 99.54 96.93 ±3.30 = 100.0 100.0 ±0.00 + 100.0 100.0 ±0.00 =
FullCF 7130 100.0 ±0.00 = 98.30 98.28 ±0.05 + 100.0 100.0 ±0.00 + 100.0 100.0 ±0.00 =
Ter 12 100.0 ±0.00 = 98.61 97.07 ±0.92 – 98.92 97.63 ±0.66 (–) 99.85 99.35 ±0.31 (–)
CFTer 13 100.0 ±0.00 = 99.54 98.28 ±0.66 = 100.0 100.0 ±0.00 + 100.0 100.0 ±0.00 =
mCF 19 100.0 ±0.00 = 98.77 97.54 ±0.92 – 100.0 100.0 ±0.00 + 100.0 100.0 ±0.00 =
mCFTer 31 100.0 ±0.00 = 99.08 98.03 ±0.68 = 100.0 100.0 ±0.00 + 100.0 100.0 ±0.00 =

CNS
(60)
19.42(m)

Full 7129 100.0 ±0.00 73.89 73.89 ±0.00 98.71 98.70 ±0.00 100.0 99.96 ±0.09
CF 1 99.96 ±0.09 – 97.04 90.14 ±3.44 + 100.0 99.96 ±0.09 + 100.0 99.96 ±0.09 =
FullCF 7130 100.0 ±0.00 = 75.18 74.26 ±0.30 + 100.0 99.97 ±0.07 + 99.75 99.65 ±0.05 (–)
Ter 30 100.0 ±0.00 = 87.78 81.68 ±2.06 + 96.30 94.20 ±1.08 (–) 93.50 92.53 ±0.49 (–)
CFTer 31 100.0 ±0.00 = 92.78 90.02 ±1.84 + 100.0 99.97 ±0.07 + 100.0 99.98 ±0.04 +
mCF 48 100.0 ±0.00 = 93.70 90.99 ±1.85 + 100.0 99.97 ±0.07 + 100.0 99.98 ±0.05 +
mCFTer 78 100.0 ±0.00 = 93.70 90.35 ±1.81 + 100.0 99.97 ±0.07 + 100.0 99.98 ±0.06 +

Prostate
(102)
71.37(m)

Full 10509 100.0 ±0.00 66.67 66.67 ±0.00 98.59 98.59 ±0.00 100.0 99.84 ±0.18
CF 1 99.75 ±0.77 – 99.46 96.52 ±2.45 + 100.0 99.84 ±0.18 + 100.0 99.84 ±0.18 =
FullCF 10510 100.0 ±0.00 = 67.32 66.97 ±0.11 + 100.0 99.84 ±0.18 + 99.83 99.71 ±0.11 (–)
Ter 22 99.99 ±0.04 = 93.58 91.42 ±1.02 + 97.17 96.17 ±0.62 (–) 98.54 97.54 ±0.51 (–)
CFTer 23 99.99 ±0.04 = 96.73 94.31 ±0.97 + 100.0 99.84 ±0.18 + 100.0 99.85 ±0.17 +
mCF 35 99.98 ±0.10 = 97.93 95.11 ±0.91 + 100.0 99.84 ±0.18 + 100.0 99.85 ±0.17 +
mCFTer 57 99.99 ±0.04 = 97.39 94.85 ±0.85 + 100.0 99.84 ±0.18 + 100.0 99.85 ±0.17 +

Breast
(96)
294.41(m)

Full 24188 100.0 ±0.00 88.31 88.31 ±0.00 98.03 98.03 ±0.00 100.0 99.97 ±0.06
CF 1 99.98 ±0.07 = 98.26 92.68 ±3.69 + 100.0 99.97 ±0.06 + 100.0 99.97 ±0.06 =
FullCF 24189 100.0 ±0.00 = 88.42 88.32 ±0.04 = 100.0 99.98 ±0.05 + 99.35 99.17 ±0.09 (–)
Ter 34 100.0 ±0.00 = 88.78 86.20 ±1.12 – 95.95 94.87 ±0.76 (–) 93.80 91.60 ±0.81 (–)
CFTer 35 100.0 ±0.00 = 94.10 92.01 ±1.54 + 100.0 99.97 ±0.06 + 100.0 99.98 ±0.05 +
mCF 60 100.0 ±0.00 = 95.14 91.31 ±1.98 + 100.0 99.97 ±0.06 + 100.0 99.98 ±0.05 +
mCFTer 95 100.0 ±0.00 = 94.80 91.52 ±1.63 + 100.0 99.97 ±0.06 + 100.0 99.98 ±0.05 =

Ovarian
(253)
325.77(m)

Full 15154 100.0 ±0.00 91.79 91.79 ±0.00 99.91 99.91 ±0.00 100.0 100.0 ±0.00
CF 1 100.0 ±0.00 = 99.91 99.22 ±0.95 + 100.0 100.0 ±0.00 + 100.0 100.0 ±0.00 =
FullCF 15155 100.0 ±0.00 = 91.92 91.82 ±0.03 + 100.0 100.0 ±0.00 + 100.0 100.0 ±0.00 (–)
Ter 9 100.0 ±0.00 = 99.17 98.63 ±0.29 + 99.82 99.29 ±0.29 (–) 100.0 99.91 ±0.09 (–)
CFTer 10 100.0 ±0.00 = 99.82 99.28 ±0.27 + 100.0 100.0 ±0.00 + 100.0 100.0 ±0.00 =
mCF 16 100.0 ±0.00 = 99.87 98.89 ±0.49 + 100.0 100.0 ±0.00 + 100.0 100.0 ±0.00 =
mCFTer 25 100.0 ±0.00 = 99.65 99.05 ±0.34 + 100.0 100.0 ±0.00 + 100.0 100.0 ±0.00 =

best and average accuracies of 30 runs are reported in

Table 4.

For KNN, the selected and/or constructed features

can either maintain or improve the performance of KNN

with a much smaller number of features. Using only one

constructed feature, KNN can achieve significant bet-

ter accuracies than using all features on four datasets,

similar accuracies on the two datasets. Only in Colon

dataset, it has lower accuracy than using all features

but its best accuracy is 5% higher than using all fea-

tures. We also see that the “FullCF” always have the

same results as using all features. This is trivial be-

cause adding one more feature to thousands of features

cannot make any difference for KNN. Among the six

created sets, “CFTer”, which is the constructed fea-

ture combined with terminal features, obtains the best

accuracies on six out of seven datasets. Similarly, this

feature set also helps NB achieve the highest results

on five datasets with a maximum increment of 27% in

Prostate dataset. In general, the created sets can im-

prove the performance of NB on most datasets except

Leukemia and Breast.

For DT and GP, all the six created sets obtain sim-

ilar accuracies on each dataset. While GP either has

similar or slightly better accuracies than using all fea-

tures on all datasets, DT increases 6% and 7% on DL-

BCL and CNS datasets, and decreases 1 to 3% on the

remaining five datasets. However, the best accuracies

obtained by DT using all the six sets are always higher

than using all features with a maximum difference of

23% in CNS dataset. It is noticed that when using fea-

ture sets containing the constructed feature, DT always

use this feature in its learnt models. This indicates that

the constructed feature is the best splitting feature ac-

cording to DT feature selection criterion. This explains
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Table 4 Test Results

Dataset Subset #F B-KNN A±Std-KNN B-NB A±Std-NB B-DT A±Std-DT B-GP A±Std-GP

Colon
(62)

Full 2000 74.28 74.28 ±0.00 72.62 72.62 ±0.00 74.29 74.29 ±0.00 79.28 71.82 ±4.55
CF 1 79.28 71.40 ±4.46 – 78.81 69.64 ±4.17 – 79.28 72.25 ±4.07 – 79.34 71.80 ±4.50 =
FullCF 2001 74.28 74.28 ±0.00 = 74.29 72.59 ±0.92 = 79.28 72.25 ±4.07 – 79.12 72.02 ±4.06 =
Ter 22 85.47 76.40 ±4.82 + 85.48 75.81 ±3.95 + 80.95 73.32 ±4.18 = 79.02 74.37 ±2.40 +
CFTer 23 87.38 76.90 ±5.21 + 87.14 75.96 ±4.03 + 79.28 72.25 ±4.07 – 79.12 71.76 ±4.42 =
mCF 37 80.95 71.24 ±4.73 – 87.14 73.56 ±4.94 = 79.28 72.25 ±4.07 – 79.45 71.75 ±4.48 =
mCFTer 59 84.05 75.05 ±3.85 = 87.14 74.66 ±4.31 + 79.28 72.25 ±4.07 – 79.20 71.79 ±4.40 =

DLBCL
(77)

Full 5469 84.46 84.46 ±0.00 81.96 81.96 ±0.00 80.89 80.89 ±0.00 94.64 86.34 ±4.17
CF 1 96.07 86.65 ±3.76 + 92.32 86.27 ±4.28 + 94.64 86.51 ±4.08 + 94.72 86.37 ±4.08 =
FullCF 5470 84.46 84.46 ±0.00 = 81.96 81.96 ±0.00 = 94.64 86.51 ±4.08 + 92.88 86.74 ±2.82 =
Ter 15 95.00 86.36 ±4.13 + 96.25 88.49 ±3.49 + 98.75 85.04 ±5.45 + 94.26 87.28 ±3.80 =
CFTer 16 95.00 86.80 ±4.83 + 96.07 89.36 ±4.00 + 94.64 86.51 ±4.08 + 94.77 86.33 ±4.07 =
mCF 25 92.50 85.03 ±4.39 = 93.39 87.50 ±4.07 + 93.39 86.30 ±4.06 + 93.98 86.29 ±3.98 =
mCFTer 40 92.32 86.14 ±3.40 + 93.75 88.43 ±3.71 + 93.39 86.30 ±4.06 + 94.01 86.27 ±3.99 =

Leukemia
(72)

Full 7129 88.57 88.57 ±0.00 91.96 91.96 ±0.00 91.61 91.61 ±0.00 94.46 88.89 ±2.83
CF 1 94.46 89.03 ±2.71 = 93.21 87.26 ±4.44 – 95.89 88.97 ±2.96 – 94.56 88.84 ±2.78 =
FullCF 7130 88.57 88.57 ±0.00 = 93.21 92.01 ±0.23 = 95.89 88.97 ±2.96 – 93.71 89.11 ±2.23 =
Ter 12 95.89 89.39 ±3.53 = 96.07 92.24 ±2.69 = 98.75 89.85 ±4.32 = 96.43 89.98 ±2.81 +
CFTer 13 97.32 90.28 ±3.58 + 97.32 91.46 ±2.91 = 95.89 88.97 ±2.96 – 94.43 88.76 ±2.74 –
mCF 19 93.39 86.71 ±4.48 – 96.07 88.89 ±3.79 – 94.46 89.01 ±2.69 – 94.52 88.92 ±2.67 =
mCFTer 31 95.89 89.08 ±3.99 = 96.07 90.34 ±3.43 – 94.46 89.01 ±2.69 – 94.61 88.86 ±2.71 =

CNS
(60)

Full 7129 56.67 56.67 ±0.00 58.33 58.33 ±0.00 50.00 50.00 ±0.00 70.00 57.44 ±6.31
CF 1 70.00 57.56 ±5.87 = 70.00 58.44 ±5.94 = 70.00 57.78 ±6.05 + 69.94 57.46 ±6.23 =
FullCF 7130 56.67 56.67 ±0.00 = 60.00 58.44 ±0.42 = 70.00 57.78 ±6.05 + 67.61 57.12 ±5.44 =
Ter 30 70.00 57.56 ±6.09 = 70.00 59.89 ±3.86 + 73.33 57.78 ±5.63 + 63.56 56.42 ±3.07 =
CFTer 31 73.33 57.33 ±6.25 = 70.00 60.22 ±4.85 + 70.00 57.78 ±6.05 + 70.78 57.53 ±6.26 =
mCF 48 71.67 57.44 ±6.73 = 70.00 58.94 ±7.10 = 70.00 57.78 ±6.05 + 70.44 57.51 ±6.26 =
mCFTer 78 70.00 58.56 ±6.83 = 71.67 58.78 ±6.31 = 70.00 57.78 ±6.05 + 70.28 57.52 ±6.20 =

Prostate
(102)

Full 10509 81.55 81.55 ±0.00 60.55 60.55 ±0.00 86.18 86.18 ±0.00 91.18 83.96 ±3.08
CF 1 90.18 83.72 ±3.18 + 90.18 83.18 ±3.68 + 90.18 83.82 ±2.85 – 91.08 83.96 ±3.04 =
FullCF 10510 81.55 81.55 ±0.00 = 60.55 60.55 ±0.00 = 90.18 83.82 ±2.85 – 90.24 84.20 ±2.55 +
Ter 22 90.36 83.05 ±3.77 + 90.27 87.04 ±2.06 + 90.18 82.32 ±3.39 – 90.84 85.69 ±1.87 +
CFTer 23 90.36 84.09 ±3.71 + 90.36 87.07 ±2.52 + 90.18 83.82 ±2.85 – 91.02 83.93 ±3.01 =
mCF 35 88.27 82.84 ±2.39 + 90.27 85.37 ±2.45 + 90.18 83.82 ±2.85 – 90.88 83.91 ±2.98 =
mCFTer 57 89.27 83.50 ±2.89 + 91.18 86.43 ±2.65 + 90.18 83.82 ±2.85 – 90.98 83.91 ±3.00 =

Breast
(96)

Full 24188 57.78 57.78 ±0.00 74.89 74.89 ±0.00 63.56 63.56 ±0.00 71.56 60.55 ±5.49
CF 1 70.78 60.59 ±5.37 + 71.78 60.26 ±5.63 – 70.78 60.49 ±5.33 – 71.56 60.54 ±5.51 =
FullCF 24189 57.78 57.78 ±0.00 = 75.89 75.32 ±0.51 + 70.78 60.53 ±5.29 – 69.15 60.84 ±4.44 =
Ter 34 72.11 61.40 ±4.73 + 73.67 67.73 ±2.91 – 70.67 61.19 ±4.93 – 67.94 63.20 ±2.42 +
CFTer 35 71.00 61.68 ±4.52 + 73.67 66.30 ±4.57 – 70.78 60.49 ±5.33 – 71.46 60.58 ±5.47 =
mCF 60 70.56 60.96 ±4.99 + 73.67 63.33 ±4.32 – 70.78 60.53 ±5.32 – 71.46 60.57 ±5.45 =
mCFTer 95 68.44 61.16 ±3.81 + 72.67 64.44 ±4.39 – 70.78 60.53 ±5.32 – 71.66 60.54 ±5.48 =

Ovarian
(253)

Full 15154 91.28 91.28 ±0.00 90.05 90.05 ±0.00 98.41 98.41 ±0.00 99.62 97.86 ±1.21
CF 1 99.62 97.86 ±1.22 + 99.62 97.22 ±1.48 + 99.62 97.89 ±1.18 – 99.60 97.86 ±1.21 =
FullCF 15155 91.28 91.28 ±0.00 = 90.05 90.05 ±0.00 = 99.62 97.89 ±1.18 – 99.25 97.98 ±0.93 =
Ter 9 100.0 98.15 ±0.96 + 98.82 97.75 ±0.68 + 100.0 97.87 ±1.08 – 99.60 97.92 ±0.88 =
CFTer 10 100.0 98.42 ±0.99 + 99.62 98.20 ±0.89 + 99.62 97.89 ±1.18 – 99.56 97.85 ±1.19 =
mCF 16 99.60 97.41 ±1.24 + 99.62 97.40 ±1.01 + 99.62 97.84 ±1.19 – 99.59 97.84 ±1.20 =
mCFTer 25 99.62 98.09 ±1.03 + 99.60 97.65 ±0.94 + 99.62 97.84 ±1.19 – 99.52 97.85 ±1.18 =

why DT accuracies obtained by these created sets are

very similar to GP “CF” accuracies.

5.3.1 Comparison between the best and the average

accuracy

In most datasets, the differences between the best and

the average results are quite high. For example, the

best result NB achieve using “CFTer” is 75.96% on the

Colon dataset which is 12% lower than its best result

(87.14%). This gap is even higher than 15% in the DT

results on the CNS dataset. The results indicate that

the learning algorithms may perform well on some test

folds and poorly on some other folds. To see if this is

the case, we look at the accuracies of each classifier

on each data fold. To leave out the effect of feature

selection or construction, we use the result of using full

feature set. Table 5 show the “Full” accuracies of Colon

dataset with KNN, NB and DT which are deterministic

learning algorithms. It can be seen that the gap between

the obtain accuracies in different folds is very high with

the maximum of 50% in NB.

Table 5 Results of “Full” feature set on each fold of Colon
dataset

Fold KNN NB DT
0 57.14 71.43 71.43
1 85.71 71.43 71.43
2 83.33 50.00 83.33
3 83.33 100.0 83.33
4 66.67 66.67 66.67
5 83.33 50.00 83.33
6 83.33 83.33 66.67
7 83.33 100.0 66.67
8 50.00 66.67 66.67
9 66.67 66.67 83.33

Max difference 35.71 50.00 16.66
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This result shows that some test folds may have a

very different distribution to their corresponding train-

ing folds. As a result, it is difficult for learning algo-

rithms to learn a model that can perform well on the

test folds. We will further investigate this problem in

Section 5.6. In addition, with a small number of in-

stances in one test fold (less than ten instances in most

datasets), one misclassified instance can significantly

decrease the classification accuracies. This explains why

datasets with the smallest number of instances, such as

CNS with 60 and Colon 62 instances, have the biggest

difference between the best and the average accuracies.

In contrast, this gap in Ovarian dataset with 253 in-

stances is only about 2%.

It is also noticed that while the selected feature set

(“Ter”) performs worse than other sets on the train-

ing data, it achieves the highest average accuracies on

five out of seven datasets in GP and performs better

than other sets on Colon and Leukemia in DT. This

result is in contrast with the observation in the train-

ing results. This phenomenon suggests that the con-

structed features are overfitting to the training data.

This overfitting problem is clearer when observing the

big differences between the training and test accuracies.

However, these gaps vary between different datasets. In

“CF” set, this difference can be as small as 3% in Ovar-

ian, or as large as 27% in Colon, or even very large as

in CNS with 42%. This indicates that this overfitting

problem is related to the characteristics of the dataset.

We will further analyse this in Section 5.6.

5.4 Comparison between different created feature sets

In Table 4, the highest average accuracy among dif-

ferent created feature sets of the same classifier on a

certain dataset (the best in a cell) is shown in bold. It

can be seen that the “CFTer” which combines the con-

structed feature with terminal features seems to out-

perform other feature sets in both KNN and NB on

most datasets. However, to confirm if it is really signif-

icantly better than others, we perform Friedman test

with Tukey as the post hoc test using R package. The

results show that there is no significant difference be-

tween different created sets in DT and GP. This again

confirms that the constructed feature achieves similar

performance as other sets with a much higher number of

features in these two learning algorithms. On the other

hand, a significant difference between these feature sets

is found in KNN with p-value = 0.01 and NB with p-

value < 0.01. Figure 3 and Figure 4 show the boxplots

of the differences between pairs of created feature sets

in KNN and NB results respectively. In these figures,

the “Full” and the six created sets are indexed from

zero to six with the same order as shown in Table 4.

If the difference between two feature sets is significant

with p-value < 0.5, its corresponding boxplot is filled.

The first five columns in these two figures show that

in average all the six created sets have similar or better

results than the full feature set even though not all of

these differences are significant. For KNN, “CFTer” ob-

tains significant better result than “Full”, “FullCF” and

“mCF” with p-value < 0.05. This means that among

the six created sets, combination of the constructed

and selected features help KNN achieve its best per-

formance. For NB, “CFTer” and “Ter” sets outperform

the constructed feature. These results again confirm the

ability of GP in selecting informative features and con-

structing new features that can significantly reduce the

feature set size while improve or at least maintain the

classification performance of these learning algorithms.

Fig. 3 Freidman Post-hoc test for KNN on seven datasets.

Fig. 4 Freidman Post-hoc test for NB on seven datasets.
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5.5 Constructed feature

To see why the constructed and selected features can

achieve good performance, we take a constructed fea-

ture in a GP run on the DLBCL dataset as a typical ex-

ample to make analysis. Figure 5 shows the GP tree of a

constructed feature in DLBCL dataset. It is constructed

from three original features which are feature F1156,

F1259, and F3228. The values of these three features

and the constructed feature are plotted in Figure 6 and

Figure 7. It can be seen from these scatter plots that

these selected features have low impurity with one nom-

inal value already belong to one class. By combining the

three original features, the constructed feature splits in-

stances in the two classes into two completely separate

intervals. Therefore, using this constructed feature, the

GP classifier can easily classify an instance x by exe-

cuting the following rule:

IF constructedF <= 0 THEN x ∈ class0,

ELSE x ∈ class1
The results show that GP has the ability to select

informative features to build high-level features with a

higher discriminating ability.
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Fig. 5 DLBCL constructed feature.

5.6 Overfitting problem

The overfitting problem that we have seen in the re-

sults has different effects on different datasets. There-

fore, to analyse this problem, we look at the distribu-

tions of each feature in these datasets. All features in

the six out of seven datasets have a skew distribution

with many outliers. We take Colon as an example. Fig-

ure 8 shows the boxplot of its first 50 features. We can

see that these features have a skewed distribution. Each

feature has many outliers scattering far away from its

mean value. In the experiments, Colon is divided into
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Fig. 6 DLBCL Feature F1156 and F1259.
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Fig. 7 DLBCL Feature F3228 and the Constructed Feature.

10 folds each of which has about 6 instances. There-

fore, it is likely that the distributions of the training

and the test folds are very different. As a result, the

constructed or selected features based on the training

fold cannot generalise well to correctly predict the un-

seen data in the test fold. This may be the reason why

the training and test accuracies are so different. This ex-

planation is concordant to the result of Ovarian dataset

where all of the learning algorithms achieve similar per-

formance on training and test sets. The boxplot of the

first 50 features of Ovarian in Figure 9 shows that these

features have a rather symmetric distribution without

many outliers. Besides outliers, the small number of

instances is another reason for overfitting problem. It

is difficult for learning algorithms to generalise a good

model from a small set of examples. This explains why

the overfitting problem has more effect in Colon and

CNS than other datasets. It also suggests that using

mean and standard deviation for such data with many

outliers might not be an ideal method for discretisation

and we will make further investigation in the future.
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Fig. 9 Ovarian: first 50 features.

6 Conclusions and Future Work

This paper investigates the use of GP for feature con-

struction and selection on high-dimensional data by

analysing the performance of six different sets of con-
structed and/or selected features on four different clas-

sification algorithms. The experiments on seven binary-

class datasets show that in most cases, the features

constructed or selected by GP can improve the per-

formance of KNN and NB with a much smaller feature

set. The constructed features in general can work as

good as other GP created feature sets to maintain the

performance of DT and GP classifiers. Further anal-

ysis on the constructed feature shows that by choos-

ing informative features, GP can construct new features

which have better discriminating ability than original

features. The difference between the training and test

results on some datasets indicates the problem of over-

fitting. By analysing the datasets, it is found that this

problem occurs when the data has a skewed distribution

with many outliers. The fewer instances the dataset, the

worse the overfitting problem.

Although the constructed feature combined with ter-

minal features seems to be the best feature set in im-

proving learning performance, this feature set size may

be still too small to effectively classify the problem. In-

creasing the size of this feature set may further improve

the classification performance on high-dimensional data.

Results have shown GP’s potential in selecting and con-

structing features with better discriminating ability. Com-

parison between GP and other algorithms addressing

the similar problems should be made to better pro-

mote GP use in feature selection and construction. In

this study, only binary problems have been used to test

the performance of GP. GP effectiveness should also be

tested on multi-class problems. Our future work will fo-

cus on these directions and we will also work on solving

the overfitting problem.
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