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Abstract—Images obtained from coherent illumination pro-
cesses are contaminated with speckle. A prominent example of
such imagery systems is the polarimetric synthetic aperture radar
(PolSAR). For such remote sensing tool the speckle interference
pattern appears in the form of a positive definite Hermitian
matrix, which requires specialized models and makes change
detection a hard task. The scaled complex Wishart distribution
is a widely used model for PolSAR images. Such distribution
is defined by two parameters: the number of looks and the
complex covariance matrix. The last parameter contains all the
necessary information to characterize the backscattered data
and, thus, identifying changes in a sequence of images can
be formulated as a problem of verifying whether the complex
covariance matrices differ at two or more takes. This paper
proposes a comparison between a classical change detection
method based on the likelihood ratio and three statistical methods
that depend on information-theoretic measures: the Kullback-
Leibler distance and two entropies. The performance of these
four tests was quantified in terms of their sample test powers and
sizes using simulated data. The tests are then applied to actual
PolSAR data. The results provide evidence that tests based on
entropies may outperform those based on the Kullback-Leibler
distance and likelihood ratio statistics.

Index Terms—contrast, information theory, Wishart, hypothe-
sis test, change detection.

I. INTRODUCTION

Synthetic aperture radar (SAR) has been widely used as
an important system for information extraction in remote
sensing applications. Such microwave active sensors have as
main advantages the following features: (i) their operation is
not determined by day time, neither weather conditions and
(ii) they are capable of providing high spatial image resolution.

In recent years, the interest in understanding such type
of imagery in a multidimensional and multilook perspective
has increased. Such systems are called “polarimetric SAR”
(PolSAR). In this case, obtaining of PolSAR data obeys the
following dynamic: a scene is mapped with polarized pulses
which are backscattered by the scene and captured by a
sensor to form an image. As a result, PolSAR measurements
record the amplitude and phase of backscattered signals for
possible combinations of linear reception and transmission
polarizations: HH, HV, VH, and VV (H for horizontal and
V for vertical polarization).

However, since the acquired images stem from a coherent
illumination process, they are affected by a signal-dependent
granular noise called “speckle” [1]. Such noise has a multi-
plicative nature and its intensity does not follow the Gaussian
law. Thus, analyzing PolSAR images requires tailored image
processing based on the statistical properties of speckled data.

PolSAR theory prescribes that the returned (backscattered)
signal of distributed targets is adequately represented by its
complex covariance matrix. Under the assumption that the
complex scattering coefficients are jointly circular Gaussian,
the Wishart distribution is the statistical model for multilook
PolSAR data. This paper adopts the assumption that a PolSAR
image is well described by such distribution.

Change detection methods aim at identifying differences
in the scene configuration at distinct observation instants.
Such procedures have achieved a prominent position in recent
decades [2]. Indeed, literature reports several approaches for
change detection problems, among them:

(i) image ratioing [3]–[6],
(ii) multitemporal coherence analysis [7],

(iii) spatiotemporal contextual classification [8], [9],
(iv) Hotelling-Lawley and likelihood ratio tests [10]–[19] and

robust tests [20],
(v) combination of image ratioing and the generalized

minimum-error method [21],
(vi) detection algorithms based on Lagrange optimiza-

tion [22],
(vii) information-theoretic measures for change detection [9],

[23]–[30] and
(viii) change detection with post-classification [31].
This paper advances points (iv) and (vii) above.

The change detection process is theoretically rooted in the
hypothesis test theory and the proposal of statistical similarity
measures [32]. In particular, hypothesis tests based on the
complex covariance matrix have been sought for PolSAR data
analysis. Many statistical approaches have been developed in
order to reach this goal.

Conradsen et al. [11] proposed a methodology based on
the likelihood ratio test defined by two random samples
from the complex Wishart distribution. Subsequently, this
technique was applied to edge detection in PolSAR images
by Schou et al. [33]. Recently, Conradsen et al. [19] extended
likelihood-based detection for PolSAR time series. Kersten
and Ainsworth [34] compared three test statistics (the contrast
ratio, ellipticity, and Bartlett tests). It was found that the
method based on the contrast ratio is more robust to variations
in the covariance estimates on actual data. In a complementary
study, Molinier and Rauste [35] compared six polarimetric
change detection methods. As a conclusion, the methods
directly derived from the Wishart distribution outperformed
other approaches as they provide explicit thresholds. Recently,
Akbari et al. [36] proposed a change detector involving the
Hotelling-Lawley trace (HLT) which, asymptotically, follows
the Fisher-Snedecor distribution. The authors provided evi-
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dence that the HLT test may outperform the Bartlett test in
some scenarios.

Several works have employed information-theoretic tools as
a pre-processing step for change detection in PolSAR images.
They can be categorized into two approaches: one is based
only on discrimination measures, whereas the other considers
the asymptotic distribution of such tools.

In the first category, Inglada and Mercier [23] proposed
a new similarity measure for automatic change detection in
multitemporal SAR images. Such measure was derived con-
sidering the symmetrized Kullback-Leibler (KL) divergence
(or distance) between the Edgeworth series expansions for
two distinct elements of the K distribution from the Pearson
System [37] for intensity SAR data. In [24], the KL measure is
improved by means of copula-based quantile regression to gen-
erate local change measures. Further, Erten et al. [38] proposed
a new method based on mutual information for quantifying the
coherent similarity between temporal multichannel PolSAR
images. Atto et al. [9] used the KL divergence for spatio-
temporal change detection in image time series.

In the second category, Nascimento et al. [25] derived
hypothesis tests based on several distance measures between
G0 distributions [39]. In terms of the nature of the image
data, these results were extended in [26], [27] and applied to
boundary detection [40] and filtering [41] in PolSAR images.
All these references derived new proposals using contrast
measures designed from the scaled complex Wishart law.
Recently, Akbari et al. [42] introduced a change detector with
the HLT statistics as the contrast measure based on the relaxed
scaled Wishart likelihood.

This paper proposes three new change detection methodolo-
gies for fully polarimetric data. Additionally, a new expression
for the likelihood ratio statistics obtained from the scaled
Wishart distribution is achieved, and its relationship with the
individual distributions of the intensity channels is discussed.
Using Monte Carlo simulation, we quantify the performance of
four parametric methodologies for detecting the change: two
considering Shannon and Rényi entropies, one stemming from
the Kullback-Leibler distance, and one based on the classic
likelihood ratio statistics. The methods are compared by their
empirical test size and power. Finally, two experiments with
actual PolSAR data are performed. Results provide evidence
that the methods based on entropies are superior.

This paper is organized as follows. Section II provides the
background of the statistical modeling. A brief survey on
parametric methodologies for hypothesis testing on complex
covariance matrices is provided in Section III. In Section IV,
we present a comparative study of change detection methods
by means of Monte Carlo simulation. Additionally, we per-
form two experiments with actual PolSAR data. Section V
summarizes the main results.

II. STATISTICAL MODELING FOR POLSAR DATA

PolSAR systems represent each resolution cell by p polar-
ization elements comprising a complex random vector:

y = [S1 S2 · · · Sp]>, (1)

where the superscript > is the vector transposition. In single-
look PolSAR image processing, y is admitted to obey the
multivariate complex circular Gaussian distribution with zero
mean [43] whose probability density function (pdf) is:

fy(ẏ; Σ) =
1

πp|Σ|
exp
(
−ẏ∗Σ−1ẏ

)
,

where ẏ is an outcome of y, | · | is the matrix determinant,
the superscript ∗ denotes the complex conjugate transpose
of a vector, Σ is the covariance matrix of y such that
Σ = E{yy∗}, and E{·} is the statistical expectation operator.
This distribution is denoted by y ∼ NC(0,Σ). Besides being
Hermitian and positive definite, Σ contains all the necessary
information to characterize the backscattered data [44].

In order to improve the signal-to-noise ratio, L independent
and identically distributed samples are usually averaged in
order to form the L-looks covariance matrix [45]:

Z =
1

L

L∑
i=1

yiy
∗
i ,

where yi, i = 1, 2, . . . , L are realizations of (1). Under
the aforementioned hypotheses, Z follows a scaled complex
Wishart distribution. Having Σ and L as parameters, such law
is characterized by the following pdf:

fZ(Ż; Σ, L) =
LpL|Ż|L−p

|Σ|LΓp(L)
exp
[
−L tr

(
Σ−1Ż

)]
, (2)

where Γp(L) = πp(p−1)/2
∏p−1
i=0 Γ(L− i), L ≥ p, Γ(·) is the

gamma function, and tr(·) is the trace operator. We denote
it by Z ∼ W(Σ, L). This distribution satisfies E{Z} = Σ,
which is a Hermitian positive definite matrix [45]. In practice,
L is treated as a parameter and must be estimated. The
resulting distribution is the relaxed Wishart distribution, and
it is denoted by WR(Σ, L) [46].

Due to its optimal asymptotic properties, we employ the
maximum likelihood (ML) approach to estimate the param-
eters Σ and the equivalent number of looks L. Let Z =
{Z1,Z2, . . . ,ZN} be a random sample of size N obtained
from Z ∼ WR(Σ, L). Setting `k(θ) = log fZ(Zk; Σ, L) for
θ = [vec(Σ)>, L]> as the log-likelihood of the kth random
matrix, Zk, from Z, solving N−1

∑N
k=1∇`k(θ̂) = 0, we have

that Σ̂ = N−1
∑N
k=1Zk, and

p log L̂+
1

N

N∑
k=1

log |Zk| − log |Σ̂| − ψ(0)
p (L̂) = 0, (3)

where vec(·) is the vectorization operator, ψ(0)
p (·) is the zero

order term of the vth-order multivariate polygamma function:

ψ(v)
p (L) =

p−1∑
i=0

ψ(v)(L− i),

and ψ(v)(·) is the ordinary polygamma function expressed by

ψ(v)(L) =
∂v+1 log Γ(L)

∂Lv+1
,

for v ≥ 0; note that ψ(0) is the digamma function [47].
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Thus, the ML estimator of Σ is the sample mean, while L̂
is obtained by solving the system shown in (3). We used the
Newton-Raphson iterative method [48] to solve it. The work
by Anfinsen et al. [45] is an important reference on how to
efficiently estimate L.

Fig. 1 shows an area from the AIRSAR image of Flevoland,
the Netherlands, obtained on August 1989 [49] with four
nominal looks. We delimited three regions of interest.

Fig. 1. AIRSAR image of Flevoland (channel HH).

Table I lists the ML parameter estimates as well as the
sample sizes. Each sample is taken from a single class without
evidence of texture. Notice that the estimates for the equivalent
number of looks are very close, although lower than the
nominal value. We also show the determinant of the estimated
covariance matrix. This quantity, called geometric intensity
in [50], is the generalized variance in multivariate analysis; it
can be used as a measure of mean backscatter [51]. According
to it, region B2 presents the highest return, followed by B1 and
by B3; this is in agreement with what is observed in channel
HH, cf. Fig. 1.

TABLE I
ESTIMATED PARAMETERS ON POLSAR DATA FROM FLEVOLAND

Regions L̂ |Σ̂| # pixels

B1 3.470 7.78×10−8 1566
B2 3.514 9.45×10−7 980
B3 3.530 7.22×10−10 651

Fig. 2 depicts the empirical densities of data from the
agricultural regions along with the fitted marginal densities.
The scaled Wishart density collapses to the Gamma density:

fZi
(zi; θi, L) =

LLzi
L−1

Γ(L) θLi
exp
[
−Lθ−1

i zi
]
, (4)

where i ∈ {HH,HV,VV}, θk is the element (k, k) of Σ, and Zk
is the (k, k)-th entry of Z. In practice, θi represents the mean
polarization channel i ∈ {1(HH), 2(HV), 3(VV)}. Figs. 2(a)-
2(c) show the data and the densities for the estimated number
of looksWR(Σ̂, L̂) (black curve) and the fixed valueW(Σ̂, 4)
(gray curve). These densities are remarkably close, and also
to the histograms, so the Gamma assumption is reasonable.

According to Akbari et al. [52], if {Zi; i = 1, 2, . . . , n} is a
random sample drawn from Z ∼ W(L,Σ) and Σ̂ represents
the maximum likelihood estimator of Σ, then tr(Σ̂−1Zi)
follows a Gamma distribution for i = 1, 2, . . . , n. Fig. 3

(a) Region B1 (b) Region B2

(c) Region B3

Fig. 2. Histograms of HH channel data and densities with estimated number
of looks (black) and fixed a priori (gray), respectively.

displays fitted and empirical densities of such transformed data
for the three selected regions. These results indicate that data
may follow a scaled complex Wishart model. Additionally,
the Kolmogorov-Smirnov statistic p-values for checking the
adequacy of the Gamma model to the transformed data are
0.1377, 0.4923, and 0.3911 for regions B1, B2, and B3,
respectively.

We used likelihood ratio tests for two and three samples
in order to quantify the similarity among these samples, The
results presented in Table II point out that B1 is different from
B2 and B3, but these last two are similar. Although a visual
inspection of areas B2 and B3 (Fig. 1) suggests regions of
different nature, their observations projected via tr(Σ−1Zi)
are statistically similar.

TABLE II
HOMOGENEITY TEST AMONG CONSIDERED SAMPLES

H0 Statistics p-value

B1 = B2 17.56 1.53× 10−5

B1 = B3 5.90 5.24× 10−2

B2 = B3 1.31 0.52
B1 = B2 = B3 19.00 7.85× 10−4

These samples are used to validate our proposed methods
in Section IV.

III. HYPOTHESIS TESTS IN POLSAR DATA: A SURVEY

This section provides a survey concerning three hypothesis
tests which have been studied in the PolSAR data literature.
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(a) Region B1
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(b) Region B2
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(c) Region B3

Fig. 3. Empirical (+) and fitted (solid) densities for transformed coherence
matrices in selected regions.

We assume that PolSAR data follow a scaled complex
Wishart distribution. Change detection is often formulated as
a statistical test for H0 : Σ1 = Σ2 assuming L known.

The two main approaches in the literature are: (i) likelihood
ratio [11] and (ii) stochastic distances [27]. In this paper, the
former proposal is extended to the context of scaled complex
Wishart distributions, since the original approach used the
nonscaled Wishart law. Moreover, this paper also introduces
an alternative way for validating H0 by means of entropy mea-
sures [26]. Subsequently, these methodologies are introduced
and discussed. In order to obtain more general results, we will
provide expressions for testing H0 : (Σ1, L1) = (Σ2, L2).

A. Likelihood Ratio Statistics

The log-likelihood ratio (LR) statistic has great importance
in inference on parametric models. Let SLR be the LR statistic
for assessing the simple null hypothesis H0. As discussed
in [53], such statistic based on H0 has an asymptotic distri-
bution χ2

q , where q is the difference between the dimensions
of the parameter spaces under the alternative and the null hy-
potheses. We denote such spaces by Θ1 and Θ0, respectively.

Let {X1,X2, . . . ,XN1} and {Y1, Y2, . . . , YN2} be two
random samples fromWR(Σ1, L1) andWR(Σ2, L2) of sizes
N1 and N2, respectively. The LR statistic is given by

SLR = −2 log λWR(Σ,L),

where λWR(Σ,L) = supθ∈Θ0
`(θ)/ supθ∈Θ `(θ), Θ = Θ0 ∪

Θ1, and Θ0 ∩Θ1 = ∅. Thus, we have that

log λWR(Σ,L) = A(p) + log
|Σ̂1|N1 L̂1 |Σ̂2|N2 L̂2

|Σ̂c|(N1+N2) L̂c

+ (L̂c − L̂1)

N1∑
i=1

log |Xi|+ (L̂c − L̂2)

N2∑
i=1

log |Yi|

+

N1∑
i=1

tr
[
(L̂1Σ̂

−1
1 − L̂cΣ̂−1

c )Xi

]
+

N2∑
i=1

tr
[
(L̂2Σ̂

−1
2 − L̂cΣ̂−1

c )Yi
]
, (5)

and

A(p) = p log
L
Lc(N1+N2)
c

LL1N1
1 LL2N2

2

+ log
Γp(L1)N1Γp(L2)N2

Γp(Lc)N1+N2
,

where Lc and Σc represent the number of looks and co-
variance matrix under the null hypothesis, respectively. Ak-
bari et al. [42] discuss the two-sample LR test under the WR
model.

Next sections discuss tests for H0 based on information-
theoretic measures.

B. The Kullback-Leibler distance

The Kullback-Leibler divergence (DKL) is one of oldest
discrepancy measures between stochastic models; it has a
central role in Information Theory [54]. This quantity was
firstly understood as a measure of the error in choosing a
model when another is the true one. It has been used in image
processing for segmentation [55], classification [56], boundary
detection [57], [58], and change detection [23]. Moreover, DKL
has a close relationship with the Neyman-Pearson lemma [54],
and its symmetrization has been suggested as a correction form
for another important goodness-of-fit measure for comparing
statistical models: the Akaike information criterion [59].

Let X and Y be two random matrices defined over the
common support X of positive definite complex matrices of
size p× p. The Kullback-Leibler distance is defined by

dKL(X,Y ) =
1

2
[DKL(X,Y ) +DKL(Y ,X)]

=
1

2

[∫
X
fX log

fX
fY

dŻ +

∫
X
fY log

fY
fX

dŻ

]
=

1

2

∫
X

(fX − fY ) log
fX
fY

dŻ,

with differential element dŻ given by

dŻ =

p∏
i=1

dzii

p∏
i, j = 1︸ ︷︷ ︸

i<j

d<{zij}d={zij},

where zij is the (i, j)-th entry of matrix Ż; and < and =
denote the real and imaginary part operators, respectively [43].

When distances are taken between particular cases of the
same distribution, only the parameters are relevant. In this
case, the parameters θ1 and θ2 replace the random variables
X and Y .
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Salicrú et al. [60] proposed a hypothesis test based on dKL.
Let θ̂1 = (θ̂11, θ̂12, . . . , θ̂1M )> and θ̂2 = (θ̂21, θ̂22, . . . , θ̂2M )>

be the ML estimators for θ1 and θ2 based on random
samples of size N1 and N2, respectively. Under the regularity
conditions discussed in [60, p. 380], the following lemma
holds.

Lemma 1: If N1

N1+N2
−−−−−−−→
N1,N2→∞

λ ∈ (0, 1) and θ1 = θ2,

then

SKL(θ̂1, θ̂2) =
2N1NY
N1 +N2

dKL(θ̂1, θ̂2)

h′(0)φ′′(1)

D−−−−−−−→
N1,N2→∞

χ2
M , (6)

where “ D−→” denotes convergence in distribution.
Proposition 1 is a test for the null hypothesis θ1 = θ2 based

on Lemma 1.
Proposition 1: Let SKL(θ̂1, θ̂2) = s and θ̂1 and θ̂2 be ML

estimates obtained from two sufficiently large random samples
of sizes N1 and N2, respectively; then the null hypothesis
θ1 = θ2 can be rejected at level α if Pr(χ2

M > s) ≤ α.
Frery et al. [27] presented closed expressions for dKL when

the random matrices X and Y follow the Wishart distribution:

dKL(θ1,θ2) =
L1 − L2

2

{
log
|Σ1|
|Σ2|

− p log
L1

L2

+ ψ(0)
p (L1)− ψ(0)

p (L2)

}
− p(L1 + L2)

2

+
tr(L2Σ

−1
2 Σ1 + L1Σ

−1
1 Σ2)

2
, (7)

from which the SKL test statistic follows.

C. Shannon and Rényi Entropies

The Shannon entropy has achieved a prominent position
in PolSAR imagery. Morio et al. [61] applied it for extract-
ing features from polarimetric targets, assuming the circular
Gaussian distribution. The Shannon entropy has also been used
for classifying PolSAR textures [62], [63]. In the subsequent
discussion, we present a comprehensive examination of hy-
pothesis tests based on Shannon and Rényi entropies.

Let fZ(Z;θ) be a pdf with parameter vector θ. The
Shannon and Rényi (with order β) entropies are defined,
respectively, as:

HS(θ) =−
∫
X
fZ(Ż; Σ, L) log fZ(Ż; Σ, L) dŻ

= E{− log fZ(Z)} (8)
and

Hβ
R (θ) =(1− β)−1 log

∫
X
fβZ(Ż; Σ, L)dŻ

=(1− β)−1 log E
{
fβ−1
Z (Z)

}
. (9)

Pardo et al. [64] derived an important result which paves
the way for asymptotic statistical inference methods based on
entropies.

Lemma 2: Let θ̂ = [θ̂1 θ̂2 · · · θ̂M ]> be the ML estimate
of the parameter vector θ = [θ1 θ2 · · · θM ]> based on an
N -point random sample from a model Z having pdf f(Ż;θ).
Then

√
N
[
HM(θ̂)−HM(θ)

] D−−−−→
N→∞

N (0, σ2
M(θ)),

where M ∈ {S,R}, N (µ, σ2) is the Gaussian distribution
with mean µ and variance σ2,

σ2
H(θ) = δ>K(θ)−1δ, (10)

K(θ) = E{−∂2 log fZ(Z;θ)/∂θ2} is the Fisher information
matrix, and δ = [δ1 δ2 · · · δM ]> such that δi = ∂HM(θ)/∂θi
for i = 1, 2, . . . ,M .

Now we introduce a methodology for hypothesis tests and
confidence intervals based on entropies. We aim at testing the
following hypotheses:{

H0 : HM(θ1) = HM(θ2) = v,

H1 : HM(θ1) 6= HM(θ2),

whereM∈ {S,R}. In other words, is there any statistical ev-
idence for rejecting the assumption that two PolSAR samples
come from the same model?

Let θ̂i be the ML estimate for θi based on a random sample
of size Ni from Zi for i = 1, 2, . . . , r and r ≥ 2. From
Lemma 2, we have that

r∑
i=1

Ni
(
HM(θ̂i)− v

)2
σ2
M(θ̂i)

D−−−−→
Ni→∞

χ2
r−1,

where

v =

[ r∑
i=1

Ni

σ2
M(θ̂i)

]−1 r∑
i=1

NiHM(θ̂i)

σ2
M(θ̂i)

.

Then we obtain the following test statistic:

SM(θ̂1, θ̂2, . . . , θ̂r) =

r∑
i=1

Ni
(
HM(θ̂i)− v

)2
σ2
M(θ̂i)

; (11)

the expressions for HM(θ̂i) and σ2
M(θ̂i) are presented the

Appendix. We are now in position to state the following result.
Proposition 2: Let Ni, i = 1, 2, . . . , r, be sufficiently large.

If Shφ(θ̂1, θ̂2, . . . , θ̂r) = s, then the null hypothesis H0 can be
rejected at a level α if Pr

(
χ2
r−1 > s

)
≤ α.

Whereas tests based on stochastic distances, such as dKL,
allow contrasting only two samples, those based on entropies
permit assessing r samples at once; cf. (11). For issues
involving more than two populations (r > 2 in (11)), this
is a major advantage of the latter over the former. In the case
of comparing two samples of the same size, i.e. r = 2 and
N1 = N2 = N , (11) reduces to

SM(θ̂1, θ̂2) = N
[HM(θ̂1) − HM(θ̂2)]2

σ2
M(θ̂1) + σ2

M(θ̂2)
.

IV. PERFORMANCE ANALYSIS

In this section we assess the performance of the method-
ologies proposed with three experiments involving simulated
(under the scaled Wishart complex law) and actual PolSAR
data. Firstly, we use Monte Carlo experiments to measure
(i) test size (false alarm rate) and (ii) test power (1 −
false negative rate). For the test size, we check whether two
samples from X ∼W (B1, 4) are from the same distribution,
i.e., in a scenario where there was no change and there might
be false positives. We assess the test power checking if two
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samples fromX ∼W (B1, 4) andX ∼W (B1·(1+k), 4), for
k = 0.2, 0.3, 0.4, are correctly identified as a situation where
there was a change. We then perform two experiments with
actual PolSAR data.

A. Simulated Data

We compare the following hypothesis tests:
• Likelihood ratio SLR;
• Kullback-Leibler distance SKL;
• Statistics based on Shannon SS and Rényi SβR entropies.

We fixed β = 0.1, since this value was found in Ref. [26]
to provide good discrimination in hard-to-deal-with situations.
We assume that the number of looks is known, as in [11], [25].
Therefore, we are able to compare information-theoretic mea-
sures with the methodology proposed by Conradsen et al. [11].

The samples are generated according to Algorithm 1.

Algorithm 1 Sampling from the scaled complex Wishart
distribution
Require: Σ Hermitian positive definite p× p matrix
Require: L ≥ 3 integer

1: Denote R = <{Σ} and I = ={Σ}.
2: for i = 1, 2, . . . , L do
3: Generate an outcome of the 2p-variate Gaussian dis-

tribution xi = (xi1, xi2, . . . , xip, xi(p+1), . . . , xi(2p))
> ∼

N2p(0,Σ
∗), where

Σ∗ =
1

2

[
R −I
I R

]
.

4: Set the random vector

yi = (xi1, xi2, . . . , xip)
> + j (xi(p+1), . . . , xi(2p))

>.

With this, yi is a p-variate outcome of the complex
Gaussian distribution NC

p (0,Σ).
5: end for
6: Return L−1

∑L
i=1 yiy

∗
i , outcome ofW(Σ, L), the scaled

complex Wishart distribution.

The parameters used for assessing the null hypothesis
H0 : Σ1 = Σ2 are L1 = L2 = 4, and (12), the sample
covariance matrix of area B1, Fig. 1. As we are interested
in the behavior of the tests with small sample sizes, we
computed the size of the hypothesis at α ∈ {1 %, 5 %, 10 %}
for N1 = N2 = N ∈ {10, 11, . . . , 50}.

Let T be the number of Monte Carlo replications and C
the number of occurrences under H0 (i.e., pairs of samples
are taken from the same model) on which the null hypothesis
is rejected at the nominal level α. The empirical test size (ETS)
or false positive rate is defined by αETS = C/T . We used T =
5500, as suggested in [25], and αETS did not suffer expressive
changes for larger values.

Table III shows: (i) the empirical test size at nominal levels
1 %, 5 %, 10 %, and (ii) the mean test statistic (S•) of the four
statistics.

In mean, all test statistics behave as expected when the
sample sizes increase: S̄S and S̄0.1

R tend to one, while S̄LR

TABLE III
ESTIMATED TEST SIZES (FALSE POSITIVE RATES)

N
Mean values

1% 5% 10% S•

Likelihood ratio (SLR)
10− 20 1.21 5.76 11.16 9.25
21− 30 1.10 5.42 10.66 9.12
31− 40 1.03 5.13 10.43 9.09
41− 50 1.06 5.21 10.28 9.08

Shannon Entropy (SS)
1.00 4.59 9.47 1.00
0.99 4.64 9.21 1.02
0.99 4.44 9.24 1.05
0.93 4.54 9.37 1.07

Rényi Entropy (S0.1
R )

0.00 1.71 4.53 0.71
0.33 1.83 4.53 0.74
0.32 1.79 4.46 0.77
0.29 1.78 4.56 0.79
Kullback-Leibler Distance (SKL)
1.83 7.06 12.89 9.53
1.43 6.16 11.66 9.27
1.24 5.67 11.17 9.20
1.24 5.55 10.85 9.16

and S̄KL tend to nine. Recall that the asymptotic distribution
of the two former is χ2

9, while the two latter are χ2
1.

The SLR and SS tests exhibit the closest empirical sizes to
the nominal levels, as confirmed by Fig. 4. The ETS associated
with S0.1

R and SKL are biased, however the bias reduces as the
sample size increases. We conclude that these two statistics
require larger sample sizes to achieve the expected asymptotic
behavior.

In general terms, Table III suggests this inequality:

ETSSKL ≥ ETSSLR ≥ ETSSS ≥ ETSS0.1
R
. (13)

The size of tests (False Positive rates) based on the Shannon
entropy and likelihood ratio are the closest to the nominal
level.

We also studied the test power. We wish to reject the
hypothesis H0 given two samples drawn from X ∼ W(B1, 4)
and Y ∼ W(B1 ·(1+k), 4) where k = 0.2, 0.3, 0.4; i.e, under
H1. The rate η = (T − C∗)/T , where C∗ is the number of
rejections of H0 under H1, estimates the Type II error or false
negative [19], and we aim at quantifying the test power 1−η.

Fig. 5 presents the estimated power for several samples
sizes. The test based on Shannon entropy performs best. In
this case, we obtain the inequality:

(1− η)SS ≥ (1− η)S0.1
R
≥ (1− η)SKL ≥ (1− η)SLR .

The relation between discriminatory powers within groups
{SKL, SLR} and {SS, S

β
R} has been discussed in the statistical

literature. This fact can be explained twofold, namely (i) the
relationship between the Neyman and Pearson lemma and
the Kullback-Leibler distance [54], and (ii) the fact that
limβ→1 S

β
R = SS [65].

The best test statistics should have both empirical size near
to the nominal level, and the highest estimated power. Thus,
based on this evidence and on the estimated size, we suggest
SS as the best discriminator on scenarios which follow the
scaled complex Wishart distribution.
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B1 =

 9.528× 10−3 (−3.469 + 1.048 j)× 10−4 (1.439 + 1.164 j)× 10−3

1.794× 10−3 (8.551− 1.608 j)× 10−5

4.955× 10−3

. (12)

10 20 30 40 50

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

N

α E
T

S

SKL

SLR

SS

SR
0.1

(a) 1%

10 20 30 40 50
0

2
4

6
8

N

α E
T

S

SKL

SLR

SS

SR
0.1

(b) 5%,

10 20 30 40 50

0
2

4
6

8
10

12
14

N

α E
T

S

SKL

SLR

SS

SR
0.1

(c) 10%

Fig. 4. Values for αETS sizes on synthetic data for different scenarios at the levels 1%, 5%, 10%.
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Fig. 5. Estimated test powers for several scenarios at the level 1%.

B. Experiments with Data from Sensors

In this section we apply the proposed test statistics to two
studies: (i) for assessing H0 : Σ1 = Σ2 to the data presented
in Fig. 1 (single date) and (ii) for detecting changes on two
PolSAR images captured at different instants, as displayed in
Fig. 8 (multitemporal data). ENL is assumed constant.

1) Single date experiment: Our first experiment aims at as-
sessing αETS, the empirical test size (Type I error or Probability
of False Alarm), using pairs of disjoint samples from the same
target.

This experiment is outlined in Algorithm 2. We used sam-
ples of size N ∈ {3× 3, 4× 4, . . . , 23× 23}.

Fig. 6 shows the observed αETS. Inequality (13) is also
verified on actual data. For α = 1 %, 11.67 % ≤ αETS(SLR) <
αETS(SKL) ≤ 18.93 % and 1.527 % ≤ αETS(SS) <
αETS(S0.1

R ) ≤ 6.909 %; i.e., all tests overestimate α, but
SS and S0.1

R presented better results than SLR and SKL. For

B2 and B3, αETS(S0.1
R ) ≤ 1.49 %, overcoming 2.091 % ≤

αETS(SS) ≤ 5.055 %, 6.745 % ≤ αETS(SLR) ≤ 10.618 % and
7.164 % ≤ αETS(SKL) ≤ 14.109 %.

PolSAR regions are Wishart, our explanation for the better
performance of S0.1

R is deviations from this hypothesis.
These results present evidence that the test statistics based

on S0.1
R outperforms the other ones. This test presented good

results even for small samples. Thus, this measure is suggested
as a relevant change detection tool for PolSAR imagery.

2) Multitemporal data: Fig. 7 presents the study areas
for this experiment: surroundings of the city of Los An-
geles, California. These pictures refer to a dense urban
area whose changes are caused by the urbanization process.
Ratha et al. [30] employed these data in the proposal of
change detectors for single look polarimetric data using a
geodesic distance. Here we apply the four multilook PolSAR
data detectors discussed in Section III. Fig. 8 shows the
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Algorithm 2 Experiment design for data from the same target
1: for j = 1, 2, . . . , 5500 do
2: Extract two disjoint regions Uj and Vj from areas

B1,B2, and B3.
3: Generate two vectors of size N , u(j) and v(j) from
Uj and Vj , respectively, sampling without replacement.

4: Estimate θ̂(j)
1 and θ̂(j)

2 based on u(j) and v(j), respec-
tively.

5: Compute the decision from Propositions 1 and 2, and
execute the test based on SLR for α = {1 %, 5 %, 10 %}.

6: end for
7: Let T be the number of times that the null hypothesis is

rejected. Calculate the empirical test size (α̂1−α) at level
α as

αETS = T/5500, if Vj = Uj .

Pauli decomposition of two UAVSAR images obtained by
JPL’s UAVSAR (Uninhabited Aerial Vehicle Synthetic Aper-
ture Radar) sensor at two different instants (23 April 2009,
and 3 May 2015).

Using windows of size 3 × 3 on both dates, we computed
the SLR, SKL, SS, and S0.1

R test statistics and, from them, p-
value maps; cf. Figs. 9 and 10. Probability values higher than
0.01 % are drawn in black, as they provide no evidence of
change. Values below 0.01 % range vary from red to dark blue
(from strong to weak evidence of change).

It is noticeable that S0.1
R and SS are similar, cf.

Figs. 9(a), 10(a) and 9(c), 10(c), while SLR and SKL look alike,
see Figs. 9(e), 10(e), 9(g), and 10(g), but somewhat different
from the previous pair.

Fig. 11 shows the relationship between S0.1
R and SS for the

second scene, along with the identity function for reference.
The p-values associated to the Shannon statistic are smaller
than that those related to the Rényi statistic, so the former
tends to reject more than S0.1

R , as discussed in the simulation
experiments.

Finally, Figs. 9(b), 9(d), 9(f), 9(h) and 10(b), 10(d), 10(f),
10(h) show binary images resulting from thresholding the S0.1

R ,
SS, SLR, and SKL statistics for the first and second scenes: p-
values larger than 10−4 are shown in white, otherwise in black.
The results, again, favor entropy-based detectors.

To confirm the qualitative discussion, we quantify the
performance of detectors with respect to reference maps in
Figs 8(e)-8(f) in terms of five measures:
• False positive (FP): Number of pixels indicated as change

by GT, but classified as no change;
• False negative (FN): Number of pixels indicated as no

change by GT, but classified as change;
• False alarm rate (FA): (FP + FN)/N , where N is the

number of unchanged pixels according to the detector;
• Detection rate (DR): TP/CG, where TP is the number of

pixels indicated as change by both GT and the detector,
and CG is the number of changed pixels according to the
detector; and

• Kappa coefficient: κ = (A − B)/(1 − B), where A =
1− pFP − pFN and B = (pTP + pFP)(pTP + pFN) + (pTN +

Sample size (N)
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Fig. 6. Empirical test size for actual data at levels 1%, 5%, 10%.

pFP)(pTN + pFN), where pC is the proportion of pixels
under the condition C relative to the total number of pixels
and TN is the number of pixels indicated as no change
by both GT and the detector.

The reference maps were prepared by specialists with Bing
and Google Earth imagery; cf. Ref. [30].

Table IV shows the results. SR obtained the best perfor-
mance, followed by SS, for both data sets with respect to κ
and DR. These detectors presented lower FN and FA than SLR
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(a) First scene (b) Second scene

Fig. 7. Images from the study areas: Los Angeles, California.

(a) Scene 1 (before) (b) Scene 1 (after)

(c) Scene 2 (before) (d) Scene 2 (after)

(e) Scene 1 (reference map) (f) Scene 2 (reference map)

Fig. 8. UAVSAR images (in Pauli decomposition) on April 23, 2009 and
May 11, 2015.

and SKL. SKL and SLR performed better than entropy-based
detectors with respect to FP. The values of FP were smaller
than 5 % in all cases, so this is not an issue for any detector.

TABLE IV
DETECTORS PERFORMANCE

Detectors FP (%) FN (%) FA (%) DR(%) κ (%)

Scene 1

SLR 0.060 13.433 13.493 20.408 24.597
SKL 0.052 14.055 14.107 19.765 23.023
SS 0.343 5.476 5.819 35.387 52.482
SR 0.431 3.709 4.140 42.988 62.272

Scene 2

SLR 0.104 9.551 9.655 20.964 25.552
SKL 0.094 10.404 10.497 19.682 23.087
SS 0.739 2.568 3.307 41.598 52.598
SR 0.920 1.254 2.174 55.590 62.519

V. CONCLUSIONS

We quantified and compared the performance of four change
detection methods for fully polarimetric SAR data. These
methods are based on the likelihood-ratio statistic, on the
Kullback-Leibler distance, and on the Rényi and Shannon en-
tropies. We used empirical test powers and sizes as comparison
criteria.

Firstly, the performance of the methods was quantified
through a Monte Carlo study using scenarios modeled by the
scaled complex Wishart law. The empirical test sizes showed
evidence that the detectors based on the likelihood ratio and
Shannon entropy statistics presented the best performance. In
particular, the one based on the entropy is the best for small
samples and statistically similar to the SLR. Additionally, the
tests based on the Kullback-Leibler and on the likelihood ratio
statistics tend to overestimate the nominal level, while those
which employ entropies underestimate it.

Regarding the empirical test power, the test based on the
Shannon entropy presented, in a consistent fashion, the best
results. Computational costs are quite different. The test statis-
tic based on the likelihood ratio SLR requires evaluating (5),
while SKL depends only on the Kullback-Leibler distance (7).
The latter is less demanding than the former by an order
of magnitude. Thus, on those situations in which SKL and
SLR are competitive (for moderate and large sample sizes),
the Kullback-Leibler test is more attractive because it has the
lowest computational cost.

Secondly, and since estimated test sizes were quite compet-
itive, two experiments with actual data were performed. For
the single date experiment, in all the situations considered,
the test based on Rényi entropy with order β = 0.1 presented
the best results. The multitemporal data experiments suggests
that change detectors equipped by entropies provide better
performance than those based on the Kullback-Leibler distance
and those based on the likelihood ratio statistic. Finally, the
diversity of tests statistics stemming from Information Theory
opens the venue for investigation of composite decision rules,
as in Ref. [66].

Future works will aim to adapt developments made in this
paper to more general distributions as, for instance, the GPol
and its particular cases (KPol, G0

Pol, and GHPol), the Kummer-U ,
and M laws; cf. [67, section 4.1], and [57].
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(a) S0.1
R -3× 3 (b) S0.1

R -3× 3 (c) SS-3× 3 (d) SS-3× 3

(e) SLR-3× 3 (f) SLR-3× 3 (g) SKL-3× 3 (h) SKL-3× 3

Fig. 9. p-value maps as evidence of changes between two dates for the first scene.

APPENDIX

Applying (2) in (8) and (9), we obtain the following
entropies [26]:

HS(θ) =
p(p− 1)

2
log π − p2 logL+ p log |Σ|+ pL

+ (p− L)ψ(0)
p (L) +

p−1∑
k=0

log Γ(L− k), and (14)

Hβ
R (θ) =

p(p− 1)

2
log π − p2 logL+ p log |Σ|

− pq log β

1− β
+

∑p−1
i=0

[
log Γ(q − i)− β log Γ(L− i)

]
1− β

,

(15)

where q = L+ (1− β)(p− L).
Under the scaled complex Wishart law, Frery et al. [26]

derived the following variances:
• Shannon:

σ2
S =

[
(p− L)ψ

(1)
p (L) + p− p2

L

]2
ψ

(1)
p (L)− p

L

+
p2

L
vec
(
Σ−1

)∗(
Σ⊗Σ

)
vec
(
Σ−1

)
. (16)

• Rényi entropy:

σ2
R,β =

{
β

1−β
[
ψ

(0)
p (q)− ψ(0)

p (L)
]
− pβ ln(β)

1−β − p2

L

}2

ψ
(1)
p (L)− p

L

+
p2

L
vec
(
Σ−1

)∗(
Σ⊗Σ

)
vec
(
Σ−1

)
. (17)
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Pura e Aplicada (IMPA, Rio de Janeiro) and his
Ph.D. degree was in Applied Computing from the
Instituto Nacional de Pesquisas Espaciais (INPE,
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