
RESEARCH ARTICLE

Region-Based Classification of PolSAR Data Using Radial Basis

Kernel Functions With Stochastic Distances
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Abstract

Region-based classification of PolSAR data can be effectively performed by seek-
ing for the assignment that minimizes a distance between prototypes and segments.
Silva et al. (2013) used stochastic distances between complex multivariate Wishart
models which, differently from other measures, are computationally tractable. In
this work we assess the robustness of such approach with respect to errors in the
training stage, and propose an extension that alleviates such problems. We intro-
duce robustness in the process by incorporating a combination of radial basis kernel
functions and stochastic distances with Support Vector Machines (SVM). We con-
sider several stochastic distances between Wishart: Bhatacharyya, Kullback-Leibler,
Chi-Square, Rényi, and Hellinger. We perform two case studies with PolSAR im-
ages, both simulated and from actual sensors, and different classification scenarios
to compare the performance of Minimum Distance and SVM classification frame-
works. With this, we model the situation of imperfect training samples. We show
that SVM with the proposed kernel functions achieves better performance with re-
spect to Minimum Distance, at the expense of more computational resources and
the need of parameter tuning. Code and data are provided for reproducibility.

KEYWORDS
PolSAR; image classification; stochastic distance; Minimum Distance Classifier;
SVM

1. Introduction

The availability of Polarimetric Synthetic Aperture Radar (PolSAR) sensors has in-
creased as a consequence of the technological advances in Remote Sensing. Compared
to conventional SAR sensors, PolSAR is able to acquire the amplitude, phase, and
orientation of the electromagnetic waves reflected from targets in different transmis-
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sion and reception polarizations. The use of these images is challenging, among other
reasons, because of the data structure (complex matrices in each pixel), their proper-
ties (the Gaussian additive noise is not valid), and the signal-to-noise ratio (typically
very low). Bearing these characteristics in mind, several specific methods have been
developed for PolSAR image processing and classification.

PolSAR image classification has been intensively investigated. The notion that more
information on the same area leads to better classification is intuitive. Lee, Grunes,
and Kwok (1994) and Cloude and Pottier (1997) proposed two pioneer approaches for
PolSAR data classification. While the former develops a pixel-based method based on
the Maximum Likelihood Classifier under the Complex Multivariate Wishart distri-
bution, the latter is an unsupervised classification through the eigenvalue analysis of
coherency matrices.

Several PolSAR data classification approaches have been proposed since then. Frery,
Correia, and Freitas (2007) used specific probability density functions for PolSAR in-
tensity data in the classic Maximum Likelihood Classifier method. Ersahin, Cumming,
and Ward (2010) based their approach for segmentation and classification of PolSAR
data on spectral graph partitioning. Du et al. (2014) used a Kernel Extreme Learning
Machine with multiple polarimetric and spatial features. Tao et al. (2015) proposed
a feature extraction method based on Independent Component Analysis and tensor
decomposition. Recently, Hou et al. (2017) proposed a semi-supervised method able
to learn even when the training data quality and quantity are both poor.

Silva et al. (2013) investigated the use of stochastic distances between Complex Mul-
tivariate Wishart distributions on a region-based approach. The performance of using
the Kullback-Leibler, Bhattacharyya, Hellinger, Rényi, and Chi-Square stochastic dis-
tances was assessed, providing evidence that such leads to better results when com-
pared to the Maximum Likelihood Classifier using the Complex Multivariate Wishart
distribution for pixel-based PolSAR classification as proposed in Lee, Grunes, and
Kwok (1994). Furthermore, the Kullback-Leibler, Bhattacharyya, and Rényi distances
are more indicated than Hellinger and Chi-Square. Ratha, Bhattacharya, and Frery
(2018) proposed projecting PolSAR data onto Kennaugh matrices, and then comput-
ing the geodesic distance between elementary targets and the observed information.

Negri, Silva, and Mendes (2016) presented a new version of K-Means algorithm
for region-based classification of PolSAR data by using a stochastic distance between
Complex Multivariate Wishart models and a hypothesis test derived from this kind of
measure. Similarly, Negri et al. (2016) verified the use of Bhattacharyya distance with a
Support Vector Machine (SVM) through kernel functions for region-based classification
of SAR data. However, to the best of the authors’ knowledge, there is still room for
investigating other distances and specific distributions for PolSAR images. Also, the
influence of errors on the training data has received little attention in the literature.

This study aims at analyzing the use of a number of stochastic distances as inputs
for an SVM with kernel functions for PolSAR region-based classification. Additionally,
it presents comparisons with the Minimum Distance Classifier framework investigated
by Silva et al. (2013). Such comparisons are conducted on PolSAR images, both sim-
ulated and from operational sensors, and different classification scenarios. Such sce-
narios include an analysis of the often encountered situation of using imperfect, i.e.
contaminated, training samples.

The remainder of this article is organized as follows. Fundamental concepts regard-
ing statistical PolSAR modelling, and the use of stochastic distances for region-based
classification are presented in Section 2. In Section 3, these concepts are applied in
two case studies. Conclusions are presented in Section 4.
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2. Statistical region-based PolSAR classification

2.1. Statistical PolSAR modelling

The backscatter signal measured by a PolSAR sensor can be represented through the
complex scattering vector zT = (Shh Shv Svh Svv). Each component of z is a complex
number that carries the amplitude and phase of a polarization combination. The po-
larizations are indicated by the subscripts in z, where, for example, hv denotes the
signal recorded with vertical polarization from a signal initially emitted with horizon-
tal polarization. Considering the reciprocity of an atmospheric medium, which makes
Shv similar to Svh, the scattering vector is simplified to zT = (Shh Shv Svv) (Frery,
Correia, and Freitas 2007).

An N -looks covariance matrix is the average of N backscatter measurements in a
neighborhood:

Z =
1

N

N∑
`=1

z`z
?T
` =

 Zhh Zhhhv Zhhvv
Z?hhhv Zhv Zhvvv
Z?hhvv Z?hvvv Zvv

 , (1)

where ? and T represent the conjugate and transposed operators, respectively. The
diagonal elements of Z are nonnegative numbers that represent the intensity of the
signal measured on a specific polarization.

Assuming that z follows a zero-mean Complex Gaussian distribution (cf. Goodman
1963), it is possible to obtain the distribution of Z, the scaled Complex Multivariate
Wishart law, which is characterized by the following probability density function:

f (Z;N,Σ) =
N3N |Z|N−3 exp{−NTr

(
Σ−1Z

)
}

|Σ|NΓ3(N)
, (2)

where Γ3(N) = π3
∏2
i=0 Γ(N − i), N ≥ 3.

The parameters N and Σ are the number of looks and the target mean covariance
matrix. The determinant, inversion and trace operators are denoted | · |, (·)−1 and
Tr (·), respectively.

The scaled Complex Multivariate Wishart model is valid in textureless areas. Target
variability can be included by one or more additional parameters; the reader is referred
to the work by Deng et al. (2017) for a comprehensive survey of models for PolSAR
data.

2.2. Stochastic distances between Complex Multivariate Wishart
distributions

A divergence is a measure of the difficulty of discriminating between two models.
Csiszár (1967) proposed the φ divergence family, providing a formally organized frame-
work to analytically obtain divergence measures between distributions. Salicru et al.
(1994) proposed a more general class of divergences, the h-φ divergence, through the
adoption of an additional function (h).

Consider the random variables X and Y defined on the same support X with dis-
tributions characterized by the densities fX(x;θ1) and fY (x;θ2), respectively, where
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θ1 and θ2 are parameters. The h-φ divergence between X and Y is given by:

dhφ(X,Y ) = h

(∫
x∈X

φ

(
fX(x;θ1)

fY (x;θ2)

)
fY (x;θ2)dx

)
, (3)

where φ : (0,∞) → [0,∞) is a convex function and h : (0,∞) → [0,∞) is a strictly
increasing function with h(0) = 0 and h′(v) > 0 for all v ∈ (0,∞). Several well-known
divergence measures can be obtained by choosing h and φ, but they are not necessarily
symmetric.

The symmetrization D(X,Y ) = (dhφ(X,Y ) + dhφ(Y,X))/2 allows to obtain distances

measures from any divergence dhφ. This leads to the following properties:

(1) Non-negativity: D(X,Y ) ≥ 0;
(2) Identity (of indiscernible): D(X,Y ) = 0⇔ X = Y ;
(3) Symmetry: D(X,Y ) = D(Y,X).

Additionally, if a distance has the following property, then it is a metric:

(4) Triangle inequality: D(X,Z) ≤ D(X,Y ) + D(Y,Z),

where X, Y and Z have the same support X . It is noteworthy that Bathacharrya,
Kullback-Leibler, Rényi, Hellinger and Chi-Square distances are not metrics since the
triangle inequality is not fulfilled.

Nascimento, Cintra, and Frery (2010) computed the Bathacharrya, Kullback-
Leibler, Rényi (of order β), Hellinger, Jensen-Shannon, Arithmetic-Geometric, Tri-
angular and Harmonic Mean stochastic distances between G0 distributions. These
distances were successfully used to evaluate contrast differences among regions in in-
tensity Synthetic Aperture Radar (SAR) images.

Frery, Nascimento, and Cintra (2014) developed analytic expressions for the
first four aforementioned stochastic distances between scaled Complex Multivariate
Wishart distributions. Previously, the Chi-Square stochastic distance between Com-
plex Multivariate Wishart distributions was presented in Frery, Nascimento, and Cin-
tra (2011). These distances were used by Silva et al. (2013) in PolSAR imagery clas-
sification by a minimum distance criterion.

Let X and Y be two random variables modelled by scaled Complex Multivari-
ate Wishart distributions X ∼ W(Σ1, N) and Y ∼ W(Σ2, N). The Bathacharrya,
Kullback-Leibler, Rényi (order 0 < β < 1) and Hellinger stochastic distances expres-
sions between scaled Complex Multivariate Wishart distributions, according to Frery,
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Nascimento, and Cintra (2014), are given by:

DB(X,Y ) = N

[
log |Σ1|+ log |Σ2|

2
− log

∣∣∣∣∣
(

Σ−1
1 + Σ−1

2

2

)−1
∣∣∣∣∣
]
, (4)

DK(X,Y ) = N

[
Tr(Σ−1

1 Σ2 + Σ−1
2 Σ1)

2
− 3

]
, (5)

Dβ
R(X,Y ) =

log 2

1− β
+

1

β − 1
log

{[
|Σ1|−β|Σ2|β−1|(βΣ−1

1 + (1− β)Σ−1
2 )−1|

]N
+

+
[
|Σ1|β−1|Σ2|−β|(βΣ−1

2 + (1− β)Σ−1
1 )−1|

]N}
, (6)

DH(X,Y ) = 1−

[∣∣2(Σ−1
1 + Σ−1

2 )−1
∣∣√

|Σ1||Σ2|

]N
, (7)

DC(X,Y ) =

(
|Σ1|
|Σ2|2

abs
(∣∣∣(2Σ−1

2 −Σ−1
1

)−1
∣∣∣))N +

+

(
|Σ2|
|Σ1|2

abs
(∣∣∣(2Σ−1

1 −Σ−1
2

)−1
∣∣∣))N − 2, (8)

where abs(·) returns the modulus of a real number.

2.3. Region-based PolSAR image classification

Let I be an image defined on the grid S ⊂ N2 whose pixels are elements of the
attribute space X . We use the notation I(s) = x to represent that a pixel s ∈ S of I
has attribute x ∈ X . The image support can be partitioned in r ≥ 1 disjoint subsets
Ri ⊂ S, i = 1, . . . , r, such that ∪ri=1Ri = S.

A region-based classification process consists of associating a class ωj from a set of
c possible classes Ω to all the pixels that comprise the region Ri. A supervised region-
based decision rule is built trough information available from a set of labeled regions
D = {(Rk, ωj) ∈ S × Ω : k = 1, . . . , s; j = 1, . . . , c}. The notation (Rk, ωj) indicates
that Rk is assigned to the class ωj .

Silva et al. (2013) adopt the Minimum Distance Classifier framework using stochas-
tic distances as a measure to compare the similarity between classes and unlabeled
regions. We refer to this method as Minimum Stochastic Distance Classifier (MSDC).
The pixel values in an unlabeled region are used to estimate a probability distribu-
tion. This region is then assigned to the closest class in distribution, according to an
stochastic distance. The class distributions are modeled based on information from D.

Formally, let Ri be an unlabeled region and let D(f̂Ri
, f̂ωj

) be a stochastic distance
between distributions estimated from the attributes of the pixels in Ri and the class
ωj . An assignment (Ri, ωj) is made when the following rule is satisfied:

(Ri, ωj)⇔ j = arg min
j=1,...,c

D(f̂Ri
, f̂ωj

). (9)

In Equation (9), f̂ωj
is estimated with all the pixels assigned to ωj in D.

Other methods can be adopted to perform region-based classification beyond the
MSDC as, for instance, Support Vector Machines (SVMs). SVMs have received great
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attention because of their excellent generalization ability, their independence of data
distribution and their robustness with respect to the Hughe’s phenomenon (Bruzzone
and Persello 2009).

The use of kernel functions, K : X 2 → R, is a common strategy to improve SVM
classification performance on nonlinearly separable patterns. Kernel functions also
allow the application of SVMs in problems where patterns cannot be represented as
vectors.

A kernel function K : X 2 → R is symmetric and conforms to the Mercer theorem
conditions (Theodoridis and Koutroumbas 2008). However, as such verification may be
not trivial there are alternative ways to develop such functions. For example, adopting
the radial basis function model (Schölkopf and Smola 2002):

K(xu,xv) = g (m̃ (xu,xv)) , (10)

where g : R→ R is a strictly positive real function and m̃ : X 2 → R is a metric.
Equation (10) gives a hint to develop suitable kernel functions for PolSAR region-

based image classification. A sensible choice for g is the negative exponential function,
and m, as a measure of similarity between the input data, a metric based on stochastic
distances between distributions. It is noteworthy that equations (4) to (8) will not
produce valid kernel functions since they do not attain the triangle inequality.

However, if D is a stochastic distance with τ ∈ R+ such that D(Ru,Rv) ≤ τ for
u, v = 1, . . . , r, the following expression provides a metric:

m(Ru,Rv) =

{
0 if Ru = Rv,
D(Ru,Rv) + τ if Ru 6= Rv.

(11)

The identity property of m stems from (11). Non-negativity and symmetry are in-
herited from D, which is a distance, since adding a positive constant will not invalidate
such proprieties. Finally, the triangle inequality is fulfilled since the following relations
are satisfied:

m(Ru,Rv) +m(Rv,Rw) ≥ m(Ru,Rw)⇔
⇔ D(Ru,Rv) + τ + D(Rv,Rw) + τ ≥ D(Ru,Rw) + τ ⇔

⇔ D(Ru,Rv) + D(Rv,Rw) + τ ≥ D(Ru,Rw),

once we have that D(Ru,Rw) ≤ τ . The constant τ can be chosen as the largest distance
measured by D in the classification problem. Figure 1 illustrates this procedure.

We can thus define kernel functions for PolSAR region-based image classification
using the model from Equation (10), the expression from Equation (11) and considering
the substitution of D by a stochastic distance given by Equations (4) to (8):

K(Ru,Rv) = e−γm(Ru,Rv), (12)

where γ ∈ R+ is a user-adjusted parameter. We denote the kernel functions obtained
from the Bathacharrya, Kullback-Leiber, Hellinger, Rényi e Chi-Square distances as
KB, KK, KH, KR and KC, respectively.

We make clear that K(Ru,Rv) denotes a kernel function between estimates of

distributions f̂u and f̂v computed with the observations in regions Ru and Rv.
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I
Ru f̂u τ

D(f̂u, f̂v) ⊕ m
(
f̂u, f̂v

)

Rv f̂v

if Ru 6= Rv

Figure 1. Schema of the construction of a kernel function K between regions Ru and Rv .

3. Experiments and Results

In this section, we present studies of region-based image classification of actual and
simulated PolSAR data using the stochastic distances presented in Section 2.2 by both
MSDC (i.e., DB, DK, DH, DR and DC) and through the kernel functions, defined in
Section 2.3 (i.e., KB, KK, KH, KR and KC).

The first study (Section 3.1) consists of the classification of simulated images gener-
ated with basis on parameters estimated from targets in an actual image. The second
case study (Section 3.2) focuses on the classification of the PolSAR image used to ex-
tract the parameters. The results are compared by accuracy measures and hypothesis
tests.

The scenarios considered in both studies allow a robustness analysis. Specifically,
the results from simulated data are assessed through the overall accuracy, while the
actual data are verified with the kappa coefficient of agreement (Congalton and Green
2009).

Figure 2 presents an overview of the experiment design, whereas the specifics are
discussed in the following sections.

 Simulation Process:

Synthesize 50 replications

Classification:

Define a six and three classes scenarios

Apply MSDC with DB, DK, DC, DR and DH

Apply SVM with KB, KK, KC, KR and KH

Assessment:

Average accuracy for each 
method/distance/scenario

Hypothesis test comparisons

Classification results

Classification:

Define a three, five and seven classes scenarios

Apply MSDC with DB, DK, DC, DR and DH

Apply SVM with KB, KK, KC, KR and KH

Classification results

Actual data case

Assessment:

Kappa coefficient for each 
method/distance/scenario

Hypothesis test comparisons

Ground truth samples/classes

PolSAR image

Image segmentation

Define Phantom image and its segmentation

Extract statistical 
parameters from real targets

Simulated data case

Data set

Figure 2. The experiment design overview.
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The actual PolSAR data belongs to an image acquired on 2009 March 13 by the
ALOS-PALSAR sensor with approximately 20 m× 20 m resolution after a 3×3 multi-
look process. This image, with center near to 3◦8′19′′ South and 54◦55′26′′ West,
corresponds to a region near the Tapajós National Forest, State of Pará, Brazil.

A field work campaign conducted in September 2009 identified the following land use
and land cover (LULC) types: Primary Forest (PF), Regeneration (RE), Pasture (PS),
Bare Soil (BS), and three types of Agriculture (A1, A2 and A3). These agricultural
classes differ on the crop type or growing stage. Figs. 3(a), 3(b) and 3(c) present the
study area location, a color composition of the ALOS-PALSAR image and the LULCs,
respectively.

(a) Study area location

(b) ALOS-PALSAR image in RGB
color composition (HH, HV, VV)

(c) LULC samples

Figure 3. The study area, actual PolSAR image and the spatial distribution of the LULC samples used in

the study.

The experiments run on a computer with an Intel Core i7 processor, and 16 GB
of RAM running the Debian Linux version 8.1 operating system. The platform was
IDL (Interactive Data Language) version 7.1. The code is freely available at https:

//github.com/rogerionegri/SVM-PolSAR.
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3.1. Classification of Simulated Data

3.1.1. Image Simulation

The process adopted for simulated images involves two primary steps. The first step
consists of defining a “phantom image” which is an idealized model for the spatial
distribution of classes. The phantom is formed by six identical blocks of 512 × 512
pixels. Each block represents a distinct class, which is partitioned into 44 segments
of different dimension. Figure 4(a) illustrates the phantom image and the structure
inside the blocks.

The second step consists of simulating pixels values. For this purpose, we adopted
a procedure based on Goodman (1963). In order to obtain samples from the Wishart
distribution with covariance matrix Σ and L looks, we obtain L independent deviates
from scattering vectors following a Complex Multivariate Gaussian distribution with
zero mean and covariance matrix Θ:

z̃ = (z1 z2 z3) + (z4 z5 z6) i; (z1 z2 z3 z4 z5 z6) ∼ N (0,Θ) , (13)

where i represents the imaginary unit and the covariance matrix of the Gaussian law
is

Θ =

(
[< (Σ)] [−= (Σ)]
[= (Σ)] [< (Σ)]

)
.

We then apply Equation (1) to obtain an observation. Each class is modeled by a
covariance matrix Σ obtained by averaging observations from the corresponding LULC.

We introduce intra-class variability to describe “imperfect” samples and, with this,
model plausible errors in the training stage. Frery, Ferrero, and Bustos (2009) analyzed
the effect of such errors in classification, and showed that incorporating context is a
way of alleviating such problem.

Consider the (true, unobserved) covariance matrix Σ that describes a class. If it is
estimated with perfect samples, i.e., with independent identically distributed obser-
vations from the hypothesized distribution, then its maximum likelihood estimate Σ̂
will be as close to Σ as the information in the sample permits. Errors in the training
stage may lead to suboptimal estimates in terms of bias and variance. We model this
situation by introducing random perturbations in Σ̂, as follows.

The user believes each class is characterized by Σ but, in fact, the data come from
44 slightly different models: Σ1, . . . ,Σ44. These models are built by adding random
covariance matrices Υ1, . . . ,Υ44 to Σ̂, which is obtained estimating from actual data
from a single class. Each perturbation covariance matrix is formed as

Υ` = (S`,hh S`,hv S`,vv)
T (S`,hh S`,hv S`,vv)

? , 1 ≤ ` ≤ 44,

where S`,ij are independent uniform random variables on
√
θĪij(2

√
L) · (−1, 1), where

Īij is the ij diagonal element of Σ̂, and θ > 0 controls the perturbation. With this,

each mean intensity Īij in Σ` is a value in Îij · [1, θσij ], where Îij is the (wrongly

assumed for the whole block) mean intensity, and σij is the standard deviation of Îij .
Notice that the correct model for each class would be a mixture of 44 distributions,

but the user will train each class with samples from 11 (typically slightly) different
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laws; cf. the colored squares in Fig. 5(a). With this, we assess how the classification
techniques perform in the practical situation of using less classes for describing a
complex truth, and not collecting samples from all the underlying classes. Fig. 4(c)
shows, in logarithmic scale, the intensity of averaged covariance matrices as squares,
and their respective 44 perturbed versions.

As can be seen from Fig. 4(c) we consider the following situations:

• Classes that do not overlap, e.g. A1 and A3, A1 and PF, A1 and RG, A3 and
all others, PF and BS, PS and BS, RG and BS
• Classes with some overlap, e.g. A1 and PS, A1 and BS,
• Classes that overlap, e.g. PS and RG.

This is corroborated by (14) below, which shows the Hellinger distances between the
classes.

DH A3 PF PS RG BS

A1 0.961 0.772 0.344 0.410 0.315
A3 0.906 0.933 0.928 0.989
PF 0.443 0.283 0.899
PS 0.062 0.523
RG 0.652

(14)

Figure 4(b) presents a simulated image, where it is possible to identify the intra-

class variability. The covariance matrices that plays the rule of Σ̂ in the simulation
process, estimated from observed LULC samples shown in Figure 3(c), are presented
as Appendix.

3.1.2. Classification and Results

A set of fifty images were simulated independently following the procedure described
in Section 3.1.1 Each image was then classified using the MSDC and SVM methods.
MSDC used the stochastic distances between Complex Multivariate Wishart distri-
butions by plugging Equations (4) to (8) in (9). SVM also employed these distances
through the kernel functions in (11) and (12).

Furthermore, although the simulated images have six well-defined blocks of targets
(regions), such objects where classified in two scenarios (i.e., classes configurations).
The first scenario considers each block as a single class, the second scenario considers
the blocks 1 and 4; 2 and 5; and 3 and 6 as three distinct classes. The second scenarios
describes situations where the user specifies less classes than those actually present in
the image. According to this organization, Figures 5(a) and 5(b) present the training
samples and the ideal results expected for the first scenario; similarly, Figures 5(c)
and 5(d) refer to the second scenario.

Using preliminary tests, the order of the Rényi distance (β) was set to 0.9 for both
SVM and MSDC methods. The SVM penalty and kernel parameter were adjusted for
each image, considering a fixed parameter space, through an exhaustive search for the
configuration which produces the most accurate results with respect to testing samples.
In this study, penalty ranges in {1, 10, 100, 1000, 10000} and the kernel flexibility γ in
{0.05, 0.1, 0.15, . . . , 10.0}.

Two multiclass strategies were considered for SVM in order to assess relation-
ships between strategies, scenarios, kernels and method performance: One-Against-
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(a) Phantom - Blocks

(b) Simulation example

Intensity-VVIntensity-HH

In
te

ns
ity

-H
V

Intensity-VV

A1
A3
PF
PS
RG
BS

(c) Mean covariance matrices (squares), and 44 perturbed covariance matrices (circles) in
semilogarithmic scale.

Figure 4. Simulated data.

All (OAA) and One-Against-One (OAO), denoted SVM-OAA and SVM-OAO respec-
tively. Details about these strategies can be found in Webb and Copsey (2011).
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(a) Training samples – six classes case (b) Ideal result for six classes

(c) Training samples – three classes case (d) Ideal result for three classes

Figure 5. Simulated data.

We measured the accuracy of each classification result by the number of correctly
classified regions, without taking into account training regions. Figure 6 represents
the classification accuracy achieved by each method for different configurations (i.e.,
stochastic distances/kernel and multiclass strategy for SVM). Table 1 presents the p-
values of a bilateral t-test to check the statistical equality between the accuracy values
achieved by two distinct combinations of methods and distances. Further discussions
about statistical equality are based on 95 % of confidence.

In the following tables SA, SO and MS represent the SVM-OAA, SVM-OAO and
MSDC methods, and B, K, C, R and H represent the Bhattacharyya, Kullback-Leibler,
Chi-Square, Rényi and Hellinger stochastic distances in the kernel functions.

Table 1. Test statistic p-values for the t test that verifies that two classification techniques produce equivalent
results. Values above (below) the diagonal correspond to the six (three, resp.) classes. Underlined values indicate

equivalent coefficients at the 95 % level.
B K C R H

SA SO MS SA SO MS SA SO MS SA SO MS SA SO MS

B

SA – .808 .191 .929 .872 .186 .001 .000 .000 .927 .850 .189 .979 .850 .191

SO .914 – .147 .757 .936 .142 .001 .000 .000 .752 .957 .145 .797 .966 .147

MS .000 .000 – .228 .162 .984 .002 .000 .000 .224 .156 .987 .203 .161 1.00

K

SA .861 .785 .000 – .815 .224 .001 .000 .000 1.00 .795 .227 .000 .796 .228

SO .978 .935 .000 .840 – .157 .001 .000 .000 .811 .979 .160 .858 .973 .162

MS .000 .000 .996 .000 .000 – .002 .000 .000 .220 .151 .997 .199 .156 .984

C

SA .000 .000 .064 .000 .000 .064 – .881 .691 .001 .001 .002 .001 .001 .002

SO .000 .000 .355 .000 .000 .335 .478 – .785 .000 .000 .000 .000 .000 .000

MS .000 .000 .000 .000 .000 .000 .016 .001 – .000 .000 .000 .000 .000 .000

R

SA .903 .822 .000 .955 .881 .000 .000 .000 .000 – .790 .223 .949 .792 .224

SO .986 .906 .000 .880 .996 .000 .000 .000 .000 .921 – .154 .837 .993 .156

MS .000 .000 .996 .000 .000 1.00 .064 .355 .000 .000 .000 – .202 .159 .987

H

SA .972 .889 .000 .000 .951 .000 .000 .000 .000 .933 .987 .000 – .875 .203

SO .949 .964 .000 .814 .971 .000 .000 .000 .000 .853 .938 .000 .886 – .161

MS .000 .000 1.00 .000 .000 .996 .064 .335 .000 .000 .000 .996 .000 .000 –

Focusing on the results of the first scenario (six classes), illustrated in Figure 6(a),
we obtain high accuracy values regardless the method or distance adopted, except for
the Chi-Square distance. Six hundred classifications were produced by three meth-
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Figure 6. The accuracy of classification results for the simulated data set.

ods (SVM-OAA, SVM-OAO and MSDC), four distances (Bhattacharyya, Kullback-
Leibler, Rényi and Hellinger, except Chi-Square) and fifty synthetic images. The min-
imum and maximum values observed over the 600 classifications were 92 % and 100 %
respectively.

The Chi-Square distance does not only produce lower accuracy, but also higher
variation in comparison to the other distances/methods. Numerical problems with
the Chi-square distance have been reported by Frery, Nascimento, and Cintra (2011).
Furthermore, the use of such distance in MSDC and SVM through (8) provides sta-
tistically equal results.

SVM has better performance than MSDC in the second scenario. Usually, OAO mul-
ticlass strategy provides higher average accuracy compared to OAA, even though both
strategies provide statistically equal results. Furthermore, we note that the methods
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are not influenced by the adopted distance, with exception of the Chi-Square dis-
tance, where the results are very similar. It is noteworthy that Batthacharyya, Rényi
and Hellinger distances in SVM lead to accurate results and small deviations.

Figure 7 presents the computational time spent for training and performing the
classification by each method. We observe that in the first scenario the MSDC method
spends approximately 3 s, while SVM has a higher cost, specially when OAA strategy
is adopted. The reason for this is the training stage, which although SVM with OAO
strategy requires splitting the multiclass classification in fifteen binary problems, when
OAA is adopted the SVM training needs to solve six large quadratic optimization
problems (for details, see Theodoridis and Koutroumbas 2008).

Additionally, we note that MSDC it is more expensive in the second scenario than
in the first. Although the second scenario has fewer classes, the quantity of training
regions is larger and, then, requires more time to estimate the parameters (i.e., the
covariance matrix of each classes) of the probability distribution function that models
the classes. With respect to SVM, in general it requires less time in comparison to
the first scenario since there are less classes. OAA is still more expensive in the sec-
ond scenario. Furthermore, the Kullback-Leibler kernel function requires the shortest
average times SVM.

0

4

8

12

16

20

24

Ti
m

e 
(s

ec
.)

B K C R H B K C R H

SVM-OAA
SVM-OAO
MSDC

3 classes 6 classes
B - Bhattacharyya
K - Kullback-Leibler
C - Chi-Square
R - Rényi
H - Hellinger

Figure 7. The computational of the analyzed methods in the expriment with synthetic data.

3.2. Classification of Data from an Actual Sensor

This section presents classification results of the ALOS-PALSAR image shown in Fig-
ure 3(b). In analogy to Section 3.1.2, we discuss a variety of classification scenarios.

The first scenario uses all LULC classes identified in the study area; cf. Table 2.
The union of the agriculture classes (i.e., A1, A2 and A3) defines the new class called
Agricultural Areas (AA). A second scenario is created with the five classes AA, PF,
PS, RG and BS. The last third scenario consists of three classes: Agricultural Areas,
High Biomass (HB) and Low Biomass (LB). HB is obtained merging Primary Forest
and Regeneration classes, LB comes from the union between Pasture and Bare Soil.
We obtain the training and testing samples of AA, HB and LB classes by merging the
sample polygons of the individual classes. These scenarios describe practical situations
of users with different interests and knowledge of the area. The Appendix provides the
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sample covariance matrices from the six LULC classes.
Figures 8(a), 8(b) and 8(c) show the spatial distribution of training and testing

samples of each scenario, while Table 2 presents a summary of the LULC samples.
The spatial distribution of these samples is also shown in Figure 8(a), where training
and test samples are shown in solid and empty polygons, respectively.

The region-based classification requires a segmentation. It was performed using the
region-growing method available in the Geographic Information System SPRING (Ca-
mara et al. 1996, freely available at http://www.dpi.inpe.br/spring/english/),
choosing the segmentation parameter by visual inspection. Figure 8(d) shows the seg-
ments contours.

(a) Scenario 1 (b) Scenario 2

(c) Scenario 3 (d) Segmentation

Figure 8. Spatial distribution of the samples on the different considered scenarios and the adopted segmen-

tation.

We applied all possible combinations of methods, distances and multiclass strategies
to the image and its segmentation. The SVM parameters were obtained following the
same procedures and space searches described in Section 3.1.2. The data were spatially
subsampled taking one every three pixels in both horizontal and vertical direction in
order to reduce the spatial dependence. The accuracy was measured by the kappa
agreement coefficient with respect to the test samples.

Figure 9 shows the kappa values along with their standard deviation. Additionally,
Tables 3, 4 and 5 present the p-values of a bilateral hypothesis test to check the
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Table 2. Summary of the land cover classes samples.

LULC Classes
Training Testing

Polygons Pixels Polygons Pixels
Agruculture 1 (A1) 4 3669 8 7455
Agruculture 2 (A2) 4 2902 8 6731
Agruculture 3 (A3) 3 2332 8 7049

Primary Forest (PF) 3 5430 10 29306
Pasture (PS) 5 3334 10 12866

Regeneration (RE) 5 2570 10 7307
Bare Soil (BS) 5 5384 11 13352

statistical equality between kappa values achieved by two distinct combinations of
methods and distances for each scenario. Further discussions about statistical equality
are based on 95 % of confidence.
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Figure 9. Classification accuracy.

We observe that the Chi-Square distance produces low kappa values in both meth-
ods and with both multiclass strategies for SVM. This is due to the aforementioned
numerical instabilities presented by this measure. While most of the considered dis-
tances ranged, in the experiments, from 10−1 to 102, the Chi-Square had its values
approximately in 0 to 106.

Results provided by MSDC using the Bhatacharyya, Kullback-Leibler, Rényi and
Hellinger are statistically the same.

Similarly to the results presented in Section 3.1.2, the choice of a multiclass strat-
egy does not have strong influence on the performance of SVM. Except when the
Batthacharyya distance is used, the increased in intra-class variability, which occurs
when the number of classes decrease, suggests the use of OAO strategy in SVM. Ob-
serving the SVM performance as function of the stochastic distance integrated in its
kernel, the Rényi distance has the highest accuracy in the first scenario. Regarding
the second and third scenarios, SVM performs better when the kernel functions are
enhanced with Kullback-Leibler and Rényi distances.
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Table 3. p-values from hypothesis test for comparing methods and distances with seven classes. Underlined

values indicate equivalent coefficients at the 95 % level.
B K C R H

SA SO MS SA SO MS SA SO MS SA SO MS SA SO MS

B

SA – .014 .000 .000 .014 .000 .000 .000 .000 .000 .014 .000 1.00 .000 .000

SO – .000 .052 1.00 .000 .000 .000 .000 .000 1.00 .000 .014 .000 .000

MS – .000 .000 1.00 .000 .000 .000 .000 .000 1.00 .000 .000 1.00

K

SA – .052 .000 .000 .000 .000 .000 .052 .000 .000 .000 .000

SO – .000 .000 .000 .000 .000 1.00 .000 .014 .000 .000

MS – .000 .000 .000 .000 .000 1.00 .000 .000 1.00

C

SA – .000 .000 .000 .000 .000 .000 .000 .000

SO – .000 .000 .000 .000 .000 .000 .000

MS – .000 .000 .000 .000 .000 .000

R

SA – .000 .000 .000 .000 .000

SO – .000 .014 .000 .000

MS – .000 .000 1.00

H

SA – .000 .000

SO – .000

Table 4. p-values from hypothesis for comparing methods and distances with five classes. Underlined values

indicate equivalent coefficients at the 95 % level.
B K C R H

SA SO MS SA SO MS SA SO MS SA SO MS SA SO MS

B

SA – .697 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .697 .000

SO – .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 1.00 .000

MS – .000 .000 1.00 .00 .100 .000 .000 .000 1.00 .000 .000 1.00

K

SA – .002 .000 .000 .000 .000 1.00 .002 .000 .000 .000 .000

SO – .000 .000 .000 .000 .002 1.00 .000 .000 .000 .000

MS – .000 .100 .000 .000 .000 1.00 .000 .000 1.00

C

SA – .000 .000 .000 .000 .000 .000 .000 .000

SO – .000 .000 .000 .100 .000 .000 .100

MS – .000 .000 .000 .000 .000 .000

R

SA – .002 .000 .000 .000 .000

SO – .000 .000 .000 .000

MS – .000 .000 1.00

H

SA – .500 .000

SO – .000

The influence of the scenario is noteworthy. As the number of classes decreases,
leading to increasing intra-class variability, the performance of MSDC also decreases.
Converseley, the classification accuracy of SVM tends to increase while the number of
classes decrease.

In summary, SVM presented better performance with respect to MSDC. Kullback-
Leibler and Rényi distances are the preferred choice for defining radial basis kernel
functions for the region-based classification with SVM.

Figure 10 shows selected results. The first scenario, that considers seven classes,
posses a difficult problem to both methods to discriminate the agricultural classes
(i.e., A1, A2 and A3). With respect to the second scenario, while SVM with OAA
strategy does not distinguish PS and MSDC often confuses AA with PS, the SVM
with OAO strategy provides a better separation between such classes. In the last
scenario MSDC was not apt to separating AA and LH classes, differently fom SVM.

Table 5. p-values from hypothesis tests for comparing methods and distances with three classes. Underlined
values indicate equivalent coefficients at the 95 % level.

B K C R H

SA SO MS SA SO MS SA SO MS SA SO MS SA SO MS

B

SA – .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .031 .000

SO – .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .970 .000 .000

MS – .000 .000 1.00 .154 .000 .000 .000 .000 1.00 .000 .000 1.00

K

SA – .069 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000

SO – .000 .000 .000 .000 .000 .000 .000 .000 .000 .000

MS – .154 .000 .000 .000 .000 1.00 .000 .000 1.00

C

SA – .000 .000 .000 .000 .154 .000 .000 .154

SO – .000 .000 .000 .000 .000 .000 .000

MS – .000 .000 .000 .000 .000 .000

R

SA – .105 .000 .000 .000 .000

SO – .000 .000 .000 .000

MS – .000 .000 1.00

H

SA – .000 .000

SO – .000
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This last method, specially when using OAA strategy, provides a better classification
of HB and LB areas; cf. the central region of the study area.

(a) SA/B – Scenario 1 (b) SO/K – Scenario 1 (c) MS/R – Scenario 1

(d) SA/H – Scenario 2 (e) SO/R – Scenario 2 (f) MS/K – Scenario 2

(g) SA/R – Scenario 3 (h) SO/K – Scenario 3 (i) MS/H – Scenario 3

Figure 10. Actual data classification results.

Figure 11 presents the computational time spent by the methods in the experiments
with actual data. It can be noted a gradual increase in the processing time when dealing
with scenarios with more classes. As previously observed in the first case study, the use
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of OAA strategy by SVM implies more processing time compared to OAO. MSDC is
the least computational intensive method. Furthermore, the time execution is relatively
insensitive to choices of distances.
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Figure 11. Computational time of the analyzed methods in the experiment with actual data.

4. Conclusions

The objective of this study was to verify the performance of SVM for region-based
classification of PolSAR image in comparison to MSDC. For this purpose, we adopted
radial basis functions derived from stochastic distances between Complex Multivari-
ate Wishart distributions: Bhatacharyya, Kullback-Leibler, Chi-Square, Rényi and
Hellinger. We used simulated images and data from an operational sensor, and pro-
posed a number of scenarios which describe different situations of ability to discrimi-
nate classes. These scenarios depict actual situations users encounter in practice.

It was found that SVM it is more robust than MSDC in both simulated and actual
data sets because, depending on the adopted multiclass strategy, SVM has equal or
superior performance on simple scenarios (first scenarios of simulated and actual data
sets – Figures 6(a) and 9) and superior in more complex scenarios (second scenario of
simulated and second and third scenarios with actual data sets – Figures 6(b) and 9).

The main drawbacks of SVM are its computational cost and the need to tuning the
penalty and the kernel parameter.

As previously verified by Silva et al. (2013), the Chi-Square distance is not indicated
to perform classification through MSDC. Its numerical instabilities lead to relative
poor performance.

Face to the exposed results, the SVM method presented a better performance com-
pared to MSDC. With respect to radial basis kernel functions considered in this study
for region-based classification with SVM, the preferred ones are Kullback-Leibler and
Rényi distances. The use of distinct stochastic distances on MSDC does not lead to
improved accuracy, so the choice should be based on computational execution time.
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Appendix A. Suplementary data

The covariance matrices estimated by maximum likelihood over the LULC samples of
A1, A2, A3, PF, PS, RE and BS, depictured in Figure 3(c), are presented in (A1) to
(A6), respectively. Only the upper triangle and the diagonal are shown. The remaining
elements are the complex conjugates of transposed corresponding element.

ΣA1 =

 47.95 −0.03− 0.47i 7.04 + 4.09i
2.96 −0.11− 0.25i

17.39

 . (A1)

ΣA3 =

 534.48 2.12 + 5.54i 41.10 + 79.48i
4.59 −1.38 + 0.95i

262.25

 . (A2)

ΣPF =

 68.86 −0.32− 0.03i 20.39 + 1.75i
20.87 −0.49− 0.23i

61.03

 . (A3)
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ΣPS =

 49.71 0.24− 0.28i 22.91− 3.01i
6.45 −0.36 + 0.03i

38.50

 . (A4)

ΣRG =

 55.20 0.24 + 0.15i 18.51 + 0.61i
9.17 −0.38− 0.14i

35.13

 . (A5)

ΣBS =

 21.15 0.01− 0.06i 9.01− 1.98i
2.27 −0.03− 0.08i

15.70

 . (A6)
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