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Abstract—Change detection is a topic of great interest in
remote sensing. A good similarity metric to compute variations
among the images is the key to high-quality change detection.
However, most existing approaches rely on fixed threshold values
or user-provided ground truth in order to be effective. The
inability to deal with artificial objects such as clouds and shadows
is a significant difficulty for many change detection methods.
We propose a new unsupervised change detection framework to
address those critical points. The notion of homogeneous regions
is introduced together with a set of geometric operations and
statistic-based criteria to formally characterize and distinguish
change and non-change areas in a pair of remote sensing
images. Moreover, a robust and statistically well-posed family
of stochastic distances is also proposed, which allows comparing
the probability distributions of different regions/objects in the
images. These stochastic measures are then used to train an SVM-
based approach in order to detect the change/non-change areas.
Three study cases using images acquired with different sensors
are given in order to compare the proposed method with other
well-known unsupervised methods.

Index Terms—Unsupervised change detection, stochastic dis-
tance, single-class SVM, classification.

I. INTRODUCTION

CHANGE DETECTION is an active research field that
seeks to track land cover differences in images remotely

acquired over the same region at different moments [1]. It
has appeared in several applications, ranging from urban
environmental monitoring [2] to vegetation mapping [3]. In
forestry, for example, the identification of spatial-temporal
changes allows for a better understanding of how ecosystems
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the Key Lab of Intelligent Perception and Image Understanding of the Ministry
of Education, Xidian University, Xi’an, China. (e-mail: acfrery@laccan.ufal.br)

W. C. O. Casaca is with Department of Energy Engineering, São Paulo
State University (UNESP), Rosana, São Paulo Brazil

S. C. Oliveira is with Natural Resources Department, Federal University of
Itajuba (UNIFEI), Itajubá, Minas Gerais, Brazil
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behave along the time, elucidating the progressive interaction
between natural phenomena and human activities.

Wu et al. [4] review recent approaches devoted to identifying
abrupt changes in remotely sensed images. The authors grouped
them into post-classification inspections, image transformations,
and arithmetic with image bands and spectral indexes. Another
approach commonly adopted to differentiate these methods is
the well-known taxonomy of image classification, i.e., an algo-
rithm is either supervised or unsupervised. More specifically,
a change detection method is referred to as “supervised” if
a set of labeled samples is given as input to the algorithm;
otherwise, it is called “unsupervised.” Since our approach
relies on unsupervised learning, the forthcoming discussion is
conducted on the basis of the unsupervised literature.

In remote sensing, the most representative precursors of
unsupervised change detection methods are: the Change Vector
Analysis (CVA) [5], and the framework described by Celik [6],
the so-called PCA-KM, which integrates Principal Component
Analysis (PCA) and k-means clustering. The first method,
CVA, comprises three stages: a pre-processing step (radiometric
and geometric corrections), the computation of the change
vector values for each pixel, usually through the norm of a
feature vector difference for a pair of instants, and, finally,
the binarization of the generated vectors into change and non-
change segments, by using a thresholding scheme such as
Otsu [7] or Kitller-Illinghworth [8]. Concerning PCA-KM, it
relies on a simple but efficient algorithm to accomplish the
identification of apparent changes, which is also robust to noise.
The change evidence is computed as a vector from a pair of co-
registered images obtained at two different instants. Next, the
change vector image is partitioned into disjoint blocks, and their
values are used to generate a high dimensional vector. PCA is
applied to these data to extract the most relevant information
from each block. The final representation, usually composed
by the first principal components, is handed over the k-means
algorithm in order to distinguish the changes and non-changes
regions.

Multivariate Alteration Detection (MAD) [9] is a data trans-
formation technique widely known and used for unsupervised
change detection. MAD uses Canonical Correlation Analysis in
order to allow robust multi-temporal comparisons in a common
feature space. Nielsen [10] improved it and proposed the
Iterative Re-weighted MAD (IRMAD).

Recently, Wu et al. [4] proposed the use of Slow Feature
Analysis (SFA) [11] to handle irrelevant variations present
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in multi-temporal data confrontation, a common issue in
unsupervised change detection. The resulting method, refereed
by the authors as USFA, revealed promising results. Du et
al. [12] integrated SFA into a deep-learning approach as well
as in a Bayesian framework [13] for, respectively, unsupervised
and supervised change detection.

Both IRMAD and USFA aim to transform an input pair
of images into a new feature space where the distinction
between changed and non-changed areas is favorable. Such
differentiation usually employs thresholding and clustering.

Despite their flexibility, CVA and PCA-KM also have
intrinsic weaknesses, which can undermine their accuracy and
effectiveness. For instance, the use of input data without an
adequate radiometric correction in CVA may produce very
unstable and inconsistent outputs. Furthermore, the use of
only a single cut-off value to distinguish between change and
non-change regions usually leads to omission and inclusion
errors. Regarding PCA-KM, the presence of high-contrast
elements like clouds and background regions may impair the
clustering process carried out by the k-means algorithm. The
accommodation of such outliers into the clusters may induce
omission and inclusion errors. Finally, concerning USFA and
IRMAD, despite their more robust design compared to CVA
and PCA-KM, they may also be trapped by undesired effects
in the thresholding or clustering stages.

Aiming at addressing these drawbacks without penalizing
the computational cost, we propose a new unsupervised change
detection technique. Our proposal is grounded in determining
a flexible decision rule adjusted accordingly to the response of
non-change areas. Given an image pair, our has takes two main
steps: the identification of non-change homogeneous regions,
and the learning of a decision rule based on the identified
non-change homogeneous regions. Such a rule allows the
discrimination between change and non-change areas in the
input pair. In our approach, we exploit the ideas of stochastic
distances [14], [15] to drive the identification of non-change
homogeneous regions under uncertainty and noise. Finally, the
decision rule is computed by a Single-Class Support Vector
Machine (SVM) classification in order to properly label the
change areas.

As mentioned, the change detection process is guided by a
decision rule built so as to take advantage of the behavior of
the non-change area. The occurrence of clouds and other non-
permanent artifacts over the scenes are irrelevant changes, and
consequently, they are discarded in the decision rule modeling.
Hence, the results provided by the proposed method tend to
be not influenced by such outliers.

Contributions. In summary, the main contributions of this
paper are the following:
• A fully unsupervised change detection method that unifies

a robust and statistically well-posed family of stochastic
distances with an SVM-based approach.

• A set of geometric structures as well as a statistical
criterion especially designed to characterize and identify
homogeneous regions within a sequence of images.

• In contrast to approaches like CVA and PCA-KM, our
method is capable of coping with outliers such as clouds

and background regions, while still avoiding a fixed
threshold to classify the images.

• The proposed method is modular and, thus, flexible
regarding the use of other statistical measures and de-
cision functions beyond those presented in the following
formalization.

To assess our method while comparing it against CVA, PCA-
KM, IRMAD, and USFA, we study three cases of landscape
changes that occurred as a consequence of rupture dams in
Brazil. We employed images acquired from different satellites:
Landsat-8, Sentinel-2, and ALOS-1.

This paper is organized as follows: Section II presents the
the underlying concepts of hypotheses tests from stochastic
distances, and the single-class classification based on SVM.
Section III introduces the proposed unsupervised change
detection method, formalizing it under the basis of stochastic
distances. Section IV provides the details about the data, exper-
iment design, the results, and discussions. Finally, Section V
summarizes the findings of this paper.

II. MATHEMATICAL BACKGROUND

A. Testing hypothesis from stochastic distances

Stochastic distance has its origin on divergence measures, i.e.,
based on the Information Theory, as established in the pivotal
work by Shannon [16]. A divergence measure quantifies the
level of complexity when the difference between two models
needs to be computed.

Salicrú et al. [14] obtained a generalization of divergence
measures, known as h-φ divergence family, with interesting
statistical properties. Let X and Y be two random variables
with probability density functions fX(x;θX) and fY (x;θY ),
defined over the same support Ξ, indexed by parameters θX
and θY . The h-φ divergence between X and Y is:

dhφ(X,Y ) = h

(∫
ξ∈Ξ

φ

(
fX(ξ;θX)

fY (ξ;θY )

)
fY (ξ;θY )dξ

)
, (1)

φ : (0,∞)→ [0,∞) is a convex function, h : (0,∞)→ [0,∞)
is a strictly increasing function with h(0) = 0, and h′(t) strictly
positive for any value t ∈ (0,∞).

Several well-know divergence measures found in the litera-
ture can be obtained from (1) by taking appropriate choices for
h and φ. Since divergence measures are not necessarily sym-
metric functions, we employ a straightforward symmetrization
to obtain a distance D(X,Y ) from any divergence:

D(X,Y ) =
dhφ(X,Y ) + dhφ(Y,X)

2
(2)

These measures are termed “Stochastic Distances” or h-φ
distances. As we will see, every h-φ distance between members
of the same family of distributions can be turned into a
statistical goodness-of-fit test.

Test statistic-based metrics. Let us assume that X and Y
belong to the same family of distributions. One may define
a stochastic distance between X and Y as a function of its
maximum likelihood estimators θ̂X and θ̂Y . This gives rise
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to the notation D(θ̂X , θ̂Y ) in place of D(X,Y ). Salicrú et
al. [14] introduced the test statistic given by:

Shφ(θ̂X , θ̂Y ) =
2nXnY
nX + nY

D(θ̂X , θ̂Y )

h′(0)φ′′(1)
. (3)

Under the null hypothesis (i.e., θX = θY ) and for nX , nY →
∞, where nX and nY are the number of observations used to
estimate θ̂X and θ̂Y so as to ensure that nX/(nX + nY ) ∈
(0, 1), statistic Shφ converges to a χ2

M distribution with M
degrees of freedom, where M is the dimension of θX and θY .
The hypothesis θX = θY can be then rejected at level α when
Pr(χ2

M > Shφ(θ̂X , θ̂Y )) ≤ α [15].

The Bhattacharya distance and test. The more recent use
of stochastic distances has supported several Remote Sensing
applications, including image classification [17]–[19], speckle
filtering [20] and change detection [21]. Bhattacharya, Kullback-
Leibler, Hellinger, Harmonic, and Triangular, are examples of
such stochastic distances.

Among them, under the multivariate Gaussian model, the
Bhattacharya distance generalizes the Mahalanobis distance,
which is basilar to Fisher’s discriminant analysis. Another
advantage of this dissimilarity measure is that it is simple
to compute under such a model and that it does not require
additional parameters.

We obtain the Bhattacharya distance setting h(y) =
− log(1−y) and φ(x) = −

√
x+(x+1)/2 in (1), and then (2):

DB(X,Y ) = − log

∫
ξ∈Ξ

√
fX(ξ; θX)fY (ξ; θY )dξ. (4)

If fX and fY are multivariate Gaussian distributions with
means µX and µY and covariance matrices ΣX and ΣY , one
obtains the expression:

DB(X,Y ) =
1

8
(µX − µY )

†
(

ΣX + ΣY
2

)−1

(µX − µY )

+
1

2
ln
|ΣX + ΣY |√
|ΣX ||ΣY |

. (5)

The symbols †, | · | and (·)−1 represent the transpose, determi-
nant and inverse matrix, respectively.

By setting (5) into (3), we obtain the following test statistic:

Shφ(θ̂X , θ̂Y ) =
8nXnY
nX + nY

DB(θ̂X , θ̂Y ), (6)

where θ̂X = (µ̂X , Σ̂X) and θ̂Y = (µ̂Y , Σ̂Y ).
Statistic (6) is particularly important because it allows the

computation of hypothesis tests with simple operations. It also
allows quantifying the difference between two distributions
in terms of its significance level. Moreover, Eq. (6) induces
a theoretically well-defined comparison between distributions,
which drives our approach to compare objects/regions from
their own probabilistic behaviors, including homogeneity and
temporal changes.

B. Support Vector Machines

Let X be a dataset whose elements xi are feature vectors
evaluated on a certain position/pixel of the image I. Also,
consider that I is defined on a support S ⊂ N

2. Then,
classification aims at assigning to each xi ∈ X a particular
class wk ∈ Ω = {ω1, ω2, . . . , ωz} from z possible classes
by applying a labeling function F : X → Ω. Classification
methods differ in terms of the formulation of F and the learning
strategy used to label data instances in X .

Support Vector Machines (SVMs) have been successfully
used in the classification of remotely sensed data. A solid
mathematical foundation, simple algorithmic architecture, and
high generalization capability are some of the benefits of
using SVMs [22]. Furthermore, as reported in Ref. [23],
SVMs have achieved similar or even better results compared
to other influential classification methods such as maximum
likelihood, k-nearest neighbor, fuzzy c-means, neural networks,
and decision trees.

Inspired on the seminal SVM formulation, diverse variants
have been proposed to classifying data, for example, the
Laplacian [24], Transductive [25], Context Sensitive [22], [26]
and Single-Class [27] SVMs. The latter example, Single-Class
SVM, presents an unsupervised approach that relies on quantile
estimation for pattern detection in high-dimensional data.

From a set of unlabeled observations, the Single-Class SVM
obtains a model which classifies elements as part of such set
with a probability ν of false positive or negative occurrence.
Formally, a labeling function F : D ⊂ X → {+1,−1} can de
written, where +1 means that the input elements appear in D,
and −1 otherwise. The classifier F is given by (cf. Ref. [27]):

F (x) = sgn
( m∑
i=1

αiK(x,xi)− b
)
, (7)

where b =
∑m
j=1 αjK(xi,xj) for any xi ∈ D, i = 1, . . . ,m,

and K(·, ·) is a kernel function. Coefficients αi, i = 1, . . . ,m,
are computed as the solution of the following optimization
problem:

min
α1,...,αm

∑m
i,j=1 αiαjK(xi,xj).

s.t.

{
αi ∈ [0, 1

νm ]∑m
i=1 αi = 1.

(8)

Notice that the Single-Class SVM is parameterized by ν ∈
[0, 1], in addition to the parameters that may be related to
the choice of kernel function. For instance, if K(xi,xj) =
exp

(
−γ‖xi,xj‖2

)
, then γ ∈ (0,∞) should be also handled.

See Ref. [28] for a complete discussion about kernel functions.
In our approach, the Single-Class SVM has been adopted to

perform the discrimination of changes and non-change events,
thus ensuring that the classification will not rely on a global-
fixed threshold, but instead through a more flexible and adaptive
decision function.

III. SINGLE-CLASS CLASSIFICATION OF HOMOGENEOUS
UNCHANGED AREAS

This section introduces our new framework for unsupervised
change detection. Figure 1 shows a general pipeline, which
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is modulated into four main steps: (i) compute a band-
wise difference image from a pair of images; (ii) search
for homogeneous blocks in the band-wise difference image;
(iii) remove homogeneous blocks related to areas wherein
probably have occurred a temporal change while keeping the
remain blocks as non-changed areas; and (iv) train and perform
a single-class classification of band-wise difference image using
the information obtained from homogeneous non-change areas,
hence obtaining the definitive change/non-change map.

The framework outputs a binary classification where un-
changed areas may occur or not. Notice that, in our approach,
the lack of non-changed areas suggests a temporal change.
Furthermore, the method learns in an unsupervised fashion,
as the training process is fully performed using an automatic
selection of unchanged area samples.
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Fig. 1. Pipeline overview of proposed unsupervised change detection method.

Section III-A presents the notation and metrics employed,
while the next Sections (III-B to III-D) discuss and formalize
each step of the framework outlined in Figure 1.

A. Preliminaries

Let I(1) and I(2) be images defined on the same support
S ⊂ N2, acquired over the same region scene in distinct
instants. To preserve the consistency with the notations used in
Section II, X ⊂ Rn denotes the feature space, while x

(j)
i =

I(j)(si) is the observation at position si ∈ S in the image
I(j), j = 1, 2. The elements of x(j)

i are the values measured
by the sensor, or derived features, over a specific Earth surface
position.

Several measures may be applied to highlight the changes
between two images, I(1) and I(2). A commonly chosen
measure is the L2 norm between x

(1)
i and x

(2)
i [5] :

I‖1−2‖(si) = ‖x(1)
i − x

(2)
i ‖2. (9)

Another way to identify potential changes between I(1) and
I(2) is to compute the band-wise difference image:

I(1	2)(si) = x
(1)
i − x

(2)
i . (10)

Notice that, while I‖1−2‖ returns a scalar as attribute, I(1	2)

remains in the feature space X .

Region, block and geometric aspects. We introduce here
the mathematical entities that support the following formal-
izations, especially regarding the scalability of the method
concerning the size of the objects in the scene. This formaliza-
tion also serves to define lower-bounds regrading the number
of observations for the statistical estimation. Additionally, this
detailed notation also helps to avoid computational implemen-
tation issues.

Without loss of generality, assume that the support S is
of the form {0, . . . , δ1} × {0, . . . , δ2}. In our approach, the
characteristic points of S are defined by the pairs (cρ(i), `ρ(j))
such that cρ(i) = ρ+(2ρ+1)i, i = 0, 1, . . . , b(δ1−ρ)/(2ρ+1)c,
and `ρ(j) = ρ+ (2ρ+ 1)j, j = 0, 1, . . . , b(δ2 − ρ)/(2ρ+ 1)c,
ρ ∈ N∗. The set of characteristic points creates a regular grid
on S whose minimum distance between any two points is
always 2ρ+ 1. Figure 2 depicts these introduced elements.

(0, 0)

(0, δ2)

(δ1, 0)

ρ
ρ

2ρ+ 1
2ρ

+
1

(cρ(2), `ρ(1))

R [(cρ(3), `ρ(2))]

R [(cρ(4), `ρ(2))]

Regular region
(“block”)

Irregular region

Fig. 2. The elements of S, characteristic points, regions and blocks.

From the pairs (cρ(i), `ρ(j)), i = 0, 1, . . . , b(δ1 − ρ)/(2ρ+
1)c and j = 0, 1, . . . , b(δ2−ρ)/(2ρ+1)c, the following subsets
R [(cρ(i), `ρ(j))] ⊂ S are determined, called here as regions:

R [(cρ(i), `ρ(j))] = {(p, q) ∈ S :

cρ(i)− ρ ≤ p ≤ cρ(i) + ρ;

`ρ(j)− ρ ≤ q ≤ `ρ(j) + ρ} . (11)

From (11), one can conclude that (2ρ+ 1)2 is the maximum
number of pairs in R [(cρ(i), `ρ(j))]. However, depending
where (cρ(i), `ρ(j)) is located on S, it is possible that
p and/or q, such that cρ(i) − ρ ≤ p ≤ cρ(i) + ρ and
`ρ(j) − ρ ≤ q ≤ `ρ(j) + ρ, defines a pair (p, q) /∈ S (i.e.,
the pair falls out the bounds of S). We, thus, define a block
within S for every region R [(cρ(i), `ρ(j))]:

B [(cρ(i), `ρ(j))] = {(p, q) ∈ B [(cρ(i), `ρ(j))] :

#R [(cρ(i), `ρ(j))] = (2ρ+ 1)2
}
. (12)

Homogeneous block characterization.
The proposed method relies on checking the homogeneity

of non-change areas. However, it is reasonable to admit that
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assessing the region homogeneity just in terms of data values
regardless of its geospatial distribution may lead to wrong
conclusions. Herein, following Zhong et al. [29], we consider
both statistical and geographic data behavior, allowing then
more sound decisions about the region’s homogeneity. To that
aim, we will test homogeneity in six patches B1, . . . ,B6 within
each block of data B.

Let us consider an image I whose pixels are embedded in
the feature space X ⊂ Rn. We propose multiple comparisons
involving six block-shaped templates to assess the similar-
ity of the feature vectors in B [(cρ(i), `ρ(j))], as illustrated
in Figure 3; the definition of block-shaped structures are
given in Equations (13) to (18). While B1 [(cρ(i), `ρ(j))] and
B2 [(cρ(i), `ρ(j))] are vertical structures, B3 [(cρ(i), `ρ(j))] and
B4 [(cρ(i), `ρ(j))] are horizontal, and B5 [(cρ(i), `ρ(j))] and
B6 [(cρ(i), `ρ(j))] are halved templates.

I(1	2)

cρ(i)

` ρ
(j
) B

B1 B2 B5

B3 B4 B6

Fig. 3. The six block-shaped structures taken to assess the block homogeneity.

B1 [(cρ(i), `ρ(j))] = {(p, q) ∈ B [(cρ(i), `ρ(j))] :

cρ(i)− ρ ≤ p ≤ 0; `ρ(j)− ρ ≤ q ≤ `ρ(j) + ρ} . (13)

B2 [(cρ(i), `ρ(j))] = {(p, q) ∈ B [(cρ(i), `ρ(j))] :

0 ≤ p ≤ cρ(i) + ρ; `ρ(j)− ρ ≤ q ≤ `ρ(j) + ρ} . (14)

B3 [(cρ(i), `ρ(j))] = {(p, q) ∈ B [(cρ(i), `ρ(j))] :

cρ(i)− ρ ≤ p ≤ cρ(i) + ρ; `ρ(j)− ρ ≤ q ≤ 0} . (15)

B4 [(cρ(i), `ρ(j))] = {(p, q) ∈ B [(cρ(i), `ρ(j))] :

cρ(i)− ρ ≤ p ≤ cρ(i) + ρ; 0 ≤ q ≤ `ρ(j) + ρ} . (16)

B5 [(cρ(i), `ρ(j))] = {(p, q) ∈ B [(cρ(i), `ρ(j))] :

cρ(i)− ρ ≤ p ≤ cρ(i) + ρ ;

`ρ(j)− ρ ≤ q ≤ `ρ(j) + ρ; p ≥ q} . (17)

B6 [(cρ(i), `ρ(j))] = {(p, q) ∈ B [(cρ(i), `ρ(j))] :

cρ(i)− ρ ≤ p ≤ cρ(i) + ρ ;

`ρ(j)− ρ ≤ q ≤ `ρ(j) + ρ; p ≤ q} . (18)

Given a block-shaped structure as defined above, it is
called a homogeneous block in I if the statistical distribution
of its feature vectors is similar to the ones observed in
each structure Bk [(cρ(i), `ρ(j))], k = 1, . . . , 6. When this
condition holds, the notation H [(cρ(i), `ρ(j))] is used in place
of B [(cρ(i), `ρ(j))] to denote a homogeneous block.

B. Identifying homogeneous areas by measuring probability
distribution similarity

In our work, we measure the similarity between
B [(cρ(i), `ρ(j))] and Bk [(cρ(i), `ρ(j))] with a test statistic.
More specifically, we use the concept of hypothesis testing
derived from stochastic distance to compute the similarity, i.e.:

H [(cρ(i), `ρ(j))] =
{

(p, q) ∈ B [(cρ(i), `ρ(j))] :

Pr(χ2
M > Shφ(θ̂, θ̂k)) > α; k = 1, . . . , 6

}
, (19)

where θ̂ and θ̂k are the estimates of the parameters that index
the distributions of the feature vectors in B [(cρ(i), `ρ(j))]
and Bk [(cρ(i), `ρ(j))], respectively, and α ∈ [0, 1] sets the
significance level of the comparison. Without loss of generality,
in this work we assume that the feature vectors follow
multivariate Gaussian distributions, and that the Bhattacharya
is a convenient distance to assess the similarity between θ̂ and
θ̂k. Consequently, the test statistic Shφ(θ̂, θ̂k) is given by (6).

The rationale behind Equation (19) is that the probability
Pr(χ2

M > Shφ(θ̂, θ̂k)) > α states that the null hypothesis (i.e.,
H0 : θ̂ = θ̂k) should not be rejected with significance 1− α.
As a result, if α→ 1, the similarity between θ̂ and θ̂k will be
high in order to avoid rejecting H0. Moreover, Equation (19)
allows the identification of blocks (i.e., square regions) in I
whose feature vectors exhibits a common statistical behavior.

The use of a hypothesis testing-based similarity metric
as (19) provides not only a way of comparing blocks in the
feature space but also a significance value assigned to such
comparison. Additionally, this significance is extended to the
geometric space (i.e., the support S) when the block structures
are individually analyzed.

Dealing with block dimensions and scalability. Once
the lengths of the blocks B are fixed in terms of ρ, they
have to meet the scale of objects and targets in I. How-
ever, it is usual that I be composed by elements of differ-
ent dimensions. In order to cope with this issue, we take
ρ ∈ {2−tρmax : t = 0, 1, . . . , k}, with k = b(log(ρmax) −
log(ρmin))/ log 2c to ensure (2−kρmax) ≥ ρmin. For simplicity,
we will denote ρ(t) = 2−tρmax when needed. Scalars ρmin

and ρmax are determined from the X and S dimensions as
well as the probability distribution family used to assess the
homogeneity of the blocks.

As initially stated, X is an n-dimensional Euclidean space
whose data follow a multivariate Gaussian distribution. Since
such a distribution is parameterized by θ = (µ,Σ), the
dimension of θ is n+ (n(n− 1))/2 = (n2 + 3n)/2, where n
and n(n− 1)/2 are the dimensions of µ and Σ, respectively.
Therefore, it is possible to estimate θ when more than
(n2 + 3n)/2 observations are available.

As previously discussed, since any block has (2ρ +
1)2 elements, cf. (12), and its structures are half of a
block (see Eqs. (13)–(18)), we can impose ρmin such
that (2ρmin + 1)2/2 ≥ (n2 + 3n)/2, and hence ρmin =
d(
√
n2 + 3n − 1)/2e. Concerning ρmax, it can be upper

bounded so as to ensure at least one block on S. Thereby,
(2ρmax + 1) ≤ δmax leads to ρmax = b(δmax − 1)/2c,
where δmax = min {δ1, δ2}, and (2ρmax + 1) arises from the
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maximum block side that fits in S. Figure 4 illustrates the
relation between the values of ρ as well as the resemblance
between δmin and 2ρmax + 1, where δmin = δ1 in this pictorial
example. It should highlight that the homogeneous block
identification process uses different values for ρ, adopted in
decreasing scale from ρmax to ρmin. Thus, such a process
encompasses a kind of multiscale verification based on the
Quad-Tree representation structure [30].

δ1

δ1

δ2

2ρmin + 1

2
ρ

m
a
x

+
1

Fig. 4. The geometric rationale behind the ρ values.

Finally, we let H̄ be the set of all positions in S contained
in a homogeneous block:

H̄ =

k⋃
t=0


z1(t),z2(t)⋃
i,j=0,0

H
[
cρ(t)(i), `ρ(t)(j)

] , (20)

where

z1(t) =

⌊
δ1 − ρ(t)

2ρmin + 1

⌋
and z2(t) =

⌊
δ2 − ρ(t)

2ρmin + 1

⌋
define the upper-bound to the coordinates of characteristic
points, as discussed at section beginning.

C. Homogeneous blocks on change and non-change areas

Although the identification process of homogeneous blocks
proposed in Section III-B has useful for any image, we apply
it to the task of detecting temporal changes between I(1) and
I(2). In this study, we seek for a band-wise difference image
I(1	2) in order to produce an initial representation of changes
and non-changes between I(1) and I(2).

It is expected that the feature vectors in I(1	2) assigned to
non-change areas lie around a central tendency. Oppositely, the
feature vectors assigned to areas of potential changes should
be far from such a tendency. Figure 5 illustrates this concept.

Assuming H̄ from I(1	2), a simple way for distinguishing
homogeneous blocks between those related to change and
non-change areas is defining statistic thresholds based on the
tendency and deviation of the attribute vectors of these blocks.
To accomplish this task, firstly the amplitude of mean attribute
vector is computed from each homogeneous block of H̄. Such
values are elements of the following set:

Q =
{
‖µ
[(
cρ(t)(i), `ρ(t)(j)

)]
‖ :

t = 0, . . . , k; i = 0, . . . , z1(t); j = 0, . . . , z2(t)} , (21)

I(1	2)

b
(1	2)
1

b
(1	2)
2

b
(1	2)
1

b
(1	2)
2

Central tendency

Potential changes

Fig. 5. Common tendency of attribute values on I(1	2).

where µ
[(
cρ(t)(i), `ρ(t)(j)

)]
is the mean attribute vector of

the homogeneous block H
[(
cρ(t)(i), `ρ(t)(j)

)]
.

Then, we use the mean and standard deviation of Q,
denoted as µQ and σQ, respectively, to establish the interval
[µQ − σQ, µQ + σQ]. Finally, the set of homogeneous blocks
related to non-change areas is given by:

E =
{
H
[(
cρ(t)(i), `ρ(t)(j)

)]
∈ H̄ :

‖µ
[(
cρ(t)(i), `ρ(t)(j)

)]
‖ ∈ [µQ − σQ, µQ + σQ] ;

t = 0, . . . , k; i = 0, . . . , z1(t); j = 0, . . . , z2(t)} . (22)

This interval of length 2σQ around the mean is short enough
to reject suspicious observations, but may be changed by the
user if needed.

D. One-class classification of non-changed areas

From the formalization given in Sections III-B and III-C,
we are now able to perform the detection of non-change areas
for a subject pair of multi-temporal images. Notice that the
initial identification of non-change homogeneous areas does
not have the purpose of building a change/non-change map,
but instead allow us to understand the behavior of non-change
areas regarding the analyzed pair of images.

Aiming at producing change/non-change mappings from a
pair of images, we employ the concept of single-class classi-
fication (see Section II-B). From I(1	2), which embeds the
two instants, I(1) and I(2) into its representation, we obtain a
training set D =

{
xs ∈ X : I(1	2)(s) = xs; s = (p, q) ∈ H̄

}
.

This training set is then employed to build a Single-Class
SVM classifier F : X → {0, 1} which learns temporal changes
from the images. Finally, we produce a change/non-change
mapping M by applying the obtained classifier on each pixel
of I(1	2). We should stress that although Single-Class SVM
uses a training set to model a decision function, such a set is
not provided by any human/analyst intervention, but instead
by an automatic process as given by Equations (11)-(22).

E. Modular structure

The modular structure of our proposal is noteworthy. Spatial
awareness is common to any type of data, with only possible
changes in the size of the smallest acceptable sample. The
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spectral components, which we treated as multivariate Gaussian
observations, may be modeled by any suitable distribution.
Other examples of possible changes include (i) the band-wise
difference image (10); (ii) other block-shaped structures used
on the spectral-spatial comparisons, Eqs. (13)–(18); (iii) the
adoption of other (stochastic or deterministic) distances to test
similarities (19); and (iv) other decision rules to distinguish
change and non-change areas.

IV. EXPERIMENTS

In this section, we apply the proposed method on study
cases regarding land cover changes that occurred in three
dams in Brazil. Moreover, we employ different remote sensors
for each study case in order to assess the sensitivity of the
presented framework regarding distinct scenes. Also, we take
well-established unsupervised change detection methods as
competitors against the proposed method, and we compare the
results in terms of accuracy and computational cost.

We compare our proposal with the methods discussed in
Section I, i.e., Change Vector Analysis (CVA) [5], a binary
clustering of PCA of spatial divergences (PCA-KM) [6], and
two data transformation-based methods: IRMAD [10], and
USFA [4] . We employ the Kappa Coefficient [31] as an
accuracy metric, as well as True/False Positive (T.P.; F.P.) and
True/False Negative (T.N.; F.N.) rates to analyze and compare
the performance of the methods.

In order to make a fair comparison, we tested several
parameter configurations for each technique and selected those
that produced the best results. The space-search parame-
ters used in the CVA, USFA, and IRMAD methods were:
Kittler-Illingworth (KI) [8] thresholding, with both Freedman-
Diaconis’ (FD) [32] and Scott’s (SC) [33] rules to determine
the size of the histograms bins before the thresholding step.
Additionally, we adopted the k-means algorithm (KM ) to
cluster the outputs from these methods into change and non-
change segments using the same approach conducted by PCA-
KM. The use of k-Means and thresholding schemes for change
detection through data transformation-based methods is applied
in the same sense of [34]. Regarding the PCA-KM method, we
consider neighborhood radii ρ ∈ {1, 2, 3} to promote a spectral
expansion (each value generates squared neighborhoods of sizes
3, 5 and 7), and 1 ≤ Pc ≤ ρ to define the number of principal
components. Concerning the proposed method, the values
for α ranged in {0.1, 0.2, . . . , 0.9}, while the parameter ν of
the Single-Class SVM ranges in {0.001, 0.0005, 0.001, 0.005}.
Finally, we chose RBF as kernel function, and the parameter
γ was also tested in {0.001, 0.005, 0.01}.

We used a computer with an Intel Xeon processor (16 core,
2.27 GHz), and 24 GB of RAM running the Debian Linux
version 9 operating system. The main programming platform
was IDL (Interactive Data Language). We used LIBSVM [35]
for Single-Class SVM classification, and the Matlab implemen-
tation of IRMAD available at http://www.imm.dtu.dk/∼alan/
software.html. The code of the proposed framework is freely
available at https://github.com/rogerionegri/HBSC.

A. Data description

This section presents three study cases regarding the detec-
tion of environmental changes that occurred in dam regions.
Figure 6 depicts the spatial location of these regions.

Fig. 6. Study areas location.

The first area refers to Mariana’s dam region, state of Minas
Gerais, Brazil. This area became known since the rupture of
its tailings dam on November 5th, 2015. We used a pair of
Landsat-8 images (OLI sensor), acquired on September 25th,
2015 (Figure 7(a)), and August 10th, 2016 (Figure 7(b)). These
images have 760 × 600 pixels, 30 m spatial resolution, and
three multispectral bands from red to short wave infrared.

Similarly, the second area is also known due to a rupture
of a tailings dam in the state of Minas Gerais. Such rupture
occurred on January 25th, 2019. We used two images acquired
by the Sentinel-2 satellite on January 17th, 2019 (Figure 8(a))
and February 1st, 2019 (Figure 8(b)) to map the environmental
changes. The images have 1026 × 897 pixels, 10 m spatial
resolution, and four multispectral bands from blue to near-
infrared wavelength.

The third area refers to the Curuá-Una’s hydroelectric dam,
State of Pará, Brazil. Represented by the pair of selected
instants, on July 13th, 2007 (Figure 9(a)), and on November 6th,
2010 (Figure 9(b)), this study area is characterized by changes
caused by forest regeneration, crop stages, and variation level
of Curuá-Una river. The images for this study were acquired
by the PALSAR sensor, onboard the ALOS satellite, with
2797×2581 pixels, 12.5 m spatial resolution, in H.H. and H.V.
polarizations.

Figures 7(c), 8(c) and 9(c) show the spatial distribution of
change and non-change samples for each study area regarding
the considered periods: polygons in green and red, respectively.
Table I summarizes the ground truth samples sizes. These
samples, obtained by visual inspection, were taken to measure
the accuracy of the analyzed change detection methods.

It is worth mentioning that no additional atmospheric
correction procedures were carried on the Sentinel-2 images.
The OLI images were obtained in “level-2 processing” [36],
which includes a built-in atmospheric correction. A 7 × 7
average low-pass filtering was applied on PALSAR images as
a simple approach to reduce the speckle noise and aid temporal
changes detection.

http://www.imm.dtu.dk/~alan/software.html
http://www.imm.dtu.dk/~alan/software.html
https://github.com/rogerionegri/HBSC
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(c) Groud thruth change/non-change samples

Fig. 7. Mariana’s Dam dataset. (a) and (b) Images represented in natural
color composition. (c) Change and non-change areas, labeled in green and
red, respectively.

B. Results and Discussions

1) Sensitivity Analysis: We assess the overall accuracy
achieved by the decision rule in the identification of homo-
geneous regions to measure the effect of the parametrization
on our approach. The parameters configurations are in the set
established at the beginning of Section IV.

Figure 10 shows profile common to all the study areas, with
differences mostly in the accuracy levels. Regarding the Single-
Class SVM parameters, for all data sets (i.e., study areas), the
best accuracies arise with γ = 0.01. There is a lesser influence
of ν, for which values below 0.01 tend to produce similar

TABLE I
SUMMARY OF CHANGE AND NON-CHANGE GROUND TRUTH SAMPLES.

Mariana Brumadinho Curuá-Una

Landsat-8 OLI Sentinel-2 ALOS PALSAR

Change 7712 67876 213588
Non-change 7258 67670 249903

results.
Concerning parameter α, there is usually a drop in perfor-

mance for values greater than 0.6. Such values restrict the
learning to highly homogeneous blocks and, thus, reduces the
generalization ability for change detection.

2) Homogeneous blocks identification: Figure 11 illustrates
the homogeneous block identification process. Parameter α was
set to 0.5 for Mariana’s Dam area (Fig. 11(a)) and 0.6 for both
Brumadinho (Fig. 11(b)) and Curuá-Una’s (Fig. 11(c)) areas,
respectively. Once the homogeneous blocks are identified, their
average amplitudes are computed (Eq. (21)) in order to obtain
the non-change blocks (Eq. (22)). The interval [µQ−σQ, µQ+
σQ] ranges for each study area lead to the non-change blocks,
shown in blue, and the magenta blocks, which are the ones
excluded as suspicious observations. From the detached sub-
region in Figure 11, we observe that all blocks fall within
regions with similar inner behavior. Moreover, notice that there
are suspicious blocks which have been excluded even as a
result of a slight amplitude variation that falls beyond the
limits of [µQ − σQ, µQ + σQ].

3) Quantitative analysis: Figure 12 shows the performance
of the analyzed methods to the kappa coefficient, for each
study area when different parameters are tested, as previously
discussed in Section IV. The box plot depicts the accuracy
ranges and dots the individual accuracy values.

We verify that the proposed method delivers the highest
accuracy scores in the first and third study areas. For instance,
the worst parameter configuration is comparable with the
best settings for the other techniques in the first study area.
Concerning the second study area, IRMAD provides the best
kappa when it is tuned with the best parameter setting, followed
by USAF and the proposed method, which delivers very similar
scores for the best case. Although IRMAD performs better in
Brumadinho’s area, it is still surpassed by the proposed method
and by USAF in Mariana’s and Curuá-Una’s areas. It is worth
mentioning that the proposed approach is more stable than the
others, showing that it is less sensitive to the parameter tuning;
such a trait is exclusive of our proposal and of CVA.

Table II shows the highest kappa values found for each
method and the respective parameter configuration. The stan-
dard deviation of kappa values is also included in Table II.

From the accuracy and deviation values listed in Table II,
the statistical significance of the results was verified based on
a statistic test to compare the values of kappa [31]. It was
attested that the proposed framework performs significantly
better than other competitors in almost all cases, at least at
the 1 % confidence level. The only exception, as previously
discussed, occurs in the Brumadinho’s Dam area.

We also compare the results in terms of True/False–
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TABLE II
BEST KAPPA VALUES AND STANDARD DEVIATIONS ACHIEVED BY THE

ANALYZED METHODS, AND BEST PARAMETER CONFIGURATIONS.

Method Kappa coefficient (standard deviation ×10−3)

Mariana’s Dam Brumadinho’s Dam Curuá-Una’s Dam

CVA 0.602 (6.35) 0.159 (2.09) 0.839 (0.80)
PCA-KM 0.675 (5.90) 0.102 (2.70) 0.747 (0.96)
IRMAD 0.644 (6.12) 0.901 (1.65) 0.798 (0.90)
USFA 0.682 (5.94) 0.860 (1.33) 0.833 (0.82)

Proposed 0.768 (5.16) 0.837 (1.48) 0.875 (0.71)

Parameter configuration

Mariana’s Dam Brumadinho’s Dam Curuá-Una’s Dam

CVA FD SC SC
PCA-KM (ρ, Pc) = (7, 3) (ρ, Pc) = (7, 5) (ρ, Pc) = (3, 3)
IRMAD SC FD SC
USFA FD FD SC

Proposed α = 0.5 α = 0.6 α = 0.6

Positive/Negative percentages. In such analysis, while a True-
Positive (T.P.) represents the accuracy percentage in the
task of identifying a land cover change, a False-Positive
(F.P.) quantifies false alarms for land cover changes. In a
similar fashion, True-Negative (T.N.) and False-Negative (F.N.)
accounts for the percentage of areas truly and falsely identified
as areas where a land cover change does not occur.

Figure 13 illustrates these values for each method and study
area. We see that, regardless of the study area, the proposed
method produces small F.P. and F.N. values. Particularly for
F.P., our proposal is more precise at identifying changes.
Another consequence of low F.P. rates is the definition of
more regularized (i.e., homogeneous) change detection maps.
Regarding Mariana’s Dam, all competitors present similar
behavior but with F.P. error rates much higher than the one
achieved by the proposed method. Concerning Curuá-Una’s
Dam, CVA, IRMAD, and USFA provide similar error rates, but
the proposed method shows a better trade-off between T.P., TN,
and lowest error rates sum. Now, focusing on Brumadinho’s
Dam, we observe that there is a slightly lower overall accuracy
(i.e., the summation of T.P. and T.N. rates) of the proposed
method when compared to the IRMAD and USFA. However,
the almost-nil F.P. and F.N. values given by IRMAD justifies
its higher kappa on this dataset (Figure 12 and Table II).

4) Computational cost: Fig. 14 illustrates, in logarithmic
scale, boxplots of the time each procedure requires for each data
set. The proposed method presents an intermediate run-time
between PCA-KM and the other methods. As expected for any
classification method, the run-time increases with the input data
size. CVA has the lowest time cost because of its simplicity.
The data transformation required by both IRMAD and USFA
combines elegant, straightforward algebraic procedures with
low computational costs. CVA, IRMAD, and USFA only
incur in long run-times when the strategy to distinguish
change from non-change areas is the k-means algorithm.
In contrast, PCA-KM requires the computation of principal
components on a high-dimensional space, followed by a data
clustering, hence demanding large amounts of computational
resources proportionally to the input images. Finally, in the

proposed method, the identification of homogeneous blocks
under different radius values represents the main computational
bottleneck. As our prototype does not take any boosting strategy
to accelerate the processing, the use of parallel computing
schemes may significantly reduce the computational cost,
especially for the computation of block distances.

5) Qualitative analysis: A visual inspection of the
change/non-change maps for the Mariana’s Dam area, reveals
that temporal radiometric variations of the same target make
PCA-KM and USFA methods falsely detect them as changes
(cf. Figures 15(a) and 15(b)). For example, it is unlikely that
there was a change in the region between longitudes 43°25′W
to 43°20′W in only 46 days. Such variations appear to prevent
an adequate definition of threshold and clusters for USFA and
PCA-KM. In contrast, the proposed method achieves a better
delimitation of changed regions, as shown along the NW-SE
track, where the dam whose collapse affected the river, as well
as vegetation suppression on the right side of the study region
(see Fig. 15(c)).

Concerning the Brumadinho’s Dam area (Figure 16), not only
IRMAD and USFA techniques but also the proposed method
provide precise mappings of the region affected by the rupture
of the dam with very fine details beyond could/shadow and haze
presence, as small soil and vegetation changes. Atmospheric
factors, i.e., cloud/shadow and haze, exert a strong influence on
CVA and PCA-KM (see Figures 8(a) and 8(b)), thus producing
inadequate change/non-change maps.

Finally, in our last experiment (Curuá-Una’s Dam region,
Figure 17), the evaluated change detection methods provide
consistent results in detecting changes on vegetation areas and,
especially, the changes highlighted by the drought on Curuá-
Una’s river and affluents in 2010. Nevertheless, it is worth
observing that the proposed method is less affected by speckle
effects than the other methods, as one can see in Figure 17(c).

V. CONCLUSIONS

We proposed a new unsupervised change detection frame-
work that combines stochastic distances and single-class
classification concepts. The core idea consists in identifying
homogeneous areas where no changes occur on a pair of images
acquired in different instants, and in extracting the information
from these areas to create a hypothesis testing-guided function
capable of assessing the similarity among regions.

Three study cases were carried out to assess the accuracy
of the current approach, including comparisons against well-
established unsupervised change detection methods. The pro-
posed method overcame the other ones or at least provided
results closer to the best method in terms of quantitative
assessments, as well as qualitative results.

A limitation of our approach, which is shared by CVA, PCA-
KM, USFA, and IRMAD, is that it assumes that the changes
represent a relatively small area with respect to the whole data
set.

As future work, we plan to (i) investigate alternative schemes
to reduce the computational burden; (ii) analyze other stochastic
distances beyond Bathacharyya; (iii) extend our method to deal
with multiple images in a time series, by simply taking into
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account all the band-wise difference images from the sequence;
and (iv) apply the technique on polarimetric synthetic aperture
radar data using stochastic distances between Wishart models.
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(c) Groud thruth change/non-change samples

Fig. 8. Brumadinho’s Dam dataset. (a) and (b) Images represented in natural
color composition. (c) Change and non-change areas, labeled in green and
red, respectively.
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(c) Groud thruth change/non-change samples

Fig. 9. Curuá-Una’s Dam dataset. (a) and (b) Images represented in color
composition through HH-HV-HH polarization sequence assigned to red-green-
blue color channels. (c) Change and non-change areas, labeled in green and
red, respectively.
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(a) Mariana’s Dam

(b) Brumadinho’s Dam

(c) Curuá-Una’s Dam

Fig. 10. Effects of parameters on proposed method over the analyzed datasets.
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Fig. 11. Identification of the homogeneous blocks in different study areas.
Color compositions using the band-wise difference images and similar red-
green-blue sequence in Figures 7 to 9, respectively.
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Fig. 12. Accuracy of the analyzed methods for different parameter settings.
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Fig. 13. True/false–positives/negatives proportion of best mapping results for
the analyzed methods.
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Fig. 14. Run-time of the analyzed methods in logarithmic scale.
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Fig. 15. Three best change/non-change maps obtained by the analyzed methods
for Mariana’s Dam dataset.
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Fig. 16. Three best change/non-change maps obtained by the analyzed methods
for Brumadinho’s Dam dataset.

0     1     2     3     4      5 km 

                                  54°40'W                                                         54°30'W 

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

3
°0

0
'S

  
  
  
  
  
  
  
  
  
  
  

  

■ Change ■ Non-change 
0     2     4      6 km 

cva 

(a) CVA

0     1     2     3     4      5 km 

                                  54°40'W                                                         54°30'W 

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

3
°0

0
'S

  
  
  
  
  
  
  
  
  
  
  

  

■ Change ■ Non-change 
0     2     4      6 km 

Irmad 
 

(b) IRMAD

0     1     2     3     4      5 km 

                                  54°40'W                                                         54°30'W 

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

3
°0

0
'S

  
  
  
  
  
  
  
  
  
  
  

  

■ Change ■ Non-change 
0     2     4      6 km 

prop 

(c) Proposed

Fig. 17. Three best change/non-change maps obtained by the analyzed methods
for Curuá-Una’s Dam dataset.
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Enner H. Alcântara received the B.S. degree in
aquatic sciences from the Universidade Federal do
Maranhão (UFMA) in 2005 and a Ph.D. degree
in remote sensing from the Instituto Nacional de
Pesquisas Espaciais (INPE) in 2010. He is currently
Associate Professor at Universidade Estadual Paulista
(UNESP), São José dos Campos, São Paulo, Brazil.


	Introduction
	Mathematical Background
	Testing hypothesis from stochastic distances
	Support Vector Machines

	Single-class classification of homogeneous unchanged areas
	Preliminaries
	Identifying homogeneous areas by measuring probability distribution similarity
	Homogeneous blocks on change and non-change areas
	One-class classification of non-changed areas
	Modular structure

	Experiments
	Data description
	Results and Discussions
	Sensitivity Analysis
	Homogeneous blocks identification
	Quantitative analysis
	Computational cost
	Qualitative analysis


	Conclusions
	References
	Biographies
	Rogério G. Negri
	Alejandro C. Frery
	Wallace Casaca
	Samara Azevedo
	Maurício A. Dias
	Erivaldo. A. Silva
	Enner H. Alcântara


