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Abstract—Target decomposition methods from polarimetric
Synthetic Aperture Radar (PolSAR) data provides target scatter-
ing information. In this regard, several conventional model-based
methods use scattering power components to analyze polarimetric
SAR data. However, the typical hierarchical process to enumerate
power components uses various branching conditions, leading to
several limitations. These techniques assume ad hoc scattering
models within a radar resolution cell. Therefore, the use of
several models makes the computation of scattering powers
ambiguous. Some common issues of model-based decompositions
are related to the compensation of the orientation angle about
the radar line of sight and the occurrence of negative power
components. We propose a model-free four-component scattering
power decomposition that alleviates these issues. In the proposed
approach, we use the non-conventional 3D Barakat degree of
polarization to obtain the polarization state of scattered elec-
tromagnetic wave. The degree of polarization is used to obtain
the even-bounce, odd-bounce, and diffused scattering power
components. Along with this, a measure of target scattering
asymmetry is also proposed, which is then suitably utilized to
obtain the helicity power. All the power components are roll-
invariant, non-negative and unambiguous. In addition to this,
we propose an unsupervised clustering technique that preserves
the dominance of the scattering power components for different
targets. This clustering technique assists in understanding the
importance of diverse scattering mechanisms based on target
characteristics. The technique adequately captures the clusters’
variations from one target to another according to their physical
and geometrical properties. In this study, we utilized L-, C-, and
X-band full-polarimetric SAR data. We used these three data
sets to show the effectiveness of decomposition powers and the
natural interpretability of clustering results. The code is available
at: https://github.com/Subho07/MF4CF

Index Terms—Full polarimetry, Synthetic aperture radar, Tar-
get decomposition, scattering-type parameter, Target characteri-
zation

I. INTRODUCTION

POLARIMETRIC SAR decomposition methods based on
coherency or covariance matrix representation either fol-

low model-based or eigenvector analysis. On the one hand,
eigenvector approaches determine a set of coherent scattering
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mechanisms and describe the in-scene scatterers in an average
sense. On the other hand, model-based decompositions first
define and parameterize the set of canonical scatterers used to
describe the scene. A combination of these canonical scatterers
is used to generate a good fit for the polarimetric coherency
or covariance matrix.

For incoherent targets, Freeman and Durden [1] proposed
a three-component (i.e., surface, double-bounce, and vol-
ume) model-based decomposition technique based on the
assumption of target reflection symmetry, i.e., 〈SHHS

∗
HV〉 =

〈SVVS
∗
VH〉 = 0. A cloud of randomly oriented dipoles is

considered as the volume scattering model. The Freeman-
Durden 3-component scattering power technique, which is
intuitive and easy to implement, has been widely used in
numerous applications [2], [3].

However, the assumption of reflection symmetry is often
limited to natural targets, e.g. forest or vegetation. The condi-
tion of reflection symmetry seldom holds for targets consisting
of human-made structures, including urban areas. Hence, for
these targets, 〈SHHS

∗
HV〉 6= 0, and 〈SVVS

∗
HV〉 6= 0. Yamaguchi

et al. [4] introduced the helix scattering model to account
for such non-reflection symmetric conditions along with the
surface, double-bounce and volume components in their four-
component decomposition method.

The volume models considered in the Freeman-Durden [1]
and Yamaguchi et al. [4] decomposition techniques are lim-
ited to specific types of vegetation due to the assumptions
concerning the volume scattering component. Hence, Arii et
al. [5] introduced a general canopy model with a generalized
probability density function to represent complex canopy
structures.

A significant limitation of model-based decompositions is
the occurrence of negative power due to improper model
fitting. van Zyl et al. [6] proposed a simple modification that
ensures that all covariance matrices in the decomposition have
non-negative eigenvalues corresponding to physical mecha-
nisms. The non-negative eigenvalue-eigenvector decomposi-
tion is used to eliminate additional assumptions that would
have been necessary to estimate all the scattering components.

Cui et al. [7] proposed a technique that decomposes the
coherency matrix into a volume and two coherent scattering
components (characterized by rank-1 matrices). In this tech-
nique, determining the volume scattering power leads to the
generalized eigendecomposition problem. The non-negative
power constraint uniquely defines the minimum eigenvalue as
the volume scattering power.
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All model-based decompositions consider prior assumptions
about in-scene scatterers. In this respect, the sensitivity of
SAR backscatter to target geometry, i.e., target orientation,
surface tilt, etc., plays a significant role. These issues are
often addressed by compensating target orientation or tilt angle
by a linear transformation of the covariance matrix in the
decomposition algorithm [8]–[12].

The primary purpose of target orientation compensation is
to reduce the effect of the cross-polarized component. In this
aspect, Chen et al. [13] proposed general double- and odd-
bounce scattering models to fit the cross-polarization and off-
diagonal terms, separately by their independent orientation
angles. Bhattacharya et al. [14] improved the scattering power
components of the Singh et al., (G4U) [11] decomposition by
utilizing the conventional degree of polarization. In another
study, Bhattacharya et al. [15] modified the Yamaguchi et
al. [4] scattering power components using a stochastic dis-
tance. Ratha et al. [16] proposed a scattering factorization
framework for the physical interpretation of target scattering
from PolSAR data.

Several additional scattering power decomposition tech-
niques have been proposed with much sophistication to reduce
negative power pixels. Such techniques operate by either
considering all the elements of the coherency matrix [17] or
by introducing compound scattering models involving mixed
dipole configuration [18]. Even though these elegant modifica-
tions might minimize the occurrence of negative power pixels,
they can not eliminate them. Moreover, a significant concern
lies in the choice and uniqueness of these models.

Dey et al. [19] first proposed the three-component model-
free scattering power decomposition for full and compact
polarimetric SAR data. The authors utilized the 3D and 2D
Barakat degree of polarization [20], and the elements of the
coherency (or covariance) matrix to obtain a target scattering-
type parameter. This parameter was then used to decompose
the total scattered power into even-bounce, odd-bounce, and
diffused scattering power components. Unlike the volume scat-
tering power component in conventional model-based decom-
positions, the depolarized part of scattered waves is considered
for the diffused scattering component. With this formulation,
all the scattering power components are roll-invariant and non-
negative. However, the three-component model-free scattering
power decomposition by Dey et al. does not explicitly consider
the contribution from asymmetric targets.

Huynen [21] proposed that an average scattered wave from
a distributed measurement can be decomposed into an average
single-target and a non-symmetric noise component. The helix
component exists in this non-symmetric part of the backscat-
tered wave from a distributed target. Later, Yamaguchi et
al. [4] introduced the helix as the fourth scattering power com-
ponent in their decomposition method. A significant proportion
of the helix power component is observed over complex urban
areas due to the violation of the reflection symmetry condition.

Touzi [22] precisely pointed out the scattering ambiguity
between a dihedral and a helix scatterer in a resolution cell
using Cloude α. In this regard, Touzi [22] proposed to assess
target asymmetry by using the τm parameter. This parameter
helps to discriminate a pure dihedral (i.e., τm = 0), and

helix (i.e., τm = ±π/4) targets within a resolution cell
for which α = π/2 identically. This study introduces an
asymmetric (or helix) scattering-type parameter to resolve the
ambiguity concerning the even-bounce and the helix scattering
mechanism. We then utilize this parameter to obtain the helix
scattering power component disregarded in Dey et al. [19].
Similar to the three-component decomposition method, each
power component of this proposed decomposition technique
is guaranteed to be non-negative and roll-invariant.

Alongside this, we also propose a new scattering dom-
inancy based clustering algorithm utilizing the odd, even,
diffused, and helix scattering power components obtained from
the proposed four-component decomposition. We obtain 24
clusters using all possible dominancy permutations of the
four scattering power components. This clustering technique
assists in understanding the importance of diverse scattering
mechanisms based on target characteristics. The technique
appropriately captures variations in clusters from one target to
another according to their physical and geometrical properties.

This work unfolds as follows. We obtain unique four-
component non-model based scattering power decomposition
for two data sets in Section II. In Section III, we compare
the results obtained from the proposed techniques with other
existing target characterization parameters and decomposi-
tion techniques. Finally, Section IV summarizes the proposed
methodologies and concludes by highlighting its advantages
and limitations for different SAR data.

II. METHODOLOGY

We utilize the roll-invariant scattering-type parameter [19]
and an asymmetric target characterization parameter along
with the elements of the 3×3 coherency matrix for the deriva-
tion of four-component non-model based scattering power
components. Subsequently, we use these scattering power
components to obtain an unsupervised classification technique.
This technique preserves polarimetric scattering dominancy
characteristics.

A. Four component scattering power decomposition

In fully polarimetric (FP) SAR, the 2× 2 complex scatter-
ing matrix S encompasses complete polarimetric information
about backscattering from targets for each pixel. It is expressed
in the backscatter alignment (BSA) convention in the linear
horizontal (H) and linear vertical (V) polarization basis as,

S =

[
SHH SHV
SVH SVV

]
⇒ k = V ([S]) =

1

2
Tr(SΨ), (1)

where k is the scattering vector, V (·) is the vectorization
operator on the scattering matrix, Ψ is the corresponding
basis matrix, and Tr is the matrix trace (i.e., sum of the
diagonal elements of the matrix). Each element of the matrix
represents the backscattering response of the target at a specific
polarization. The matrix’s diagonal elements represent the co-
polarized scattering information, while the off-diagonal terms
represent the cross-polarized information. In the monostatic
backscattering case, the reciprocity theorem constrains the
scattering matrix to be symmetric, i.e., SHV = SVH.
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The multi-looked Hermitian positive semi-definite 3 × 3
coherency matrix T is obtained from the averaged outer
product of the target vector kP (derived using the Pauli
basis matrix, ΨP ) with its conjugate (i.e., T = 〈kP · k∗T

P 〉).
Similarly, the 3× 3 covariance matrix C is obtained from the
averaged outer product of the target vector kL (derived using
the Lexicographic basis matrix, ΨL) with its conjugate (i.e.,
C = 〈kL · k∗T

L 〉).

ΨP =

{√
2

[
1 0
0 1

] √
2

[
1 0
0 −1

] √
2

[
0 1
1 0

]}
,

ΨL =

{
2

[
1 0
0 0

]
2
√

2

[
0 1
0 0

]
2

[
0 0
0 1

]}
.

Similarly to the conventional degree of polarization (0 ≤
m ≤ 1), the 3D Barakat degree of polarization mFP also
characterizes the state of polarization (or purity) of an EM
wave. For a completely polarized EM wave m = 1, and
for a completely unpolarized EM wave m = 0. In between
these two extreme cases, the EM wave is partially polarized
(0 < m < 1). The Barakat degree of polarization is linked to
the polarimetric contribution of Shannon entropy [23].

Barakat [24] provided an expression of m for the n × n
coherency matrix. This expression is used in this study to
obtain the 3D Barakat degree of polarization, mFP from the
3× 3 coherency matrix T for FP SAR data:

mFP =

√
1− 27 |T|

tr3(T)
∈ [0, 1], (2)

where |·| is the determinant. It should be noted that although
this quantity is related to the conventional degree of polariza-
tion, it is not the overall degree of polarization for the n > 2
case as it does not include all the invariants.

In this study, we utilize the 4× 4 real matrix representation
to describe backscattering in terms of the Kennaugh matrix
K. We can represent the Kennaugh matrix in terms of the
elements of the T matrix as,

K =


T11+T22+T33

2 <(T12) <(T13) =(T23)
<(T12) T11+T22−T33

2 <(T23) =(T13)
<(T13) <(T23) T11−T22+T33

2 −=(T12)
=(T23) =(T13) −=(T12) −T11+T22+T33

2

 ,
(3)

where Tii for i = 1, 2, 3 are the diagonal elements, and Tij
for i 6= j : i, j = 1, 2, 3 are the off-diagonal elements of T.
< and = denote the real and imaginary parts of a complex
number, respectively.

The scattering-type parameter, θFP that is represented using
the elements of the T matrix in [19], can be equivalently
expressed using the elements of the K matrix. For this, let
us first consider two free variables, η1 and η2 as,

η1 = tan−1 K11 −K44

2mFP K11
, and η2 = tan−1 K11 +K44

2mFP K11
, (4)

where K11 and K44 are the elements of K. It may be noted
that (K11 −K44) /(2mFPK11) denotes the fraction of power
scattered from the regular part 1 of a target with respect to the

1A general radar target is called regular when the S11 and S22 elements
of the scattering matrix S are equal in magnitude and phase. In this respect,
a sphere is a purely symmetric and regular target, while a corner reflector is
non-symmetric and irregular.

total polarized power, and that (K11 +K44) /(2mFPK11) de-
notes the fraction of scattered power from the irregular part of
a target with respect to the total polarized power [21]. Hence,
by using a simple relationship (tan θFP = tan(η1 − η2)), we
obtain,

θFP = tan−1 4mFPK11K44

K2
44 − (1 + 4m2

FP)K2
11

∈ [−45°, 45°], (5)

where K11 = (T11 + T22 + T33)/2 and K44 = (−T11 +
T22 +T33)/2. The utilization of the elements of the K matrix
provides equivalency in the formulation of θFP for different
SAR data acquisition modes (i.e., full-pol, dual co-pol, and
compact-pol). A geometrical interpretation of θFP is given in
Appendix A

Apart from the scattering-type parameter θFP, we also in-
troduce a scattering asymmetry (helicity) parameter, τFP:

τFP = tan−1 |K14|
K11

∈ [0°, 45°] (6)

where K14 = =(T23). It can be noted that, according to
Huynen [21], the K14 element (i.e., the element F in the T
matrix [25]) is the generator of target global twist (helicity).
Yamaguchi et al. [4] introduced the K14 component in their
four-component decomposition theorem for the non-reflection
symmetric case that appears over heterogeneous areas. This
component is then utilized to characterize the helix power
component.

Here, we first derive the helix power component Pc (7) by
modulating the total polarized power (i.e., 2mFPK11) by the
scattering asymmetry parameter, τFP. The diffused scattering
power component Pv (8) is obtained as the depolarized frac-
tion (i.e., 1−mFP) of the total power.

We then obtain the residual power component Pr (9), which
is equal to the sum of the helix and the diffused power
components subtracted from the total scattered power (2K11).
This residual power component represents the fraction of
the polarized scattering power components. This polarized
fractional power is then redistributed among odd, (Ps (10))
and even (Pd (11)) power components using the geometrical
factor (1±sin 2θFP). This factor depends on the scattering-type
parameter θFP.

Pc = 2mFPK11 sin (2τFP), (7)
Pv = 2(1−mFP)K11, (8)
Pr = 2K11 − (Pc + Pv)

= 2mFPK11(1− sin (2τFP)), (9)

Ps =
Pr

2
(1 + sin (2θFP)), (10)

Pd =
Pr

2
(1− sin (2θFP)). (11)

Fig. 1 illustrates the procedure as a flowchart.
Let us now characterize mFP, θFP, and τFP along with

the four scattering power components for a few particular
scattering scenarios:

• For a pure diffused scattering-type, i.e., when mFP = 0,
then Pv = 2K11 = Span, and Ps = Pd = Pc = 0.

• For polarized scattering types, i.e., when mFP = 1, two
cases arise:
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Fig. 1. Flow chart of the model-free four component decomposition technique.

1) if θFP = 45°, and τFP = 0°, then Ps = 2K11 =
Span, and Pd = Pv = Pc = 0.

2) if θFP = −45°, and:
a) τFP = 0°, then Pd = 2K11 = Span, and Ps =

Pv = Pc = 0.
b) τFP = 45°, then Pc = 2K11 = Span, and Pd =

Pv = Ps = 0. In this case, the scattering is
purely asymmetric.

• For θFP = 0°, i.e., when either mFP = 0, or K44 = 0,
then,

1) if mFP = 0, and if τFP = 0°, then Ps = Pd = Pc =
0, and Pv = 2K11 = Span

2) if K44 = 0, and if τFP = 0°, then Pc = 0 with
Ps = Pd, and Pv varies with mFP ∈ [0, 1].

Fig. 2 shows the variation of the residual power (Pr) with
the variation of the scattering asymmetry parameter, τFP for
four different values of mFP. For the sake of simplicity, the
total received power is fixed at unity (i.e., 2K11 = 1). The
variation of Pr is assessed for mFP = 1.0, 0.7, 0.5 and 0.3.

It can be seen that as τFP increases, Pr decreases for all
values of mFP. However, the decreasing slope is steeper for

Fig. 2. Variation of residual power, Pr with τFP for different values of mFP
with unit Span, i.e., (2K11 = 1).

more coherent targets (i.e., when mFP = 1.0 and 0.7) than for
incoherent targets (i.e., when mFP = 0.5 and 0.3). This rapid
decrease for relatively coherent targets might be due to the
steady decline of mFP with increasing scattering asymmetry.
However, regardless the values of mFP, the decrease in Pr

becomes almost negligible beyond τFP ≈ 35° and becomes
zero at τFP = 45°.

B. Unsupervised Clustering

In this study, we propose an unsupervised clustering tech-
nique based on the permutation of scattering mechanisms
according to their dominance. In a previous study, Lee et
al. [3] proposed a related unsupervised clustering scheme using
the Freeman-Durden scattering power components. However,
the clustering technique is entirely based on the information
provided by the first dominant scattering mechanism, i.e.,
surface, double-bounce or volume. Subsequently, pixels in
these dominant scattering clusters are further sub-clustered
using the Wishart distance. Therefore, a physical justification
in the formation of the sub-clusters might not be apparent by
using only a statistical measure.

Hence, in this study, the proposed unsupervised clustering
scheme provides a natural meaning to each cluster’s formation
using the information of the dominant scattering mechanism
for each pixel. Moreover, successive clusters within each
dominant scattering category provide additional physical in-
formation for a particular type of landcover. Hence, the unique
permutation of the four scattering powers leverages this novel
scheme.

First, we divide the pixels into four power categories:
1) dominant even-bounce, 2) dominant odd-bounce, 3) dom-
inant diffused, and 4) dominant helix. Apart from this, we
assign a mixed category for pixels whose contribution to the
dominant mechanism is ambiguous. We express the ambiguity
using a threshold value.

Only pixels within the same scattering category are grouped
as a class. This condition warrants the preservation of sim-
ilar scattering properties. It can be noted that without this
restriction, pixels with different scattering characteristics may
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incorrectly get classified into the same class. Fig. 3 describes,
in a flowchart, the necessary processing steps of the proposed
algorithm. The following subsections provide details about the
clustering steps.

Fig. 3. Flow chart for the proposed clustering framework.

1) Initial clustering:

• Calculate the normalized scattering power components
for each pixel and identify the dominant scattering mech-
anism.

• A pixel is considered mixed if the dominant scattering
mechanism’s contribution is less than 0.5.

• Compute the second, third, and fourth dominant scatter-
ing powers, and cluster them within the 24 clusters, as
shown in Fig. 4.

2) Reallocation to clusters of the mixed pixels:

• After forming the initial 24 clusters, calculate the mean
values of Pd, Ps, Pv , and Pc for each cluster.

• Identify the dominant scattering mechanism for the mixed
pixels.

• Based on the dominant scattering mechanism, calculate
the Euclidean distance among the six sub-clusters of that
particular dominant scattering power. Then, assign the
pixel to the closest sub-cluster using Euclidean distance.
This technique ensures the preservation of the physical
scattering phenomenon from a target in a resolution cell.

III. RESULTS

In this section, we analyze the scattering power compo-
nents obtained from the proposed decomposition method using
full polarimetric (FP) C-band RADARSAT-2 (RS-2), L-band
ALOS PALSAR images over San Francisco (SF), USA, and
an X-band TerraSAR-X (TS-X) image over Mumbai, India.
Figs. 5, 9, and 10, respectively, show these images.

The C-band RS-2 SF image is acquired with near and far
range incidence angles of 28.02° and 29.81°, respectively.
The single look complex (SLC) image is multilooked by a
factor of 2 in the range, and 4 in the azimuth to generate an
approximately square ground pixel resolution of 20 m× 20 m.
The ALOS PALSAR image is multilooked by a unit factor
in the range and 7 in the azimuth to generate an approxi-
mately square ground pixel resolution of 24 m× 24 m. The
TerraSAR-X (TS-X) image is multilooked by a factor of 4 in
the range and 4 in the azimuth to generate an approximately
square ground pixel resolution of 10 m× 10 m.

A. Variation of mFP, τFP, and θFP

Figure 5 shows the spatial variation of θFP, τFP and mFP
over the C-band SF scene, in which “O” denotes ocean, “U”
denotes urban, “OU” denotes oriented urban and “V” denotes
vegetation.

We see in Figure 5 that, over the ocean, θFP ≈ 45°, whereas
τFP ≈ 0°. These high values of θFP and low values of τFP are
due to symmetric coherent type of scattering from the ocean
surface which is also evident from the high values of mFP ≈ 1.
Therefore, we can infer that the scattered wave from region O
is majorly polarized.

Over the urban area, U, the values of θFP are more towards
−45° and τFP increases marginally. This slight increase in τFP
are likely due to asymmetric scatterers present in the urban
area. Consequently, a decrease in the value of mFP is also
evident in this area.

However, a significant increase in τFP is evident over the
oriented urban (OU) area due to high target asymmetry.
Besides, the values of θFP have also decreased compared to
the orthogonal urban area. The values of mFP are also lower
than the OU area. In contrast, τFP is lower for the vegetation
(V) area than the OU area. Such effect could be due to the
symmetric reflection nature of the target for which the spatial
variation of τFP is low. The values of mFP are lower or closer
to the OU area due to a certain amount of randomness in
scattering from the vegetation area.

Figure 9 shows the spatial variation of θFP, τFP and mFP over
the SF area using ALOS PALSAR data. Over O, the spatial
variation of θFP corresponds closely to a coherent target. Also,
similarly to RS-2, τFP is very low, and mFP is very high over
O.

A notable change in the variation of θFP is evident over U.
A decrease in the values of mFP is apparent for the ALOS
PALSAR data, which is likely due to the long wavelength
interaction with urban targets. On the other hand, the values
of θFP over OU are similar for both the L-band and C-band
data.
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Fig. 4. The proposed 24 cluster sub-divisions by permutation across all scattering power components.

(a) Pauli RGB (b) θFP (c) τFP (d) mFP

Fig. 5. Pauli RGB and different polarimetric descriptor images of RS-2 C-band acquisition over San Francisco, USA.

Fig. 6. Box plots of mFP, τFP, θFP over Ocean (O), Oriented Urban (OU),
Urban (U) and Vegetation (V) using RS-2 C-band SAR data. Here, τFP is
scaled between 0 to 1, and, θFP is scaled between -1 to 1.

Changes over the vegetation area are evident from Figure 9.
In comparison to θFP for the C-band RS-2 image, the values
of θFP for the L-band PALSAR data reveal multiple scattering
from mixed targets. Trees and other vegetation are usually
moderately rough on longer wavelengths: the trunk’s effect
is quite significant while in the shorter wavelengths and,
thus, leaves play an important part in the return. This is

attributed by the composition of the forest characterized by
tree density, and canopy thickness. The scattering properties
are also dictated by size, shape and orientation of surface
within the forest canopy [26]. A decrease in the value of mFP
is observed compared to the RS-2 data. This suggests a loss
in the polarization structure of the EM wave due to complex
interaction within the vegetation structure.

TABLE I
MEAN ± STANDARD DEVIATION OF θFP , τFP , AND mFP OVER OCEAN (O),
URBAN (U), ORIENTED URBAN (OU) AND VEGETATION (V) USING RS-2

θFP [degrees] τFP [degrees] mFP

O 41.67± 0.48 0.08± 0.04 0.99± 0.01
U −12.42± 5.34 0.69± 0.43 0.92± 0.02

OU −4.22± 5.84 1.61± 1.04 0.49± 0.10
V 7.08± 2.67 0.84± 0.73 0.61± 0.03

For quantitative evaluation, we have randomly sampled 120
pixels from each of the areas (i.e., O, U, OU and V). The box
plot in Figure 6 and Figure 7 shows the variations of the three
descriptors (i.e, mFP, τFP, θFP) over these areas. The mean and
standard deviations of the three descriptors for each land cover
classes are given in Table I.

Table I shows that the mean value of θFP over ocean is
41.67°, which is evident from highly polarized backscatter
return (mFP = 0.99) for the RS-2 data. The standard deviation
is also low, which might be due to the ocean surface’s
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Fig. 7. Box plots of mFP, τFP, θFP over Ocean (O), Oriented Urban (OU),
Urban (U) and Vegetation (V) using ALOS PALSAR L-band SAR data. Here,
τFP is scaled between 0 to 1, and, θFP is scaled between -1 to 1.

Fig. 8. Box plots of mFP, τFP, θFP over Mangrove (M) and Urban (U) using
TerraSAR-X SAR data. Here, τFP is scaled between 0 to 1, and, θFP is scaled
between -1 to 1.

homogeneous characteristics. On the other hand, the mean
value of τFP is very low (i.e., 0.08°), which is due to symmetric
scattering from the ocean surface. The non-zero value might
be due to the slight roughness generated by the ocean currents.

For the urban area, mFP = 0.73 and τFP = 0.69°. However,
a good increase in the value of τFP = 1.61° is observed
over OU (Fig. 11). Besides, the standard deviation of τFP is
also high due to the non-homogeneous spatial distribution of
scatters in this area. Also, the value of θFP has decreased
due to the effect of target orientation about the radar line
of sight for the OU area compared to U. The values of
θFP for U is −12.42°, and for OU is −4.22°. Similarly,
vegetation being comprised of incoherent scatterers, produces
a mean θFP = 7.08°. However, the non-homogeneous nature
of vegetation increased the standard deviation to 2.67°. As
vegetation produces symmetric scattering, τFP ≈ 0.84° over
this region.

For the L-band ALOS PALSAR data, θFP = 38.93° over the
ocean (O) area, which is lower than the C-band RS-2 data; cf.
Table II. This variation could be due to the difference in the

incident wavelength and its interaction with the ocean surface
state at the acquisition time. Besides, the value of τFP for the
L-band acquisition has also marginally increased (≈ 0.13°)
due to the high overall roughness in the ocean. However, the
value of mFP = 0.98 is similar to that of the C-band data.

TABLE II
MEAN ± STANDARD DEVIATION OF θFP , τFP , AND mFP OVER OCEAN (O),

URBAN (U), ORIENTED URBAN (OU) AND VEGETATION (V) USING
ALOS PALSAR

θFP [degrees] τFP [degrees] mFP

O 38.93± 0.26 0.13± 0.11 0.98± 0.01
U −14.91± 5.34 0.44± 0.34 0.94± 0.08

OU −11.49± 7.43 2.29± 2.08 0.60± 0.13
V −1.09± 2.04 0.76± 0.49 0.39± 0.04

TABLE III
MEAN ± STANDARD DEVIATION OF θFP , τFP , AND mFP OVER MANGROVE

(M) AND URBAN (U) USING TERRASAR-X

θFP [degrees] τFP [degrees] mFP

M 4.07± 2.10 0.78± 0.02 0.49± 0.09
U −13.16± 7.87 0.97± 0.64 0.92± 0.02

Over U and OU, θFP characterizes dihedral scattering
mechanism over these areas. Over U, the mean values of
θFP = −14.91° and over OU, θFP = −11.49°. We observe
from the standard deviation values, that the uncertainties in θFP
over these areas are higher than that of O and V. This might be
due to the inherent scattering asymmetry from these targets.
High values of τFP also confirm this asymmetric scattering
nature from these targets (Fig. 11). It can be seen from Table II
that the mean value of τFP = 0.44° for the urban area, whereas
τFP = 2.29° over the oriented urban area.

Table II shows that over V, θFP = −1.09° characterizes scat-
tering from even multiple bounces. This could be due to the
penetration capability of the L-band wave inside the vegetation
canopy. Besides, the mean value of τFP has decreased over
this area compared to U and OU due to scattering symmetry
property of the vegetation surface.

Similarly, the variation of θFP, τFP and mFP are analyzed
over the mangrove (‘M’) and urban (‘U’) areas using the TS-X
data is shown in Table III. Over M, low values of θFP = 4.07°
and mFP = 0.49 typically represent the amount of depolar-
ization due to scattering from randomly oriented branches of
the canopies. Also, the reflection symmetric property of the
mangrove canopy surface is apparent from the low value of
τFP as 0.78°.

On the other hand, the degree of polarization over U is
0.92. This is likely due to the coherent nature of the scattering
from buildings. An even-bounce scattering mechanism is also
evident with θFP = −13.16°. A slight increase in reflection
asymmetry is visible with a marginal increase in the values of
τFP compared to M.

B. Variation of scattering power components

Fig. 12 shows the scattering power components obtained
from the proposed model-free four-component decomposition
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(a) Pauli RGB (b) θFP (c) τFP (d) mFP

Fig. 9. Pauli RGB and different polarimetric descriptor images of ALOS PALSAR L-band acquisition over San Francisco, USA.

(a) Pauli RGB (b) θFP (c) τFP (d) mFP

Fig. 10. Pauli RGB and different polarimetric descriptor images of TerraSAR-X acquisition over Mumbai, India.

(a) RS-2 (b) ALOS PALSAR

Fig. 11. Variation of τFP over OU for RS-2 and ALOS PALSAR data. The
zoomed region is shown with a white boundary.

(MF4CF) over O, U, OU and V areas using the RS-2 data.
Here, we have compared the power components of MF4CF
with the Yamaguchi four-component decomposition technique
with rotation of the coherency matrix [10] (Y4R), the General
four-component scattering power decomposition (G4U) [27],
the Adaptive general four-component scattering power decom-
position (AG4U) [14], and the Six-component scattering power

decomposition (i6SD) [17] techniques.
For RS-2 data over the ocean surface, O, the odd-bounce

scattering power Ps, is 83.3 % for Y4R, 84.3 % for G4U,
95.22 % for AG4U and 87.63 % for i6SD whereas it is
99.39 % for MF4CF. Therefore, the odd-bounce scattering
power has increased by ≈ 12 % for MF4CF compared to other
decomposition techniques.

For Y4R and G4U, over the ocean surface, the amount
of helix scattering powers are 5.1 % and 5.3 % respectively.
The asymmetric power component is 0.01 % for MF4CF,
which is similar to the helix scattering power component for
AG4U, and i6SD. Therefore, MF4CF, AG4U and i6SD can
equivalently indicate scattering characteristics of the ocean
surface correctly. This observation is justified by the fact that
the scattering from the ocean surface is symmetric odd-bounce.

On the other hand, over the urban area, U and OU, the
even-bounce scattering power and the asymmetric scattering
power components have also increased for MF4CF. However,
significant differences among the scattering powers can be
observed over OU. Over OU, Y4R, G4U, AG4U and i6SD
show dominant volume scattering component (≈ 90.8 %,
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(a) Y4R (b) G4U (c) AG4U (d) i6SD (e) MF4CF

(f) O (g) U

(h) OU (i) V

Fig. 12. Decomposed scattering power components over Ocean (O), Urban (U), Oriented Urban (OU) and Vegetation (V) using Y4R, G4U, AG4U, i6SD
and MF4CF decomposition techniques using RS-2 data.

≈ 74.89 %, ≈ 88.08 % and ≈ 82.89 %, respectively), while
MF4CF shows Pv = 43.60 %. In comparison to other decom-
positions, the even-bounce scattering power from MF4CF has
also increased by ≈ 15 %, while there is an increase of ≈ 26 %
compared to AG4U.

It is noteworthy to observe that although Y4R, G4U, AG4U
and i6SD compensate for the orientation of the dihedral
targets, the volume scattering power components from these
two techniques are nearly twice the diffused scattering power
component of MF4CF. Such an effect might be due to the
utilization of the degree of polarization in the formulation
of the roll-invariant scattering power components. Moreover,
oriented urban areas display a high amount of scattering
asymmetry [28]. This fact is evident from the asymmetric
scattering power component (Pc) from MF4CF.

High even-bounce scattering power over V (19.81 %) is due
to the interaction of the electromagnetic wave with ground and

vegetation trunk as well as ground and vegetation branches.
The increase in the odd-bounce scattering power is due to the
polarized scattered wave from leaves and foliage. Moreover,
the overall diffused scattering power component has decreased
in comparison to other decomposition technique. Therefore,
the degree of depolarization can adequately provide diverse
scattering characteristics than the cross-pol component (i.e.,
HV) alone that is utilized in the volume scattering model.

Alongside this, as stated earlier, that vegetation is consid-
ered to be reflection-symmetric. Therefore, the contribution of
the asymmetric scattering power component is only 1.64 %.
In contrast, Y4R, G4U and i6SD show a helix scattering
power component of ≈ 4 %. MF4CF and AG4U characterize
vegetation surface as more symmetric scatterer than Y4R.
Moreover, MF4CF better captures the polarized scattered wave
from the vegetation canopy, omitted by Y4R and AG4U.

Figure 13 shows the decomposed power components over
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(a) Y4R (b) G4U (c) AG4U (d) i6SD (e) MF4CF

(f) O (g) U

(h) OU (i) V

Fig. 13. Decomposed scattering power components over Ocean (O), Urban (U), Oriented Urban (OU) and Vegetation (V) using Y4R, G4U, AG4U, i6SD
and MF4CF decomposition techniques using ALOS PALSAR data.

O, U, OU and V using ALOS PALSAR data. The dominant
odd-bounce scattering power is evident over O. However,
Ps has decreased by ≈ 2 % as compared to the RS-2 data.
This decrease in the Ps value might be because the ocean
surface roughness is more apparent in longer wavelengths.
Consequently, Pc has also marginally increased by 0.03 %
compared to the RS-2 data. On the other hand, Y4R and AG4U
show significant volume (5.3 % and 9.04 %) scattering power,
which might be due to the assumption of a specific volume
scattering model that might not be adequate for this scenario.

Over U, the sample mean of Pd obtained from MF4CF
has increased by 4 % as compared to Y4R and G4U, and
by ≈ 0.2 % as compared to AG4U and i6SD. Hence, the
values of Pd are quite similar for both MF4CF, AG4U and
i6SD over U. We may justify such an outcome because,
in MF4CF, we explicitly use the degree of polarization to

calculate the scattering power components. It may be noted
that, in AG4U, we use the degree of polarization only as
a criterion to compute the power component, whereas its
usefulness is absent in any other decompositions Therefore, the
Barakat degree of polarization provides essential information
in calculating the scattering power components by utilizing the
polarization structure’s knowledge in the scattered wave from
urban areas.

The diffused scattering power has decreased over this area
compared to the volume scattering power component of Y4R
and G4U. Nevertheless, the volume scattering component of
AG4U, i6SD and the diffused component of MF4CF are
similar. In contrast, the asymmetric power component, Pc, is
similar to the helix scattering power component of Y4R and
G4U. The percentages of Pc and the helix scattering power
components are 1.60 %, 1.8 % and 1.3 %, respectively.
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(a) Y4R (b) G4U (c) AG4U (d) i6SD (e) MF4CF

(f) U (g) M

Fig. 14. Decomposed scattering power components over Urban (U) and Mangrove (M) using Y4R, G4U, AG4U, i6SD and MF4CF decomposition techniques
using TerraSAR-X data.

Fig. 13 shows significant differences between the even-
bounce scattering power of MF4CF and the double-bounce
scattering power of Y4R, G4U, AG4U and i6SD over OU.
Besides, the difference between the diffused and the volume
scattering powers from the L-band (≈ 40 %) is lower than
that of the C-band. It can be noted that Pd obtained from
MF4CF is still the dominant scattering power component
(39.90 %) over OU. It is noteworthy to observe that the
scattering asymmetry due to the urban area’s orientation about
the radar line of sight is more prominent in MF4CF than other
decomposition techniques. The percentage of Pc and helix
scattering components are 5.22 % 3.88 %, 5.2 %, 3.87 % and
5.9 %, respectively for MF4CF, Y4R, G4U, AG4U and i6SD.

Similarly, over vegetation (V), a marginal difference is
evident in the diffused scattering power component of MF4CF
(59.96 %) and the volume scattering component of Y4R
(65.8 %). The difference between the volume and the diffused
power components from AG4U to MF4CF is ≈ 6 %. However,
Pd has increased by ≈ 10 % from Y4R, G4U to MF4CF,
≈ 6 % from AG4U to MF4CF, and ≈ 3 % from i6SD to
MF4CF.

As stated earlier, such a high value of Pd is due to the
forest’s ground canopy interactions. The explicit utilization
of the degree of polarization in the formulation of MF4CF
might have adequately accounted for the polarization state
information in the scattered EM wave. On the other hand,
similar to the C-band data, the mean value of Pc is 1.03 %,
whereas the helix power components of Y4R is 3.2 % and for
AG4U is 4.8 %. However, the helix power is similar for both

i6SD and MF4CF. Therefore, Pc characterizes vegetation as
a more symmetric scatterer than Y4R and AG4U. However,
the disparity between the diffused scattering power component
of MF4CF and the volume scattering power components of
other decompositions is marginal. This variation might be due
to the L-band wave’s scattering properties inside the vegeta-
tion canopy that is equivalently characterized by the volume
scattering model and the degree of polarization measure.

Similarly, the scattering power components over Mumbai,
India, using TerraSAR-X data is compared in Fig. 14. Here
we have shown the decomposition results over urban (U)
and mangrove (M) areas. Like L-band and C-band data, the
Pd component using MF4CF over U for X-band data has
increased compared to Y4R, G4U, AG4U, and i6SD. The dif-
ferences between the Pd of MF4CF and other decomposition
techniques are ≈ 7 %. On the other hand, the Pv components
have also decreased by ≈ 10 % for MF4CF compared to Y4R,
G4U, AG4U and i6SD.

In contrast, the trend of scattering power components over
M is similar for different decomposition methods. However,
the Pv component has decreased by ≈ 14 % compared to other
decomposition methods. This decrease in the Pv component
might be due to the significant polarization structure in the
returned electromagnetic wave. As a result, the polarized even
and odd bounce components have increased over M compared
to Y4R, G4U, AG4U and i6SD. The increase in the Pd and
Ps components are nearly 3 % and 12 %, respectively. This
Pd component is due to the electromagnetic wave interaction
with the underneath water and branches. The Ps component
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is due to the interaction of the electromagnetic wave with the
leaves at the top of the canopy layers.

Hence, the proposed method suitably characterizes different
scattering properties from targets compared to Y4R, G4U,
AG4U and i6SD. Also, the Pc power component can accu-
rately represent scattering asymmetry over the desired targets.
It is noteworthy that the inclusion of the scattered wave’s
polarization state has improved the target characterization
ability of MF4CF compared to other techniques.

C. Clustering

Here we discuss a clustering scheme utilizing the four
scattering power components, Pd, Ps, Pv , and Pc obtained
from the C-, L-, and X-band PolSAR datasets. To assess
and validate the clustering results, we utilize different com-
binations of entropy (H) and anisotropy (A), and the first
dominant scattering-type parameter (α1

s) [25]. We used the
following combinations of H and A:

• The presence of a single dominant scattering process is
described by (1−H)(1−A).

• A random scattering process is modeled by H(1−A).
• The presence of two scattering mechanisms with the same

probability relates to HA.
• Two scattering mechanisms with a dominant process is

described by (1−H)A.
Fig. 15 shows the unsupervised map using RS-2 and ALOS

PALSAR data over SF, and TerraSAR-X data over Mumbai,
India.

TABLE IV
PERCENTAGE OF PIXELS IN DIFFERENT CLUSTERS OVER OCEAN SURFACE
USING RS-2 AND ALOS PALSAR DATA (Z7: Ps > Pd > Pv > Pc ; Z9:

Ps > Pv > Pd > Pc)

RS-2 ALOS PALSAR

Class Percent (%) Class Percent (%)

Z7 95.40 Z7 91.60
Z9 4.60 Z9 8.40

Table IV shows that the two different clusters, Z7 and Z9,
are common for both RS-2 and ALOS PALSAR datasets. In
both of them, the odd-bounce scattering power component is
the first dominant. However, the second dominant components
are the even-bounce scattering for Z7 and the diffused scatter-
ing for Z9. The combination (1−H)(1−A) is higher than any
other for both datasets, suggesting a single dominant scattering
process. Moreover, we observe α1

s = 3.29° and α1
s = 4.16°

for RS-2 and PALSAR data, respectively. However, the value
of (1−H)A is apparent, which indicates that there might exist
two scattering mechanisms with a dominant process.

In the context of the ocean surface, the existence of other
scattering power components might be due to surface rough-
ness. The ocean current’s ridge produces a marginal amount
of even-multiple scattering that might cause the even-bounce
scattering power as the second dominant. On the other hand,
complex ocean surface roughness near the shoreline favours
diffused scattering power components as the second dominant

in a few pixels. However, being a reflection-symmetric sur-
face, the Pc power is always the fourth dominant scattering
component over the ocean surface.

TABLE V
PERCENTAGE OF PIXELS IN DIFFERENT CLUSTERS OVER URBAN USING

RS-2 AND ALOS PALSAR DATA (Z1: Pd > Ps > Pv > Pc ; Z2:
Pd > Ps > Pc > Pv ; Z7: Ps > Pd > Pv > Pc)

RS-2 ALOS PALSAR

Class Percent (%) Class Percent (%)

Z1 49.70 Z1 76.94
Z2 16.90 Z2 23.06
Z7 33.40 Z7 0.00

Table V shows that over the urban area, pixels are clustered
in Z1, Z2 and Z7 for the RS-2 data. For the PALSAR data, they
are clustered in Z1 and Z2. We observe that both datasets show
a majorly dominant even-bounce scattering power component
in the urban area usually characterized by dihedral targets.
However, for the RS-2 data, the Z7 cluster indicates dominant
odd-bounce scattering power. After analyzing the combina-
tions of H , A, we noticed that HA is high for the RS-2 data,
suggesting that there might exist two mechanisms with the
same probability. Due to this reason, the percentage of pixels
in Z1 (49.7 %) is comparable to Z7 (33.4 %).

On the other hand, depending on some buildings’ orientation
within the resolution cell, Pc power dominates over Pv . Hence,
a marginal percentage of pixels in the Z2 region is also evident
over the urban area. Concerning the ALOS PALSAR data,
the value of (1 − H)A is high, indicating two scattering
mechanisms with a dominant process. Hence, we observe only
Z1 and Z2 clusters for this data set. Besides, for both datasets,
α1
s ≈ 60°, indicating it as majorly a dihedral scatterer.

TABLE VI
PERCENTAGE OF PIXELS IN DIFFERENT CLUSTERS OVER ORIENTED URBAN

USING RS-2 AND ALOS PALSAR DATA (Z3: Pd > Pv > Ps > Pc ;
Z4: Pd > Pv > Pc > Ps ; Z7: Ps > Pd > Pv > Pc ;

Z13: Pv > Ps > Pd > Pc ; Z14: Pv > Ps > Pc > Pd ;
Z15: Pv > Pd > Ps > Pc ; Z18: Pv > Pc > Pd > Ps)

RS-2 ALOS PALSAR

Class Percent (%) Class Percent (%)

Z3 0.00 Z3 43.10
Z4 29.60 Z4 0.00
Z7 12.43 Z7 0.00

Z13 40.17 Z13 20.46
Z14 11.86 Z14 17.60
Z15 0.00 Z15 15.86
Z18 5.94 Z18 2.99

Table VI shows that there are several clustering zones over
the oriented urban area (OU). The orientation of the urban
area about the radar line of sight suggests randomness in
the scattered electromagnetic wave. Therefore, we observe
different scattering mechanisms in this area. The value of
H(1 − A) is higher than any other combinations of H and
A for both datasets, which indicates a random scattering
process within the resolution cell. For the RS-2 data, the total
percentage of pixels in Z13 and Z14 is high due to dominant
diffused scattering, evident from Figure 12.
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(a) RS-2 (b) ALOS PALSAR (c) TerraSAR-X

Fig. 15. Unsupervised clusters over different scattering targets using RS-2, ALOS PALSAR and TerraSAR-X data.

However, oriented structures generated a significant amount
of helix scattering power due to which, for a few circum-
stances, it dominates over the odd-bounce power component.
Therefore we observe the Z4 cluster in the scene. For a few
other pixels, the helix power component is almost comparable
to the even-bounce scattering power component, which shows
the appearance of the Z18 cluster over the oriented urban area.

For the ALOS PALSAR data, the percentage of pixels in the
Z3 cluster (43.10 %) is higher than any other clusters due to the
dominant even-bounce scattering. This mechanism might be
because of the difference in the wavelengths, which suggests
high penetration ability compared to the RS-2 data.

Multiple scattering phenomena increased the values of Pv

more than that measured in the orthogonal urban area. There-
fore, the clusters Z13, Z14, Z15, and Z18 are evident in Ta-
ble VI. Alongside this, a high amount of Pc power sometimes
makes it the second or the third dominant depending on the
significance of oriented buildings. Over OU, α1

s ≈ 46° for both
datasets indicate the scatterer behaviour towards the dihedral
type accompanied by multiple scattering phenomena.

TABLE VII
PERCENTAGE OF PIXELS IN DIFFERENT CLUSTERS OVER VEGETATION
USING RS-2 AND ALOS PALSAR DATA (Z9: Ps > Pv > Pd > Pc ;

Z10: Ps > Pv > Pc > Pd ; Z13: Pv > Ps > Pd > Pc ;
Z15: Pv > Pd > Ps > Pc)

RS-2 ALOS PALSAR

Class Percent (%) Class Percent (%)

Z9 0.00 Z9 6.64
Z10 8.46 Z10 9.96
Z13 25.93 Z13 0.00
Z15 65.61 Z15 83.39

Table VII shows that, over the vegetation area, pixels in the
Z10, Z13 and Z15 clusters are evident in the RS-2 data, while
pixels in Z9, Z10 and Z15 clusters are evident in the ALOS
PALSAR data. We observe that, for both datasets, the diffused

power scattering component is the first dominant. In this case,
scattering randomness is primarily due to the geometry and
composition of branches and twigs and their multiple interac-
tions with wavelengths of comparable dimension. The second
dominant Pd power in Z15 is likely due to the interaction of
the EM wave with the ground and the vegetation trunk.

TABLE VIII
PERCENTAGE OF PIXELS IN DIFFERENT CLUSTERS OVER MANGROVE AND

URBAN USING TERRASAR-X DATA (Z1: Pd > Ps > Pv > Pc ;
Z2: Pd > Ps > Pc > Pv ; Z7: Ps > Pd > Pv > Pc ;

Z9: Ps > Pv > Pd > Pc ; Z10: Ps > Pv > Pc > Pd ;
Z13: Pv > Ps > Pd > Pc ; Z15: Pv > Pd > Ps > Pc)

Urban Mangrove

Class Percent (%) Class Percent (%)

Z1 38.30 Z1 0.00
Z2 49.10 Z2 0.00
Z7 12.60 Z7 0.00
Z9 0.00 Z9 15.60

Z13 0.00 Z13 13.30
Z15 0.00 Z15 71.10

Besides, for those pixels, the amount of Ps power is
less due to the minimum direct interaction of the EM wave
with only leaves and foliage. Also, the amount of Pc power
in those pixels is low due to higher symmetric scattering
condition. Therefore, the Ps power component becomes the
third dominant, while the Pc power component is the fourth
dominant.

On the other hand, for some pixels, the Ps power dominates
over Pd and Pv powers, which might be due to high leaf area
content in those pixels. This increased amount of leaf area has
produced more Ps power due to which Z9 and Z10 clusters
are observed in the PALSAR and RS-2 data, respectively.
However, based on the difference between the wavelengths
and the depth of penetration, the amount of Pc power varies
from RS-2 to PALSAR datasets. Therefore, the dominance
in the Pc power component changes from RS-2 to PALSAR
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datasets.
The variations of clusters over urban and mangrove areas

using the TerraSAR-X data are shown in Table VIII. Like
RS-2 data, pixels in the urban area (U) are clustered in Z1,
Z2 and Z7. Therefore, the high even-bounce scattering power
component characterizes the target similar to the dihedral.
However, due to the small wavelength of X-band, the Z7
cluster is evident, which is also indicated by the combined
analysis of H and A. On the other hand, the mangrove
region (M) shows a dominant Pv scattering power. However, it
should be noted that mangrove thrives abundantly in brackish
water areas, e.g., estuaries and mud-laden rivers. These areas
comprising a shallow water column can generate a sufficient
amount of even-bounce and diffused scattering mechanism.
Hence, the appearance of the Z15 cluster in the appropriate
proportion is evident for this area. On the other hand, the
top canopy layer and the leaves generated an odd-bounce
scattering mechanism, due to which the Z9 and Z13 clusters
are also apparent within this area.

IV. CONCLUSIONS

This study proposed a model-free four-component scattering
power decomposition technique for full polarimetric Synthetic
Aperture Radar (SAR) data. This technique is an extension
of our model-free three-component decomposition technique.
The introduction of an asymmetry parameter resolves the
ambiguity between the even-bounce and the helix scattering
mechanisms. This scattering asymmetry component helps to
characterize scattering from human-made structures in urban
areas. Therefore, the scattering asymmetry component might
infer unique polarimetric properties about a target present in
the scene.

Therefore, we have included the τFP parameter along with
θFP to capture the scattering asymmetry from a target. Utilizing
these two parameters simultaneously, we proposed the four
scattering power components: even-bounce (Pd), odd-bounce
(Ps), diffused (Pv) and helix (Pc).

Unlike conventional model-based decompositions, we do
not specify a priori, canonical scattering models, to derive
the power components. Our technique does not produce any
negative power pixels, which is a significant drawback in most
model-based approaches. In this regard, our approach explic-
itly included the amount of polarized scattered information in
terms of the Barakat degree of polarization.

Most importantly, the proposed technique enumerates the
power components simultaneously, which reduces the compu-
tational complexity of the problem.

Moreover, it also enhances interpretability by avoiding the
intricate branching criteria of model-based decompositions.
All the characterization parameters (i.e., θFP and τFP), and the
scattering power components are also roll-invariant.

Results show that the proposed technique performs rea-
sonably well over diverse landcover classes compared to
several methods: Yamaguchi 4-component decomposition with
rotation (Y4R), General four-component scattering power de-
composition (G4U), Adaptive General Four-Component Scat-
tering Power Decomposition (AG4U), and Six component

scattering power decomposition (i6SD). The polarized power
components over the ocean and the urban areas are enhanced.
Moreover, due to the unique roll-invariant nature, the Pd power
component has also increased relative to Y4R, G4U, AG4U
and i6SD.

Besides, the ground-trunk and the ground-branch interac-
tions over vegetation areas are evident in our study due to
which specific polarized power components have increased
over these areas. The introduction of the Pc power component
has provided detailed information about scattering asymmetry
over various targets. Over ocean and vegetation surfaces,
the Pc power exhibits minimal values due to the scattering
symmetry property. Contrarily, the Pc power values have
increased for urban areas. Nonetheless, over oriented urban
areas, the Pc power component is significant due to high
scattering asymmetry.

The proposed unsupervised clustering technique can ade-
quately capture target scattering variations based on domi-
nant scattering mechanisms. Variations of clusters from one
target to another are noticeable from the results obtained
using images acquired by three different frequencies (viz.,
C-, L-, and X-bands). Moreover, the classes derived from
this clustering technique are good representative and provide
enhanced insight into targets’ scattering mechanisms based
on their physical properties. Thus the proposed model-free
decomposition technique and the unsupervised clustering tech-
nique possess an excellent potential for land cover analysis
using FP SAR data.
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APPENDIX

GEOMETRICAL INTERPRETATION OF θFP

We derive all the auxiliary variables in terms of the elements
of the coherency matrix T which is then equivalently repre-
sented in terms of the elements of the Kennaught matrix K.
The total power is TP = T11 + T22 + T33 = 2K11, where
T11, T22, and T33 are the elements of T, and K11 is the
(1, 1) element of K. Using these elements, the geometrical
description of θFP is shown in Fig. 16, where OQ represents
TP which can be decomposed into polarized and unpolarized
components as

TP = mFP TP︸ ︷︷ ︸
Polarized part

+ (1−mFP) TP︸ ︷︷ ︸
Unpolarized part

(12)

https://github.com/Subho07/MF4CF
https://github.com/Subho07/MF4CF
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Fig. 16. Geometrical representation of θFP

In the figure, OP represents the polarized part of the total
power, while PQ represents the depolarized part. The point P
discriminates the polarized component from the unpolarized
component. We consider an arbitrary projection of T11 and
T22 + T33 on OP; OA makes an angle η1 with OP, and OB
makes an angle η2 with OP. Therefore, with these projections,
we are primarily interested in finding the proportion of regular
and irregular components of the scattering wave to the total
polarized power:

tan η1 =
T11

mFP TP
, tan η2 =

T22 + T33
mFP TP

(13)

With the following relationships between elements of T and
K we can write

η1 = tan−1 T11
mFP TP

= tan−1 K11 −K44

2mFP K11
, (14)

η2 = tan−1 T22 + T33
mFP TP

= tan−1 K11 +K44

2mFP K11
, (15)

where, K11 = (T11 + T22 + T33)/2 and K44 = (T22 +
T33 − T11)/2. Therefore, we can write, T11 = K11 − K44

and T22 + T33 = K11 +K44. The difference between η1 and
η2 essentially characterizes scattering from a target denoted
by θFP and defined as

tan θFP = tan (η1 − η2) (16)

=
4mFPK11K44

K2
44 − (1 + 4m2

FP)K2
11

. (17)
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