
Particle Swarm Optimisation for Feature Selection:
A Hybrid Filter-Wrapper Approach

Tony Butler-Yeoman, Bing Xue, and Mengjie Zhang
School of Engineering and Computer Science, Victoria University of Wellington

PO Box 600, Wellington 6140, New Zealand
Email: {butlertony, Bing.Xue, Mengjie.Zhang}@ecs.vuw.ac.nz

Abstract—Feature selection is an important pre-processing
step, which can reduce the dimensionality of a dataset and
increase the accuracy and efficiency of a learning/classification
algorithm. However, existing feature selection algorithms mainly
wrappers and filters have their own advantages and disadvan-
tages. This paper proposes two filter-wrapper hybrid feature
selection algorithms based on particle swarm optimisation (PSO),
where the first algorithm named FastPSO combined filter and
wrapper into the search process of PSO for feature selection
with most of the evaluations as filters and a small number of
evaluations as wrappers. The second algorithm named RapidPSO
further reduced the number of wrapper evaluations. Theoretical
analysis on FastPSO and RapidPSO is conducted to investigate
their complexity. FastPSO and RapidPSO are compared with a
pure wrapper algorithm named WrapperPSO and a pure filter
algorithm named FilterPSO on nine benchmark datasets of vary-
ing difficulty. The experimental results show that both FastPSO
and RapidPSO can successfully reduce the number of features
and simultaneously increase the classification performance over
using all features. The two proposed algorithms maintain the
high classification performance achieved by WrapperPSO and
significantly reduce the computational time, although the number
of features is larger. At the same time, they increase the classifi-
cation accuracy of FilterPSO and reduce the number of features,
but increased the computational cost. FastPSO outperformed
RapidPSO in terms of the classification accuracy and the number
of features, but increased the computational time, which shows
the trade-off between the efficiency and effectiveness.

I. INTRODUCTION

Classification tasks are often described by a large number
of features, so as to represent the target concept as com-
pletely as possible. However, many features are redundant or
irrelevant, resulting in noise in the dataset that reduces the
performance of many classification algorithms [1]. Further-
more, the large number of features contributes to the “curse of
dimensionality”, a major problem for classification in general.
Feature selection is the process of choosing a subset of the
original features from data. The chosen feature subset should
be small and accurately describe the target concept. As a
preprocessing step, feature selection is a practical and well-
known solution to the problems of high-dimensional data,
resulting in a fast and better classification process.

Finding the optimal feature subset is a difficult task. The
search cannot be performed exhaustively, as the search space
contains 2n possible feature subsets for a dataset with n
features. Feature interaction problems, which occur frequently
in classification tasks, increase the complexity of the search
space. Most of the existing feature selection algorithms suffer

from the problems of being stagnation into local optima.
Evolutionary computation (EC) techniques are well-known for
their global search ability, and have been used effectively to
solve feature selection problems. Examples of these includes
genetic algorithms (GAs) [2], genetic programming (GP) [3],
and particle swarm optimisation (PSO) [4]. Compared with
GAs and GP, PSO is easier to implement, has fewer param-
eters, computationally less expensive, and can converge more
quickly. So, in recent years, PSO has attracted much attention
from researchers for solving feature selection problems.

Feature selection algorithms broadly fall into two cate-
gories, wrapper and filter approaches [1], which differ in their
evaluations. Wrapper approaches use a learning/classification
algorithm to evaluate the quality of a particular feature subset,
while filter approaches use data-intrinsic measures (indepen-
dent of any learning algorithm). Common measures for a
filter approach include information theory, dependency, and
consistency measures [1]. Wrapper approaches often yield
better classification performance than filter approaches due to
the direct link between the feature subsets and the classification
algorithm. However, this comes with expensive computational
cost. Filters are computationally cheap, but may not achieve
good classification performance since the filter measure cannot
perfectly reflect the performance of a classification algorithm.
Therefore, finding a way to combine filters and wrappers
into a single process to utilise their advantages and avoid
their disadvantages is expected to improve the performance.
Although there are a few works [5], [6] to combine wrappers
with filters to improve the performance, all of them are per-
formed by adding extra calculation to wrappers, which further
increase the computational cost. Finding a way to combine
filters and wrappers to maintain the classification performance
of wrappers and simultaneously reduce the computational cost
is still an open issue.

A. Goals

This paper aims to explore combinations of filter and
wrapper methods in PSO for feature selection with the goal of
maintaining the classification performance of wrappers while
approaching the efficiency of filters. To achieve this goal, we
will develop two new PSO-based feature selection algorithms,
where in the first algorithm (named FastPSO), the majority of
the evaluations are based on filters and the wrapper evaluations
are performed only when a better (in terms of the filter
measure) solution is found. The second algorithm (named
RapidPSO) further reduces the times of wrapper evaluations
by partially applying the wrapper evaluations when better978-1-4799-7492-4/15/$31.00 © 2015 IEEE

solutions are found. The two proposed algorithms will be
evaluated and compared with a PSO-based pure filter method
and a PSO-based pure wrapper method on a number of
benchmark datasets. Specifically, we will investigate:

• whether FastPSO and RapidPSO can successfully re-
duce the number of features and maintain or even
increase the classification accuracy over using all
features,

• whether FastPSO can maintain the classification per-
formance achieved by the PSO-based wrapper ap-
proach and use a significantly shorter time,

• whether RapidPSO can further reduce the computa-
tional time over FastPSO and still achieved better
classification performance than the PSO-based filter
algorithm, and

II. BACKGROUND

A. Particle Swarm Optimisation

PSO is an EC technique proposed by Kennedy and Eberhart
in 1995 [7]. PSO maintains a population of particles, called
a swarm, each of which encodes a candidate solution. PSO
initialises each particle in the swarm to a random position in
the space, and iterates the position of each particle based on
the experience of the particle and its neighbours. The position
of particle i is represented by a vector xi = (xi,1, . . . , xi,n)
where n is the dimensionality of the search space. The velocity
is represented by a similar vector vi = (vi,1, . . . , vi,n) where
each component of the vector is limited to a predefined range
[−vmax, vmax]. The best previous position of particle i is
recorded as the personal best, pbesti = (pi,1 . . . pi,n), and the
best position found by the whole population is recorded the
global best, gbest = (g1 . . . gn). PSO updates the velocity and
position of each particle according to the following equations:

xt+1
i,d = xti,d + vt+1

i,d (1)
vt+1
i,d = w · vti,d + c1 · r1,i · (pi,d − xti,d)

+ c2 · r2,i · (gd − xti,d) (2)

where d with 0 < d ≤ n denotes the dimension of in the
position or velocity vector, and t represents the t-th iteration.
w is a predefined constant for the inertia weight, and c1 and
c2 are predefined acceleration constants. Each r1,i and r2,i are
random values uniformly distributed over [0, 1]. The original
PSO is applicable to real-valued search spaces. However,
feature selection, along with many other problems, occur in a
discrete search space and require a discrete search algorithm.
Binary PSO (BPSO) was an discrete version of the PSO
algorithm [8], where the values of all the position vectors (i.e.
xi, pbesti, and gbesti) are restricted to 0 or 1. Equation 2
is still used to update the velocity. Each component in the
velocity is transformed to (0,1), which indicates the probability
of the corresponding component in the position vector being
1. BPSO updates the position of each particle according to the
following equation:

xi,d =

1, rand() <
1

1 + e−vi,d

0, otherwise
(3)

B. Information Theory

The tools of information theory [9] are the principal meth-
ods to measure the information content of random variables,
which can be used to measure the quality of feature subsets. A
core information measure is entropy, H(X), which measures
the uncertainty of a discrete random variable X . It is defined
as:

H(X) = −
∑
x∈X

p(x) · log p(x) (4)

where X is the set of values that X can take. Conditional
entropy measures the remaining uncertainty in a discrete
random variable X when another Y is known. This is defined
as:

H(X|Y) = −
∑

x∈X ,y∈Y

p(x, y) · log p(x|y) (5)

If Y completely determines X then the conditional entropy
is zero, indicating no further information is required to fully
describe X . On the other hand, if H(X|Y) = H(X) then X
and Y are completely independent, i.e. no extra information
about X is gained from knowing Y .

Mutual information, I(X;Y), determines how much infor-
mation can be gained about Y given knowledge of X , which
is defined as:

I(X;Y) = H(X)−H(X|Y)

= −
∑

x∈X ,y∈Y

p(x, y) · log p(x, y)

p(x)p(y)
(6)

If knowing X gives no extra information about Y , i.e. the
two variables are independent, then I(X;Y) will be zero.
Otherwise, I(X;Y) will be large if the two variables are
closely related.

C. PSO for Feature Selection

EC techniques have been broadly applied to feature selec-
tion problems, typically PSO [10], [11], [12], GAs [2], [13],
and GP [3]. Due to page limit, this section focuses mainly on
PSO for feature selection and other EC-based works can be
seen from [14], [15].

PSO for Wrapper Feature Selection: A myriad of BPSO
approaches have been applied to feature selection, a selection
of which are featured here. Chuang et al. [16] proposed a
feature selection method that resets gbest to the zero vector
if it is unchanged for too many iterations. In a similar vein,
Yang et al. [17] propose that gbest of a particle is forcibly
changed if unchanged for three iterations. The new gbest is
formed from a combination of the individual pbests of relevant
particles. Experiments show that the new algorithm often
performs better than the standard BPSO algorithm. Xue et al.
[4] present a multi-objective to approach to feature selection,
optimising both classification accuracy and subset size. The
results show one method in particular outperforming both
traditional PSO feature selection algorithms, and some other
common multi-objective methods, in terms of accuracy. Liu et
al. [18] have studied multi-swarm PSO (MSPSO) for feature

Algorithm 1 Pseudo-code of FastPSO
1: f : the fitness value of filter evaluation, Equation (7);
2: w: the fitness value wrapper evaluation, Equation (8);
3: randomly initialise the particles in the swarm;
4: evaluate the f and w values for each particle;
5: initialise the pbest of each particle and calculate their correspond-

ing f ′ and w′ values;
6: for each iteration do
7: for each particle p do
8: f ← filter evaluation of position of p;
9: if f > f ′ then

10: w ← wrapper evaluation of position of p;
11: if w > w′ then
12: update pbest of p to the position of p;
13: update f ′ and w′;
14: for each particle p do
15: update the gbest of p;
16: for each particle p do
17: update the velocity of p using Equation (2) ;
18: update the position of p using Equation (3);
19: collect the features selected by gbest and calculate its classifica-

tion performance on the test set;
20: return the gbest, the features selected by gbest, the training and

testing classification performance.

selection, where experiments indicate IFS performs better than
both traditional PSO- and GA-based feature selection in terms
of classification accuracy and subset size.

PSO for Filter Feature Selection: A number of different
fitness criteria have been used to propose filter approaches.
Peng et al. [19] have proposed an information-theoretic filter
approach, called Min-Redundancy Max-Relevance (mRMR),
based on maximising relevancy and minimising redundancy.
Due to its roots in information theory, mRMR is computa-
tionally inexpensive. Cervante et al. [20] have also proposed
information-theoretic fitness functions for use in feature selec-
tion, evaluating groups instead of pairs of features. Wang at
al. [21] proposed a PSO based filter approach based on rough
set theory, which reduced the dimensionality but suffered from
the problem of high computational cost.

III. PROPOSED HYBRID PSO APPROACH

Wrapper approaches have the advantages of obtaining high
classification performance, but computationally expensive. Fil-
ter approaches are computationally cheap, but the filter mea-
sure might not fully reflect the classification performance (of
a particular classifier). To utilise their advantages, we propose
two hybrid PSO feature selection algorithms, in which both
filter and wrapper approaches are used together to evaluate
the fitness of feature subsets.

A. New Algorithm 1: FastPSO
To combine filter and wrapper evaluations into the search

process of PSO for feature selection, we proposed a new
algorithm where the majority of the evaluations are based
on the filter fitness function and only a small proportion of
the evaluations are based on the wrapper fitness function.
Since filter evaluations are fast, we expect this new algorithm
to be fast and also effective in terms of the classification
performance due to the use of the wrapper fitness function.
This algorithm is called FastPSO.

Algorithm 2 Pseudo-code of RapidPSO
1: initialise the swarm, f , w, f ′ and w′ values;
2: for each iteration do
3: for each particle p do
4: f ← filter evaluation of position of p;
5: if f > f ′ then
6: if (f − f ′) > L then
7: update pbest of p to the position of p;
8: update f ′;
9: else

10: w ← wrapper evaluation of position of p;
11: if w > w′ then
12: update pbest of p to the position of p;
13: update f ′ and w′;

14: U ← list of all particles with updated pbests;
sort U in a descending order of filter evaluations;

15: for the first u particles of U do
16: ensure the wrapper evaluations are performed on their

pbests;
17: update gbest according to the best wrapper evaluation of the

pbest of particles in U ;

18: for each particle p do
19: update the velocity of p using Equation (2);
20: update the position of p using Equation (3);
21: return the gbest, the features selected by gbest, the training and

testing classification performance.

FastPSO is guided by a two-step evaluation procedure
involving two fitness functions, i.e. Equation (7) for filter and
Equation (8) for wrapper. The evaluations are mainly based on
the filter fitness function and the wrapper fitness function is
introduced when a better solution is found during the search
process. This is achieved by observing the change of the filter
evaluation values, and when a particle finds a better pbest,
the wrapper fitness function will be introduced. Algorithm 1
shows the pseudo-code of the FastPSO algorithm. FastPSO
follows the basic structure of a PSO algorithm, but the key
idea relies on the two-step evaluation. In each iteration, the
filter fitness function is first applied to evaluate the current
position of each particle. Only if the particle’s position is
better than its pbest in terms of the filter evaluation value, the
wrapper fitness function is applied to evaluate the classification
performance of the particle’s current position. If the particle’s
current position is better than its pbest in terms of the wrapper
evaluation value, i.e. the classification accuracy, the pbest is
updated to the particle’s current position. gbest is updated if
any updated pbest is better than the current gbest in terms of
the wrapper evaluation. During the search process, each pbest
and gbest will have two fitness values, a filter evaluation and
wrapper evaluation, which is different from standard PSO for
feature selection.

B. New Algorithm 2: RapidPSO
To further investigate the combination of filter and wrapper,

we develop a new strategy to reduce the use of the wrapper
fitness function during the search process of PSO for feature
selection. The second new algorithm is called RapidPSO here.

Algorithm 2 shows the pseudo-code of RapidPSO, which
shows that the filter fitness function is always performed
in each evaluation, the same as FastPSO. The key idea in
RapidPSO is the use of the wrapper fitness function, which

is shown from Line 5 to Line 16, which includes two specific
situations that need wrapper evaluations. The first situation is
when the filter fitness value of the current particle is better
than its pbest, which is similar to FastPSO. However, instead
of always introducing the wrapper fitness function, RapidPSO
considers a special case where the improvement of the filter
evaluation is larger than a certain amount L. We assume
that the large improvement in the filter evaluation is highly
likely to cause an improvement in the wrapper evaluation.
Therefore, the wrapper evaluation is not needed to perform.
pbest of the particle is directly update to the particle’s current
position, which further reduces the probability of performing
the wrapper evaluations. This can be seen from Line 6 to
Line 9. For the first situation, there may be some pbests
without a corresponding wrapper fitness value, which is hard
to guarantee that gbest is the solution with the highest classi-
fication performance. So the wrapper evaluation is considered
in the second situation, which is to ensure that the best pbests
have their corresponding wrapper fitness values stored. This
is achieved by sorting all the pbests in a descending order
according to their filter-evaluation values, and perform the
wrapper evaluation on the top ranked pbest that do not have
a wrapper fitness value.

The difference between FastPSO and RapidPSO can be
seen by comparing Algorithms 1 with 2. RapidPSO performs
a “blind pbest update” step (i.e. without wrapper evaluations)
as shown from Line 6 to Line 9, which reduces the number of
wrapper evaluations over FastPSO. Consequently, RapidPSO
performs the wrapper evaluation to ensure that (only) the good
pbests have a classification accuracy, which is shown from
Line 14 to Line 17 in Algorithm 2.

C. Fitness Functions

a) Filter Evaluation: The goal of using filter ap-
proaches is to speed up the fitness evaluation procedures.
So a computationally cheap measure, mutual information, is
employed here to form the filter evaluation, which is based
on the idea of the Min-Redundancy Max-Relevance (mRMR)
criterion [19]. The filter fitness function aims to maximise the
relevance of the selected features to the class labels and also
to minimise the redundancy among the selected feature subset.
Furthermore, minimising the size of the feature subset is also
considered in the fitness function with a small weighting factor,
which should be small enough to only be significant in tie-
breaker situations.

Equation (7) shows the filter fitness function, where D is
the relevancy of the selected features, R is the redundancy
among the selected features, |X| represents the size of the
feature subset, and α is the weighting factor. Equation (7) is a
maximisation function. PSO using Equation (7) as the fitness
function for feature selection is called FilterPSO here. Note
that FilterPSO is similar to the algorithm proposed in [20],
but with the extra component of α · |X| to ensure that if two
feature subsets have the same value for (D −R), the smaller
subset will have a better fitness value.

F1(X) = D −R− α · |X| (7)

where

D =
∑
x∈X

I(x; c); R =
∑

x,y∈X

I(x; y)

where x, y are individual features in X , and c is the class label.

b) Wrapper Evaluation: The wrapper fitness function is
to maximise the classification accuracy of the selected feature
subset, which is calculated by Equation (8). The accuracy is
calculated by using the number of correctly classified instances
divided by the total number of instances. α · |X| is the same as
in Equation (7). PSO using Equation (8) as the fitness function
for feature selection is called WrapperPSO.

F2(X) = Accuracy − α · |X| (8)

IV. THEORETICAL ANALYSIS

In this section, we take FastPSO as an example to analyse
and approximate the computational complexity. This analysis
is limited to the number of wrapper evaluations since they
usually take the majority of the computational cost in feature
selection approaches, and ignores the size of the feature subset
in those evaluations since it is dataset dependent.

We aim to approximate the mean number of wrapper evalu-
ations performed by FastPSO in each run. The core problem is
that of the probability of a wrapper evaluation being required
at the i-th iteration of a particular particle, based on which it
is easy to calculate the overall speed improvement of FastPSO
over the standard wrapper approach, i.e. WrapperPSO. For a
given particle and iteration, a wrapper evaluation is performed
if, and only if, the filter evaluation of that particle’s position
is an improvement over the filter evaluation of this particle’s
pbest. So the problem further reduces to find the probability
of the filter evaluation of a particle being better than that
of its pbest at the i-th iteration. However, this is almost
an impractical task since the filter evaluation function, F1,
is highly dependent on both the dataset and on past filter
evaluations. This is certainly far too complicated to analyse,
so some assumptions must be made.

Suppose F1 follows continuous distribution that supports
(a subset of) the range [0, 1]. Furthermore, suppose that each
evaluation of F1 is independent of all others. Let p be a
particular particle and m be a particular iteration, and let
X1 . . . Xm be random variables representing the evaluations
of F1 at each iteration 1 to i respectively. The probability that,
at the m-th iteration, a wrapper evaluation will be required is
the probability that Xm is larger than all X1 . . . Xm−1 (F1 is
a maximisation function). We claim the following:

P (Xm > X1 . . . Xm−1) =
1

m
(9)

This is proven using the Inclusion-Exclusion Principle [22].
Let Ei be the event that Xi is all the largest value among
X1 . . . Xm. At least one Ei must hold:

P (E1 ∪ . . . ∪ Em) = 1 (10)

Since the distribution of F is continuous, no two of the events
can be simultaneously true and so P (Ei ∩ Ej) = 0 for all
distinct i, j. By the Inclusion-Exclusion Principle:

P (E1 ∪ . . . ∪ Em) =

m∑
i=1

P (Ei)−
∑
i<j

P (Ei ∩ Ej) + . . . (11)

However, as the probability of any two events occurring
simultaneously is 0, all but the first sum evaluate to 0. Hence:

1 = P (E1 ∪ . . . ∪ Em) =

m∑
i=1

P (Ei) (12)

but since each random variable Xi is i.i.d. P (Ei) = P (Ej)
for all i, j. Therefore:

1 =

m∑
i=1

P (Ei) = mP (En) (13)

So P (Em) = P (Xm > X1, . . . , Xm−1) =
1
m .

Let M be the total number of iterations, and P be the
number of particles in the swarm. Under the assumption that
each Xi is an i.i.d. random sample, the average probability of
a wrapper evaluation is:

P (evaluation) =
1

M
·

M∑
i=1

1

i
(14)

Therefore, making the expected number of wrapper evalu-
ations:

M · P · 1

M
·

M∑
i=1

1

i
= PHM (15)

where Hm is the m-th harmonic number. Hence, with 30
particles and 50 iterations, the expected number of wrapper
evaluations is roughly 135.

This provides a lower bound on the true mean of the
number of wrapper evaluations required, no matter what the
distribution of fitness values is. However, this is clearly an
unrealistic model of the algorithm. The evaluations of F1 are
not i.i.d. because previous evaluations will inform the velocity
of the particle and thus affect future evaluations. Thus, any
increase in number of evaluations above PHM is the result
of PSO performing a more highly informed search than pure
random sampling.

V. EXPERIMENTAL DESIGN

To test FastPSO and RapidPSO, they are compared
with WrapperPSO and FilterPSO. WrapperPSO, FastPSO,
RapidPSO, and FilterPSO represents four algorithms, where
the number of wrapper evaluations is decreased from always
performing to not performing at all. The four algorithms are
compared on nine datasets chosen from the UCI machine
learning repository [23], where the details are shown in Table I.
The nine datasets were chosen to represent a range of features,
instances, and classes that the algorithms can be applied to.
For each dataset, the instances are randomly divided into 2/3
as the training set and 1/3 for as the test set such that the
class distribution is approximately maintained [15]. In order
to maintain reasonably balanced classes, the Gas 6 dataset has
been created from the Gas Sensor Array Drift dataset by taking

TABLE I. DATASETS

Dataset # Features # Instances # Classes

Wine 13 178 3
WDBC 30 569 2
Ionosphere 34 351 2
Splice 61 3190 4
Hill-Valley 100 606 2
Gas 6 128 1694 3
Musk 1 166 476 2
Madelon 500 2600 2
Isolet 5 617 1599 26

batch 6 and removing all data with class labels 3, 4, and 6.
The Isolet 5 dataset is created by using only the validation and
training set of the Isolet 5 dataset since the provided test set
does not include the class labels.

To perform the wrapper evaluation, a classification al-
gorithm is needed to calculate the classification accuracy.
There are many options, such as K-nearest neighbour (KNN),
Decision Trees, Support Vector Machines, and Naive Bayes.
KNN was chosen with k = 1 (1NN) due to its simplicity and
widely use in existing papers [4], [16]. Since some datasets
have a relatively small number of instances in the training
set, each wrapper evaluation uses 10-fold cross validation on
the training set to avoid feature selection bias. The mutual
information based filter evaluation works on discrete rather
than continuous features. To accommodate this, discretised
versions of each dataset are used for the experiments, the
procedure is as follows. The range upon which the values of
a feature lie is divided into 20 bins with each bin, except
perhaps the last, containing an equal number of values. If a
feature takes on fewer than 20 values total, it is left unchanged.

All four tested algorithms, WrapperPSO, FilterPSO,
FastPSO, and RapidPSO, use the following the parameters
suggested in [24]: inertia weight w = 0.7298, acceleration
constants c1 = c2 = 1.49618, maximum velocity vmax = 6,
population size P = 30 and maximum iterations T = 50.
Fully connected topology is used in all the four algorithms.
Furthermore, α = 10−8, the extra parameters of RapidPSO
are set to L = 0.1 and u = 3. Each algorithm was applied
to each dataset for 30 independent runs. A non-parametric
statistical significance test, Wilcoxon test, was used to compare
the classification accuracy achieved by using all features for
classification, and that of the feature subsets selected by
WrapperPSO, FastPSO, RapidPSO, and FilterPSO.

VI. RESULTS AND DISCUSSIONS

Table II summarises the classification accuracy and the
feature subset size of the four algorithms and that of original
feature set, where “mean ± stdev” shows the average and the
standard deviation of the the results from the 30 independent
runs. Table III shows the results of the statistical significance
test between each pair of algorithms in terms of the classifica-
tion accuracy and the number of features. Table IV summarises
the number of wrapper evaluations and the computational time
used by the four algorithms.

A. Results of WrapperPSO and FilterPSO

According to Tables II and III, WrapperPSO substan-
tially reduced the feature subset size, which is more than
half in almost all cases. With the small subsets selected

TABLE II. EXPERIMENTAL RESULTS

Dataset Method Size
mean ± stdev

Accuracy (%)
mean ± stdev

Accuracy(%)
Best

Wine All
WrapperPSO
FastPSO
RapidPSO
FilterPSO

13
7.3 ± 0.8
7.8 ± 1.1
9.0 ± 1.5
8.5 ± 3.5

96.61
97.40 ± 2.30
98.25 ± 1.86
97.91 ± 2.12
94.29 ± 5.03

96.61
100.00
100.00
100.00
100.00

WDBC All
WrapperPSO
FastPSO
RapidPSO
FilterPSO

30
14.5 ± 2.1
17.8 ± 2.1
19.6 ± 3.1
27.7 ± 0.7

97.89
97.11 ± 0.85
97.56 ± 0.72
97.53 ± 0.69
97.88 ± 0.35

97.89
98.42
99.47
98.95
98.95

Ionosphere All
WrapperPSO
FastPSO
RapidPSO
FilterPSO

34
11.0 ± 1.8
15.9 ± 2.5
19.4 ± 4.0
30.5 ± 0.7

82.05
84.70 ± 2.86
84.10 ± 2.84
82.68 ± 2.29
81.17 ± 1.77

82.05
89.74
88.03
86.32
86.32

Splice All
WrapperPSO
FastPSO
RapidPSO
FilterPSO

60
23.6 ± 3.1
28.5 ± 3.2
28.2 ± 3.4
38.1 ± 3.4

74.39
78.42 ± 1.05
77.80 ± 1.17
77.49 ± 1.24
76.22 ± 1.02

74.39
81.10
79.68
80.43
78.73

Hill-Valley All
WrapperPSO
FastPSO
RapidPSO
FilterPSO

100
50.4 ± 6.2
56.1 ± 4.3
61.0 ± 5.7
48.9 ± 6.2

55.45
54.12 ± 1.38
54.13 ± 1.14
54.00 ± 1.55
54.53 ± 1.26

55.45
58.17
56.44
56.68
57.43

Gas 6 All
WrapperPSO
FastPSO
RapidPSO
FilterPSO

128
42.0 ± 2.4
55.4 ± 3.8
63.2 ± 6.4
66.5 ± 5.8

99.82
99.86 ± 0.13
99.88 ± 0.12
99.91 ± 0.09
99.87 ± 0.11

99.82
100.00
100.00
100.00
100.00

Musk1 All
WrapperPSO
FastPSO
RapidPSO
FilterPSO

166
81.9 ± 7.0
91.1 ± 7.8
94.4 ± 9.0
82.9 ± 5.9

76.10
79.41 ± 2.16
78.99 ± 1.84
78.41 ± 1.96
78.05 ± 3.02

76.10
85.53
82.39
83.02
85.53

Madelon All
WrapperPSO
FastPSO
RapidPSO
FilterPSO

500
245.5 ± 9.6
258.5 ± 8.8
268.6 ± 11.0
307.5 ± 3.9

52.60
54.08 ± 1.46
54.41 ± 1.86
54.00 ± 2.08
52.48 ± 1.59

52.60
57.32
58.13
57.55
55.71

Isolet 5 All
WrapperPSO
FastPSO
RapidPSO
FilterPSO

617
306.6 ± 11.4
316.1 ± 12.3
326.8 ± 10.6
369.9 ± 4.8

77.12
78.01 ± 1.04
77.71 ± 1.03
77.33 ± 0.88
75.87 ± 1.13

77.12
79.81
79.62
78.65
78.27

by WrapperPSO, the classification performance of 1NN was
significantly increased in 7 out of the 9 datasets. The results
suggest that PSO guided by the classsification performance
can effectively explore the seach space of the feature selec-
tion problems to reduce the dimensionality and increase the
classification performance.

As a filter approach, FilterPSO maintained similar classifi-
cation performance to using all features, but reduced the num-
ber of features in all cases. This indicates that FilterPSO is an
effective algorithm for feature selection. However, there is still
a statistically significant difference in classification accuracy,
favouring WraperPSO, on the Wine, Ionosphere, Splice, Musk
1, Madelon, and Isolet 5 datasets. The filter approach generated
significantly larger feature subsets on all but the Hill-Valley
and Musk 1 datasets, for which FilterPSO produced anoma-
lously small subsets. On some datasets, this size difference
is very large, for example 61% larger on the Splice dataset.
The best accuracy found, while not a particularly important
statistic, tends to be higher in WrapperPSO. The results show
that WrapperPSO directly used the accuracy as the fitness

TABLE III. SIGNIFICANCE TESTS

Dataset Method A Method B

WrapperPSO RapidPSO FastPSO
Acc Size Acc Size Acc Size

Wine All
FilterPSO
FastPSO
RapidPSO

� �
� �
∗ �
≈ �

� �
� ≈
≈ ∗

� �
� ≈

WDBC All
FilterPSO
FastPSO
RapidPSO

∗ �
∗ �
∗ �
∗ �

∗ �
∗ �
≈ ∗

∗ �
∗ �

Ionosphere All
FilterPSO
FastPSO
RapidPSO

� �
� �
≈ �
� �

≈ �
� �
∗ ∗

� �
� �

Splice All
FilterPSO
FastPSO
RapidPSO

� �
� �
� �
� �

� �
� �
≈ ≈

� �
� �

Hillvalley All
FilterPSO
FastPSO
RapidPSO

∗ �
≈ ≈
≈ �
≈ �

∗ �
≈ ∗
≈ ∗

∗ �
≈ ∗

Gas 6 All
FilterPSO
FastPSO
RapidPSO

� �
≈ �
≈ �
∗ �

� �
� �
≈ ∗

� �
≈ �

Musk1 All
FilterPSO
FastPSO
RapidPSO

� �
� ≈
≈ �
� �

� �
≈ ∗
≈ ≈

� �
≈ ∗

Madelon All
FilterPSO
FastPSO
RapidPSO

� �
� �
≈ �
≈ �

� �
� �
≈ ∗

� �
� �

Isolet 5 All
FilterPSO
FastPSO
RapidPSO

� �
� �
≈ �
� �

≈ �
� �
∗ ∗

� �
� �

∗: Method A is significantly better than B, i.e. higher accuracy or smaller size;
�: Method A is significantly worse than B, i.e. lower accuracy or larger size;
≈: Methods A and B are similar to each other, i.e. similar accuracy or size.

function can achieved better classification performance than
FilterPSO.

B. Results of FastPSO

Tables II and III shows that the number of features selected
by FastPSO is much smaller (around half) than the total
number of features, and maintain or even significantly increase
the classification accuracy on 8 out of the 9 datasets.

Compared with WrapperPSO, FastPSO performed statis-
tically at least as well as WrapperPSO in terms of accuracy
on all but the Splice dataset. FastPSO also produced larger
feature subsets, but the size increase is often small, in the range
of 10% in most cases. Comparing FastPSO with FilterPSO,
FastPSO outperformed FilterPSO in terms of the classifica-
tion performance and the feature subset size in most cases.
The comparisons show that FastPSO combined the filter and
wrapper evaluations together to guide the search process of
PSO for feature selection can achieve better performance than
FilterPSO and maintain the classification accuracy as high as
WrapperPSO. Although the number of features is larger than
WrapperPSO, the computational time is expected to be much
shorter in FastPSO because of the majority of evaluations are
filter evaluations. The results suggest that FastPSO could be

useful in situations where accuracy and speed are important
but subset size is not critical.

C. Results of RapidPSO

According to Tables II and III, the classification perfor-
mance of RapidPSO is similar or significantly better than using
all features in 7 out of the 9 datasets and reduce the number
of features in all cases.

RapidPSO found subsets with significantly worse accuracy
than WrapperPSO on the Ionosphere, Splice, Musk 1, and
Isolet 5 datasets, but similar on the remaining five datasets.
As expected RapidPSO performed at least as well as Fil-
terPSO except for WDBC, in which the difference is very
small. The comparison between FastPSO and RapidPSO is
fairly even, they are not distinguishable in terms of accuracy
on any datasets except for Ionosphere and Isolet 5, which
FastPSO slightly outperforms RapidPSO. Following the trend,
RapidPSO tends to produce larger feature subsets than Wrap-
perPSO and FastPSO, but smaller subsets than FilterPSO;
with Hill-Valley and Musk 1 being the exceptions due to
their unusually small FilterPSO subset sizes. This increase is
generally around 20%, with larger subsets being found on the
WDBC, Ionosphere, and Gas 6 datasets.

D. Analysis on Computational Cost

Table IV summarises the computational cost used by the
four PSO-based algorithms, which includes the CPU time and
the number of wrapper evaluations. The filter evaluation is
very cheap and the wrapper evaluation is very expensive since
each evaluation needs a 10-fold cross validation process for
classification to get the accuracy.

Table IV shows that on all the 9 datasets, the number of
wrapper evaluations decreases from WrapperPSO, FastPSO,
RapidPSO to FilterPSO, which leads to the decrease in the
computational time. Specifically, FastPSO shows an improve-
ment between 18% and 66% in running time over Wrap-
perPSO on every dataset. The algorithm is, as expected, still
much slower than FilterPSO. RapidPSO universally runs more
quickly than both WrapperPSO and FastPSO, while running
more slowly than FilterPSO. The improvement of RapidPSO
over FastPSO is mixed, taking between less than half and
almost equal amounts of time. The analysis performed in
Section IV gives a lower bound on the number of wrapper
evaluations required by FastPSO, but the experiments show
that the algorithm requires several times this number. This
difference is due to FastPSO not performing i.i.d. random
sampling of the search space, which suggests that FastPSO is
performing a much more informed search. RapidPSO uses far
fewer wrapper evaluations than FastPSO on average in most
tests, indicating that it may have earned its title. However,
in general, the number of wrapper evaluations that RapidPSO
requires decreases more than the actual running time when
compared to FastPSO. This could be due to the sorting
process required in each iteration in RapidPSO, and/or because
RapidPSO tends to evaluate larger subsets leading to more
computationally expensive wrapper evaluations.

The results in Tables II, III and IV show that by combining
filter and wrapper evaluations together into the search process
of PSO, it can maintain the classification performance and

TABLE IV. EXPERIMENTAL EFFICIENCY RESULTS

Dataset Method Wrapper evaluations
mean (± stdev)

Time (ms)
mean ± stdev

Wine WrapperPSO
FastPSO
RapidPSO
FilterPSO

1500.0
321.4 ± 35.1
113.5 ± 12.1
0.0

1881 ± 397
695 ± 99
433 ± 64
81 ± 26

WDBC WrapperPSO
FastPSO
RapidPSO
FilterPSO

1500.0
387.0 ± 51.2
136.8 ± 14.8
0.0

15384 ± 1629
5308 ± 918
2486 ± 370
571 ± 77

Ionosphere WrapperPSO
FastPSO
RapidPSO
FilterPSO

1500.0
437.6 ± 63.5
137.6 ± 21.6
0.0

7207 ± 922
2826 ± 474
1362 ± 235
375 ± 50

Splice WrapperPSO
FastPSO
RapidPSO
FilterPSO

1500.0
254.1 ± 17.4
201.9 ± 16.5
0.0

991025 ± 109723
196257 ± 23957
157885 ± 19392
1062 ± 53

Hill-Valley WrapperPSO
FastPSO
RapidPSO
FilterPSO

1500.0
453.5 ± 60.5
129.6 ± 11.9
0.0

51520 ± 6277
29622 ± 3168
18971 ± 1675
13883 ± 1335

Gas 6 WrapperPSO
FastPSO
RapidPSO
FilterPSO

1500.0
555.7 ± 64.8
123.6 ± 20.1
0.0

168903 ± 4096
111303 ± 13553
49983 ± 4127
33847 ± 2098

Musk 1 WrapperPSO
FastPSO
RapidPSO
FilterPSO

1500.0
468.4 ± 67.0
166.6 ± 24.6
0.0

43513 ± 2770
28218 ± 2637
20235 ± 2442
14187 ± 1718

Madelon WrapperPSO
FastPSO
RapidPSO
FilterPSO

1500.0
608.9 ± 71.1
325.7 ± 43.3
0.0

8404234 ± 132761
5370957 ± 715122
3214323 ± 477870
1078671 ± 205485

Isolet 5 WrapperPSO
FastPSO
RapidPSO
FilterPSO

1500.0
517.2 ± 51.5
284.5 ± 43.7
0.0

2352318 ± 217667
1310517 ± 101113
997554 ± 110503
650762 ± 108362

TABLE V. RESULTS OF SFS AND SBS

Method Wine WDBC Ionosphere Splice
Size Accuracy Size Accuracy Size Accuracy Size Accuracy

SFS 4 91.63 5 95.26 4 80.34 6 89.98
SBS 6 98.31 21 96.84 22 83.76 50 73.44

Method Hillvalley Gas 6 Musk1
Size Accuracy Size Accuracy Size Accuracy

SFS 7 51.98 4 99.82 9 76.10
SBS 90 54.21 8 99.12 145 76.73

reduce the computational cost, although the cost is a slightly
increase in the feature subset size. The feature subset size could
be reduced by using a new fitness function or another filter
measure, which is an interesting direction for future work.

E. Further Comparisons with Traditional Methods
The results of two traditional algorithms, sequential for-

ward selection (SFS) [25] and sequential backward selection
(SBS) [26], are shown in Table V. SFS and SBS are determin-
istic algorithms and produce a single solution on each dataset.
Since the experiments on Madelon and Isolet 5 cannot finish
within two days, the results are not listed in the table. For
the seven datasets in Table V, SFS selected a smaller number
of features than FastPSO and RapidPSO and SBS usually
selected more features, but FastPSO and RapidPSO obtained
higher classification accuracies than SFS and SBS on almost
all datasets.

VII. CONCLUSIONS AND FUTURE WORK
The goal of this paper is to investigate a PSO approach

to combine filters and wrappers for feature selection to re-

duce the dimensionality of the data and maintain or in-
crease the classification performance. To achieve this goal,
two algorithms FastPSO and RapidPSO have been proposed
by introducing wrapper evaluations into PSO-based filter al-
gorithms, and FastPSO has more wrapper evaluations than
RapidPSO. FastPSO ad RapidPSO are tested and compared
with WraperPSO and FilterPSO on a number of benchmark
problems of varying difficulty. The experimental results show
that FastPSO ad RapidPSO reduced the dimensionality of the
data and achieved the same or better classification performance
than using all the available features. WrapperPSO achieved
the highest classification accuracy and selected the smallest
number of features, but used the longest computational time,
while FilterPSO used the shortest time, but is the worst in
terms of the classification performance and the subset size.
FastPSO ad RapidPSO obtained similar classification perfor-
mance to WrapperPSO in most cases, used a shorter time,
but selected a slightly larger number of features. Meanwhile,
FastPSO ad RapidPSO outperformed FilterPSO in terms of
the classification performance and the number of features,
but worse in terms of the computational cost. The theoretical
analysis provides a lower bound of the number of wrapper
evaluations for FastPSO, and the actual computational cost
is higher than the lower bound, showing that FastPSO per-
formed a much more informed search. FastPSO achieved better
classification performance than RapidPSO with slightly higher
computational cost and larger feature subset size. In addition,
FastPSO and RapidPSO achieved higher classification perfor-
mance than LFS and SBS. Although their sizes are larger than
SFS, classification performance is usually more important than
the number of features.

Several questions have been raised in the process of this
research. Perhaps most obviously, there appears to be a limit on
the classification accuracy of many datasets. This could be due
to interaction between the classification algorithm and the data,
or a characteristic of the dataset itself. Knowing why these lim-
its seem to exist may give insight into the performance of the
feature selection algorithms and the classification algorithm.

ACKNOWLEDGMENT

We would like to thank Dr Ivy Liu and Dr Mark John-
ston from School of Mathematics, Statistics and Operations
Research at Victoria University of Wellington for their help in
the theoretical analysis of the algorithm.

REFERENCES

[1] M. Dash and H. Liu, “Feature selection for classification,” Intelligent
Data Analysis, vol. 1, no. 4, pp. 131–156, 1997.

[2] F. Lin, D. Liang, C.-C. Yeh, and J.-C. Huang, “Novel feature selection
methods to financial distress prediction,” Expert Systems with Applica-
tions, vol. 41, no. 5, pp. 2472–2483, 2014.

[3] K. Neshatian and M. Zhang, “Improving relevance measures using ge-
netic programming,” in European Conference on Genetic Programming
(EuroGP 2012), ser. Lecture Notes in Computer Science, vol. 7244.
Springer, 2012, pp. 97–108.

[4] B. Xue, M. Zhang, and W. N. Browne, “Particle swarm optimization
for feature selection in classification: A multi-objective approach,” IEEE
Transactions on Cybernetics, vol. 43, no. 6, pp. 1656–1671, 2013.

[5] H. B. Nguyen, B. Xue, I. Liu, and M. Zhang, “Filter based backward
elimination in wrapper based PSO for feature selection in classification,”
in IEEE Congress on Evolutionary Computation (CEC’14), 2014, pp.
3111 – 3118.

[6] Z. Zhu, Y.-S. Ong, and M. Dash, “Markov blanket-embedded genetic
algorithm for gene selection,” Pattern Recognition, vol. 40, no. 11, pp.
3236–3248, 2007.

[7] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in IEEE
International Conference on Neural Networks, vol. 4, 1995, pp. 1942–
1948.

[8] ——, “A discrete binary version of the particle swarm algorithm,”
in IEEE International Conference on Systems, Man, and Cybernetics,
vol. 5, 1997, pp. 4104–4108.

[9] C. Shannon and W. Weaver, The Mathematical Theory of Communica-
tion. Urbana:The University of Illinois Press, 1949.

[10] M. Lane, B. Xue, I. Liu, and M. Zhang, “Gaussian based particle
swarm optimisation and statistical clustering for feature selection,” in
Evolutionary Computation in Combinatorial Optimisation, ser. Lecture
Notes in Computer Science, 2014, vol. 8600, pp. 133–144.

[11] L. Cervante, B. Xue, L. Shang, and M. Zhang, “A dimension reduction
approach to classification based on particle swarm optimisation and
rough set theory,” in 25nd Australasian Joint Conference on Artifi-
cial Intelligence, ser. Lecture Notes in Computer Science, vol. 7691.
Springer, 2012, pp. 313–325.

[12] B. Xue, M. Zhang, and W. Browne, “Novel initialisation and updating
mechanisms in PSO for feature selection in classification,” in Appli-
cations of Evolutionary Computation, ser. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2013, vol. 7835, pp. 428–438.

[13] E. Martinez, M. M. Alvarez, and V. Trevino, “Compact cancer biomark-
ers discovery using a swarm intelligence feature selection algorithm,”
Computational Biology and Chemistry, vol. 34, no. 4, pp. 244–250,
2010.

[14] B. Tran, B. Xue, and M. Zhang, “Overview of particle swarm optimisa-
tion for feature selection in classification,” in Simulated Evolution and
Learning, ser. Lecture Notes in Computer Science. Springer, 2014,
vol. 8886, pp. 605–617.

[15] B. Xue, “Particle swarm optimisation for feature selection,” Ph.D. dis-
sertation, Victoria University of Wellington, Wellington, New Zealand,
2014.

[16] L. Y. Chuang, H. W. Chang, C. J. Tu, and C. H. Yang, “Improved binary
PSO for feature selection using gene expression data,” Computational
Biology and Chemistry, vol. 32, no. 29, pp. 29– 38, 2008.

[17] C. S. Yang, L. Y. Chuang, C. H. Ke, and C. H. Yang, “Boolean binary
particle swarm optimization for feature selection,” in IEEE Congress
on Evolutionary Computation (CEC’08), 2008, pp. 2093–2098.

[18] Y. Liu, G. Wang, H. Chen, and H. Dong, “An improved particle swarm
optimization for feature selection,” Journal of Bionic Engineering,
vol. 8, no. 2, pp. 191–200, 2011.

[19] H. Peng, F. Long, and C. Ding, “Feature selection based on mu-
tual information criteria of max-dependency, max-relevance, and min-
redundancy,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 27, no. 8, pp. 1226–1238, 2005.

[20] L. Cervante, B. Xue, M. Zhang, and L. Shang, “Binary particle swarm
optimisation for feature selection: A filter based approach,” in IEEE
Congress on Evolutionary Computation (CEC’12), 2012, pp. 881–888.

[21] X. Wang, J. Yang, X. Teng, W. Xia, and R. Jensen, “Feature selection
based on rough sets and particle swarm optimization,” Pattern Recog-
nition Letters, vol. 28, no. 4, pp. 459–471, 2007.

[22] W. Szpankowski, Inclusion-Exclusion Principle. John Wiley & Sons,
Inc., 2001, pp. 49–72.

[23] K. Bache and M. Lichman, “UCI machine learning repository,” 2013.
[Online]. Available: http://archive.ics.uci.edu/ml

[24] M. Clerc and J. Kennedy, “The particle swarm– explosion, stability, and
convergence in a multidimensional complex space,” IEEE Transactions
on Evolutionary Computation, vol. 6, no. 1, pp. 58–73, 2002.

[25] A. Whitney, “A direct method of nonparametric measurement selection,”
IEEE Transactions on Computers, vol. C-20, no. 9, pp. 1100–1103,
1971.

[26] T. Marill and D. Green, “On the effectiveness of receptors in recognition
systems,” IEEE Transactions on Information Theory, vol. 9, no. 1, pp.
11–17, 1963.

