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Abstract—Convolutional auto-encoders have shown their re-
markable performance in stacking to deep convolutional neural
networks for classifying image data during the past several
years. However, they are unable to construct the state-of-the-art
convolutional neural networks due to their intrinsic architectures.
In this regard, we propose a flexible convolutional auto-encoder
by eliminating the constraints on the numbers of convolutional
layers and pooling layers from the traditional convolutional auto-
encoder. We also design an architecture discovery method by
exploiting particle swarm optimization, which is capable of auto-
matically searching for the optimal architectures of the proposed
flexible convolutional auto-encoder with much less computational
resource and without any manual intervention. We test the
proposed approach on four extensively used image classification
datasets. Experimental results show that our proposed approach
in this paper significantly outperforms the peer competitors
including the state-of-the-art algorithms.

Index Terms—Convolutional auto-encoder, particle swarm op-
timization, image classification, deep learning, neural networks.

I. INTRODUCTION

AUTO-ENCODERS (AEs) [1]–[4] are building blocks
of Stacked AE (SAE) [5], [6] that is one of the tri-

mainstream deep learning algorithms [7] (i.e., others are Deep
Belief Networks (DBN) [8] and Convolutional Neural Networks
(CNNs) [9], [10]). An AE is a three-layer neural network
comprising one input layer, one hidden layer, and one output
layer, where the number of units in the input layer is identical
to that in the output layer. Typically, the transformation from
the input layer to the hidden layer is called the encoder,
and that from the hidden layer to the output layer refers to
the decoder. The encoder extracts the features/representations
from the input data, while the decoder reconstructs the input
data from the features/representations. By minimizing the
divergences between the input data and the reconstruction,
one AE is trained. An SAE is stacked by multiple trained AEs
for learning hierarchical representations that have gained more
remarkable performance than ever before in the field of image
classification [10]–[12].
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When image data are fed to the SAE, they must be
transformed into the vector-form beforehand, which will change
their inherent structures and reduce the consecutive performance
in turn. For instance, one image is with the form I ∈ Rn×n,
where the pixel Ij,k (1 < j < n, 0 < k < n) has the
close distance to the pixel Ij−1,k. When I is vectorized to
V ∈ Rn2

, the relationship between Ij,k and Ij−1,k will be
changed and may not be neighbors anymore in V . Extensive
literatures have shown that adjacent information is a key factor
in addressing images related problems [9], [10], [13]–[15]. To
address this issue, Masci et al. [16] proposed the Convolutional
AEs (CAEs), where the image data is directly fed in 2-D form.
In CAEs, the encoder is composed of one convolutional layer
followed by one pooling layer, and the decoder comprises
only one deconvolutional layer. Multiple trained CAEs are
stacked to a CNN for learning the hierarchical representations
that enhance the final classification performance. Inspired by
the advantages of CAEs in addressing data with the original
2-D form, variants of CAEs have been proposed subsequently.
For example, Norouzi et al. [17] proposed the Convolutional
Restricted Boltzmann Machines (RBM) [5], [18] (CRBM). Lee
et al. [19] proposed the convolutional DBN by stacking a
group of trained CRBMs. In addition, Zeiler et al. [20], [21]
proposed the inverse convolutional ones based on the sparse
coding schema [22], which inspired Kavukcuoglu et al. [23]
to design the convolutional stacked sparse coding for solving
object recognition tasks. Recently, Du et al. [24] proposed the
Convolutional Denoising AE (CDAE) by using Denoising AE
(DAE) [25] to learn the convolutional filters.

Although experimental results from the CAE and its vari-
ants have shown benefits in diverse applications, one major
limitation exists in that the architectures of their stacked CNNs
are inconsistent with those of state-of-the-art CNNs, such as
ResNet [26] and VGGNet [27]. To be specific, because one
CAE has one convolutional layer and one pooling layer in
the encoder part, the stacked CNN has the same numbers of
convolutional layers and pooling layers. However, state-of-the-
art CNNs are with non-identical numbers of convolutional
layers and pooling layers. Because the architecture of CNN is
one key ingredient contributing to the final performance, the
restriction on the numbers of convolutional layers and pooling
layers of CAEs should be removed. However, choosing the
appropriate numbers of convolutional layers and pooling layers
is intractable due to the non-differentiable and non-convex
characteristics in practice, which is related to the architecture
optimization for neural networks.

Algorithms for automatically searching for the optimal
architectures of neural networks can be classified into three
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different categories. The first refers to the algorithms based on
the stochastic system, including Random Search (RS) [28],
Bayesian-based Gaussian Process (BGP) [29], [30], Tree-
structured Parzen Estimators (TPE) [31], Sequential Model-
Based Global Optimization (SMBO) [32], Evolving Unsu-
pervised Deep Neural Network (EUDNN) [33], structure
learning [34] and sparse feature learning [35]. The second
covers the algorithms that are designed specifically for CNNs
where multiple different building blocks exist. The Meta-
modeling algorithm (MetaQNN) [36] and the Large Evolution
for Image Classification (LEIC) algorithm [37] belong to this
category. The third refers to the NeuroEvolution of Augmenting
Topologies (NEAT) [38] algorithm and its diverse variants,
such as [39]–[41]. Above all, there is one method that does
not belong to these categories, i.e., the Grid Search method
(GS), which tests every combination of the related parameters.

Particle Swarm Optimization (PSO) is a population-based
stochastic evolutionary computation algorithm, motivated by
the social behavior of fish schooling or bird flocking [42], [43],
commonly used for solving optimization problems without
requiring domain knowledge. Compared with other heuristic
algorithms, PSO is enriched with the features of the simple
concept, easy implementation, and computational efficiency. In
PSO, the individuals are called particles, each particle maintains
the best solution (denoted by pBesti for the i-th particle) from
the memory of itself, and the population records the best
solution (denoted by gBest) from the history of all particles.
During the process, particles expectedly cooperate and interact
with the pBesti and gBest, enhancing the search ability and
pursuing the optimal solutions. Due to the characteristics of
no requirements (e.g., convex or differentiable) imposed on
the problems to be optimized, PSO has been widely applied to
various real-world applications [44]–[46], naturally including
the architecture design of neural networks, such as [47]–[52].
In the optimization of neural network architectures, these algo-
rithms employ an implicit method to encode each connection
of the neural networks and take PSO or its variants to search
for the optimum. However, they cannot be utilized for CAEs
and CNNs, even SAEs and DBNs, which are deep learning
algorithms, where tremendous numbers of connection weights
exist, causing the unaffordable cost for implementation and
effective optimization in these existing PSO-based architecture
optimization algorithms [53]. As have discussed, CAEs without
the constraints on the numbers of the convolutional layer and
pooling layers would be greatly preferred for stacking the
state-of-the-art CNNs. However, the absolute numbers of these
layers are unknown before the architecture is identified. When
PSO is employed for the architecture optimization, particles
will need to have different lengths. The reasons are that: 1) the
length of the particle refers to the number of decision variables
of the problem to be solved by PSO; and 2) in the architecture
optimization problems, a set of different architectures are
involved, and different architectures have different numbers
of decision variables. However, the canonical PSO did not
provide any way to update the velocity of particles with non-
identical lengths. In addition, evaluating particles each of which
represents a deep learning algorithm is time-consuming, and
will become even more intractable for the population-based

updating process. A common way to solve this problem is to
employ intensive computational resources and utilize parallel-
computation techniques.

The objective of this paper is to design and develop an
effective and efficient PSO method to automatically discover the
architecture of the flexible convolutional auto-encoder without
manual intervention. To achieve this goal, we have specified
the four aims as follows:

1) Propose a Flexible CAE (FCAE) where multiple convolu-
tional layers and pooling layers can exist. The FCAE
has no requirement on the particular numbers of the
convolutional layers and the pooling layers, and have
the potential for stacking to different types of CNNs.

2) Design a PSO-based Architecture Optimization (PSOAO)
algorithm for the proposed FCAE. In PSOAO, we will
propose an efficient encoding strategy to represent the
FCAE architectures, which involve hundreds of thousands
of parameters, into each particle, and we will also develop
an effective velocity updating mechanism for particles
with variable lengths.

3) Investigate the performance of the proposed FCAE when
its architecture is optimized by the designed PSOAO on
image classification benchmark datasets (i.e, the CIFAR-
10 dataset [54], the MNIST dataset [9], the STL-10
dataset [55], and the Caltech-101 dataset [56].), compare
the classification accuracy to peer competitors and examine
the evolution effectiveness of PSOAO.

4) Investigate the effectiveness of the designed velocity
updating method through quantitative experiments on the
comparisons to its opponents.

The remainder of this paper is organized as follows. Back-
ground of the CAE and PSO is reviewed in Section II. This is
followed by the details of the proposed PSOAO algorithm in
Section III. Then, the experiment design and the result analysis
are documented in Sections IV and V, respectively. Finally,
the conclusions and future work are drawn in Section VI.

II. LITERATURE REVIEW

This work will build FCAE and PSOAO based on CAE
and PSO, respectively. Therefore, we would like to provide
the skeletons of CAE and PSO as well as their limitations
for FCAE in the following subsections, which could help the
readers to conveniently understand our work in this paper.
In addition, related works are also reviewed and commented,
which helps the readers to easily appreciate the importance of
our work in this paper.

A. Convolutional Auto-Encoder

For the convenience of the development, assuming CAEs
are utilized for image classification tasks, and each image
X ∈ Rw×h×c, where w, h, c refer to the image width, height,
and number of channels, respectively. Fig. 1 illustrates the
architecture of one CAE [16].

Convolution: Given the input data, the convolution operation
employs one filter to slide with one defined stride, and outputs
the element that is the sum of the products of the filter and
the input data with which this filter overlaps. All elements
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Fig. 1. The illustrative architecture of CAE.

generated by one filter construct one feature map, and multiple
feature maps are allowed in the convolution operations. The
convolution operation has the SAME type and the VALID type.
The parameters related to the convolutional operation are the
filter size (width and height), the stride size (width and height),
the convolutional type, and the number of feature maps.

Pooling: Pooling operation resembles the convolution op-
eration, in addition to the filter and the way to generate the
elements of the corresponding feature map. Specifically, the
filter in a pooling operation is called a “kernel”, and no value
exists in the kernel. There are two types of statistical indica-
tors in the pooling operation: mean and maximal. Typically,
maximal pooling is preferred in CAEs.The pooling operation
requires the parameters: the kernel size (width and height), the
stride size (width and height), and the pooling type.

Deconvolution: The deconvolutional operation is equivalent
to the corresponding convolutional operation with inverse
parameter settings. Specifically, the deconvolutional operation
performs the convolutional operation with the filter and stride,
which has been used in the corresponding convolutional opera-
tion, on the feature map that is resulted from the corresponding
convolutional operation. In order to assure the output of the
deconvolutional operation to have the same size as the input
of the corresponding convolutional operation, extra zeros may
be padded to the input of the deconvolutional operation.

Learning of CAE: The mathematical form of the CAE is
represented by Equation (1), where the conv(·), pool(·), and
de conv(·) denote the convolution, pooling, and deconvolution
operations, respectively, F (·) and G(·) refer to the element-wise
nonlinear activation functions, b1 and b2 are the corresponding
bias terms, r and X̂ are the learned features and reconstruction
of X , l(·) measures the differences between X and X̂ , and
Ω is the regularization term to improve the feature quality.
By minimizing L, the CAE is trained, and then parameters
in convolution operation, bias terms, and deconvolutional
operation are identified. Encoders with these parameters from
multiple trained CAEs are composed to be a CNN for
learning hierarchical features that benefit the final classification
performance [7].

r = pool (F (conv (X) + b1))

X̂ = G (de conv (r) + b2)

minimize L = l(X, X̂) + Ω

(1)

B. Motivation of FCAE

As shown in Fig. 1, a CAE is composed of a convolutional
layer followed by a pooling layer and then a deconvolutional

layer. The transformation through the convolutional layer and
then the pooling layer is called the encoder. The transformation
through the deconvolutional layer is called the decoder. During
the construction of a CNN by using CAEs, encoders from
multiple CAEs are stacked together based on their training
orders, and the input data of the current encoder is the output
data of the previous one. However, this architecture is not able
to form the state-of-the-art CNNs nor the common deep CNNs.
Next, we will describe them in detail.

The architectures of a CNN stacked by CAEs and a state-
of-the-art CNN named VGGNet [27] are shown in Fig. 2a and
Fig. 2b, respectively. From these two examples, it is evident
that CAEs are incapable of stacking into VGGNet. The reason
is that the CNN stacked by CAEs are with the same building
blocks, i.e., the two-layer network including a convolutional
layer followed by a pooling layer. Consequently, the stacked
CNN is composed of a series of such building blocks and
with the same number of the convolutional layers to that of
the pooling layers. In addition, a convolutional layer must be
followed by a pooling layer in the CNNs stacked by CAEs. As
can be observed from Fig. 2b, there are multiple convolutional
layers and pooling layers with the identical numbers, and also
a convolutional layer is not necessarily followed by a pooling
layer.
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Fig. 2. Architectures of the CNN stacked by CAEs (in Fig. 2a) and VGGNet
(in Fig. 2b).

The pooling layer is typically used to reduce the dimension
of the input data to decrease the computational complexity.
The most commonly used configuration for a pooling layer is
with the kernel size of 2 × 2 and the stride of 2 × 2. Based
on the working mechanism introduced in Subsection II-A, one
pooling layer with such a configuration will reduce half size of
the input data. For example, for an image from the CIFAR-10
dataset [54] that is with the dimension of 32× 32, the output
size will become 1× 1 with 5 pooling layers, i.e., the CNN
designed to process CIFAR-10 with CAEs is at most up to 10
layers. However, the state-of-the-art designs on this benchmark
have more than 100 layers [57].

Based on the description above, the root of the limitations
from CAE exists in its architectures that the encoder of a CAE
is composed one convolutional layer and then one pooling layer.
Therefore, the concern is naturally raised that the architecture of
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CAE should be revised, which motivates the design of FCAE,
i.e., in the encoder part of an FCAE, non-identical numbers
of convolutional layers and pooling layers are allowed, and a
pooling layer can follow a series of convolutional layers.

C. Particle Swarm Optimization

A typical PSO has the procedure as follows:
Step 1): Initialize the particles, predefine a maximal generation

number maxt, and initialize a counter t = 0;
Step 2): Evaluate the fitness of particles;
Step 3): For each particle, choose the best one, pBesti, from

its memory;
Step 4): Choose the best particle gBest from the history of

all particles;
Step 5): Calculate the velocity {v1, · · · , vi, · · · } of each par-

ticle {x1, · · · , xi, · · · } by Equation (2);
Step 6): Update the position {p1, · · · , pi, · · · } of each particle

{x1, · · · , xi, · · · } by Equation (3);
Step 7): Increase t by 1, if t < maxt to repeat Steps 2) – 6)

otherwise go to Step 8);
Step 8): The position of gBest is reported.

vi ←
inertia︷ ︸︸ ︷
w · vi +

global search︷ ︸︸ ︷
c1 · r1 · (pg − pi) +

local search︷ ︸︸ ︷
c2 · r2 · (pp − pi) (2)

pi ← pi + vi (3)

In Equation (2), w denotes the inertia weight, c1 and c2 are
acceleration constants, r1 and r2 are random numbers between
0 and 1, and pg as well as pp denotes the positions of gBest
as well as pBesti, respectively. vi and pi denote the velocity
and position of the i-th particle xi, respectively. By integrating
the “inertia”, “global search”, and “local search” terms into
the velocity updating, the best position is expected to be found
by particles.

Noting in Equation (2) that there are two subtraction
operations existing in the “global search” and “local search”.
In order to better understand how such a subtraction operation
works, we will describe the details by taking the term pg − pi
in “global search” as an example. Supposing the minimization
problem to be solved is formulated as f(z1, z2, · · · , zn) where
there are n decision variables {z1, z2, · · · , zn} ∈ Ψ. When
PSO is used to solve this problem, the i-th particle xi will
be randomly sampled from Ψ, and its position is determined
by a particular value pi = {zi1, zi2, . . . , zin} ∈ Ψ. Through the
interaction formulated by Equations (2) and (3), the position
of xi is updated towards the position of the optimal solution.
After a number of iterations, the optimization is solved and the
final solution is the position of the global best particle, gBest.
In this example, the length of a particle is n, i.e., the number
of decision variables and also the dimension of the position.
Obviously, pg − pi = {zg1 − zi1, z

g
2 − zi2, · · · , zgn − zin}.

Limitation of Using PSO for Architecture Design in
FCAE: The velocity updating requires the particle xi, gBest,
and pBesti to have the same/fixed length. When PSO is used
for the architecture optimization of FCAE, particles represent

the potential optimal architectures of FCAE. Because the
optimal architecture of FCAE for solving the task at hand is
unknown, particles with different variable lengths will emerge.
Therefore, a novel velocity updating method needs to be
designed in this regard.

D. Related Works

As we have discussed in Section I, algorithms for optimizing
the architectures of deep neural networks fall into four different
categories.

For the algorithms in the first category, RS [28] evaluates
the randomly selected architectures with a predefined maximal
trial number, and uses the best one in performance. RS has
been reported that it only works under the condition when
optimum is in a subspace of the whole search space [58].
However, it is not clear whether this fact equally applies
to CNNs or not. Compared to RS, BGP [29], [30] utilizes
more knowledge on choosing the potential optimal architecture
based on Bayesian inference [30]. However, BGP has extra
parameters, such as the kernels, which are hard to tune.
TPE [31] works with the assumption that the parameters related
to the architecture are independent, while most parameters in
CNNs are indeed dependent such as the convolutional layer
size and the strides. In addition, EUDNN is designed for
unsupervised deep neural networks that are with different
architectures from CNNs. Furthermore, methods in [34], [35]
are only used for optimizing the particular network connections
with the given architectures, such as the sparsity. To this end,
algorithms in this category cannot be used to optimize the
architectures of CNNs. Consequently, they are not suitable for
FCAEs of which the architectures are based on CNNs.

For the algorithms in the second category, i.e.,
MetaQNN [36] and LEIC [37], both of them are designed
specifically for optimizing the architectures of CNNs.
Specifically, MetaQNN uses the reinforcement learning
technique [59] to heuristically exploit the potential optimal
architectures of CNNs, thoroughly evaluate them, and then
choose the one that has the best fitness. LEIC employs
nearly the same strategy to MetaQNN except for that LEIC
used genetic algorithm as the heuristic method. Due to the
complete training on each candidate in both algorithms, their
deficiencies are also obvious, i.e., their training relies on the
extensive computational resources. For instance, MetaQNN
employed 10 Graphics Processing Unit (GPU) cards for 8-10
days, while LEIC employed 250 high-performance computers
for 20 days on the CIFAR-10 test problem [54]. Unfortunately,
sufficient computational resource is not necessarily available
to all interested researchers.

Because the algorithms in the third category are all based on
NEAT, their working flows are nearly the same. Specifically,
the input layer and the output layer are assigned first, and
then neurons between these two layers and connections from
arbitrary two neurons are heuristically generated. With the
fitness evaluation upon each situation, the better ones are
selected and the best one is expected to be found with
genetic algorithm. In addition to the limitations occurred in the
algorithms from the second category, other limitations from



5

NEAT-based algorithms are that hybrid connections (i.e., the
weight connections between the layers which are not adjacent)
would be produced, and the configurations of the input layer
and the output layer must be specified in advance, which are
not allowed or applicable in CAEs.

Theoretically, GS can find the optimal architecture because
of its exhaustive nature to try each candidate. However, it is
impossible for GS to try each candidate in practice. Recently,
experimental investigation [60] shows that GS is only suitable
for the problems with no more than four parameters in practice.
As have been shown in Subsection II-A, a CAE will have more
than 10 parameters even it contains only one convolutional
layer and one pooling layer. In addition, GS cannot well handle
parameters with continuous values because of the “interval”
problems [60].

III. THE PROPOSED PSOAO ALGORITHM FOR FCAE

In this section, the details of the proposed PSOAO algorithm
for FCAE will be provided. We will describe the encoding
strategy which involves the FCAE representation, the particle
initialization, the fitness evaluation, and the velocity and
position updating mechanism.

A. Algorithm Overview

Algorithm 1: Framework of the PSOAO Algorithm

1 x←Initialize the particles based on the proposed
encoding strategy;

2 t← 0;
3 while t < the maximal generation number do
4 Evaluate the fitness of each particle in x;
5 Update the pBesti and gBest;
6 Calculate the velocity of each particle;
7 Update the position of each particle;
8 t← t + 1;
9 end

10 Return gBest for deep training.

Algorithm 1 outlines the framework of the designed PSOAO
algorithm. Firstly, particles are randomly initialized based on
the proposed encoding strategy (line 1). Then, particles start
to evolve until the generation number exceeds the predefined
one (lines 3-9). Finally, the gBest particle is picked up for
obtaining the final performance through the deep training1 to
solve tasks at hand (line 10).

During the evolution, the fitness of each particle is evaluated
(line 4) first, and then the pBesti and gBest are updated based
on the fitness (line 5). Next, the velocity of each particle is
calculated (line 6) and their positions are updated (line 7) for
the next generation of evolution. In the following subsections,
keys aspects of PSOAO are detailed.

1Supposing the optimal performance of an neural network-based model is
achieved through T ∗ training epochs. The deep training refers to the model
has experienced T training epochs, where T is equal to or greater than T ∗.

TABLE I
ENCODED INFORMATION IN THE CONVOLUTIONAL LAYERS AND THE

POOLING LAYERS OF FCAE.

Layer Type Encoded Information

convolutional
layer

filter width, filter height, stride width, stride height,
convolutional type, number of feature maps, and the

coefficient of l2.

pooling layer kernel width, kernel height, stride width, stride height,
pooling type

conv conv pool pool

conv conv conv poolconv

conv pool poolconv conv conv

Fig. 3. Three particles with different encoded information from PSOAO.

B. Encoding Strategy

For the convenience of the development, the definition of
FCAE is given in Definition 1 by generalizing the building
blocks in all CNNs. Obviously, the CAE is a special form of
FCAE when the numbers of convolutional layers and pooling
layers are both set to be 1.

Definition 1. A flexible convolutional auto-encoder (FCAE)
encompasses one encoder and one decoder. The encoder is
composed of the convolutional layers and pooling layers, where
these two types of layers are not mixed and their numbers are
flexible. The decoder part is the inverse form of the encoder.

We design an encoding strategy through variable-length
particles to encode the potential architecture of one FCAE
into one particle. Because the decoder part in an FCAE is
the inverse form of the encoder, the particle in the proposed
variable-length encoding strategy only encodes the encoder part
for the reason of reducing the computational complexity. Each
particle contains different numbers of convolutional layers and
pooling layers. Based on the introduction of the convolution
operation and pooling operation in Subsection II-A, all the
encoded information of PSOAO for FCAE are summarized in
Table I where the l2 denotes the weight decay regularization
term for preventing from the overfitting problem [61]. Because
only the convolutional layers involve weight parameters, this
regularization term is applied only to the convolutional layers.
Furthermore, because the output size will not change from
the input size with the SAME convolutional layers, which
is easy to control in automatic architecture discovering, the
designed encoding strategy will not encode the type of the
convolutional layers but default to the SAME type. As have
mentioned in Subsection II-A that CAE prefers to the max
pooling layer, we also don’t need to encode this parameter.
In addition, three examples of the generally encoded particles
in PSOAO are illustrated in Fig. 3. In the following, we will
detail the rationale of this encoding strategy.
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In the proposed PSOAO algorithm, a variable-length encod-
ing strategy is designed for the particles representing FCAEs
with different architectures. The major reason is that the optimal
architecture is unknown prior to the optimization, and the
fixed-length encoding strategy often imposing constraints on
architectures does not work under this occasion. Specifically,
if the traditional fixed-length encoding strategy is employed,
the maximal length should be specified in advance. However,
the maximal length is not easy to set and needs to be
carefully tuned for the best performance. A too small number
denoting the maximal length would be inefficient for the
optimized architecture of FCAE to solve complex problems.
A too large number would consume much more unnecessary
computation, and also results in worse performance within the
same predefined evolution generation number. Furthermore,
two types of layers exist in each particle, which increases
the difficulty of employing the fixed-length encoding strategy.
With the designed variable-length encoding strategy, all the
information of potential optimal architecture for FCAE can be
flexibly represented for exploitation and exploration during the
search process without manual intervention.

C. Particle Initialization

Algorithm 2: Particle Initialization
Input: The population size N , the maximal number of

convolutional layers Nc, and the maximal
number of pooling layers Np.

Output: Initialized population x0.
1 x← ∅;
2 while |x| ≤ N do
3 conv list← ∅;
4 nc ← Uniformaly generate an integer between

[1, Nc];
5 while conv list ≤ nc do
6 conv unit← Initialize a convolutional layer

with random settings;
7 conv list← conv list ∪ conv unit;
8 end
9 pool list← ∅;

10 np ← Uniformaly generate an integer between
[1, Np];

11 while |pool list| ≤ np do
12 pool unit← Initialize a pooling layer with

random settings;
13 pool list← pool list ∪ pool unit;
14 end
15 Use conv list and pool list to generate a particle

x;
16 x← x ∪ x;
17 end
18 Return x.

Algorithm 2 shows the procedure of the particle initialization
with the given population size, and maximal numbers of
the convolutional layers and the pooling layers. Particularly,
lines 3-8 demonstrate the initialization of the convolutional

layers, while lines 9-14 show the initialization of the pooling
layers, where the random settings refer to the settings of the
information encoded in these two types of layers. Because
the decoder part of FCAE can be explicitly derived from its
encoder part, each particle in the proposed PSOAO algorithm
contains only the encoder part for reducing the computational
complexity.

D. Fitness Evaluation

Algorithm 3 shows the fitness evaluation for the particles
in PSOAO. As we have introduced in Subsection II-A, the
reconstruction error added by the loss of the regularization
term is identified as the objective function for training CAE.
However, the loss of the regularization term used in FCAE
(i.e., the l2 loss) is highly affected by the weight numbers
and weight values, and different architectures have different
weight numbers and the weight values. In order to investigate
when only the architecture is reflected by the particle quality,
the l2 loss is discarded and only the reconstruction error
is employed as the fitness. Supposing the batch training
data is {d1, d2, · · · , dn} (djki ∈ Rw×h denotes the pixel
value at the position of (j, k) of the i-th image in the
batch training data, and each image has the dimension of
w × h), the weights in the FCAE is {w1, w2, · · · , wm}, the
reconstructed data is {d̂1, d̂2, · · · , d̂n}. The l2 is calculated
by

∑m
i=1 w

2
i , while the reconstruction error is calculated by

1
n

∑n
k=1

∑w
l=1

∑h
m=1( ˆdlmk − dlmk )2.

Algorithm 3: Fitness Evaluation
Input: The population x, the training set Dtrain, the

number Ntrain of training epoch.
Output: The population x with fitness.

1 Calculate the reconstruction error and l2 loss of the
FCAE encoded by each particle in x, and train the
weights with Ntrain epochs;

2 Calculate the reconstruction error of each batch data in
Dtrain and set the mean reconstruction error as the
fitness of the corresponding particle;

3 Return x.

Typically, a deep learning algorithm requires a training epoch
number in the magnitude of 102−103 to train its weight param-
eters by gradient-based algorithms. This high computational
issue is even worsen in population-based algorithms. In the
proposed PSOAO algorithm, this number is specified at a very
smaller number (e.g., 5 or 10) for speeding up the training.
For example, it will take 2 minutes for training one epoch on
the CIFAR-10 dataset (with 50, 000 training samples) utilizing
one GPU card with the model number of GTX1080. If we
train it with 102 epochs for each particle with the population
size of 50 for 50 generations, it will take about one year,
which is not acceptable for the purpose of general academic
research. The widely used solution for easing this adversity is
to employ intensive computation resources, such as the LEIC
algorithm very recently proposed by Google in 2017, where
250 computers are employed for about 20 days on the CIFAR-
10 dataset using the genetic algorithm for the architecture
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discovering. In fact, it is not necessary to evaluate the final
performance of each particle by a large number of training
epochs during the architecture searching. Instead picking up
a promising particle after a fewer training epochs and then
deep training it once with sufficient training epochs could be
a promising alternative. In the proposed PSOAO algorithm, a
small number of training epochs is employed to conduct the
fitness evaluation of particles. With the evaluated fitness, the
gBest and pBesti are selected to guide the search towards
the optimum. When the evolution is terminated, the gBest is
selected and one-time deep training is performed for reaching
the optimal performance. We have shown that this setting can
largely speed up PSOAO yet with less computational resources,
while the promising performance of PSOAO is still maintained.
Specifically, the running time on the investigated benchmark
datasets are shown in Table II, the adopted computational
resources for the investigated benchmark datasets are given in
Subsection IV-C, and the experimental results regarding the
performance are shown in Subsections V-A and V-C.

E. Velocity Calculation and Position Update

In PSOAO, the particles are with different lengths, and
Equation (2) cannot be directly used. To solve this problem,
we design a method named “x-reference” to update the velocity.
In x-reference, the lengths of gBest and pBesti refer to the
length of the current particle x, i.e., gBest and pBesti keep
the same length to that of x. Because the pBesti is selected
from the memory of each particle, and the gBest is chosen
from all particles, the current particle x is always with the
same length of pBesti and the x-reference is applied only to
the “global search” part of Equation (2). Algorithm 4 shows
the details of the x-reference method.

Specifically, the x-reference method is applied twice in the
same manner in the velocity updating for the “global search”
part of Equation (2). The first is on the convolutional layer
part of gBest and x (lines 2-14), and the second is on the
pooling layer part (line 15). For the convolutional layer part, if
the number of convolutional layers, cg, from gBest is smaller
than that from x, new convolutional layers initialized with
zero values are padded to the tail of cg. Otherwise, extra
convolutional layers are truncated from the tail of cg. After the
“global search” part is derived by Algorithm 4, the “inertia” and
“local search” parts in Equation (2) are calculated as normal,
then the complete velocity is calculated and the particle position
is updated by Equation (3).

For an intuitive understanding the proposed x-reference
velocity updating method, an example is provided in Fig. 4.
Specifically, Fig. 4a displays the gBest and x that are used to
do the “global search” part in the velocity updating. In Fig. 4b,
the convolutional layers and pooling layers are collected from
gBest and x. Because the lengths of convolutional layers and
pooling layers from x are 2 and 4, and those from gBest are
3 and 2, the last convolutional layer from the convolutional
layer part from gBest is truncated, and the other two pooling
layers are padded to the tail of the pooling layer part of gBest.
In particular, the padded pooling layers are created with the
values of encoded information equal to 0. Fig. 4c demonstrates

Algorithm 4: The x-reference Velocity Calculation
Method
Input: The partilce x, the gBest, the acceleration

constant c1.
Output: The gloabl search part of velocity updating.

1 r1 ← Randomly sample a number from [0, 1];
2 cg ← Extract the convolutional layers from gBest;
3 cx← Extract the convolutional layers from x;
4 pos c← ∅;
5 if |cg| < |cx| then
6 c← Initialize |cx| − |cg| convolutional layers with

encoded information of zeros;
7 cg ← Pad c to the tail of cg;
8 else
9 cg ← Truncate the last |cg| − |cx| convolutional

layers from cg;
10 end
11 for i = 1 to |cx| do
12 pcgi , pxi

← Extract the position of the i-th
convolution layer from cg and cx;

13 pos c← pos c ∪ c1 · r1 · (pcgi − pxi);
14 end
15 pos p← Analogy the operations in lines 2-14 on the

pooling layers of gBest and x;
16 Return pos c ∪ pos p.

the updating between the convolutional layer part and pooling
layer part from gBest and x. Fig. 4d shows the results of this
updating.

No matter whether padding or truncating is operated in the
designed x-reference velocity updating method, the goal is
to make the same length of convolutional layers and pooling
layers in gBest to that in x, respectively. The mechanism
behind this design is discussed as follows. In PSOAO, there
are a group of particles with different lengths in the population,
with the same goal of searching for the optimal architectures of
FCAEs for solving image classification tasks. If we have each
particle follow the length of gBest (i.e., the gBest-reference
velocity updating method), all the particles will have the same
length to that of gBest from the second generation. Because the
pBesti is chosen from the memory of each particle, the gBest,
pBesti, and current particle x may all have the same length
from the third generation. Consequently, all particles participate
in the optimization with one particular depth of FCAE and
only change the encoded information. Indeed, the variation of
length regarding gBest can be seen as an exploration search
behavior, while that of the encoded information is viewed as
an exploitation search behavior. When all particles are in the
same length, the length of gBest will be constant until it
terminates. In this regard, the exploration search ability is lost
if we employ the gBest-reference velocity updating method.
In addition, keeping the length of x equal to gBest can also be
viewed as the losses of diversity, which would easily lead to the
premature convergence in population-based algorithms. Both
the loss of exploration search and the premature phenomenon
will result in a poor performance. An experiment is conducted
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Fig. 4. An example to illustrate the proposed x-reference velocity updating method.

in Subsection V-D to further quantitatively investigate this
velocity updating design.

F. Deep Training on gBest

When the evolution of PSOAO is finished, the best particle,
gBest, is picked for deep training. As stated in Subsection III-D
that each particle is trained with only a few epochs, which is not
the optimal performance for solving real-world applications. To
solve this concern, the deep training is necessary. Typically, the
process of the deep training is the same to the fitness evaluation
in Subsection III-D except for a larger epoch number, say 100
or 200.

IV. EXPERIMENTAL DESIGN

In this section, the benchmark datasets, peer competitors,
and the parameter settings are detailed for the experiments
investigating the performance of the proposed FCAE in which
its architecture is optimized by the proposed PSOAO algorithm.

A. Benchmark Datasets

The experiments are conducted on four image classification
benchmark datasets, which are widely used and specifically for
investigating the performance of AEs. They are the CIFAR-10
dataset [54], the MNIST dataset [9], the STL-10 dataset [55],
and the Caltech-101 dataset [56]. Fig. 5 shows examples
from these benchmark datasets. In the following, these chosen
datasets are briefly introduced.

1) CIFAR-10 dataset: It contains 50, 000 training images
and 10, 000 test images Each one is a 3-channel RGB image
in the size of 32 × 32, and belongs to one of 10 categories
of natural objectives (i.e., truck, ship, horse, frog, dog, deer,
cat, bird, automobile, and airplane). Each category is with
roughly the same number of images. In addition, different
objects occupy different areas of the images.

2) MNIST dataset: It is a handwritten digit recognition
dataset to classify the numeral numbers of 0 · · · 9, including
60, 000 training images and 10, 000 test images. Each one is a
1-channel gray image in the size of 28× 28, and the samples
in each category are with different variations, such as rotations.
Each category is composed of the same number of image
samples.

3) STL-10 dataset: It is a widely used dataset for un-
supervised learning, containing 100, 000 unlabeled images,
5, 000 training images, and 8, 000 test images from 10-category
natural image object recognition (i.e., airplane, bird, car, cat,
deer, dog, horse, monkey, ship, truck). Each one is a 3-channel
RGB image in the size of 96× 96. In addition, the unlabeled
images contain images that are beyond the 10 categories. Due
to the small number of training samples, this dataset challenges
the feature learning ability of CAEs/AEs and PSOAO.

4) Caltech-101 dataset: It is a 101-category image classifi-
cation dataset where the weights and heights of images vary
from 80 to 708 pixels. Most images are 3-channel RGB while
occasionally gray, and with different images in each category
from 31 to 800. In addition, most images only display a small
part of the image, and other areas are occupied by noises for
increasing the difficulty in classification. Due to the quite small
number of images, and the non-identical numbers of images in
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(a) Examples from the CIFAR-10 dataset. From left to right, they are
from the categories of truck, ship, horse, frog, dog, deer, cat, bird,
automobile and airplane, respectively.

(b) Examples from the Mnist dataset. From left to right, they are from
the categories of 0 · · · 9, respectively.

(c) Examples from the STL-10 dataset. From left to right, they are
from categories of airplane, bird, car, cat, deer, dog, horse, monkey,
ship and truck, respectively.

(d) Examples from the Caltech-101 dataset. From left to right, they
are from categories of accordio, bass, camera, dolphin, elephant, ferry,
gramophone, headphone, lamp and sunflower, respectively.

Fig. 5. Examples from the chosen benchmark datasets.

each category, this dataset also challenges the feature learning
algorithms.

B. Peer Competitors

Peer competitors for the proposed FCAE, which have been
introduced in Section I, are employed for performing the com-
parisons on the chosen image classification benchmark datasets.
They are the CAE [16], Convolutional RBM (CRBM) [19], and
the state-of-the-art Convolutional Denoising AE (CDAE) [24].
In addition, two widely used variants of AEs are also employed
as the peer competitors for a comprehensive comparison. They
are the Sparse AE (SAE) [62] and Denoising AE (DAE) [25].

Because this paper aims at proposing an FCAE that could
be stacked to the state-of-the-art CNNs, peer competitors for
comparisons here also include the stacked forms of these
CAEs/AEs, i.e., the Stacked CAE (SCAE), the Stacked CRBM
(SCRBM), the Stacked CDAE (SCDAE), the Stacked SAE
(SSAE), and the stacked DAE (SDAE). The Stacked form of
the proposed FCAE is SFCAE.

C. Parameter Settings

The peer competitors SCAE, SCRBM, SSAE, and SDAE
have been investigated very recently on the chosen benchmark
datasets, and their architectures have been manually tuned
with domain expertise [24]. Their classification results are
directly cited from the original publications, thus none of their
parameter settings needs to be specified. In addition, the state-
of-the-art SCDAE provides the classification results with the
usage of only one and two building blocks on the chosen
benchmark datasets. In order to do a fair comparison, we also
perform experiments on SFCAE with at most two building
blocks. Note that the SFCAE is tested on the chosen benchmark
datasets without the preprocessing of data augmentation for

keeping consistency to its peer competitors. In the following,
the parameter settings of PSOAO are provided in detail.

In the designed PSOAO algorithm, PSO related parameters
are specified based on their conventions [63], i.e., the inertia
weight w is set to be 0.72984, the acceleration constants c1 and
c2 are both set to be 1.496172, and the initial velocity is set to
be 0. The training sets of MNIST and CIFAR-10, the unlabeled
data of STL-10 are naturally used for their fitness evaluations.
Due to the non-identical and a quite small number of images in
each category of the Caltech-101 dataset, 30 images randomly
selected from each category are used for the fitness evaluations
and also as the training set based on the suggestions in [24].
Because inappropriate settings of convolutional operations and
pooling operations would lead to an unaffordable computational
cost and make FCAE being incompetitive, in the exploration of
each particle, the number of feature maps is set to be [20, 100],
the kernel with the same size of width and height is set to be
[2, 5], the maximal number of pooling layers is set to be 1, and
that of convolutional layer is set to be 5. Note that only the
square convolutional filters and pooling kernels are investigated
in the experiments, which is based on the conventions from
state-of-the-art CNNs [26], [57]. In addition, the coefficient
of l2 term is set to be [0.0001, 0.01], which is a commonly
utilized range for training neural networks in practice.

FCAE with the architecture determined by PSOAO and the
weights initialized by the widely used Xavier method [64],
by adding one full connection layer with 512 units and 50%
Dropout [65] from the conventions of deep learning community,
are used for the deep training. We investigate the classification
results by feeding the trained model with the corresponding test
set2, employing the widely used rectifier linear unit [66] as the
activation function, the Adam [67] optimizer with its default
settings as the training algorithm for weight optimization, and
the BatchNorm [68] technique for speeding up the training.
For keeping consistency in the results to be compared, the
experiments with the trained model on each benchmark dataset
are also independently performed 5 times. Due to the extreme
imbalance training data exist in the Caltech-101 dataset, we
investigate this dataset based on its convention [19], i.e.,
investigating the classification accuracy on each category of the
images, and then reporting the mean and standard derivations
over the whole dataset.

The proposed PSOAO algorithm is implemented by Ten-
sorflow [69], and each copy of the source code runs on one
GPU card with the same model number of GTX1080. For
reproducing the experimental results reported in this paper, the
codes are released in https://github.com/sunkevin1214/psoao.
In addition, the architecture configurations of FCAEs optimized
by PSOAO for the benchmark datasets in these experiments
are provided in Subsection V-E. Training time of the proposed
PSOAO algorithm on the benchmark datasets are shown in
Table II.

2The test data of Caltech-101 dataset is the entire dataset excluding from
the training set.
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TABLE II
CONSUMED TIME (HOURS) OF THE PROPOSED PSOAO ALGORITHM FOR

DIFFERENT BENCHMARK DATASETS.

CIFAR-10 MNIST STL-10 Caltech-101

81.5 118 230 22.5

V. EXPERIMENTAL RESULTS AND ANALYSIS

A. Overview Performance

Table III shows the mean and standard derivations of the
classification accuracies of the proposed FCAE method, whose
architecture is optimized by the designed PSOAO algorithm,
and the peer competitors on the benchmark datasets. Because
literatures do not provide the standard derivations of SCAE
on CIFAR-10 and MNIST, SCRBM on CIFAR-10, and SDAE
on MNIST, only their mean classification accuracies are
shown. The references in Table III denote the sources of the
corresponding mean classification accuracies, and the best
mean classification results are highlighted in bold. The terms
“SFCAE-1” and “SFCAE-2” refer to the SFCAE with one and
two building blocks, respectively, which is the same meaning
as the terms “SCDAE-1” and “SCDAE-2.”

TABLE III
THE CLASSIFICATION ACCURACY OF THE PROPOSED FCAE METHOD

AGAINST ITS PEER COMPETITORS ON THE CHOSEN BENCHMARK DATASETS.

Algorithm CIFAR-10 MNIST STL-10 Caltech-101

SSAE 74.0 (0.9) 96.29 (0.12) 55.5 (1.2) 66.2 (1.2)

SDAE 70.1 (1.0) 99.06 [25] 53.5 (1.5) 59.5 (0.3)

SCAE 78.2 [16] 99.29 [16] 40.0 (3.1) 58.0 (2.0)

SCRBM 78.9 [70] 99.18 [19] 43.5 (2.3) 65.4 (0.5) [19]

SCDAE-1 75.0 (1.2) 99.17 (0.10) 56.6 (0.8) 71.5 (1.6)

SCDAE-2 80.4 (1.1) 99.38 (0.05) 60.5 (0.9) 78.6 (1.2)

SFCAE-1 78.9 (0.3) 99.30 (0.03) 61.2 (1.2) 79.8 (0.0)

SFCAE-2 83.5 (0.5) 99.51 (0.09) 56.8 (0.2) 79.6 (0.0)

It is clearly shown in Table III that FCAE outperforms the
traditional AEs (i.e., the SSAE and the SDAE) and traditional
CAEs (i.e., the SCAE and the SCRBM) on all benchmark
datasets. In addition, FCAE also outperforms the state-of-the-
art CAEs (i.e, the SCDAE-1 and the SCDAE-2) on these
benchmark datasets. Furthermore, the best results on CIFAR-
10 and MNIST are reached by SFCAE-2, and those on STL-10
and Caltech-101 are by SFCAE-1. Note that SFCAE-2 performs
worse on STL-10 and Caltech-101 than SFCAE-1, which is
caused by the much smaller numbers of training instances
in these two benchmark datasets, and deeper architectures
are suffered from the overfitting problem. Because CIFAR-10
and MNIST are with many more training samples (50, 000
in CIFAR-10 and 60, 000 in MNIST), a deeper architecture
naturally results in the promising classification accuracy. In

summary, when the architecture of the proposed FCAE method
is optimized by the designed PSOAO algorithm, FCAE shows
superior performance among its peer competitors on all the
four image classification benchmark datasets.

B. Evolution Trajectory of PSOAO

In order to intuitively investigate the efficacy of the designed
PSOAO algorithm in optimizing the architectures of the
proposed FCAE method, its evolution trajectories on the chosen
benchmark datasets during the training phases are plotted
in Fig. 6, where the horizontal axis denotes the number of
generations in the evolution, and the vertical axis denotes the
fitness values of the gBest.

As can be seen from Figs. 6a, 6b, 6c, and 6d, PSOAO has
converged within the specified maximal generation number.
Specifically, it has converged since about the 15th generation
on all benchmark datasets for both SFCAE-1 and SFCAE-2,
and about the 5th generation on the CIFAR-10 and Caltech-101
datasets for SFCAE-2. Note that the reconstruction error of
SFCAE-2 is smaller than that of SFCAE-1 on STL-10 dataset
(shown in Fig. 6c), which is caused by the different input data
for them.

C. Performance on Different Numbers of Training Examples

In this subsection, we investigate the classification perfor-
mance of the proposed FCAE method whose architecture is
optimized by the designed PSOAO algorithm on different
numbers of training samples. The peer competitors on the
MNIST dataset are SCRBM [19], ULIFH [71], SSE [72], and
SCAE [16], and those for the CIFAR-10 dataset are SCAE [16],
Mean-cov. RBM [70], and K-means (4k feat) [55]. The reason
for choosing these benchmark datasets and peer competitors is
that the literature has provided their corresponding information
that is widely used by the comparisons between various variants
of CAEs.

TABLE IV
THE CLASSIFICATION ACCURACY OF FCAE-2 AGAINST PEER COMPETITORS

ON THE DIFFERENT NUMBERS OF TRAINING SAMPLES FROM MNIST.

# samples 1K 2K 3K 5K 10K 60K

SCRBM 97.38 97.87 98.09 98.41 — 99.18

ULIFH 96.79 97.47 — 98.49 — 99.36

SSAE 97.27 — 98.17 — — 98.50

SCAE 92.77 — — — 98.12 99.29

SFCAE 97.49 98.45 98.80 99.09 99.16 99.51

Tables IV and V show the experimental results of FCAE-2
with the architecture confirmed in Subsection V-A on different
numbers of training samples of the MNIST and CIFAR-10
benchmark datasets. The symbol “—” denotes that there is
no result reported in the corresponding literature. The best
classification accuracy is highlighted in bold.

As can be seen from Tables IV and V, SFCAE-2 surpasses
all peer competitors on these two datasets. Especially, with
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(a) The evolution trajectories on the CIFAR-10 dataset.
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(b) The evolution trajectories on the MNIST dataset.
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(c) The evolution trajectories on the STL-10 dataset.
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(d) The evolution trajectories on the Caltech-101 dataset.

Fig. 6. Trajectories of the PSOAO algorithm in automatically discovering the
architectures of FCAE on the chosen benchmark datasets.

TABLE V
THE CLASSIFICATION ACCURACY OF FCAE-2 AGAINST PEER COMPETITORS

ON THE DIFFERENT NUMBERS OF TRAINING SAMPLES FROM CIFAR-10.

# samples 1K 10K 50K

SCAE 47.70 65.65 78.20

Mean-cov. RBM — — 71.00

K-means (4k feat) — — 79.60

SFCAE 53.79 73.96 83.47

a much smaller number (1K) of training examples, SFCAE-
2 performs better than the seminal work of CAE (SCAE)
with 4.72% classification accuracy improvement on MNIST
and 6.09% on CIFAR-10. These results show the promising
scalability of SFCAE-2 in dealing with different numbers of
training samples.

D. Investigation on x-reference Velocity Calculation
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(a) Classification accuracy of SFCAE-1 by truncating gBest and x.
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(b) Classification accuracy of SFCAE-2 by truncating gBest and x.

Fig. 7. Classification accuracy comparisons between the x-reference and
gBest-reference velocity updating strategy in the designed PSOAO method.

To further investigate the superiority of the proposed x-
reference velocity updating method, we replace it from the
proposed PSOAO algorithm with the gBest-reference velocity
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updating method, to compare the performance on the chosen
benchmark datasets introduced in Subsection IV-A. To achieve
this, we first let the length of pBesti equal to that of gBest.
If the length of the convolutional layers in pBesti is less than
that of gBest, zeros are padded. Otherwise, truncating the
corresponding parts from pBesti. We use this method in the
pooling layers of pBesti and these two types of layers in x.
Then, we use Equations (2) and (3) to update the position of
each particle. The experimental results are shown in Fig. 7,
where Fig. 7a displays the results of FSCAE-1 while Fig. 7b
displays those of FSCAE-2.

As can be seen from Fig. 7a, with the x-reference velocity
updating method, SFCAE-1 achieves the classification accuracy
improvements of 5.7%, 8.8%, 5.9%, and 7.9% on the CIFAR-
10, MNIST, STL-10, and Caltech-101 benchmark datasets,
respectively. The same promising performance of SFCAE-2 can
also be observed with the classification accuracy improvements
of 7.7%, 10.6%, 5.6%, and 9.6% on these chosen benchmark
datasets, as shown in Fig. 7b.

In summary, the analysis and experimental results convincely
justify the effectiveness of the proposed x-reference velocity
updating method in the proposed PSOAO algorithm.

E. Investigation on The Obtained architectures

Tables VI, VIII, X, and XII show the architecture con-
figurations of SFCAE-1 for the CIFAR-10, MNIST, STL-
10 and Caltech-101 datasets, respectively. Additionally, Ta-
bles VII, IX, XI, and XIII show the architecture configurations
of SFCAE-2 for the CIFAR-10, MNIST, STL-10 and Caltech-
101 datasets, respectively. Noting that the SAME convolutional
layers, the max pooling layers and the strides with 1 × 1
are used based on the experimental settings, therefore, these
configurations are not shown in these tables.

TABLE VI
THE ARCHITECTURE CONFIGURATION OF SFCAE-1 ON THE CIFAR-10

DATASET.

layer type configuration
conv Filter: 2× 2, # Feature map: 24, L2: 0.0016
conv Filter: 3× 3, # Feature map: 57, L2: 0.0001
conv Filter: 5× 5, # Feature map: 63, L2: 0.0096
conv Filter: 5× 5, # Feature map: 35, L2: 0.0071
conv Filter: 3× 3, # Feature map: 76, L2: 0.0015

pooling Kernel: 2× 2, Stride: 2× 2

TABLE VII
THE ARCHITECTURE CONFIGURATION OF SFCAE-2 ON THE CIFAR-10

DATASET.

layer type configuration
conv Filter: 4× 4, # Feature map: 36, L2: 0.0001

pooling Kernel: 2× 2, Stride: 2× 2

The obtained architectures are based on our designed encod-
ing strategy. The encoding strategy in this paper is designed
based on the architectures of the traditional convolutional
neural networks (CNNs) that are composed of several blocks,

TABLE VIII
THE ARCHITECTURE CONFIGURATION OF SFCAE-1 ON THE MNIST

DATASET.

layer type configuration
conv Filter: 2× 2, # Feature map: 100, L2: 0.0010
conv Filter: 2× 2, # Feature map: 82, L2: 0.0018
conv Filter: 2× 2, # Feature map: 100, L2: 0.0001
conv Filter: 2× 2, # Feature map: 100, L2: 0.0001

pooling Kernel: 2× 2, Stride: 2× 2

TABLE IX
THE ARCHITECTURE CONFIGURATION OF SFCAE-2 ON THE MNIST

DATASET.

layer type configuration
conv Filter: 3× 3, # Feature map: 89, L2: 0.0001
conv Filter: 3× 3, # Feature map: 90, L2: 0.0001
conv Filter: 3× 3, # Feature map: 93, L2: 0.0005

pooling Kernel: 2× 2, Stride: 2× 2

TABLE X
THE ARCHITECTURE CONFIGURATION OF SFCAE-1 ON THE STL-10

DATASET.

layer type configuration
conv Filter: 2× 2, # Feature map: 85, L2: 0.0096
conv Filter: 3× 3, # Feature map: 77, L2: 0.0086
conv Filter: 3× 3, # Feature map: 83, L2: 0.0025

pooling Kernel: 2× 2, Stride: 2× 2

TABLE XI
THE ARCHITECTURE CONFIGURATION OF SFCAE-2 ON THE STL-10

DATASET.

layer type configuration
conv Filter: 2× 2, # Feature map: 83, L2: 0.0094
conv Filter: 4× 4, # Feature map: 49, L2: 0.0087

pooling Kernel: 2× 2, Stride: 2× 2

TABLE XII
THE ARCHITECTURE CONFIGURATION OF SFCAE-1 ON THE CALTECH-101

DATASET.

layer type configuration
conv Filter: 2× 2, # Feature map: 14, L2: 0.0084
conv Filter: 5× 5, # Feature map: 8, L2: 0.0002

pooling Kernel: 2× 2, Stride: 2× 2

TABLE XIII
THE ARCHITECTURE CONFIGURATION OF SFCAE-2 ON THE CALTECH-101

DATASET.

layer type configuration
conv Filter: 5× 5, # Feature map: 15, L2: 0.0051

pooling Kernel: 2× 2, Stride: 2× 2
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and each block is composed of several convolutional layers
followed by the pooling layer. Unsurprisingly, these obtained
architectures follow the architectures of the traditional CNNs
and the architectures of known and manually designed network,
such as the VGGNet [27].

Recently, there are two famous types of CNNs, i.e.,
ResNet [26] and DensNet [57]. Because these two networks are
different from the architectures of the traditional CNNs due to
the skip and dense connections, the obtained architectures are
different to these networks. Due to the promising performance
of ResNet and DenseNet on large-scale image classification
tasks shown in their experiments, we will in future investigate
a new encoding strategy that is capable of encoding the skip
connections of ResNet and dense connections of DensNet.

VI. CONCLUSIONS AND FUTURE WORK

The goal of the paper is to develop a novel PSO algorithm
(namely PSOAO) to automatically discover the optimal architec-
ture of the flexible convolutional auto-encoder (named FCAE)
for image classification problems without manual intervention.
This goal has been successfully achieved by defining the
FCAE that has the potential to construct the state-of-the-art
deep convolutional neural networks, designing an efficient
encoding strategy that is capable of representing particles with
non-identical lengths in PSOAO, and developing an effective
velocity updating mechanism for these particles. The FCAE
with the “optimal” architecture is achieved by PSOAO, and
compared with five peer competitors including the most state-of-
the-art algorithms on four benchmark datasets, specifically used
by auto-encoders for image classification. The experimental
results show that FCAE remarkably outperforms all the
compared algorithms on all adopted benchmark datasets in term
of their classification accuracies. Furthermore, FCAE with only
one building block can surpass the state-of-the-art with two
building blocks on the STL-10 and Caltech-101 benchmark
datasets. In addition, FCAE reaches the best classification
accuracies compared with the four peer competitors when
only 1K, 2K, 3K, 5K, and 10K training images of the MNIST
benchmark dataset are used, and significantly outperforms three
peer competitors when only 1K and 10K training images of the
CIFAR-10 benchmark dataset are used. Moreover, the proposed
PSOAO algorithm also shows the excellent characteristic of fast
convergence by investigating its evolution trajectories, and the
effective velocity updating mechanism through the quantitative
comparison to its opponents.

Although deep CNNs have achieved the current state-of-
the-art results for image classification, the architectures and
hyper-parameters are largely determined by manual tuning
based on domain expertise/knowledge. This paper provides a
direction, which shows that such manual work can be replaced
by automatic learning through evolutionary approaches. In the
future, we will investigate simpler evolutionary methods on
more complex CNN models with using much less computa-
tional resources.
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