
JOURNAL OF LATEX CLASS FILES, VOL., NO., 2016 1

A New Representation in PSO for
Discretisation-Based Feature Selection

Binh Tran, Student Member, IEEE, Bing Xue, Member, IEEE, and Mengjie Zhang, Senior Member, IEEE

Abstract—In machine learning, discretisation and feature selec-

tion are important techniques for preprocessing data to improve

the performance of an algorithm on high-dimensional data. Since

many feature selection methods require discrete data, a common

practice is to apply discretisation before feature selection. In

addition, for the sake of efficiency, features are usually discretised

individually (or univariate). This scheme works based on the

assumption that each feature independently influences the task,

which may not hold in cases where feature interactions exist.

Therefore, univariate discretisation may degrade the perfor-

mance of the feature selection stage since information showing

feature interactions may be lost during the discretisation process.

Initial results of our previous proposed method (EPSO) showed

that combining discretisation and feature selection in a single

stage using bare-bones particle swarm optimisation can lead to

a better performance than applying them in two separate stages.

In this study, we propose a new method called PPSO which

employs a new representation that can reduce the search space

of the problem and a new fitness function to better evaluate

candidate solutions to guide the search. The results on ten high-

dimensional datasets show that PPSO select less than 5% of the

number of features for all datasets. Compared with the two-

stage approach which uses BBPSO for feature selection on the

discretised data, PPSO achieves significantly higher accuracy on

seven datasets. In addition, PPSO obtains better (or similar)

classification performance than EPSO on eight datasets with a

smaller number of selected features on six datasets. Furthermore,

PPSO also outperforms the three compared (traditional) methods

and performs similar to one method on most datasets in terms

of both generalisation ability and learning capacity.

Index Terms—Feature selection, discretisation, particle swarm

optimisation, classification, high-dimensional data.

I. INTRODUCTION

More and more high-dimensional datasets with thousands
to tens of thousands of features become common in many
machine learning applications in different fields such as bioin-
formatics, genomics, image processing and text classification
[1]. These datasets usually have a significant number of redun-
dant features and irrelevant features that can be considered as
noise, which negatively affects the performance of the learning
algorithm. Therefore, feature selection (FS) is usually a critical
preprocessing step to select only relevant features for many
machine learning tasks such as clustering and classification
[1]. In this paper, we focus on FS for classification. Although
many studies have shown the effectiveness of applying FS on
high-dimensional data [1], [2], it is still challenging due to the
large search space and the existence of feature interactions.

Binh Tran, Bing Xue, and Mengjie Zhang are with the Evolutionary
Computation Research Group at Victoria University of Wellington, PO Box
600, Wellington, New Zealand (E-mail: binh.tran@ecs.vuw.ac.nz).

In addition to FS, discretisation is also crucial in prepro-
cessing high-dimensional data. First of all, many learning
algorithms are applicable to or efficient on discrete data only.
Therefore, discretisation is used to transform features with
continuous values into discrete or nominal values. Further-
more, via discretisation, minor fluctuations or possible noise
in the data can be ignored. In this way, discretisation helps
learning algorithms improve their effectiveness and efficiency
[4]. Last but not least, since discrete data is more compact
than continuous data, it requires less memory, and thus im-
proving efficiency of learning algorithms. Therefore, FS and
discretisation are commonly used in order to improve not
only classification performance, but also computation time and
storage requirement [5], [6].

Although many discretisation methods have been proposed,
the most commonly used discretisation methods are univariate.
By discretising one feature at a time, these methods are quite
efficient when feature interactions do not exist [7]. When this
assumption does not hold, it is necessary to discretise multiple
features simultaneously. However, the time complexity of mul-
tivariate discretisation will be much higher. Therefore, a more
powerful search technique is required to enable multivariate
discretisation especially on high-dimensional data.

Furthermore, in practice, univariate discretisation is usually
applied before FS as a requirement of many FS methods.
However, univariate discretisation can destroy information
about feature interactions which may be important for FS
stage. Therefore, better representation may be obtained by
merging the two processes in a single stage.

Particle swarm optimisation (PSO) is a meta-heuristic algo-
rithm proposed by Kennedy and Eberhart [8]. PSO imitates
social behaviours found in birds flocking. Many FS methods
have been proposed using different types of PSO algorithms
such as continuous PSO [9], [10] and binary PSO [11], [12],
[13]. Results of these methods have shown high potential of
PSO in this field. However, PSO has not been applied to
discretisation.

In a recent method (EPSO) [14], we proposed to use a
derived type of PSO called “bare-bones” PSO (BBPSO) [15]
to simultaneously discretise and select features because of the
following reasons. In PSO for FS, the PSO representation is
usually a N -dimension vector corresponding to N features.
Each value is of the range [0,1]. If it is greater than a prede-
fined threshold, the corresponding feature is selected and vice
versa, regardless of how much smaller or greater it is when
compared to the threshold. Therefore, two different evolved
vectors may result in the same feature subset. On the other
hand, in discretisation, a slightly different evolved cut-point

JOURNAL OF LATEX CLASS FILES, VOL., NO., 2016 2

may lead to a different discrete feature. As a result, finding a
good cut-point requires a fine-tuned search mechanism which
can be found in BBPSO. In this derived version of PSO,
new positions are sampled using a Gaussian random generator
with the center being the mean position of the individual best
position (pbest) and its neighbours’ best position (gbest) and
standard deviation being the distance between them.

EPSO used BBPSO in a straightforward way to achieve dis-
cretisation and FS. One cut-point is evolved for each feature.
Since a cut-point can be any value within the feature’s range,
the number of possible solutions in discretisation is much
larger than FS. Therefore, entropy-based cut-points inspired
from [16] are used as initial or potential cut-points to narrow
the search space. The proposed method has shown promising
results. However, with the proposed representation, the search
space is still too big for BBPSO to obtain better performance.
To narrow the search space, in this study, we propose a
new method called PPSO which uses BBPSO to choose an
appropriate cut-point for each feature among the potentially
good ones. A new fitness function and a scaling mechanism
are also proposed to improve the performance of the method.

A. Goals
This paper aims to develop a new method combining dis-

cretisation and feature selection in a single stage using BBPSO
for high-dimensional continuous data. A new representation
for particles in BBPSO is proposed to achieve this goal. While
EPSO [14] used BBPSO to directly evolve a cut-point for each
feature, the new approach called PPSO allows BBPSO to auto-
matically choose potentially good cut-points for discretisation
and FS. Performance of PPSO is compared with using full
feature set, the two-stage approach of discretisation and FS,
and EPSO on high-dimensional data. Our specific research
objectives include:

1) How to perform multivariate discretisation and selection
in a single stage to improve the feature set’s discrimi-
nating power;

2) Whether the features discretised and selected by PPSO
can obtain better classification accuracy than using full
feature set;

3) Whether PPSO performs better than the corresponding
two-stage approach in terms of accuracy, feature subset
size and computation time;

4) Whether PPSO is more effective and efficient than
EPSO;

5) Whether PPSO achieves better classification perfor-
mance than traditional methods in both cases with and
without FS bias 1; and

6) Whether PPSO results are generalised well to the learn-
ing algorithms other than the wrapped method.

Although both the new method (PPSO) proposed in this
work and the existing method (EPSO) in the conference
paper [14] aim to tackle FS via discretisation, their major
components, which are the representation and the evaluation

1FS bias is an important issue happened in FS when the whole set of data
is used during the FS process; therefore, no unseen data is used to test the
performance of the FS method [17].

method, are very different. In EC techniques, representation
plays an important role in the effectiveness and efficiency
of the method. A good representation can reduce the size
of the search space, which is usually very large in EC
approaches. The search space of FS problem alone is already
very large, so combining it with discretisation results in an
even larger space. Therefore, in this study, we propose a new
representation so that the search process can be more effective.
Another contribution of this work is a new fitness function that
combines wrapper and filter measures in order to synthesise
the strength of both approaches. The proposed hybrid approach
is designed to better evaluate the candidate solution, however,
without paying more computational cost by using wrapper and
filter methods that are based on the same distance measure.

II. BACKGROUND AND RELATED WORK

This section provides background on FS and discretisation,
introduces the entropy-based cut-points and the minimum
description length principle which is employed in this study. It
then presents methods that are closely related to our proposed
method, FS via discretisation.

A. Feature Selection

Feature selection is essentially a combinatorial optimisation
problem since there are 2N possible different feature subsets to
choose from a dataset with N features. A FS method usually
has two main components which are a search technique and a
feature evaluation method.

In terms of feature evaluation, FS methods can be generally
categorised into filter and wrapper approaches [18]. Filter
approaches evaluate features based on their intrinsic character-
istics. Examples of filter measures are distance [19], informa-
tion gain [20], consistency [21], and correlation [22]. On the
other hand, wrapper approaches use a learning algorithm to
measure the classification performance of the selected features.
Different learning algorithms can be used in this process, such
as K-Nearest Neighbour [23], Decision Tree [24], and Support
Vector Machines [25]. In general, filter methods are faster
than wrapper methods; however, they usually obtain lower
classification accuracy than wrappers [26].

Search techniques in FS methods can be divided into ex-
haustive search, heuristic search, random or stochastic search
[27]. While exhaustive search guarantees to find the best
solutions, it is infeasible for most real-world applications due
to its high computation time. Sequential search such as Linear
forward selection (LFS) [28] and greedy stepwise backward
selection (GSBS) [29] are typical methods of heuristic search.
These two methods are derived versions of sequential forward
selection (SFS) [30] and sequential backward selection (SBS)
[31], respectively. LFS [28] improved SFS effectiveness and
efficiency by limiting the number of features considered in
each step. Although backward selection can consider feature
interactions better than forward selection [32], it is impractical
to apply to datasets with a large number of features. GSBS
cannot finish within a week when running on datasets with
hundreds of features [33]. In additions, both forward and

JOURNAL OF LATEX CLASS FILES, VOL., NO., 2016 3

backward strategies usually face the problem of local optima
[18].

Random search may generate subsets in a perfectly random
fashion using Las Vegas algorithm such as LVW [34] which
is too slow to converge in a large search space. Instead
of randomly generation, evolutionary computation (EC) is
a stochastic approach that applies evolutionary principle or
swarm intelligence to generate better subsets from the cur-
rent ones. Particle swarm optimisation (PSO) is a swarm
intelligence technique that has been applied and shown their
effectiveness in FS [35], [20]. Readers are referred to more
comprehensive survey on different strategies for FS using EC
techniques [36], [37]. Although PSO has been successfully
applied to different optimisation problems including FS, it has
not been applied to discretisation.

B. Feature Discretisation
Feature discretisation is a topic with a long research history.

Many discretisation methods with different strategies have
been proposed in this area. However, all of them share the
same purpose which is to determine cut-points to partition fea-
tures values into discrete values. Cut-points or split-points are
real values within the range of the feature’s values that are used
to partition that range into several intervals. Existing discreti-
sation methods can be categorised using different criteria [38],
[39], [40]. In direct methods, intervals are generated based on a
predefined parameter. On the other hand, incremental methods
recursively split (or merge) intervals until some criteria is
met creating splitting (or merging) approach. They are also
known as top-down or bottom-up approaches, respectively. A
discretisation method is supervised or unsupervised depending
on whether class labels are used in the discretisation process
or not. It is said to be global if the entire instance space is
used in each discretisation step, or local if each discretisation
step just uses a subset of instances. A method is also belong
to univariate or multivariate depending on whether features
are discretised individually or multiple features are discretised
at the same time taking into account interactions between
features [38], [40].

Equal-width and equal-frequency binning are two simple
unsupervised methods. They discretise features into a pre-
defined number of m intervals with the same width or the
same number of values, respectively. These simple methods
are easy to implement but sensitive to value of m which is
usually difficult to determine especially when features are not
uniformly-distributed or contain outliers [41].

Using the class labels as a guide in searching cut-points,
supervised discretisation usually performs better than the un-
supervised counterpart. 1R [42] defines cut-points are feature
values lying at the boundary of different classes. Each bin
needs to have at least six instances except for the last bin. In
addition to different searching techniques, different evaluation
measures are proposed such as classification error rates [46],
[47], information gain [16], [43], and statistical measures [44],
[45]. More comprehensive reviews can be found in [38], [39],
[40], [48].

Among supervised methods, minimum description length
(MDL) proposed by Fayyad and Irani [16] is one of the

most popular used methods. It is an entropy-based incremental
splitting discretisation method. Information gain is used to
evaluate candidate cut-points. MDL recursively chooses the
best cut-point to split one interval into two until the minimum
description length principle (MDLP) is met. Inspired by this
strategy, we propose to use the entropy-based cut-points that
are accepted by MDLP as initial or candidate cut-points for
BBPSO to evolve from.

C. Entropy-based Cut Points
Entropy-based discretisation aims to find the best splits so

that the discretised features are as pure as possible in terms
of class labels. This means that the majority of the values
in one interval are preferred to have the same class label. If
entropy E(S) is used to measure the purity level of a set S,
then according to this criterion, the cut-point with the highest
information gain is the best one. Eq. (1) is used to calculate
information gain of a cut-point T for feature A given S as
the set of feature A values. S1 and S2 are subsets of S after
partitions.

Gain(T,A;S) = E(S)�
|S1|
|S|

E(S1)�
|S2|
|S|

E(S2) (1)

Furthermore, not all cut-points are useful especially when
the features are noisy or irrelevant to the class label. Therefore,
Fayyad and Irani [16] proposed to use the MDLP as a criterion
to accept a cut-point. According to MDLP, as shown in Eq. (2),
a cut-point T is only accepted if its information gain is greater
than the cost of encoding the cut-point T and the classes of
the instances in the intervals induced by T . If the cut-point
T induces impure intervals, the sum of these two costs may
exceed its information gain. As shown in Eq. (3), the latter cost
�(T,A;S) will become larger if the entropy values E(S1) and
E(S2) are larger. In noisy or irrelevant features, the cut-points
usually can not induce intervals that are pure enough to satisfy
the condition in Eq. (2). Therefore, using MDLP can deal with
noise or irrelevant data.

Gain(T,A;S) >
log2(|S|� 1)

|S|
+

�(T,A;S)

|S|
(2)

where
�(T,A;S) = log2(3

kS � 2)� [kSE(S)� kS1E(S1)� kS2E(S2)] (3)

given |S| as size of set S, E(S) as the entropy of S, and kS
as the number of classes appeared in S.

D. Feature Selection via Discretisation
Although FS and discretisation are emerging fields in recent

decades, approaches that combine these tasks have not gained
much attention. Chi2 [49] is one of the first methods proposing
feature selection via discretisation. It is a bottom up method
starting from intervals with only one feature value. Then
adjacent intervals with the lowest �2 test result will be merged
recursively until �2 values of all pairs exceeds a threshold.
This threshold is determined by attempting to maintain a
predefined consistency level of the data. By loosing this
consistency level, Chi2 can come up with features that have
only one interval, which can be removed for FS. Results on

JOURNAL OF LATEX CLASS FILES, VOL., NO., 2016 4

two synthetic datasets showed that Chi2 effectively discretised
relevant features and removed all noise features. However,
the user-defined inconsistency rate is hard to predefined and
may also cause inaccuracy to the discretisation process [50].
Modified Chi2 [50] is a completely automatic discretisation
method that address the drawbacks of Chi2.

Another approach of FS via discretisation is first ranking
features based on some measures calculated during the dis-
cretisation process. Then, a number of top ranked features
will be selected. An example of this approach is PEAR [51]
in which features are ranked from those with the smallest
number of cut-points to the largest. The top ranked features
are considered as relevant and selected to form the final subset.
Results showed that it has similar performance as the original
feature set and better than Relief. However, it is difficult
to choose appropriate parameters for PEAR and the number
of features that should be selected to form the final subset.
Similarly, in [52], features are ranked based on the ratio of
the variance of the original continuous values and the number
of bits used to encode the discrete feature.

In summary, feature selection via discretisation has been
proposed in two separate stages. However, a single stage
integrating them together has not been investigated yet.

E. Particle Swarm Optimisation
1) Continuous PSO: PSO proposed by Kennedy and Eber-

hart [8] is a population-based algorithm which maintains
a swarm of particles. Each particle’s position represents a
complete candidate solution of the problem. It is actually a
vector of N real numbers, where N is the dimensionality of
the problem. In addition to position, each particle also has a
velocity vector indicating its speed and direction that it should
move in each dimension. These two elements are updated
using Eqs. (4) and (5). As can be seen from these equations
that particles are moving towards pbest and gbest.

vt+1
id = w⇤vtid+c1⇤rt1i⇤(ptid�xt

id)+c2⇤rt2i⇤(ptgd�xt
id) (4)

xt+1
id = xt

id + vt+1
id (5)

where vtid and xt
id are velocity and position of particle i in

dimension d at time t, respectively. ptid and ptgd are pbest
and gbest positions in dimension d at time t. rt1i and rt2i are
uniformly distributed random values generated at time t. c1
and c2 are acceleration constants which determines the type
of trajectory the particle travels, thus they are important to
control the searching behaviour of the particle [53]. The inertia
weight w is used to control the impact of the last velocity to
the current velocity.

2) Bare-bone PSO: As can be seen in Eq. (4) and (5) that
PSO operates by sampling points in the search space. It uses
pbest and gbest which are the discovered knowledge to guide
the sampling. In [15], Kennedy investigated the trajectory of
a single particle in a standard PSO where pbest and gbest
were set as constants. All of its visited positions after a
million iterations were plotted. The obtained histogram is a
tidy bell curve centered midway between these constant pbest
and gbest positions. The result suggests that trajectory of a

particle is determined by the difference between its pbest and
gbest. Therefore, the step size of a particle’s movement should
be based on these best positions. This finding resulted in a new
PSO method called bare-bones PSO (BBPSO). In this method,
particle’s position is sampled using a Gaussian distribution
N (µ,�) with the mean µ and standard deviation � as shown
in Eq. (6).

xt+1
id =

⇢
N (µ,�) , rand() < 0.5
ptid, otherwise (6)

where µ is the center of pbest and gbest and � is the absolute
difference between these best positions. The rand() function
is used to speed up convergence by retaining the previous best
position pbest.

By using the Gaussian number generator, BBPSO avoids the
need to optimise the velocity vector and the delay of position
adaptation. Although PSO and BBPSO have been proposed
for FS ([54], [37], [55]), both have not been proposed for
discretisation or discretisation and FS simultaneously.

Particle
initialisation

Particle evaluation:
- Feature discretisation

and selection.
- Fitness calculation.

Particle
updation

Stopping criterion?

Return
the best particle

False True

Fig. 1. EPSO and PPSO basic steps.

III. THE PROPOSED APPROACH

This section describes EPSO and PPSO. Both methods
follow the basic steps shown in Fig. 1. After initialisation,
particles are iteratively evaluated and updated until the stop-
ping criteria is met. In order to evaluate a particle, the training
data is first discretised and features are selected based on
the evolved cut-points. The transformed data is then put into
a learning algorithm to calculate the fitness. Based on this
fitness, pbest and gbest are updated and used to update a
particle’s position as described in Eq. (6).

Discretisation and FS steps in both methods work in the
same principle. To achieve discretisation, a feature value is
converted/discretised into 0 if it is smaller than the evolved
cut-point; otherwise, it will be 1. If all values of a feature are
converted into the same discrete value, it is considered as an
irrelevant feature because it can not distinguish instances of
different classes. Feature selection is done by eliminating these
useless features. The remaining discrete features are evaluated
based on the improvement in classification performance of the
whole discretised data.

A. The EPSO Method
The main idea of EPSO is using BBPSO to directly evolve

a cut-point which can be any real value falling in the range of
the corresponding feature values [MinF ..MaxF]. Position of
each particle represents a candidate solution which is a real
vector with N -dimension corresponding to the dimensionality
of the problem. Fig. 2 shows an example of a particle’s

JOURNAL OF LATEX CLASS FILES, VOL., NO., 2016 5

W!åö]%o'[ê"â}ê]ö]}v

MinF MaxF

F1 8.5 25.7
F2 0.5 75.9
F3 -15 30.7
F4 -21 9.4
F5 3.6 40.7
´ ´ ´
FD 50.9 98.4

F1 F2 F3 F4 F5 ´ FD
16.8 20.6 30.7 -11 3.6 ´ 64.5

16.8 20.6 -11 ´ 64.5
Candidate solution

&'!öµå'ê["å!vP'

Fig. 2. Particle representation of EPSO.

position and its corresponding candidate solution. In this
example, the first dimension of the particle, which represents
the cut-point for the first feature (F1), needs to have a value
within the range [8.5, 25.7]. If an updated cut-point of a feature
F is out of this range, it will be set to the nearest boundary.

1) Particle Initialisation: Because the search space of
multivariate discretisation on high-dimensional data is huge,
each initial particle is restricted to a random feature subset
of size 50 for binary-class problems and size 150 for multi-
class problems as suggested in [56]. This means that for those
features that are not selected in the initial candidate solutions,
their cut-points will be set to the maximum values of the
corresponding features. For the other selected features, their
cut-points are initialised using the best entropy-based cut-point
that satisfies MDLP [16] (see Section II-C). In principle, they
can be initialised based on any value within the range of
the corresponding feature. However, completely random initial
cut-points may lead to slow convergence. Furthermore, infor-
mation gain of the best cut-point of a feature is an indicator of
its relevancy. Therefore, features with larger information gain
will have higher probability to be selected in the initialisation
procedure.

2) Particle Evaluation: Based on the cut-points evolved by
the particle, the training data is transformed into a new training
set with discrete values and a smaller number of features
thanks to eliminating features whose cut-points are equal to
the minimum or maximum values. For example, in Fig. 2, F3

cut-point is equal to its maximum value and F5 cut-point is
equal to its minimum value, both features will be discarded.

The discretisation and feature selection solution in each par-
ticle is then evaluated based on the classification accuracy of
the transformed training set. By evaluating the whole discrete
data, the proposed method is able to evaluate cut-points of all
the selected features as well as consider feature interactions at
the same time. Fitness function uses the balanced classification
accuracy [57] as follows:

balanced accuracy =
1

c

cX

i=1

TPi

|Si|
(7)

where c is the number of classes of the problem, TPi is the
number of correctly identified instances in class i and |Si| is
the sample size of class i. All classes are treated equally with
the weight of 1/c.

W!åö]%o'[ê"â}ê]ö]}v

Candiate solution

Potential cut-point table Cut-point index
#C C1 C2 C3 C4

F1 2 5.25 6.8
F2 3 10.7 24.9 50.2
F3 4 -0.45 0.67 5.2 20.5
F4 1 -32.5
´
FD 3 -3.72 -1.54 6.55

F1 F2 F3 F4 ´ FD
2 0 3 0 ´ 2

6.8 5.2 ´ -1.54

Fig. 3. Particle representation of PPSO.

B. The Proposed Method: PPSO

In EPSO, BBPSO is free to evolve a cut-point within the
range of the corresponding feature. This may result in a huge
search space especially in a multivariate approach on high-
dimensional data. Therefore, to narrow the search space into
highly potential areas, in PPSO, we use BBPSO to choose a
cut-point from potential cut-points of each feature. Potential
cut-points are entropy-based cut-points that have their infor-
mation gain satisfying the MDLP criterion shown in Eq. (2).
Each feature may have a different number of potential cut-
points which are calculated and stored in a potential cut-point
table. Fig. 3 shows an example of this table and a particle’s
position as well as the corresponding candidate solution. Each
particle position is an integer vector denoting the chosen cut-
point indexes. The size of vector, therefore, is equal to the
number of the original features and the evolved value needs
to be between 1 and the number of potential cut-points of
the corresponding feature. For example, in Fig. 3, the first
feature (F1) has two potential cut-points with index 1 and 2.
Therefore, the first dimension of the particle needs to fall in
the range [1,2]. If it is 2 as in the example, then the cut-point
6.8 is chosen to discretise F1.

During the updating process, if the updated value of a
dimension is outside the cut-point index range, then it is set
to 0 which indicates that the corresponding feature does not
have a good cut-point and therefore should be ignored.

1) Particle Initialisation: Each particle position is ini-
tialised as a random feature subset with a restricted number of
selected features which have their cut-point indexes different
from 0. The selected features will have their cut-point index
set to the index of the best MDLP cut-point (see Section II-C)
[16]. Similar to EPSO, features with higher information gain
will have higher chance to be selected.

In order to make PPSO general to all problems, PPSO
uses one restricted size for all datasets. Then during the
evolutionary process, when BBPSO seems to get stuck in local
optima, BBPSO will be reset with a larger size if the current
gbest fitness is better than the last gbest fitness at least 10%.
The aim of this scaling mechanism is to start searching from
small feature subsets while opening chances for larger and
better feature subsets.

2) Particle Evaluation: Based on the chosen cut-point
index for each feature, the cut-point value is retrieved from
the potential cut-point table. It is then used to discretise the

JOURNAL OF LATEX CLASS FILES, VOL., NO., 2016 6

corresponding feature. However, if the evolved cut-point index
of a feature is 0, that feature is considered as not selected.
Therefore, in Fig. 3, Features F2 and F4 are not selected in
this example.

In EPSO, classification accuracy is used as the fitness
measure to evaluate each particle. This may be difficult to
distinguish cases where the boundary between classes is quite
large, enabling many different models to obtain the same
accuracy. Furthermore, while the wrapper methods can pro-
duce solutions with high accuracy, filter methods are usually
faster and general. Combining the strength of these two
approaches in the evaluation function is expected to produce
better solutions. In addition, combining the two measures can
also better distinguish the subtle difference between feature
subsets, providing a smoother fitness landscape to facilitate the
search process. However, simply combining these measures
may be impractical in terms of computation. Therefore, we
need to find a smart way to combine them without requiring
more running time. Among the commonly used filter mea-
sures, distance is a multivariate measure that can evaluate the
discriminating ability of a feature set and it is used as the base
measure of KNN. Therefore, incorporating this measure with
the KNN wrapper method will not increase the computation
time because the distance measure is calculated only once but
used twice.

In this study, the proposed fitness function uses both bal-
anced classification accuracy (Eq. 7) and a distance measure
with a weighting coefficient (µ) as shown in Eq. (8). The
distance measure [58], as shown in Eq. (9), is used to maximise
the distance between instances of different classes (DB) and
minimise the distance between instances of the same class
(DW). DB and DW are calculated by using Eq. (10) and
(11), respectively.

fitness = (µ ⇤ balanced accuracy + (1� µ) ⇤ distance) (8)

distance =
1

1 + exp�5(DB�DW)
(9)

DB =
1

|S|

|S|X

i=1

min
{j|j 6=i,class(Vi) 6=class(Vj)}

Dis(Vi, Vj) (10)

DW =
1

|S|

|S|X

i=1

max
{j|j 6=i,class(Vi)=class(Vj)}

Dis(Vi, Vj) (11)

where Dis(Vi, Vj) is the distance between two vectors Vi and
Vj . In this study we use the proportion of matches or overlaps
between two binary vectors as the distance between them.

As can be seen in Eq. (10) and (11), DB and DW are the
average distance between each instance to its nearest miss and
to its farthest hit, respectively. While both of them are in the
range [0,1], 1 is the best case of DB and the worst case for
DW . Therefore, Eq. (9) maximises DB and minimises DW to
find feature subsets showing a close distance between instances
of the same class and a far distance between instances of
different classes.

The logistic function with coefficient �5 as shown in the
right plot of Fig. 4 is used to transform the difference between
DB and DW in the range [-1,1] into a value in the full range

[0,1] in which 0 is the worst distance and 1 is the best
distance. Note that the logistic function with coefficient �1
shown in the left plot of Fig. 4 does not return a value in the
full range [0,1] for an input between -1 and 1.

�5 �3 �1 1 3 5

0.2

0.4

0.6

0.8

x

1
1+e�x

�5 �3 �1 1 3 5

0.2

0.4

0.6

0.8

1

x

1
1+e�5x

Fig. 4. Logistic function f(x) = 1
1+e�x , f(x) = 1

1+e�5x

C. The Overall Approach
An overview of the proposed approach to discretisation

and FS in one stage is shown in Fig. 5(a). The two-stage
approach (named PSO-FS) is shown in Fig. 5(b) in which
features are first discretised and then selected. Except for the
details inside the dotted box, both systems have the same
structure. Firstly, the dataset is split into a training and a
test set. Based on the training set, the evolved cut-points for
the selected features are returned and used to transform the
training and the test sets. These transformed datasets are input
to the classification algorithms for performance evaluation
of both methods. Algorithm 1 and Algorithm 2 present the
pseudo-code of EPSO and PPSO, respectively.

Performance
Test

Train and
Test

Accuracy

New training set

New test set

Training Set

Test Set

Feature discretisation
and selection

Cut-points for
selected features

(a) EPSO and PPSO (Discretisation and FS in a single stage).

Disc. training set

Disc. test set

Selected
Features

Performance
Test

Train
and Test
Accuracy

Feature
selection

New training set

New test set

Training Set

Test Set

Feature
discretisation

Cut-points for
all features

(b) PSO-FS (Discretisation and FS in two stages).

Fig. 5. System Overview.

Both EPSO and PPSO follow the overall structure described
in Fig. 5(a), but are very different in the key aspects. The
major differences are as follows. First of all, the representation
scheme of PPSO significantly reduces the search space of
the problem when considering only the potentially good cut-
points. It improves not only the effectiveness but also the effi-
ciency. Secondly, the fitness function of PPSO is enforced with
a distance measure to provide better evaluation. Thirdly, the
initialisation procedure in PPSO is more general than EPSO
when using one restricted size for all problems to initialise

JOURNAL OF LATEX CLASS FILES, VOL., NO., 2016 7

Algorithm 1: EPSO pseudo code
Input : Original training set T
Output: Selected features and their cut-points
begin

Best cut points the best entropy cut-points that satisfy Eq. (2) of
each feature;

Initialise particles using Best cut points;
while Stopping criteria are not met do

for each particle i do

T 0
i Transform training set T based on position of particle i;

�i Evaluate the accuracy of T 0
i using Eq. (7);

⇠i pbest’s fitness;
if �i is better than ⇠i then

Update pbest ;
end

end

Update gbest;
for each particle i do

for each dimension j do

Update position of particle i at dimension j using Eq. (6) ;
end

end

end

Return the selected features and their cut-points from gbest’s position;
end

Algorithm 2: PPSO pseudo code
Input : Original training set T
Output: Selected features and their cut-points
begin

Potential cut points All the entropy cut-points that satisfy Eq. (2)
of each feature;

repeat

Initialise particles using the index of the best cut-point in
Potential cut points ;

while Stopping criteria are not met do

for each particle i do

T 0
i Transform training set T based on position of
particle i;

�i Calculate fitness of particle i based on T 0
i using Eq.

(8);
⇠i pbest’s fitness;
if �i is better than ⇠i then

Update pbest ;
end

end

Update gbest;
if The scale criterion is met then

Increase the initial size;
break;

end

for each particle i do

for each dimension j do

Update position of particle i at dimension j using Eq.
(6) ;

end

end

end

until The scale criterion is not met;
Return the selected features and their cut-points from gbest’s position;

end

particles. Finally, PPSO uses scaling mechanism to move the
search focus to larger feature subsets when needed. These new
ideas in PPSO are expected to improve its performance in
terms of the classification accuracy, the number of selected
features and the computation cost.

IV. EXPERIMENT DESIGN

This section describes the details related to the experiments
including the datasets, the baseline methods used to compare
with our methods, the parameter settings, the termination
criteria as well as the configuration of the experiments.

1) Datasets: To test PPSO performance on high-
dimensional data, we used ten gene expression datasets which

TABLE I
DATASETS

Dataset #Features #Instances #Classes %Smallest

class

%Largest

class

SRBCT 2,308 83 4 13 35
DLBCL 5,469 77 2 25 75
9Tumor 5,726 60 9 3 15
Leukemia 1 5,327 72 3 13 53
Brain Tumor 1 5,920 90 5 4 67
Leukemia 2 11,225 72 3 28 39
Brain Tumor 2 10,367 50 4 14 30
Prostate 10,509 102 2 49 51
Lung Cancer 12,600 203 5 3 68
11Tumor 12,533 174 11 4 16

TABLE II
PSO PARAMETER SETTINGS

Parameters Settings

Population Size #features/20 (restriction to 300)
Maximum iterations 70
Stopping criterion gbest not improved for 10 iterations
Communication topology Fully connected
Scaling criterion (PPSO only) gbest not improved for 10 iterations and the

current gbest fitness is better than the previous
gbest fitness at least 1%

are available on http://www.gems-system.org. Table I de-
scribes details about these datasets.

2) Baseline Methods: To test the effectiveness of PPSO
in discretisation and FS, we compared the classification per-
formance of KNN on the transformed dataset by PPSO, the
original dataset, and the transformed dataset by EPSO. We also
compared PPSO with the two-stage method (PSO-FS) to see
whether the single stage approach has better performance than
the two-stage one. In PSO-FS, MDL [16] is used to discretise
data before applying PSO for feature subset selection. PPSO
is also compared with several traditional two-stage methods
which combines MDL [16] for discretisation with LFS [28],
with Consistency method [21] and Correlation based feature
selection method (CFS) [22] for FS. We also compared PPSO
with the Modified Chi2 (or MChi2) [50] which is a repre-
sentative method for FS via discretisation. We used the Weka
package [29] to run LFS, CFS and Consistency, and the KEEL
package [59] to run MChi2.

3) Parameter Settings and Termination Criteria: Parameter
settings for the three compared methods, PSO-FS, EPSO and
PPSO, are described in Table II. Since the size of the search
space is proportional to the dimensionality of the problem
which varies from one dataset to another. The number of
features in the ten datasets ranges from about 2,000 to 12,000,
leading to very different sizes of search space. Therefore, we
set the population size as the number of features divided by 20
with a restriction to 300 due to the limited computer memory.
The maximum number of iterations was set to 70; however, an
early stop was also applied when gbest is not improved after
10 iterations. The scaling criterion in PPSO is when gbest is
not improved after 10 iterations and the current gbest fitness
is better than the previous gbest fitness for at least 1%. PPSO
starts with the initial size of 150 which is suggested in [56]
for multi-class datasets. However, based on our experiments,
this value is also a good initial size for binary class problems
since PSO is able to choose an appropriate feature subset size
during the evolutionary process. This initial size increases 50
every time the scaling criterion is met.

JOURNAL OF LATEX CLASS FILES, VOL., NO., 2016 8

4) Experiment Configuration: As a wrapper approach,
PPSO can use the classification performance of any learning
algorithm to evaluate particles. In this work, k-nearest neigh-
bour (KNN) with k=1 was used because it is simple, fast, and
non-parametric.

Since these datasets have small sample sizes, we used 10-
fold cross validation (CV) to generate training and test set. In
each cross validation, one fold is used to form test set and the
remaining nine folds are used to form training set. Test set is
used for performance evaluation of the discretisation and FS
solution produced by each method based on the training set.
During the evolutionary process, an inner loop of 10-fold CV
on the training set is used for fitness evaluation. Therefore,
each method comprises of two loops of CV as recommended
in [18] to avoid FS bias.

To eliminate statistical variations, each method was run 30
times with different random seeds for each dataset. Because
each dataset was split into training and test set using 10
fold CV, a total of 300 runs were executed for each method.
Experiments were run on PC with Intel Core i7-4770 CPU
@ 3.4GHz and 8GB memory. The results of 30 runs from
each method were compared using the statistical Wilcoxon
significance test with 5% significance level.

TABLE III
AVERAGE TEST RESULTS.

Dataset Method Size Best Mean (Std) S

SRBCT

Full 2308.0 87.08 –
PSO-FS 150.0 97.50 91.31 (2.71) –
EPSO 137.3 100.00 96.89 (1.64) +
PPSO 108.5 100.00 95.78 (1.96)

DLBCL

Full 5469.0 83.00 –
PSO-FS 101.8 96.67 80.03 (6.13) –
EPSO 42.8 94.17 85.18 (5.46) =
PPSO 44.0 94.17 86.22 (3.58)

9Tumor

Full 5726.0 36.67 –
PSO-FS 955.0 55.00 45.95 (4.93) –
EPSO 138.5 65.00 58.22 (3.12) =
PPSO 118.1 65.00 59.28 (2.08)

Leuk1

Full 5327.0 79.72 –
PSO-FS 150.0 92.22 81.60 (4.72) –
EPSO 135.9 95.56 93.37 (1.83) –
PPSO 80.4 95.42 94.37 (1.36)

Brain1

Full 5920.0 72.08 –
PSO-FS 317.3 78.75 71.00 (3.06) –
EPSO 150.7 79.17 72.79 (3.48) =
PPSO 73.4 82.08 74.40 (3.67)

Leuk2

Full 11225.0 89.44 –
PSO-FS 150.0 93.89 86.11 (3.97) –
EPSO 139.9 94.44 89.93 (2.79) –
PPSO 86.7 100.00 96.74 (1.64)

Brain2

Full 10367.0 62.50 –
PSO-FS 417.9 82.08 69.11 (5.89) =
EPSO 152.8 83.75 70.76 (5.30) =
PPSO 66.7 74.58 68.75 (4.24)

Prostate

Full 10509.0 85.33 –
PSO-FS 777.4 90.33 85.20 (2.35) –
EPSO 54.9 90.33 83.74 (3.55) –
PPSO 65.6 95.17 91.82 (1.77)

Lung

Full 12600.0 78.05 –
PSO-FS 686.2 85.73 81.72 (2.08) +
EPSO 150.8 85.58 80.60 (2.42) =
PPSO 203.0 84.11 79.38 (3.26)

11Tumor

Full 12533.0 71.42 –
PSO-FS 1638.8 86.07 82.62 (1.70) +
EPSO 149.9 83.68 79.29 (2.11) +
PPSO 167.0 83.20 76.83 (2.91)

V. RESULTS AND DISCUSSIONS

Table III shows the results of PSO-FS, EPSO, and PPSO.
The average feature subset size returned by each method over

the 30 runs is shown in column “Size”. The best, mean and
standard deviation of KNN accuracies using “Full” (i.e. all
continuous features), or using the transformed data by each of
the compared methods are shown in columns four and five.
The reported results are test accuracies calculated based on
Eq. (7). For each dataset, the best accuracy and the smallest
size are highlighted in bold.

Column S displays the statistical Wilcoxon significance test
results of the method in the corresponding row over PPSO.
“+” or “–” means the result is significantly better or worse
than PPSO. “=” means they have similar performance. In other
words, the more “–”, the better the proposed approach. The
same meaning of “+” and “–” will be used throughout this
paper.

A. PPSO versus Full
As can be seen from Table III that the average numbers of

features selected by PPSO are significantly smaller than the
total number of features. PPSO selects less than 1% of the
total number of features on four datasets, less than 2% on five
datasets and 4.6% on SRBCT. In general, PPSO achieves the
smallest subsets on six datasets

With the discretised and selected features, PPSO achieves
significantly better classification performance than using all
continuous features on all ten datasets. It increases more than
5% accuracy on seven out of ten datasets with the highest
improvement of 23% on 9Tumor.

The results indicate that PPSO can produce a much more
powerful and compact representation for high-dimensional
datasets by simultaneously discretise and select relevant fea-
tures in a single stage.

B. PPSO versus PSO-FS
In terms of dimensionality reduction, feature subsets re-

turned by PPSO are much smaller than those selected by PSO-
FS which is the two-stage approach. In terms of classification
accuracy, the PPSO transformed data outperforms PSO-FS
on seven datasets. While PSO-FS degrades the classification
performance on Brain1 and Prostate, PPSO still obtains better
accuracies than using “Full” on these dataset with about 11%
and 8% the number of features selected by PSO-FS on these
datasets respectively. Similar pattern can be seen in DLBCL
and Leuk2 datasets.

Results of 9Tumor dataset reveal the largest difference be-
tween two approaches. While the transformed dataset by PSO-
FS improves 9% classification accuracy with 955 features,
the transformed dataset by PPSO achieves 23% improvement
using eight times less features than PSO-FS (118 features). A
similar pattern is witnessed in the first six datasets.

In Brain2, PPSO obtains a similar accuracy to PSO-FS
with a quarter of features selected by PSO-FS. In Lung and
11Tumor, PPSO obtains worse results than PSO-FS with about
one third and one tenth number of features selected by PSO-
FS, respectively.

In general, solutions evolved by the proposed one-stage
approach obtain either a significantly better or similar clas-
sification accuracy to the two-stage approach on eight out of
the ten datasets.

JOURNAL OF LATEX CLASS FILES, VOL., NO., 2016 9

C. PPSO versus EPSO
As can be seen from Table III that PPSO selects a smaller

number of features than EPSO on six datasets while obtaining
better or similar classification accuracy to EPSO on eight
datasets. In Leuk2, while EPSO obtains a similar classification
accuracy to “Full” with 140 features, PPSO improves 7%
accuracy with only 87 features.

The improvement of PPSO over EPSO may be resulted from
several proposed strategies in PPSO. First of all, PPSO only
finds an appropriate cut-point for each feature from the poten-
tially good cut-points while EPSO chooses any possible cut-
point within the range of the feature values. Therefore, PPSO
has a smaller search space than EPSO. This enables PPSO to
better cover the search space when using the same parameter
setting as EPSO. Furthermore, the evolutionary process of
PPSO is not only guided by accuracy of the transformed
dataset but also the distance measure. This measure helps
PPSO to differentiate feature subsets with the same training
accuracy. Finally, the scaling mechanism enables PPSO to
move the evolutionary process to larger feature subsets which
may provide better solutions.

SR DL LK1 LK2 BT2

0
2

4
6

BT1 9T PR

0
5

10
15

20
25

30

LC 11T

0
50

10
0

15
0

PSO−FS EPSO PPSO

Fig. 6. Running Time of PPSO.

D. Computation Time
Fig. 6 compares the running time to complete a single run

of PSO-FS, EPSO, and PPSO. The reported time (in minutes)
is the average of 30 runs. Note that the three compared
methods use the same wrapper approach with KNN for fitness
evaluation. We also note that to evaluate each particle, PSO-FS
only needs to transform data based on the selected features,
while PPSO needs to discretise and select features at the same
time. This means that PPSO evaluation time is slightly longer
than PSO-FS. Therefore, PPSO is intended to run longer than
PSO-FS. However, an opposite trend is reported in Fig. 6.

Compared with PSO-FS, the running time of PPSO is
shorter on eight datasets with about 8 times shorter in 11Tumor
dataset. As can be seen from Fig. 6 that the larger the dataset,
the greater the ratio of PSO-FS’s running time to PPSO’s
running time. An investigation of the evolutionary process
reveals the main reason of this phenomenon. It is that the
evolved feature subsets by PPSO are much smaller than those
by PSO-FS, which in turn leads to a much smaller running
time required by KNN in fitness evaluation process.

PPSO takes slightly longer time than EPSO on most datasets
due to the scaling mechanism which introduces large feature
subsets. It is noticed that although the fitness function of PPSO
combines both wrapper and filter measures, the time spending
for fitness evaluation is not longer than EPSO since both KNN
and the filter measure are calculated based on the distance
measure which is calculated once and used for both measures.
Furthermore, since the number of features selected by PPSO
is smaller, the test process will be faster as well.

TABLE IV
COMPARISON WITH TRADITIONAL METHODS.

Dataset Method Size
Training Test

Time(s)
Best Mean STr Best Mean STe

SRBCT

Full 2,308.0 83.35 – 87.08 –
MDL+LFS 6.1 98.19 – 88.75 – 28.78
MDL+CON 4.3 97.71 – 85.83 – 3.24
MDL+CFS 80.9 100.00 = 100.00 + 318.04
MChi2 85.9 100.00 = 100.00 + 83.07
PPSO 108.5 100.00 100.00 100.00 95.78 87.14

DLBCL

Full 5,469.0 81.71 – 83.00 –
MDL+LFS 4.0 98.24 – 74.00 – 73.78
MDL+CON 3.4 98.14 – 92.50 + 6.29
MDL+CFS 58.0 99.22 – 91.67 + 1310.49
MChi2 10.2 87.96 – 75.50 – 369.45
PPSO 44.0 100.00 100.00 94.17 86.22 207.40

9Tumor

Full 5,726.0 33.44 – 36.67 –
MDL+LFS 12.6 82.39 – 41.67 – 64.20
MDL+CON 7.6 71.61 – 28.33 – 12.65
MDL+CFS 38.0 90.71 – 53.33 – 656.21
MChi2 58.5 77.28 – 48.33 – 260.70
PPSO 118.1 92.87 92.31 65.00 59.28 192.68

Leuk1

Full 5,327.0 79.77 – 79.72 –
MDL+LFS 4.8 99.17 – 81.39 – 70.48
MDL+CON 3.0 98.67 – 89.17 – 5.69
MDL+CFS 56.0 100.00 = 93.19 – 1358.35
MChi2 46.4 98.80 – 92.08 – 276.35
PPSO 80.4 100.00 100.00 95.42 94.37 236.56

Brain1

Full 5,920.0 65.07 – 72.08 –
MDL+LFS 9.9 89.13 – 59.17 – 104.41
MDL+CON 6.2 79.99 – 55.42 – 14.51
MDL+CFS 115.4 99.93 – 79.58 + 2859.76
MChi2 290.0 80.63 – 74.58 = 438.82
PPSO 73.4 100.00 99.99 82.08 74.40 292.84

Leuk2

Full 11,225.0 88.82 – 89.44 –
MDL+LFS 4.3 99.08 – 90.00 – 231.15
MDL+CON 3.0 99.44 – 85.56 – 17.54
MDL+CFS 79.0 100.00 = 98.89 + 5407.43
MChi2 166.1 99.56 – 93.33 – 904.96
PPSO 86.7 100.00 100.00 100.00 96.74 441.95

Brain2

Full 10,367.0 63.52 – 62.50 –
MDL+LFS 5.6 98.80 – 53.33 – 179.83
MDL+CON 4.7 89.92 – 61.67 – 19.33
MDL+CFS 63.4 100.00 = 71.25 + 3304.74
MChi2 160.7 84.00 – 70.00 = 562.42
PPSO 66.7 100.00 99.99 74.58 68.75 357.34

Prostate

Full 10,509.0 82.08 – 85.33 –
MDL+LFS 4.9 82.44 – 73.17 – 227.68
MDL+CON 4.7 98.46 – 70.50 – 23.61
MDL+CFS 51.6 98.12 – 90.17 – 2694.27
MChi2 33.6 95.44 – 86.17 – 1246.46
PPSO 65.6 100.00 99.84 95.17 91.82 478.17

Lung

Full 12,600.0 71.59 – 78.05 –
MDL+LFS 12.2 95.12 – 80.55 = 685.78
MDL+CON 6.6 89.54 – 74.64 – 63.37
MDL+CFS NA NA NA NA
MChi2 NA NA NA NA
PPSO 203.0 97.67 97.09 84.11 79.38 1335.21

11Tumor

Full 12,533.0 71.01 – 71.42 –
MDL+LFS 14.3 79.96 – 61.71 – 555.99
MDL+CON 9.4 72.58 – 53.83 – 85.41
MDL+CFS NA NA NA NA
MChi2 2098.0 93.32 – 84.54 + 3125.14
PPSO 167.0 99.47 99.14 83.20 76.83 1387.01

JOURNAL OF LATEX CLASS FILES, VOL., NO., 2016 10

E. PPSO versus Traditional Methods

Table IV shows the compared results of PPSO with “Full”,
MDL+LFS, MDL+CON, MDL+CFS and MChi2. Besides the
size and time shown in the third and the last columns, the
best and the mean of the training and test accuracies are
shown under each corresponding column. The “STr” and
“STe” display the Wilcoxon significance test results of the
corresponding method over PPSO in terms of training and
test accuracy, respectively. The result of MChi2 on the Lung
dataset is unavailable due to the out of memory error. Since
CFS method is quite expensive, it fails to finish its run in 12
hours for the two largest datasets which are Lung and 11Tumor
with more than 12,000 features.

As can be seen from Table IV that PPSO outperforms
MDL+LFS and MDL+CON on all the ten datasets in terms of
training accuracy and nine datasets in terms of test accuracy.
Compared with MDL+LFS, PPSO achieves 6% to 19% higher
test accuracy on all datasets except for the Lung dataset
where both obtain similar accuracy. However, the best test
accuracy achieved by PPSO is 4% higher than MDL+LFS
on this dataset. Similarly, PPSO achieves 5% to 31% higher
test accuracy than MDL+CON on all datasets except for
DLBCL where MDL+CON achieves the highest average test
result. Although these two methods obtain the smallest feature
subsets, their test accuracies are usually the lowest among
the compared methods. Compared with the Full accuracy,
MDL+LFS even has 13% lower on Brain1 and MDL+CON
has 18% lower on 11Tumor. In contrast, PPSO achieves better
accuracy than the full feature sets on all datasets.

Compared with MDL+CFS, PPSO obtains better or similar
training accuracies on the eight datasets. For testing, PPSO
achieves better results than MDL+CFS on three datasets
namely 9Tumor, Leuk1 and Prostate. For the other five
datasets, MDL+CFS has better results than PPSO on aver-
age but the best accuracy of PPSO is almost always better
than MDL+CFS. It is noticed that the computation time of
MDL+CFS quickly increases with the number of features.
Therefore, scalability is a major concern when applying this
method on high-dimensional data, such as Lung and 11Tumor.

Similarly, in terms of training accuracy, PPSO also out-
performs MChi2 on all datasets. In terms of test accuracy,
PPSO performs either similar to or significantly better than
MChi2 on seven datasets with smaller feature subsets on four
datasets. It is noticed that although MChi2 is a filter method,
its running time is longer than that of PPSO and MDL+LFS
on almost all datasets. While the difference in running time
between MChi2 and PPSO is not too big on small datasets, it
becomes much larger on datasets with more than ten thousand
features. This indicates that the proposed algorithm is scalable
to high-dimensional datasets.

VI. FURTHER ANALYSIS

In addition to classification performance and feature subset
size, generalisation and robustness are also important criteria
in evaluating the performance of a FS method. While gener-
alisability relates to the ability of the learned model to have a
similar performance on both training and test data,robustness

TABLE V
AVERAGE TRAINING ACCURACY.

Dataset Method Train-Acc(Std) T Dataset Method Train-Acc(Std) T

SRBCT PSO-FS 100.00 (0.00) = Leuk2 PSO-FS 100.00 (0.00) =
EPSO 100.00 (0.00) = EPSO 100.00 (0.00) =
PPSO 100.00 (0.00) PPSO 100.00 (0.00)

DLBCL PSO-FS 100.00 (0.00) = Brain2 PSO-FS 99.73 (0.12) –
EPSO 100.00 (0.00) = EPSO 98.38 (0.27) –
PPSO 100.00 (0.00) PPSO 99.99 (0.05)

9Tumor PSO-FS 97.49 (0.23) + Prostate PSO-FS 98.89 (0.10) –
EPSO 95.03 (0.22) + EPSO 98.56 (0.14) –
PPSO 92.31 (0.33) PPSO 99.84 (0.‘5)

Leuk1 PSO-FS 100.00 (0.00) = Lung PSO-FS 97.77 (0.05) +
EPSO 100.00 (0.00) = EPSO 97.10 (0.14) =
PPSO 100.00 (0.00) PPSO 97.09 (0.30)

Brain1 PSO-FS 100.00 (0.00) = 11Tumor PSO-FS 99.80 (0.08) +
EPSO 99.33 (0.29) – EPSO 96.21 (0.19) –
PPSO 99.99 (0.06) PPSO 99.14 (0.20)

relates to the ability to reproduce the results regardless of
the small variance of the experiments. In this section, we
compared the performance of the one-stage and two-stage
approaches in terms of these two aspects. Furthermore, we
also compared the performance of PPSO and the traditional
ones in the FS bias scenario. By using the whole dataset for
FS training, the performance difference between them reveals
their learning capability.

A. Generalisation and Robustness
To compare the generalisability of the one-stage and two-

stage approaches, we examined the training accuracy of the
returned solutions. Table V shows the mean and standard de-
viation of the training accuracy obtained by the three methods
in 30 runs of each dataset.

As can be seen in Table V that PPSO achieves better training
accuracy than PSO-FS on two datasets and similar on five.
However, as seen in Table III, PPSO achieves significantly
better test accuracy on seven datasets than PSO-FS and similar
on one. This indicates that PPSO has better generalisability
than PSO-FS.

Compared with EPSO, PPSO obtains the same training
accuracy (100%) on SRBCT with a smaller number of features
and 3% higher accuracy on 11Tumor with a bigger feature
subset. This indicates that the scaling mechanism helps PPSO
effectively select appropriate feature subsets that can maintain
or increase the training accuracy. However, these solutions
seem to overfit the training data when they get 1% and 3%
lower test accuracy than those of EPSO, respectively as shown
in Table III. Another possible reason is that PPSO uses the fix
potential cut-points calculated from the training data which
may not be representative to the test data. A better mechanism
to calculate the potential cut-points may help to improve the
performance of PPSO.

We also note a big difference between the test and training
accuracy (shown in Table III and V), especially in 9Tumor.
This indicates the existence of overfitting which may be be-
cause the skew distribution of features in these datasets creates
different distributions in training and test sets. Therefore,
the learned model may not be generalised well to the test
data. This problem is worse in datasets with smaller numbers
of samples, such as Brain2 and 9Tumor with 50 and 60
instances. On top of this, the large number of classes as well

JOURNAL OF LATEX CLASS FILES, VOL., NO., 2016 11

0 20 40 60 80 100

0
20

40
60

SRBCT

0 20 40 60 80 100

0
50

10
0

15
0

DLBCL

0 20 40 60 80 100

0
20

40
60

80
10
0

12
0 9 Tumors

0 20 40 60 80 100

0
20

40
60

80
10
0

12
0

Leukemia1

0 20 40 60 80 100

0
20

40
60

80
10
0

Brain2

0 20 40 60 80 100

0
50

10
0

15
0

20
0 Prostate

0 20 40 60 80 100

0
20

40
60

80
10
0

Brain1

0 20 40 60 80 100

0
20

40
60

80
10
0

12
0

Leukemia2

0 20 40 60 80 100

0
5

10
15

20

Lung

0 20 40 60 80 100

0
10

20
30

40

11 Tumors

PSO−FS EPSO PPSO

Fig. 7. Z-score of the top 100 selected features on each dataset.

as the class imbalance nature are additional challenges of
these datasets. With 9 classes, 9Tumor has worse results than
Brain2 which has 4 classes. As can be seen from Table IV
that MDL+LFS and MChi2 performances are also affected by
this phenomenon. The gaps between training and test accuracy
obtained by MDL+LFS on 9Tumor and Brain2 are about 40%
which is even larger than PPSO with about 30%.

Since each method was run 30 times on each 10-fold
CV, it produced 300 solutions for a dataset. If the dataset
has redundant features, different solutions may include very
different features if the method is sensitive to the experimental
conditions, leading to a low selection frequency of each
feature. Therefore, we used the Z-score [56], [60] of 100 most
selected features to examine the robustness of the compared
methods. Z-score is a measure indicating the significance of
the selection frequency of a feature. It is defined as follows:

Zx =
fx � µ

�
(12)

where fx is the number of times feature x being selected in
the L solutions (L is 300 in our experiment). µ and � are
the mean and standard deviation of fx. They are estimated
based on the probability of feature x being selected, P (fx),
as follows:

µ = P (fx) · L

and
� =

p
P (fx) · (1� P (fx)) · L

where P (fx) is equal to the average number of selected
features in L solutions divided by the size of the original
feature set. Therefore, the higher the value of Zx, the less
likely that feature x is selected by chance. Therefore, an
algorithm is said to be more robust if it selects more features
with higher Z-scores.

Fig. 7 compares the Z-scores of the top 100 selected features
by the three methods on each dataset. The chart shows that
the Z-scores of the features selected by PPSO are greater than
those of EPSO which are in turn greater than PSO-FS. This
indicates that PPSO is more robust than the other methods.

In general, the results show that PPSO has better general-
isability and robustness than PSO-FS. Solutions produced by
PPSO are more compact and have higher discriminating power
than PSO-FS. This demonstrates our hypothesis that important
information including feature interaction may be lost during
the discretisation process in the first stage of PSO-FS. Since
the two-stage approach evaluates the selected features and their
cut-points simultaneously, it takes these important information
into account.

B. Learning Capability

To confirm the performance of the proposed approach, we
conducted another experiment with FS bias. In this experi-
ment, the whole dataset is used to train the algorithm. Based
on the evolved cut-points and the selected features, the whole
dataset is transformed and used for performance evaluation.
Besides KNN, Naive Bayes (NB) is also used to see if the
evolved solutions by PPSO can also improve the performance
of classifiers other than the one used in the fitness function.

Table VI shows the average of 10-fold CV classification
accuracies obtained by KNN (K=1) and NB on the original
datasets (“Full”) and the transformed datasets by five methods.
Wilcoxon significance test with significance level of 0.05
was used to compare the classification accuracy obtained
by KNN and NB between the corresponding method and
PPSO. “SK” and “SNB” present the statistical test results of
the corresponding method over PPSO using KNN and NB,
respectively.

According to Table VI, PPSO obtains 100% accuracy in
all or almost all 30 runs on seven datasets for KNN and six
datasets for NB. For KNN, its results outperform MDL+LFS,
MDL+CON and MChi2 on 8, 9, and 7 datasets, respectively.
It is noticed that MDL+LFS performs quite well on datasets
with a small number of classes; however, its accuracy is 20%
lower than that of PPSO on 9Tumor and 11Tumor datasets.
MDL+CON also suffers from this problem with an even
a bigger gap. Compared with MDL+CFS, PPSO obtains a
significantly better results on 2 datasets, similar in 6 and worse
in 2. It is also noticed that even though MDL+CFS achieves
comparable performance with PPSO, its running time is 4 to
100 times longer than that of PPSO. In general, with totally
49 comparisons (excluding the unavailable result of MChi2 on
Lung dataset), PPSO wins 36 cases, draws 10 and loses 3.

JOURNAL OF LATEX CLASS FILES, VOL., NO., 2016 12

TABLE VI
RESULTS WITH FEATURE SELECTION BIAS.

Dataset Method Size Time (s)
KNN Naive Bayes

Best Mean SK Best Mean SNB

SRBCT Full 2,308.0 83.35 – 99.17 –
MDL+LFS 8.0 5.52 99.14 – 99.14 –
MDL+CON 4.0 0.53 95.18 – 95.18 –
MDL+CFS 80.0 36.53 100.00 = 100.00 =
MChi2 120.0 9.80 100.00 = 100.00 =
PPSO 114.4 9.51 100.00 99.97 100.00 100.00

DLBCL
Full 5,469.0 81.71 – 77.17 –
MDL+LFS 9.0 11.09 97.37 – 97.41 –
MDL+CON 4.0 0.64 96.10 – 96.10 –
MDL+CFS 55.0 132.31 100.00 = 100.00 =
MChi2 15.0 37.80 87.79 – 90.43 –
PPSO 49.7 21.86 100.00 100.00 100.00 100.00

9Tumor
Full 5,726.0 33.44 – 40.00 –
MDL+LFS 13.0 6.09 74.49 – 65.70 –
MDL+CON 6.0 0.88 68.33 – 68.33 –
MDL+CFS 44.0 77.68 89.97 – 94.60 +
MChi2 78.0 26.72 77.60 – 66.14 –
PPSO 113.5 23.61 98.77 95.83 81.44 78.09

Leuk1
Full 5,327.0 79.77 – 90.00 –
MDL+LFS 7.0 7.40 96.30 – 100.00 =
MDL+CON 4.0 0.63 98.61 – 98.61 –
MDL+CFS 74.0 221.60 100.00 = 100.00 =
MChi2 66.0 372.90 99.12 – 99.12 –
PPSO 90.3 25.10 100.00 100.00 100.00 100.00

Brain1
Full 5,920.0 65.07 – 77.50 –
MDL+LFS 10.0 12.10 84.33 – 76.33 –
MDL+CON 5.0 0.94 93.33 – 93.33 –
MDL+CFS 103.0 385.85 100.00 = 100.00 =
MChi2 325.0 130.96 81.00 – 83.00 –
PPSO 83.9 31.87 100.00 100.00 100.00 99.88

Leuk2
Full 11,225.0 88.82 – 95.00 –
MDL+LFS 6.0 32.10 98.61 – 100.00 =
MDL+CON 3.0 1.39 98.61 – 98.61 –
MDL+CFS 87.0 1079.57 100.00 = 100.00 =
MChi2 300.0 46.86 100.00 = 100.00 =
PPSO 95.6 44.72 100.00 99.92 100.00 99.84

Brain2
Full 10,367.0 63.52 – 66.67 –
MDL+LFS 6.0 26.36 100.00 = 100.00 =
MDL+CON 3.0 1.24 94.00 – 94.00 –
MDL+CFS 76.0 756.38 100.00 = 100.00 =
MChi2 110.0 64.52 94.64 – 92.86 –
PPSO 82.1 36.63 100.00 100.00 100.00 99.94

Prostate
Full 10,509.0 82.08 – 62.17 –
MDL+LFS 12.0 20.80 96.04 – 98.04 +
MDL+CON 4.0 1.78 100.00 + 100.00 =
MDL+CFS 55.0 532.78 98.00 – 99.04 +
MChi2 50.0 30.90 94.08 – 95.15 –
PPSO 70.8 51.58 100.00 99.30 99.04 96.63

Lung
Full 12,600.0 71.59 – 79.98 –
MDL+LFS 12.0 87.10 96.77 = 95.10 +
MDL+CON 5.0 5.40 93.60 – 93.60 +
MDL+CFS 286.0 17568.40 98.76 + 99.86 +
MChi2 NA NA NA NA
PPSO 218.4 175.81 97.90 96.65 93.13 84.88

11Tumor
Full 12,533.0 71.01 – 77.47 –
MDL+LFS 12.0 41.95 78.58 – 78.18 –
MDL+CON 7.0 6.57 72.99 – 72.99 –
MDL+CFS 207.0 7911.05 98.89 + 100.00 +
MChi2 2643.0 100.07 94.16 – 96.29 =
PPSO 173.5 162.15 99.66 98.44 98.23 96.10

Similarly, the transformed datasets by PPSO also help NB
improve its classification accuracy on all datasets, six of which
reach 100% accuracy in all or almost all 30 runs. Compared
with feature subsets obtained by MDL+LFS, MDL+CON and
MChi2, those of PPSO achieve either similar or better classi-
fication performance on eight to nine datasets. Compared with
MDL+CFS, PPSO obtains similar performance on six datasets
and worse in the remaining four. On Brain1, while MDL+LFS
obtains 76.33% with 10 features and MChi2 obtains 83% with
325 features, PPSO only selects 84 features to improve the
NB accuracy to 99.88%. Using over ten times longer time
than PPSO, MDL+CFS obtains 100% accuracy on this dataset

however with 105 features. In general, for NB, PPSO wins 29
cases, draws 13 and loses 7 in the total 49 comparisons.

It is also noticed that the result subsets of PPSO and
MDL+CFS on 9Tumor dataset have opposite effects on KNN
and NB. While the transformed dataset of PPSO performs
better than that of MDL+CFS in KNN, it obtains worse result
than MDL+CFS in NB. Given that PPSO selects many more
features than MDL+CFS in this dataset, this phenomenon
might have happened because the feature subset evolved by
PPSO still contains redundant or correlated features which
may not strongly affect the performance of KNN but may
negatively affect the performance of NB. Since PPSO uses
KNN as a learning algorithm to evaluate the feature subset, the
redundant features are not well identified. On the other hand,
CFS is good at recognising correlated or redundant features.
This possible reason also explains the loses of PPSO on the
remaining three datasets namely Prostate, Lung and 11Tumor.

VII. CONCLUSIONS AND FUTURE WORK

The goal of this study was to propose an integrating ap-
proach to discretisation and FS in a single stage using BBPSO.
The goal was achieved by proposing a new PSO-based meth-
ods, PPSO, with a new PSO representation to choose cut-
points for discretising multiple features and selecting features
simultaneously. PPSO was compared with using the full set
of original features, EPSO, and the two-stage approach (PSO-
FS).

Experimental results on ten datasets having thousands to
tens of thousands of features with variant numbers of classes
show that PPSO can discretise multiple features simultane-
ously and select a much smaller number of relevant features
with better discriminating ability. Comparison between PPSO
and PSO-FS suggests that it is more effective to combine
discretisation and FS in a single stage. Compared with EPSO,
PPSO obtains either equivalent or better results with smaller
numbers of features. Further analysis also shows that PPSO
is more general and more robust than the compared PSO
methods.

PPSO was also compared with four traditional methods rep-
resenting for two-stage and one-stage approaches, MDL+LFS,
MDL+CON, MDL+CFS and MChi2. The results of two
experiments with and without FS bias show that PPSO has
significantly better performance than MDL+LFS, MDL+CON
and MChi2 and similar performance to MDL+CFS in most
cases. The results also show that PPSO is more scalable
than MDL+CFS and MChi2 in dealing with high-dimensional
problems. Compared results on both KNN and NB indicate
that solutions obtained by PPSO can be generalised to other
classifier than the one used during the training process.

As a binary discretisation method, PPSO may not work well
on data that needs to be discretised into multiple intervals.
Furthermore, the potential cut-points are calculated based
on MDLP. Therefore, investigation of using other schemes
for cut-point calculation, multiple interval discretisation, and
different approaches to optimising the search process will be
included in our future work.

Empirical results show that the running time of PPSO
is scalable to high-dimensional data with 10,000+ features.

JOURNAL OF LATEX CLASS FILES, VOL., NO., 2016 13

However, since the PPSO representation is static and propor-
tional to the feature set size, applying PPSO to datasets with
100,000+ features may be limited by the memory capacity.
Furthermore, the search space will become much larger due
to the exponential increase of the possible solutions, so it may
require a different way to solve the problem. In the future,
we will investigate using a dynamic representation in PPSO
to overcome this limitation.

ACKNOWLEDGMENT

This work was supported in part by the Mars-
den Fund of New Zealand Government under Contract
VUW1209, VUW1509 and 16-VUW-111, Huawei Industry
Fund E2880/3663, and the University Research Fund at Victo-
ria University of Wellington 209861/3580, 209862/3580, and
213150/3662.

REFERENCES

[1] A. J. Ferreira and M. A. Figueiredo, “Efficient feature selection filters
for high-dimensional data,” Pattern Recognition Letters, vol. 33, no. 13,
pp. 1794–1804, 2012.

[2] B. Tran, B. Xue, and M. Zhang, “Improved PSO for Feature Selection
on High-Dimensional Datasets,” in Simulated Evolution and Learning,
ser. Lecture Notes in Computer Science, 2014, vol. 8886, pp. 503–515.

[3] C. Ding and H. Peng, “Minimum redundancy feature selection from
microarray gene expression data,” Journal of bioinformatics and com-
putational biology, vol. 3, no. 02, pp. 185–205, 2005.

[4] J. Dougherty, R. Kohavi, M. Sahami et al., “Supervised and unsupervised
discretization of continuous features,” in Machine learning: proceedings
of the twelfth international conference, vol. 12, 1995, pp. 194–202.

[5] V. Bolón-Canedo, N. Sánchez-Maroño, and A. Alonso-Betanzos, “On
the effectiveness of discretization on gene selection of microarray data,”
in The International Joint Conference on Neural networks (IJCNN),.
IEEE, 2010, pp. 1–8.

[6] A. J. Ferreira and M. A. Figueiredo, “An unsupervised approach to
feature discretization and selection,” Pattern Recognition, vol. 45, no. 9,
pp. 3048–3060, 2012.

[7] S. Chao and Y. Li, “Multivariate interdependent discretization for
continuous attribute,” in Third International Conference on Information
Technology and Applications, vol. 1. IEEE, 2005, pp. 167–172.

[8] R. Eberhart and J. Kennedy, “A new optimizer using particle swarm
theory,” in Proceedings of the Sixth International Symposium on Micro
Machine and Human Science, 1995, pp. 39–43.

[9] B. Xue, M. Zhang, and W. Browne, “Particle swarm optimization for
feature selection in classification: A multi-objective approach,” IEEE
Transactions on Cybernetics, vol. 43, no. 6, pp. 1656–1671, 2013.

[10] B. Xue, M. Zhang, and W. N. Browne, “Particle swarm optimisation
for feature selection in classification: Novel initialisation and updating
mechanisms,” Applied Soft Computing, vol. 18, no. 0, pp. 261–276,
2014.

[11] L. Cervante, B. Xue, M. Zhang, and L. Shang, “Binary particle swarm
optimisation for feature selection: A filter based approach,” in IEEE
Congress on Evolutionary Computation (CEC’12), 2012, pp. 881–888.

[12] M. Mohamad, S. Omatu, S. Deris, and M. Yoshioka, “A modified
binary particle swarm optimization for selecting the small subset of
informative genes from gene expression data,” Information Technology
in Biomedicine, vol. 15, no. 6, pp. 813–822, 2011.

[13] W. Zhou and J. A. Dickerson, “A novel class dependent feature selection
method for cancer biomarker discovery,” Computers in biology and
medicine, vol. 47, pp. 66–75, 2014.

[14] B. Tran, B. Xue, and M. Zhang, “Bare-bone particle swarm optimi-
sation for simultaneously discretising and selecting features for high-
dimensional classification,” in European Conference on Applications of
Evolutionary Computation (EvoApplications). Springer, 2016, pp. 701–
718.

[15] J. Kennedy, “Bare bones particle swarms,” in Proceedings of the IEEE
Swarm Intelligence Symposium (SIS)., 2003, pp. 80–87.

[16] U. M. Fayyad and K. B. Irani, “Multi-interval discretization of
continuous-valued attributes for classification learning,” in Thirteenth
International Joint Conference on Articial Intelligence, vol. 2. Morgan
Kaufmann Publishers, 1993, pp. 1022–1027.

[17] S. K. Singhi and H. Liu, “Feature subset selection bias for classifica-
tion learning,” in Proceedings of the 23rd international conference on
Machine learning. ACM, 2006, pp. 849–856.

[18] R. Kohavi and G. H. John, “Wrappers for feature subset selection,”
Artificial Intelligence, vol. 97, no. 1–2, pp. 273–324, 1997.

[19] J. Liang, S. Yang, and A. Winstanley, “Invariant optimal feature se-
lection: A distance discriminant and feature ranking based solution,”
Pattern Recognition, vol. 41, no. 5, pp. 1429–1439, 2008.

[20] B. Xue, L. Cervante, L. Shang, W. Browne, and M. Zhang, “A multi-
objective particle swarm optimisation for filter-based feature selection
in classification problems,” Connection Science, vol. 24, no. 2-3, pp.
91–116, 2012.

[21] M. Dash and H. Liu, “Consistency-based search in feature selection,”
Artificial Intelligence, vol. 151, pp. 155–176, 2003.

[22] M. A. Hall, “Correlation-based feature selection for discrete and numeric
class machine learning,” in Proceedings of the Seventeenth International
Conference on Machine Learning, 2000, pp. 359–366.

[23] T. Cover and P. Hart, “Nearest neighbor pattern classification,” IEEE
Transactions on Information Theory, vol. 13, no. 1, pp. 21–27, 1967.

[24] T. Mitchell, Machine Learning. McGraw-Hill, 1997.
[25] C.-W. Hsu, C.-C. Chang, and C.-J. Lin, “A practical guide to support

vector classification,” Tech. Rep., 2003.
[26] T. Butler-Yeoman, B. Xue, and M. Zhang, “Particle swarm optimisa-

tion for feature selection: A hybrid filter-wrapper approach,” in IEEE
Congress on Evolutionary Computation, 2015, pp. 2428–2435.

[27] M. Dash and H. liu, “Feature selection for classification,” Intelligent
data analysis, vol. 1, no. 4, pp. 131–156, 1997.

[28] M. Gutlein, E. Frank, M. Hall, and A. Karwath, “Large-scale attribute
selection using wrappers,” in IEEE Symposium on Computational Intel-
ligence and Data Mining, 2009, pp. 332–339.

[29] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten, “The weka data mining software: an update,” ACM SIGKDD
explorations newsletter, vol. 11, no. 1, pp. 10–18, 2009.

[30] A. Whitney, “A direct method of nonparametric measurement selection,”
IEEE Transactions on Computers, vol. C-20, no. 9, pp. 1100–1103,
1971.

[31] T. Marill and D. M. Green, “On the effectiveness of receptors in
recognition systems.” IEEE Transactions on Information Theory, vol. 9,
no. 1, pp. 11–17, 1963.

[32] I. Guyon and A. Elisseeff, “An introduction to variable and feature
selection,” Journal of Machine Learning Research, vol. 3, pp. 1157–
1182, 2003.

[33] H. B. Nguyen, B. Xue, I. Liu, and M. Zhang, “Filter based backward
elimination in wrapper based pso for feature selection in classification,”
in IEEE Congress on Evolutionary Computation, 2014, pp. 3111–3118.

[34] H. Liu and R. Setiono, “Feature selection and classification-a probabilis-
tic wrapper approach,” in Proceedings of 9th International Conference
on Industrial and Engineering Applications of AI and ES, 1997, pp.
419–424.

[35] A. Unler and R. B. C. Alper Murat, “mr2pso: A maximum relevance
minimum redundancy feature selection method based on swarm intelli-
gence for support vector machine classification,” Information Sciences,
vol. 20, pp. 4625–4641, 2011.

[36] B. Xue, M. Zhang, W. N. Browne, and X. Yao, “A survey on evolutionary
computation approaches to feature selection,” IEEE Transactions on
Evolutionary Computation, vol. 20, no. 4, pp. 606–626, 2016.

[37] B. Tran, B. Xue, and M. Zhang, “Overview of Particle Swarm Opti-
misation for Feature Selection in Classification,” in Simulated Evolution
and Learning, ser. Lecture Notes in Computer Science. Springer, 2014,
vol. 8886, pp. 605–617.

[38] S. Garcia, J. Luengo, J. A. Sáez, V. Lopez, and F. Herrera, “A survey of
discretization techniques: taxonomy and empirical analysis in supervised
learning,” Knowledge and Data Engineering, IEEE Transactions on,
vol. 25, no. 4, pp. 734–750, 2013.

[39] H. Liu, F. Hussain, C. L. Tan, and M. Dash, “Discretization: An enabling
technique,” Data mining and knowledge discovery, vol. 6, no. 4, pp.
393–423, 2002.

[40] S. Kotsiantis and D. Kanellopoulos, “Discretization techniques: A recent
survey,” GESTS International Transactions on Computer Science and
Engineering, vol. 32, no. 1, pp. 47–58, 2006.

[41] J. Catlett, “On changing continuous attributes into ordered discrete
attributes,” in Machine learning–EWSL-91. Springer, 1991, pp. 164–
178.

[42] R. C. Holte, “Very simple classification rules perform well on most
commonly used datasets,” Machine learning, vol. 11, no. 1, pp. 63–90,
1993.

JOURNAL OF LATEX CLASS FILES, VOL., NO., 2016 14

[43] J. W. Grzymala-Busse, “Discretization based on entropy and multiple
scanning,” Entropy, vol. 15, no. 5, pp. 1486–1502, 2013.

[44] A. Cano, D. T. Nguyen, S. Ventura, and K. J. Cios, “ur-CAIM: improved
CAIM discretization for unbalanced and balanced data,” Soft Computing,
pp. 1–16, 2014.

[45] P. Yang, J.-S. Li, and Y.-X. Huang, “HDD: a hypercube division-based
algorithm for discretisation,” International Journal of Systems Science,
vol. 42, no. 4, pp. 557–566, 2011.

[46] J. L. Flores, I. Inza, and P. Larrañaga, “Wrapper discretization by means
of estimation of distribution algorithms,” Intelligent Data Analysis,
vol. 11, no. 5, pp. 525–545, 2007.

[47] S. Ramirez-Gallego, S. Garcia, J. Benitez, and F. Herrera, “Multivariate
discretization based on evolutionary cut points selection for classifica-
tion,” IEEE Transactions on Cybernetics,, vol. 46, no. 3, pp. 595–608,
March 2016.

[48] P. Mahanta, H. A. Ahmed, J. K. Kalita, and D. K. Bhattacharyya,
“Discretization in gene expression data analysis: a selected survey,” in
Proceedings of the Second International Conference on Computational
Science, Engineering and Information Technology. ACM, 2012, pp.
69–75.

[49] H. Liu and R. Setiono, “Chi2: Feature selection and discretization of
numeric attributes,” in tai. IEEE, 1995, p. 388.

[50] F. E. Tay and L. Shen, “A modified chi2 algorithm for discretization,”
IEEE Transactions on Knowledge and Data Engineering, vol. 14, no. 3,
pp. 666–670, 2002.

[51] L. Jaba Sheela and D. V. Shanthi, “An approach for discretization and
feature selection of continuous-valued attributes in medical images for
classification learning,” International Journal of Computer Theory and
Engineering, vol. 1, no. 2, pp. 154–158, 2009.

[52] A. Ferreira and M. Figueiredo, “Unsupervised joint feature discretization
and selection,” in Pattern Recognition and Image Analysis. Springer,
2011, pp. 200–207.

[53] F. Van den Bergh and A. P. Engelbrecht, “A study of particle swarm
optimization particle trajectories,” Information sciences, vol. 176, no. 8,
pp. 937–971, 2006.

[54] G. Chandrashekar and F. Sahin, “A survey on feature selection methods,”
Computers & Electrical Engineering, vol. 40, pp. 16–28, 2014.

[55] Y. Zhang, D. Gong, Y. Hu, and W. Zhang, “Feature selection algorithm
based on bare bones particle swarm optimization,” Neurocomputing, vol.
148, pp. 150 – 157, 2015.

[56] Z. Zhu, Y.-S. Ong, and M. Dash, “Markov blanket-embedded genetic
algorithm for gene selection,” Pattern Recognition, vol. 40, no. 11, pp.
3236–3248, 2007.

[57] G. Patterson and M. Zhang, “Fitness functions in genetic programming
for classification with unbalanced data,” in Advances in Artificial Intel-
ligence. Springer, 2007, pp. 769–775.

[58] H. Al-Sahaf, M. Zhang, M. Johnston, and B. Verma, “Image descriptor:
A genetic programming approach to multiclass texture classification,” in
IEEE Congress on Evolutionary Computation, 2015, pp. 2460–2467.

[59] J. Alcalá, A. Fernández, J. Luengo, J. Derrac, S. Garcı́a, L. Sánchez,
and F. Herrera, “Keel data-mining software tool: Data set repository,
integration of algorithms and experimental analysis framework,” Journal
of Multiple-Valued Logic and Soft Computing, vol. 17, no. 255-287,
p. 11, 2010.

[60] T. Jirapech-Umpai and S. Aitken, “Feature selection and classification
for microarray data analysis: Evolutionary methods for identifying
predictive genes,” BMC bioinformatics, vol. 6, no. 1, p. 148, 2005.

Binh Tran (S’14) received her B.E. in Computer
Science from Cantho University, Vietnam, in 1998.
She received her Master degree in Applied Computer
Science from Free University of Brussels, Belgium,
in 2002. Since 2014, she has joined the Evolutionary
Computation Research Group (ECRG) at Victoria
University of Wellington (VUW). Currently, she is
a Ph.D. Candidate in the School of Engineering and
Computer Science at VUW.

Binh’s research interests are in evolutionary com-
putation, feature manipulation including feature se-

lection and construction, high dimensional data, and machine learning.
Ms. Tran is a member of the IEEE Computational Intelligence Society

(CIS). She has been serving as a reviewer for international journals and
conferences in the field.

Bing Xue (M’10) received the B.Sc. degree from
the Henan University of Economics and Law,
Zhengzhou, China, in 2007, the M.Sc. degree in
management from Shenzhen University, Shenzhen,
China, in 2010, and the PhD degree in computer
science in 2014 at Victoria University of Wellington,
New Zealand.

She is currently a Senior Lecturer in School of En-
gineering and Computer Science at Victoria Univer-
sity of Wellington. Her research focuses mainly on
evolutionary computation, feature selection, feature

construction, multi-objective optimisation, data mining and machine learning.
She has over 100 papers published in fully referred international journals and
conferences.

Dr Xue is an Associate Editor/member of Editorial Board for five interna-
tional journals including IEEE Computational Intelligence Magazine, Applied
Soft Computing, International Journal of Swarm Intelligence, and Interna-
tional Journal of Computer Information Systems and Industrial Management
Applications. She is a Guest Editor for the Special Issue on Evolutionary
Feature Reduction and Machine Learning for the Springer Journal of Soft
Computing. She is also a Guest Editor for Evolutionary Image Analysis and
Pattern Recognition in Journal of Applied Soft Computing. She is serving as
a reviewer of over 20 international journals including IEEE Transactions on
Cybernetics and IEEE Transactions on Evolutionary Computation.

She has been a chair for a number of international conferences including
the Leading Chair of IEEE Symposium on Computational Intelligence in
Feature Analysis, Selection, and Learning in Image and Pattern Recognition
at SSCI 2016 and 2017, a Program Co-Chair of the 31th Australasian AI
2018, ACALCI 2018, and the 7th SoCPaR 2015, Special Session Chair for
ES2016, a Tutorial Chair for the 30th Australasian AI, publicity chair for
SEAL 2017, and ICDIS 2018. She is the organiser of the special session
on Evolutionary Feature Selection and Construction in IEEE Congress on
Evolutionary Computation (CEC) 2015, 2016 and 2017, and SEAL 2014 and
2017.

Dr Xue is currently the Chair of the IEEE Task Force on Evolutionary
Feature Selection and Construction. She is chairing the IEEE CIS Graduate
Student Research Grants Committee.

Mengjie Zhang (M’04-SM’10) received the B.E.
and M.E. degrees from Artificial Intelligence Re-
search Center, Agricultural University of Hebei,
Hebei, China, and the Ph.D. degree in computer
science from RMIT University, Melbourne, VIC,
Australia, in 1989, 1992, and 2000, respectively.

Since 2000, he has been with the Victoria Univer-
sity of Wellington, Wellington, New Zealand, where
he is currently Professor of Computer Science, Head
of the Evolutionary Computation Research Group,
and the Associate Dean (Research and Innovation) in

the Faculty of Engineering. His current research interests include evolutionary
computation, particularly genetic programming, particle swarm optimization,
and learning classifier systems with application areas of image analysis, mul-
tiobjective optimization, feature selection and reduction, job shop scheduling,
and transfer learning. He has published over 350 research papers in refereed
international journals and conferences.

Prof. Zhang has been serving as an Associated Editor or Editorial Board
Member for ten international journals (including IEEE Transactions on
Evolutionary Computation, IEEE Transactions on Cybernetics, Evolutionary
Computation Journal, and IEEE Transactions on Emergent Topics in CI)
and as a Reviewer of over 20 international journals. He has been serving
as a Steering Committee Member and a Program Committee Member for
over 100 international conferences. He has supervised over 50 postgraduate
research students. He is the Chair of the IEEE CIS Intelligent Systems and
Applications Technical Committee, a member of the IEEE CIS Evolutionary
Computation Technical Committee, a Vice-Chair of the IEEE CIS Task Force
on Evolutionary Computer Vision and Image Processing, a Vice-Chair of the
IEEE CIS Task Force on Evolutionary Computation for Feature Selection and
Construction, a member of IEEE CIS Task Force of Hyper-heuristics, and the
Founding Chair for IEEE Computational Intelligence Chapter in New Zealand.

