
Evolving Deep Convolutional Neural Networks by
Variable-length Particle Swarm Optimization for

Image Classification
Bin Wang, Yanan Sun, Bing Xue and Mengjie Zhang

School of Engineering and Computer Science
Victoria University of Wellington, PO Box 600, Wellington 6140, NEW ZEALAND

Emails: wangbin@myvuw.ac.nz, {yanan.sun, bing.xue, mengjie.zhang}@ecs.vuw.ac.nz

Abstract—Convolutional neural networks (CNNs) are one of
the most effective deep learning methods to solve image classi-
fication problems, but the best architecture of a CNN to solve
a specific problem can be extremely complicated and hard to
design. This paper focuses on utilising Particle Swarm Optimisa-
tion (PSO) to automatically search for the optimal architecture
of CNNs without any manual work involved. In order to achieve
the goal, three improvements are made based on traditional PSO.
First, a novel encoding strategy inspired by computer networks
which empowers particle vectors to easily encode CNN layers
is proposed; Second, in order to allow the proposed method
to learn variable-length CNN architectures, a Disabled layer is
designed to hide some dimensions of the particle vector to achieve
variable-length particles; Third, since the learning process on
large data is slow, partial datasets are randomly picked for the
evaluation to dramatically speed it up. The proposed algorithm
is examined and compared with 12 existing algorithms including
the state-of-art methods on three widely used image classification
benchmark datasets. The experimental results show that the
proposed algorithm is a strong competitor to the state-of-art
algorithms in terms of classification error. This is the first work
using PSO for automatically evolving the architectures of CNNs.

I. INTRODUCTION

Convolutional neural networks (CNNs) have demonstrated
exceptional superiority in numerous machine learning tasks,
such as speech recognition [1], sentence classification [2]
and image classification [3]. However, designing the architec-
tures of CNNs for specific tasks can be extremely complex,
which can be seen from some existing efforts done by re-
searchers, such as LeNet [4][5], AlexNet [3], VGGNet [6]
and GoogLeNet [7]. In addition, one cannot expect to get
the optimal performance by applying the same architecture on
various tasks, and the CNN architecture needs to be adjusted
for each specific task, which will bring tremendous work as
there are a large number of types of machine learning tasks
in industry.

In order to solve the complex problem of the CNN ar-
chitecture design, evolutionary computation (EC) has recently
been leveraged to automatically design the architecture without
any human effort involved. Interested researchers have done
excellent work on the automatic design of the CNN archi-
tectures by using Genetic Programming (GP) [8] and Genetic
Algorithms (GAs) [9][10], such as Large-scale evolution of
image classifiers (LEIC) method [11] recently proposed by

Google, which have shown that EC can be used in learning
CNN architectures that are competitive with the state-of-art
algorithms designed by humans. However, the learning process
for large data is too slow due to the high computational cost for
most of the methods and it might not be practical for industrial
use.

A lot of work has been done in order to improve using
EC to evolve a CNN architecture, such as the recent pro-
posed EvoCNN using GAs [12]. One of the improvements
in EvoCNN is that during the fitness evaluation, instead of
training the model for 25,600 steps in LEIC, it only trains
each individual by 10 epochs, which dramatically speeds up
the learning process. The rationale behind EvoCNN using 10
epochs is that the researchers believe that training 10 epochs
can obtain the major trend of the CNN architecture, which
would be decisive to the final performance of a model, having
been verified by their experiments.

However, not a lot of research has been done by using
other EC methods to evolve the architectures of CNNs, so
we would like to explore some other major EC methods
for evolving the architectures of CNNs without any human
interference. Since Particle Swarm Optimisation (PSO) has the
advantages of easy implementation, lower computational cost,
and fewer parameters to adjust, and it has never been utilised
to evolve the architectures of CNNs, PSO is chosen in this
paper. However, the fixed-length encoding of the particle in
traditional PSO is a big challenge for evolving the architectures
of CNN as the optimal CNN architecture varies for different
tasks, so a novel flexible encoding scheme is proposed to
break the fixed-length constraint, which would be the most
fundamental part of the proposed algorithm in this paper.

A. Goal

The overall goal of this paper is to design and develop an
effective and efficient PSO method to automatically discover
good architectures of CNNs. The specific objectives of this
paper are to

1) Design a new particle encoding scheme that has the
ability of effectively encoding a CNN architecture, and
develop a new PSO algorithm based on the novel en-
coding strategy.

Fig. 1. An general architecture of the Convolutional Neural Network [13]

2) Design a method to break the constraint of the fixed-
length encoding of traditional PSO in order to learn
variable-length architectures of CNNs. We will introduce
a new layer called Disabled layer to attain a variable-
length particle.

3) Propose a fitness evaluation method using a partial
dataset instead of the whole dataset to significantly speed
up the evolutionary process.

II. BACKGROUND

A. CNN architecture

Fig. 1 exhibits a general architecture of a CNN with two
convolutional (Conv) layers, two pooling layers, and two
Fully-connected layers - one hidden layer and one output layer
at the end [13]. It is well-known that when designing a deep
CNN architecture, the number of Conv layers, Pooling layers
and Fully-connected layers before the last output layer have
to be properly defined along with their positions and configu-
rations. Different types of layers have different configurations
as follows: Filter size, stride size and feature maps are the
main attributes of the configuration for the Conv layer; Kernel
size, stride size and pooling type - max-pooling or average-
pooling, are the important parameters for the configuration
of the Pooling layer; and the number of neurons is the key
attribute of the Fully-connected layer.

B. Particle Swarm Optimisation

Particle Swarm Optimization (PSO) is a population-based
algorithm, motivated by the social behaviour of fish school-
ing or bird flocking [14] [15], commonly used for solving
optimization problems without rich domain knowledge [16].
In PSO, the population is composed of a certain number of
particles each of which represents a solution, and particles
fly in the search space to find the best solution by updating
velocity and particle vector according to Equations (1) and (2),
respectively, where vid represents the velocity of the particle
i in the dth dimension, xid represents the position of particle
i in the dth dimension, Pid and Pgd are the local best and the
global best in the dth dimension, r1, r2 are random numbers
between 0 and 1, w, c1 and c2 are PSO parameters used to
tweak the performance.

vid(t+ 1) = w ∗ vid(t) + c1 ∗ r1 ∗ (Pid − xid(t))+

c2 ∗ r2 ∗ (Pgd − xid(t))
(1)

xid(t+ 1) = xid(t) + vid(t+ 1) (2)

C. Internet Protocol address

An Internet Protocol address (IP address) is a numerical
label assigned to each device connected to a computer network
that uses the Internet Protocol for communication [17]. In
order to identify the network of an IP address, the subnet
is introduced, which is often described in CIDR (Classless
Inter-Domain Routing) style [18] by combining the starting IP
address and the length of the subnet mask together. Both the
IP address used for identifying the host and its corresponding
subnet used for distinguishing different networks are carried
by a network interface. For example, a standard IP address
of a 32-bit number could be 192.168.1.251, and a standard
subnet carries the starting IP address and the length of the
subnet mask could be 192.168.1.0/8, which indicates the IP
address in the subnet starts from 192.168.1.0 and the length
of the subnet mask is 8 defining an IP range from 192.168.1.0
to 192.168.1.255.

Although the outlook of the IP address is a sequence of
decimal numbers delimited by full stops, the binary string
under the hood is actually used for the network identification,
which inspires the new PSO encoding scheme. As there are
several attributes in the configuration of each type of CNN
layers, each of which is an integer value within a range, each
value of the attribute can be smoothly converted to a binary
string, and several binary strings, each of which represents the
value of an attribute, can be concatenated to a large binary
string to represent the whole configuration of a specific layer.
It is obvious that the binary string suits the requirement of
encoding CNN layers to particles. However, in this way, a
huge number converted from the binary string will have to
be used as one dimension of the particle vector, which may
result in a horrendous searching time in PSO. On the other
hand, in the IP structure, instead of utilising one huge integer
to mark the identification (ID) of a device in a large network,
in order to make the IP address readable and memorable, it
divides a huge ID number into several decimal values less than
256, each of which is stored in one byte of the IP address. In
this way, the binary string can be divided into several bytes,
and each byte comprises one dimension of the particle vector.
The convergence of PSO can be facilitated by splitting one
dimension of a large number to several dimensions of small
numbers because in each round of the particle updates, all
of the dimensions can be concurrently learned and the search
space of one split dimension is much smaller. In this paper,
the new particle encoding scheme will use this idea to gain the
flexibility of encoding various types of layers into a particle,
and drastically cut down the learning process, which will be
described in the next section.

III. THE PROPOSED ALGORITHM

In this section, the new IP based PSO (IPPSO) method for
evolving deep CNNs will be presented in detail.

A. Algorithm Overview

Algorithm 1 outlines the framework of the proposed algo-
rithm. There are mainly three steps to initialise the population

Algorithm 1: Framework of IPPSO
P ← Initialize the population with the proposed particle
encoding strategy;
Pid ← empty;
Pgd ← empty;
while termination criterion is not satisfied do

update velocity and position of each particle shown in
Algorithm 3;
evaluate the fitness value of each particle;
update Pid and Pgd;

end while

by using the particle encoding strategy which will be described
in Section III-B, to update the position and velocity, and to
check whether the termination criterion is met.

B. Particle Encoding Strategy

The IPPSO encoding strategy is inspired by how the Net-
work IP address works. Although the CNN architecture is
comprised of three types of layers - Convolutional Layer,
Pooling Layer, and Fully-Connected Layer, and the encoded
information of different types of layers varies in terms of both
the number of parameters and the range in each parameter
shown in Table I, a Network IP address with a fixed length
of enough capacity can be designed to accommodate all the
types of CNN layers, and then the Network IP can be divided
into numerous subsets, each of which can be used to define a
specific type of CNN layers.

First of all, the length of the binary string under the IP-
based encoding scheme needs to be designed. With regard to
Conv layers, firstly, there are three key parameters - filter size,
number of feature maps and stride size listed in the column
of Parameter in Table I, which are the fundamental factors
affecting the performance of CNNs; Secondly, based on the
size of benchmark datasets, the range of the parameters are
set to [1,8], [1,128] and [1,4] for the aforementioned three
parameters, respectively, shown in the column of Range in
table I; Thirdly, taking a CNN architecture with the filter size
of 2, number of feature maps of 7 and stride size of 2 as an
example, the decimal values can be converted to the binary
strings of 001, 000 1111 and 01, where the binary string
converted from the decimal value is filled with 0s until the
length reaches the corresponding number of bits, illustrated
in the column of Example Value in Table I. Lastly, the total
number of bits of 12 and the sample binary string of 001
000 1111 01 by concatenating the binary strings of the three
parameters are displayed in the summary row of Conv layer
in Table I. In terms of Pooling layers and Fully-connected
layers, the total number of bits and the sample binary string
can be obtained by following the same process of Conv layers,
which are listed in the summary rows of Pooling and Fully-
connected layers in Table I. As the largest number of bits to
represent a layer is 12 as shown in Table I and the unit of an
IP address is one byte - 8 bits, there will be 2 bytes required
to accommodate the 12 bits IP address.

TABLE I
THE PARAMETERS OF DIFFERENT TYPES OF CNN LAYERS -

CONVOLUTIONAL, POOLING, FULLY-CONNECTED AND DISABLED LAYER
WITH AN EXAMPLE IN THE EXAMPLE COLUMN

Layer Type Parameter Range # of
Bits

Example Value

Conv Filter size [1,8] 3 2(001)

of feature
maps

[1,128] 7 32(000 1111)

Stride size [1,4] 2 2(01)

Summary 12 001 000 1111 01

Pooling Kernel size [1,4] 2 2(01)

Stride size [1,4] 2 2(01)

Type:
1(maximal),
2(average)

[1,2] 1 2(1)

Place holder [1,128] 6 32(00 1111)

Summary 11 01 01 0 00 1111

Fully-
connected

of Neurons [1,2048] 11 1024(011
11111111)

Summary 11 011 11111111

Disabled Place holder [1,2048] 11 1024(011
11111111)

Summary 11 011 11111111

In addition, the subnets for all types of CNN layers need
to be defined according to the number of bits of each layer
illustrated in Table I and CIDR style will be used to represent
the subnet. As there are three types of CNN layers, we need to
define three subnets with enough capacity to represent all the
types of layers. Starting with the Conv layer, 0.0 is designed
as the starting IP address of the subnet; in addition, the total
length of the designed 2-byte IP address is 16 and the total
number of bits required by the Conv layer is 12, so the subnet
mask length is 4 calculated by subtracting the total number of
bits from the length of the IP address, which brings the subnet
representation to 0.0/4 with the range from 0.0 to 15.255.
Regarding the Pooling layer, the starting IP address is 16.0
obtained by adding 1 to the last IP address of the Conv layer,
and the subnet mask length is 5 calculated in the same way
as that of the Conv layer, which results in 16.0/5 with the
range from 16.0 to 23.255 as the subnet representation of the
Pooling layer. Similarly, the subnet 24.0/5 with the range from
24.0 to 31.255 is designed as the subnet of the Fully-connected
layer. In order to make the subnets clear, all of the subnets are
depicted in Table II.

As the particle length of PSO is fixed after initialisation,
in order to cope with the variable-length of the architectures
of CNNs, an effective way of disabling some of the layers
in the encoded particle vector will be used to achieve this
purpose. Therefore, another layer type called the Disabled
layer and the corresponding subnet named the Disabled subnet
are introduced. To achieve a comparable probability for the
Disabled layer, the least total number of bits of 11 among
all three types of CNN layers is set as the number of bits
of the Disabled layer, so the disabled subnet comes to 32.0/5

TABLE II
FOUR SUBNETS DISTRIBUTED TO THE THREE TYPES OF CNN LAYERS AND

THE DISABLED LAYER

Layer type Subnet(CIDR) IP Range

Convolutional Layer 0.0/4 0.0-15.255

Fully-Connected Layer 16.0/5 16.0-23.255

Pooling Layer 24.0/5 24.0-31.255

Disabled Layer 32.0/5 32.0-39.255

TABLE III
AN EXAMPLE OF IP ADDRESSES - ONE FOR EACH TYPE OF CNN LAYERS

Layer type Binary (filled to 2 bytes) IP address

Convolutional Layer (0000)001 000 1111 01 2.61

Pooling Layer (00000)01 01 0 00 1111 18.143

Fully-Connected Layer (00000)011 11111111 27.255

Disabled Layer (00000)01111111111 35.255

with the range from 32.0 to 39.255, shown in Table II, where
each layer will be encoded into an IP address of 2 bytes.
Table III shows how the example in Table I is encoded into IP
addresses by combining all the binary string of each parameter
of a specific layer into one binary string, filling the combined
binary string with zeros until reaching the length of 2 bytes,
applying the subnet mask on the binary string, and converting
the final binary string to an IP address with one byte as a unit
delimited by full stops. For instance, the sample binary string
of the Conv layer in Table I is 001 000 1111 01, which is
filled to 0000 001 000 1111 01 to reach the length of 2 bytes;
then 2-byte binary string - 0000 0010 and 0011 1101, can be
obtained by applying the subnet mask, in which the starting
IP address of the subnet is added to the binary string; Finally,
the IP address of 2.61 is achieved by converting the first byte
to the decimal value of 2 and the second byte to 61.

After converting each layer into a 2-byte IP address,
the position and velocity of PSO can be defined. How-
ever, there are a few parameters that need to be men-
tioned first - max length(maximum number of CNN layers),
max fully connected(maximum Fully-connected layers with
the constraint of at least one Fully-connected layer) listed
in Table IV. The encoded data type of the position and
the velocity will be a byte array with a fixed length of
maximum length * 2 and each byte will be deemed as one
dimension of the particle.

Here is an example of a particle vector to explain how
the CNN architecture is encoded and how it copes with
variable-length of CNN architecture. Assume max length is
5, a sequence of IP addresses representing a CNN architecture
with the maximum number of 5 layers can be encoded into
5 IP addresses in Fig. 2 by using the sample IP addresses
in Table III, where C represents a Conv layer, P represents
a Pooling layer, F represents a Fully-connected layer, and D
represents a Disabled layer. The corresponding particle vector
with the dimension of 10 is shown in Fig. 3. Since there is one
Disabled layer in the example, the actual number of layers is 4.

Fig. 2. An example of IP addresses in a particle containing 5 CNN layers

Fig. 3. An example of a particle vector with 5 CNN layers encoded

However, after a few PSO updates, the seventh dimension and
the eighth dimension of the particle vector may become 18 and
143, respectively, which turns the third IP address representing
a Disabled layers to a Pooling layer, so the updated particle
carries a CNN architecture of 5 layers; Conversely, after a few
updates, the fifth dimension and the sixth dimension of the
particle vector may become 35 and 255, respectively, which
makes the third IP address fall into the disabled subnet, so the
actual number of layers is 3. To conclude, as shown in this
example, the particle with IPPSO encoding scheme is capable
of representing variable-length architectures of CNNs - 3, 4
and 5 in this example.

C. Population Initialisation

In terms of the population initialisation, after the size
of the population is set up, individuals are randomly cre-
ated until reaching the population size. For each individual,
an empty vector is initialised first, and each element in it
will be used to store a Network Interface containing the
IP address and subnet information. The first element will
always be a Conv layer; From the second to (max length−
max fully connected) layer, each element can be filled
with a Conv layer, Pooling layer or Disabled layer; From
(max length−max fully connected) to (max length−1)
layer, it can be filled with any of the four types of layers
until the first Fully-connected is added, and after that only
Fully-connected layers or Disabled layers are allowed; The last
element will always be a Fully-connected layer with the size
the same as the number of classes. In addition, each layer will
be generated with the random settings - a random IP address
in a valid subnet.

D. Fitness Evaluation

Before performing the fitness evaluation, a proper weight
initialisation method has to be chosen, and Xavier weight
initialisation [19] is chosen as it has been proved as an
effective way, and has been implemented in most of Deep
Learning frameworks. With regard to the fitness evaluation
(shown in Algorithm 2), each individual is decoded to a
CNN architecture with its settings, which will be trained for
k epochs on the first part of the training dataset. Then the
partially trained CNN will be batch-evaluated on the second
part of the training dataset, which will produce a series
of accuracies. Finally, we calculate the mean value of the
accuracies for each individual, which will be stored as the
individual fitness.

Algorithm 2: Fitness Evaluation
Input: The population P , the training epoch number k, the

training set Dtrain, the fitness evaluation dataset Dfitness,
the batch size batch size;

Output: The population with fitness P ;
for individual s in P do

i← 1;
while i <= k do

Train the connection weights of the CNN
represented by individual s;

end while
accy list← Batch-evaluate the trained model on the
dataset Dfitness with the batch size batch size and
store the accuracy for each batch;
mean← Calculate the mean value of acc list
fitness← mean;
P ← Update the fitness of the individual ind in the
population P ;

end for
return P

Algorithm 3: Update Particle with Velocity Clamping
Input: particle individual vector ind, acceleration coefficient

array for Pid c1, acceleration coefficient array for Pgd c2,
inertia weight w, max velocity array vmax;

Output: updated individual vector ind;
for element interface in ind do

i← 0;
for i < number of bytes of IP address in interface do
x← the ith byte of the IP address in the interface;
(r1, r2))← uniformly generate r1, r2 between [0, 1];
vnew ← Update velocity based on Equation 3;
vnew ← Apply velocity clamping using vmax;
xnew ← x+ vnew
if xnew > 255 then
xnew ← xnew − 255;

end if
end for

end for
fitness← evaluate the updated individual ind;
(Pid, Pgd)← Update pbest and gbest by comparing their
fitness;
return ind

E. Update Particle with Velocity Clamping

In Algorithm 3, as each layer is encoded into an interface
with 2 bytes in the particle vector, and we want to control the
acceleration coefficients for each byte, the two acceleration
coefficients implemented as two float arrays with the size of 2
are required shown in Equation 3. v and x are decimal values
of the ith byte of the 2-byte IP address and its corresponding
velocity, Pid and Pgd are decimal values of the ith byte of
the IP address of the local best and global bet, respectively,

and w, r1, r2 are the same as traditional PSO in Equation 1.
The major difference is how the acceleration coefficients are
implemented - c1[i] and c2[i] are the acceleration coefficients
for the ith byte of the IP address, where i is 1 or 2 in the case
of 2-byte IP encoding, comparing to a singular value for each
of the acceleration coefficients in traditional PSO. The reason
of separating the acceleration coefficients for each byte of the
IP address is that different parameters may fall into different
bytes of the IP address, and the ability to explore a specific
parameter more than others may be needed when fine-tuning
the learning process.

After the coefficients defined, we go through each byte in
the particle and update the velocity and position by using the
corresponding coefficients for that byte. Since there are some
constraints for each interface in the particle vector according
to its position in the particle vector, e.g. the second interface
can only be a Conv layer, Pooling layer or Disabled layer,
the new interface needs to be replaced by an interface with a
random IP address in a valid subnet if the new interface does
not fall in a valid subnet. After all the bytes being updated,
the new particle is evaluated, and the fitness value is compared
with the local best and global best in order to update the two
bests if needed.

vnew = w ∗ v + c1[i] ∗ r1 ∗ (Pid − x) + c2[i] ∗ r2 ∗ (Pgd − x)
(3)

F. Best Individual Selection and Decoding

The global best of PSO will be reported as the best indi-
vidual. In terms of the decoding, a list of network interfaces -
stored in every 2 bytes from left to right in the particle vector
of the global best, can be extracted from a particle vector.
According to the subnets in Table II the type of layer can be
distinguished, and then based on Table I the IP address can be
decoded into different sets of binary string, which indicate the
parameter values of the layer. After decoding all the interfaces
in the global best, the final CNN architecture can be attained
by connecting all of the decoded layers in the same order as
that of the interfaces in the particle vector.

IV. EXPERIMENT DESIGN

In this section, the benchmark datasets, peer competitors
and parameter settings of the proposed IPPSO algorithm will
be described.

A. Benchmark Datasets

In these experiments, three datasets are chosen from the
widely used image classification benchmark datasets to exam-
ine the performance of the proposed IPPSO method. They are
the MNIST Basic (MB) [20], the MNIST with Rotated Digits
plus Background Images (MRDBI) [20] and the Convex Sets
(CS) [20].

The first two benchmark datasets are two of the MNIST [5]
variants for classifying 10 hand-written digits (i.e., 0-9). There
are a couple of reasons for using MNIST variants instead
of MNIST. Firstly, as the classification accuracy of MNIST

Fig. 4. Examples of the three datasets. From left to right, each two images
as a group are from one benchmark, and each group is from MB, MRDBI,
and CS, respectively

has achieved 97%, in order to challenge the algorithm, dif-
ferent noises (e.g., random backgrounds, rotations) are added
into these MNIST variants from the MNIST to improve the
complexity of the dataset. Secondly, there are 12,000 training
images and 50,000 test images in these variants, which further
challenges the classification algorithms due to the much less
training data but more test data. The third benchmark dataset
is for recognizing the shapes of objects (i.e., convex or not),
which contains 8,000 training images and 50,000 test images.
Since it is a two-class classification problem comparing to
10 classes of MNIST dataset, and the images contain shapes
rather than digits, it is chosen as a supplement benchmark
to the two MNIST variants in order to thoroughly test the
performance of the proposed IPPSO method.

Each image in these benchmarks is with the size 28 × 28,
and examples from these three datasets are displayed in Fig. 4.
Another reason for choosing these three benchmark datasets is
that different algorithms have reported their promising results,
so it is convenient for comparing the performance of the
proposed IPPSO method with these existing algorithms.

B. Peer Competitors

In the experiments, state-of-the-art algorithms, that have
reported promising classification errors on the chosen bench-
marks, are collected as the peer competitors of the proposed
IPPSO method. To be specific, the peer competitors on the
three benchmarks are CAE-2 [21], TIRBM [22], PGBM+DN1
[23], ScatNet-2 [25], RandNet-2 [24], PCANet-2 (softmax)
[24], LDANet-2 [24], SVM+RBF [20], SVM+Poly [20], NNet
[20], SAA-3 [20] and DBN-3 [20], which are from the
literature [24] recently published and the provider of the
benchmarks1.

C. Parameter Settings

All the parameter settings are set based on the conventions
in the communities of PSO [26] and deep learning [27] which
are listed in Table IV.

The proposed IPPSO method is implemented in Tensor-
flow [28], and each copy of the code runs on a computer
equipped with two GPU cards with the identical model number
GTX1080. Due to the stochastic nature of the proposed
IPPSO method, 30 independent runs are performed on each
benchmark dataset, and the mean results are used for the
comparisons unless otherwise specified. The experiments take
two and a half hours approximately on each run of the
benchmark dataset. The evolved CNN architectures on each
benchmark are illustrated in Section V-B.

1http://www.iro.umontreal.ca/∼lisa/twiki/bin/view.cgi/Public/
DeepVsShallowComparisonICML2007

TABLE IV
PARAMETER LIST

Parameter Name Parameter Meaning Value

max length maximum length of CNN
layers

9

max fully connected maximum fully-connected
layers given at least there
is one fully-connected
layer

3

N population size 30

k the training epoch num-
ber before evaluating the
trained CNN

10

num of batch the batch size for evaluat-
ing the CNN

200

c1 acceleration coefficient ar-
ray for Pid

[1.49618,1.49618]

c2 acceleration coefficient ar-
ray for Pgd

[1.49618,1.49618]

w inertia weight for updating
velocity

0.7298

vmax maximum velocity 4,25.6(0.1*search
space)

V. RESULTS AND ANALYSIS

In this section, the classification performance along with
the analysis against peer competitors, the CNN architectures
learned by the proposed IPPSO method, and the related
visualisation will be reported.

A. Overall performance

Experimental results on all the three benchmark datasets
are shown in Table V where the last three rows denote the
mean classification errors, the best classification errors and
the standard deviations of the classification errors obtained by
the proposed IPPSO method from the 30 runs, and the other
rows show the best classification errors reported by peer com-
petitors2. In order to conveniently investigate the comparisons,
the terms “(+)” and “(-)” are provided to indicate whether the
result generated by the proposed IPPSO method is better or
worse than the best result obtained by the corresponding peer
competitor. The term “–” means there is no available result
reported from the provider or cannot be counted.

It is clearly shown in Table V that by comparing the mean
classification errors of the proposed IPPSO method with the
best performance of the peer competitors, IPPSO performs the
second best on the MB dataset, which is only a little bit worse
than LDANet-2. IPPSO is the best on the MDRBI dataset,
which is the most complicated dataset among these three, and
the fifth best on the CS dataset, which is not ideal but very
competitive.

B. Evolved CNN Architectures

Although the proposed IPPSO method is performed on each
benchmark with 30 independent runs, only one is chosen on

2It is a convention in the deep learning community that only the best result
is reported.

TABLE V
THE CLASSIFICATION ERRORS OF THE PROPOSED IPPSO METHOD
AGAINST THE PEER COMPETITORS ON THE MB, MDRBI AND CS

BENCHMARK DATASETS

classifier MB MDRBI CS

CAE-2 2.48(+) 45.23(+) –

TIRBM – 35.50(+) –

PGBM+DN-1 – 36.76(+) –

ScatNet-2 1.27(+) 50.48(+) 6.50(-)

RandNet-2 1.25(+) 43.69(+) 5.45(-)

PCANet-2 (softmax) 1.40(+) 35.86(+) 4.19(-)

LDANet-2 1.05(-) 38.54(+) 7.22(-)

SVM+RBF 3.03(+) 55.18(+) 19.13(+)

SVM+Poly 3.69(+) 56.41(+) 19.82(+)

NNet 4.69(+) 62.16(+) 32.25(+)

SAA-3 3.46(+) 51.93(+) 18.41(+)

DBN-3 3.11(+) 47.39(+) 18.63(+)

IPPSO(mean) 1.21 34.50 12.06

IPPSO(best) 1.13 33 8.48

IPPSO(standard deviation) 0.103 2.96 2.25

TABLE VI
AN EVOLVED ARCHITECTURE FOR THE MB BENCHMARK

Layer type Configuration

conv Filter size: 2, Stride size: 1, feature maps: 26

conv Filter size: 6, Stride size: 3, feature maps: 82

conv Filter size: 8, Stride size: 4, feature maps: 114

conv Filter size: 7, Stride size: 4, feature maps: 107

full Neurons: 1686

full Neurons: 10

TABLE VII
AN EVOLVED ARCHITECTURE FOR THE MDRBI BENCHMARK

Layer type Configuration

conv Filter size: 2, Stride size: 1, feature maps: 32

conv Filter size: 6, Stride size: 3, feature maps: 90

conv Filter size: 7, Stride size: 4, feature maps: 101

conv Filter size: 7, Stride size: 4, feature maps: 97

pool Kernel size: 4, Stride size: 4, Type: Average

conv Filter size: 5, Stride size: 3, feature maps: 68

full Neurons: 1577

full Neurons: 10

each benchmark for this description purpose shown from Table
VI to Table VIII. Since Disabled layers have been removed
during the decoding process, they do not show up in the
learned CNN architectures. Therefore, it turns out that IPPSO
is able to learn a variable-length CNN architecture, which can
be obviously seen from the listed architectures - 6 CNN layers
for the MB and CS benchmark and 8 CNN layers for the
MDRBI benchmark.

TABLE VIII
AN EVOLVED ARCHITECTURE FOR THE CS BENCHMARK

Layer type Configuration

conv Filter size: 1, Stride size: 1, feature maps: 11

conv Filter size:7, Stride size: 4, feature maps: 108

conv Filter size: 1, Stride size: 1, feature maps: 8

conv Filter size: 6, Stride size: 3, feature maps: 92

full Neurons: 906

full Neurons: 2

C. Visualisation
In order to achieve a better understanding of the proposed

IPPSO method, we visualise two parts of the evolutionary
process - the accuracy distribution of the PSO vectors, where
the architectures of CNNs are encoded, and the PSO trajectory
of the evolving process.

In terms of the accuracy distribution, first of all, we obtained
the PSO vectors and their corresponding accuracies from 10
runs of the experiments; in addition, the first two principal
components from Principal Component Analysis (PCA) are
extracted for the usage of visualisation. A 3-D triangulated
surface with the data containing the first two components and
the corresponding accuracy is plotted shown in Fig. 5a. It is
observed that there are a lot of steep hills on the surface whose
summits are at the similar level, so it means that there are quite
a number of local optima, but most of them are very close to
each other, which means that those local optima are acceptable
as a good solution of the task.

(a) Surface (b) Trajectory

Fig. 5. (5a): The surface of CNN accuracies after training 10 epochs with
IPPSO encoding; (5b): PSO Trajectory.

Regarding the trajectory, the best result of the particles of
each generation and the global best in each generation from
one run of the experiments are obtained and plotted in blue
colour and red colour, respectively, in Fig. 5b. It can be seen
that after only a few generations, the global best is found,
after which the particles are still flying in the search space,
but none of them can obtain a better accuracy, which means
the optimum has been reached by PSO after only a few steps.
Even though the surface of the optimisation task shown in
Fig. 5a is extremely complicated, the PSO method with only
30 particles can climb up to the optimum very quickly, which
proves the effectiveness and efficiency of PSO on optimisation
tasks.

VI. CONCLUSIONS

The goal of this paper was to develop a new PSO approach
with variable length to automatically evolve the architectures
of CNNs for image classification problems. This goal has
been successfully achieved by proposing a new encoding
scheme of using a network interface containing an IP address
and its corresponding subnet to carry the configurations of a
CNN layers, the design of four subnets including a disabled
subnet in order to simulate a variable-length PSO, and an
efficient fitness evaluation method by using partial dataset.
This approach was examined and compared with 12 peer
competitors including the most state-of-the-art algorithms on
three benchmark datasets commonly used in deep learning and
the experimental results show that the proposed IPPSO method
can achieve a very competitive accuracy by outperforming all
others on the MDRBI benchmark dataset, being the second-
best on the MNIST benchmark dataset and ranking above the
middle line on the CS benchmark dataset.

The most important improvement from the traditional PSO
to the novel IPPSO proposed in the paper is to invent the
new encoding strategy of using network interface. Since the
subnet in the interface can distinguish any type of layers, any
layer configurations can be encoded into the IP address and the
length of the IP address can be easily extended to 4 bytes (the
length of real IP addresses) or even more, the IPPSO method
has the ability of encoding any type of Deep Neural Network
layers. In addition, the particle length of the IPPSO method
can be easily made variable by simply introducing a disabled
layer which could be deemed as another major improvement
as it breaks the obstacle of traditional PSO being fixed-length.

In this paper, we have investigated the proposed IPPSO
method for evolving deep CNN and it is proved of obtaining
promising results. Based on this research, there are a couple of
further researches that are worth doing. Firstly, as this paper is
mainly to propose the novel encoding strategy of the IPPSO,
it will be interesting to see how different PSO topologies3

will affect the performance of the IPPSO and design the best
topology for it. Secondly, we will also investigate how the
proposed IPPSO algorithm performs for evolving recurrent
neural networks, which are powerful tools for addressing
sequential data tasks, such as language processing problems.

REFERENCES

[1] Ossama Abdel-Hamid, Li Deng and Dong Yu, Exploring Convolutional
Neural Network Structures and Optimization Techniques for Speech Recog-
nition. INTERSPEECH 2013, 5 - 29 August 2013, Lyon, France

[2] Yoon Kim, Convolutional Neural Networks for Sentence Classification,
arXiv:1408.5882v2 [cs.CL] 3 Sep 2014

[3] Alex Krizhevsky, Ilya Sutskever and Geoffrey E. Hinton, ImageNet
Classification with Deep Convolutional Neural Networks, Advances in
Neural Information Processing Systems 25 (NIPS 2012), 2012

[4] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W.
Hubbard, and L. D. Jackel, Backpropagation applied to handwritten zip
code recognition, Neural Computation, vol. 1, no. 4, pp. 541–551, 1989.

[5] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning
applied to document recognition, Proceedings of the IEEE, vol. 86, no. 11,
pp. 2278–2324, 1998.

3Fully-connected topology is used in this paper as it is easy to be
implemented.

[6] K. Simonyan and A. Zisserman, Very deep convolutional networks for
large-scale image recognition, arXiv preprint arXiv:1409.1556, 2014.

[7] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, Going deeper with convolutions,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2015, pp. 1–9.

[8] Masanori Suganuma, Shinichi Shirakawa, and Tomoharu Nagao, A Ge-
netic Programming Approach to Designing Convolutional Neural Network
Architectures, arXiv:1704.00764v2 [cs.NE] 11 Aug 2017

[9] K. O. Stanley and R. Miikkulainen, Evolving neural networks through
augmenting topologies, Evolutionary computation, vol. 10, no. 2, pp.
99–127, 2002.

[10] Yanan Sun, Gary G. Yen, Zhang Yi, ”Evolving Unsupervised Deep
Neural Networks for Learning Meaningful Representations”. IEEE Trans-
actions on Evolutionary Computation. DOI:10.1109/TEVC.2018.2808689.

[11] E. Real, S. Moore, A. Selle, S. Saxena, Y. L. Suematsu, Q. Le, and
A. Kurakin, “Large-scale evolution of image classifiers,” arXiv preprint
arXiv:1703.01041, 2017.

[12] Yanan Sun, Bing Xue, Mengjie Zhang, Evolving Deep Convolu-
tional Neural Networks for Image Classification[J]. arXiv preprint
arXiv:1710.10741, 2017.

[13] M. Tim Jones, Deep learning architectures and The rise of artificial
intelligence. IBM DeveloperWorks, September 08, 2017.

[14] Kennedy and R. E. P. S. Optimization, Ieee int, in Conf. on Neural
Networks, vol. 4, 1995

[15] . Eberhart and J. Kennedy, A new optimizer using particle swarm theory,
in Micro Machine and Human Science, 1995. MHS’95., Proceedings of
the Sixth International Symposium on. IEEE, 1995, pp. 39–43.

[16] Yanan Sun, Bing Xue, Mengjie Zhang, A Particle Swarm Optimization-
based Flexible Convolutional Auto-Encoder for Image Classification[J].
arXiv preprint arXiv:11712.05042, 2017.

[17] Postel, J., DoD standard Internet Protocol, RFC 760,
DOI 10.17487/RFC0760, January 1980, ¡https://www.rfc-
editor.org/info/rfc760¿.

[18] Fuller, V., Li, T., Yu, J., and K. Varadhan, Classless Inter-Domain
Routing (CIDR): an Address Assignment and Aggregation Strategy,
RFC 1519, DOI 10.17487/RFC1519, September 1993, ¡https://www.rfc-
editor.org/info/rfc1519¿.

[19] X. Glorot and Y. Bengio, Understanding the difficulty of training deep
feedforward neural networks, in Proceedings of the 13th International
Conference on Artificial Intelligence and Statistics, 2010, pp. 249–256.

[20] H. Larochelle, D. Erhan, A. Courville, J. Bergstra, and Y. Bengio,
An empirical evaluation of deep architectures on problems with many
factors of variation, in Proceedings of the 24th International Conference
on Machine Learning. ACM, 2007, pp. 473–480.

[21] S. Rifai, P. Vincent, X. Muller, X. Glorot, and Y. Bengio, Contractive
auto-encoders: Explicit invariance during feature extraction, in Proceed-
ings of the 28th International Conference on Machine Learning, 2011, pp.
833–840.

[22] K. Sohn and H. Lee, Learning invariant representations with local
transformations, arXiv preprint arXiv:1206.6418, 2012.

[23] K. Sohn, G. Zhou, C. Lee, and H. Lee, Learning and selecting
features jointly with point-wise gated boltzmann machines, in International
Conference on Machine Learning, 2013, pp. 217–225.

[24] T.-H. Chan, K. Jia, S. Gao, J. Lu, Z. Zeng, and Y. Ma, Pcanet: A
simple deep learning baseline for image classification? IEEE Transactions
on Image Processing, vol. 24, no. 12, pp. 5017–5032, 2015.

[25] J. Bruna and S. Mallat, Invariant scattering convolution networks, IEEE
transactions on Pattern Analysis and Machine Intelligence, vol. 35, no. 8,
pp. 1872–1886, 2013.

[26] F. van den Bergh, A.P. Engelbrecht, A study of particle swarm optimiza-
tion particle trajectories, doi:10.1016/j.ins.2005.02.003

[27] G. E. Hinton, A practical guide to training restricted boltzmann ma-
chines, in Neural Networks: Tricks of the Trade. Springer, 2012, pp.
599–619.

[28] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G.
S. Corrado, A. Davis, J. Dean, M. Devin et al., Tensorflow: Large-scale
machine learning on heterogeneous distributed systems, arXiv preprint
arXiv:1603.04467, 2016.

