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Abstract

Feature selection is an essential step in various tasks, where filter feature se-
lection algorithms are increasingly attractive due to their simplicity and fast
speed. A common filter is to use mutual information to estimate the relation-
ships between each feature and the class labels (mutual relevancy), and between
each pair of features (mutual redundancy). This strategy has gained popularity
resulting a variety of criteria based on mutual information. Other well-known
strategies are to order each feature based on the nearest neighbor distance as
in ReliefF, and based on the between-class variance and the within-class vari-
ance as in Fisher Score. However, each strategy comes with its own advantages
and disadvantages. This paper proposes a new filter criterion inspired by the
concepts of mutual information, ReliefF and Fisher Score. Instead of using
mutual redundancy, the proposed criterion tries to choose the highest ranked
features determined by ReliefF and Fisher Score while providing the mutual
relevance between features and the class labels. Based on the proposed crite-
rion, two new differential evolution (DE) based filter approaches are developed.
While the former uses the proposed criterion as a single objective problem in a
weighted manner, the latter considers the proposed criterion in a multi-objective
design. Moreover, a well known mutual information feature selection approach
(MIF'S) based on maximum-relevance and minimum-redundancy is also adopted
in single-objective and multi-objective DE algorithms for feature selection. The
results show that the proposed criterion outperforms MIFS in both single objec-
tive and multi-objective DE frameworks. The results also indicate that consid-
ering feature selection as a multi-objective problem can generally provide better
performance in terms of the feature subset size and the classification accuracy.
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1. Introduction

Classification is typically referred as a supervised learning task in machine
learning that infers a relationship between features (characteristics of the dataset)
and the class labels. However, the presence of a large number of features often
leads to challenges such as overfitting, high computational complexity and low
interpretability of the final model [1]. One reason for this is widely known as the
curse of dimensionality that arises according to the ratio between the number of
features and the number of instances. The most common way to alleviate such
problems is to reduce the number of features under consideration using either
feature construction or feature selection [1, 2].

Feature construction aims to transform the dataset from the high dimen-
sional space to a lower dimensional space by combining the original low-level
features to a small number of high-level features, which is better suited for
learning process. However, feature construction cannot be easily interpreted
since the physical meaning of the original features cannot be retrieved. Feature
selection aims to choose a feature subset from the available original features of
a dataset, which better contributes to the learning process. In other words, the
aim of feature selection is to discard features that are detrimental to the sub-
sequent learning process [3, 4]. Feature selection approaches can be categorized
into wrappers, embedded and filters based on the evaluation criteria [5]. Wrap-
pers use a learning algorithm (classifier or regression) as a part of evaluation
to measure the goodness of the chosen feature subset. Although wrappers are
among the most preferred feature selection approaches, there are at least four
drawbacks [6]: 1) high computational complexity, 2) the optimal feature sub-
set for a learner may not be optimal for a different learner, 3) determining the
user-specified parameters of the learner may be time consuming, and 4) inherent
learner limitations (e.g. some learners cannot deal with multi-class classifica-
tion). Embedded approaches incorporate knowledge about the specific structure
of the classification algorithm used by a certain learning algorithm. Embedded
approaches are computationally less intensive than wrappers. However, they
still have high computational complexity and the selected feature subset is de-
pendent on the learning algorithm. Due to these limitations, we specifically
focus on filters in this study. Wrapper and embedded approaches are not the
focus of this paper and will not be further discussed here. Recent works on
wrappers and embedded approaches can be found in [5, 7, 8, 9, 10, 11, 12].

Filters evaluate feature subsets based on some predefined metrics or informa-
tion content (e.g. statistical tests) instead of using the learners, i.e., there exists
no dependence between the learner (or classifier) and the selected features. Ac-
cordingly, filters are more general than wrapper and embedded approaches. In
the literature, there have been a wide range of criteria and metrics used for the
evaluation of feature subsets such as inconsistency rate, inference correlation,
fractal dimension, distance measure and mutual information. Among them,
mutual information can be treated as the most preferred and widely investi-
gated for filters due to two main properties [6]: 1) measuring different kinds of
relationship between random variables and 2) preserving stability under trans-



formations in the feature space that are invertible and differentiable. Based
on mutual information, Battiti [13] proposed the mutual information feature
selection (MIFS) method including three fundamental points: 1) features are
categorized as relevant and redundant; 2) an heuristic function is used to select
features controlling the tradeoff between relevance and redundancy; and 3) a
greedy search is applied. Other representative examples of mutual information
based approaches are maximum relevance and minimum redundancy (mRmR)
[14], uniformly improved MIFS (MIFS-U) [15], and conditional mutual informa-
tion maximization (CMIM) [16]. Although they are simple to implement and
reduce the feature subset size, a selected feature cannot be later removed or
changed due to their static greedy search mechanism.

To address these problems, researchers have tried to design mutual infor-
mation based filter approaches with evolutionary computation (EC) techniques
such as particle swarm optimization (PSO) [17], genetic algorithms (GAs) [18],
ant colony optimization (ACO) [19] and differential evolution (DE) [20] due to
their global search ability. Besides such representative ones, recently developed
EC techniques such as artificial bee colony [21], and bacterial colony optimiza-
tion [22] have also been investigated to obtain better feature subsets for the
classification.

However, the potential of EC for feature selection has not been fully inves-
tigated. For example, filter based approaches are often computationally cheap,
but there is much less work on filters than on wrappers because the fitness
functions based on filters are more difficult to design. The most widely used
filter measure is mutual information. Although EC with mutual information
has achieved better results than classical greedy search, most of such methods
just directly adopted existing heuristic/fitness functions as the objective with-
out significant or major improvement, which may limits their performance [5].
Furthermore, although feature selection can be considered as a multi-objective
problem, there are only a few works on multi-objective filter feature selection
[5, 23]. Developing good filter based feature selection methods is still an open
issue.

Among EC methods, DE is a relatively recent but highly popular approach.
As pointed in [24], DE has been proven to be better than other EC methods
in a wide range of problems. Compared to most other EC methods, DE is
also much simpler and straightforward to implement, which allows practition-
ers from other fields, who may not be experts in programming, to implement
and tune it to solve the domain-specific problem. Furthermore, DE only has a
few parameters to control and the space complexity is low as well. These are
particularly important for feature selection since it is a multi-disciplinary area
involving researchers from many different fields, but work on DE for feature
selection is much less than other EC methods, e.g. GAs and PSO [5]. Further-
more, feature selection is essentially a multi-objective approach, maximizing the
classification accuracy and minimizing the number of features [25]. EC methods
are particularly good for solving multi-objective problems since their population
based mechanism can produce multiple trade-off solutions in a single run [26].
Despite the superior performance of multi-objective DE, there has been almost



no work exploring the potential of DE for multi-objective filter feature selection.

1.1. Goals

The overall goal of this paper is to develop filter based feature selection ap-
proaches based on information theory, feature ranking and EC techniques to
search for a set of non-dominated solutions (feature subsets) yielding a smaller
number of features and a similar or even better classification performance on
the K-nearest neighbor algorithm than the case that all features are used. To
achieve this goal, a novel filter evaluation criterion (named MIRFFS) based
on the concepts of mutual relevance, RelifF [27] and Fisher Score [28] is pro-
posed, and using this proposed criterion, the standard DE and multi-objective
DE (MODE) based feature selection approaches are developed. Furthermore, a
widely used existing filter based criterion (MIFS) is also redesigned as fitness
function for single objective and multi-objective DE to develop filter based ap-
proaches. These four developed feature selection approaches will be examined
and evaluated on benchmark problems of varying difficulty. Specifically, we will
investigate

e the performance of the four algorithms (i.e. single objective and multi-
objective DE approaches based on MIRFFS and MIFS) on reducing the
number of features and improving the classification performance over using
all features,

e the performance of the single objective DE approach based on MIRFFS
versus based on MIFS,

e the performance of the multi-objective DE approach based on MIRFFS
versus based on MIFS,

e the performance of the multi-objective DE approaches versus the single-
objective DE approaches, and

e the performance of all DE filter approaches versus traditional approaches.

1.2. The organization of the paper

The rest of the paper is organized as follows. Section 2 gives an outline of the
basic DE algorithm and provides a background on information theory, feature
ranking and recent studies related to feature selection, especially filters. Section
3 describes the DE based feature selection approaches using the proposed and
existing criteria. Section 4 shows the experimental design and Section 5 presents
the experimental results with discussions. Finally, Section 6 concludes the paper
and provides an insight into the future trends.

2. Background

This section provides a background concerning the differential evolution,
multi-objective optimization, information theory and recent filter approaches.



2.1. Differential Evolution

Differential evolution (DE) is a search algorithm proposed by Storn and
Price [29] in 1997. DE belongs to the class of evolutionary algorithms in EC
techniques that applies biologically inspired operators such as crossover, muta-
tion and selection. The algorithm uses mutation to search in the solution space
and applies selection to direct search toward the prospective regions in the so-
lution space. Furthermore, non-uniform crossover plays a critical role in the
algorithm performance, where one parent influenced the child more than oth-
ers. The crossover operator constructs trial vectors by efficiently shuffling useful
information in the population and recombine them to find better solutions [29].
In DE, solution vectors are first randomly initialized. These solutions are then
improved by applying the three operators: mutation, crossover and selection.
In DE, greedy selection is applied between each generated solution and a mu-
tant solution to update the population. The basic steps of DE are summarized
below:

1) Initialization. DE first randomly produces solution vectors in the search
space. Each solution vector defined as X; = {1, xi2, Ts3, ..., Tij, ..., Tip } 18
generated by:

riy = 4 U(0, 1) (@] — o) 1)
where ¢ = {1,2,..., NP} and NP is population size; j = {1,2,..., D}; D is the
dimensionality of the search space; U(0, 1) is the random variable uniformly dis-
tributed between (0,1); :1:;7”” and z7"** are predefined minimum and maximum
values of parameter j.

2) Mutation. Each solution vector undergoes mutation to expand the
search space. A mutant solution X, is generated by:

Xi =X, + F<Xr3 - XTQ) (2)

where F' is the scaling factor predefined within the range of [0,1] and X1, X,o
and X3 are randomly chosen solution vectors which must satisfy

rl#£r24£r3#£14 (3)

where i is the current solution vector. Eq.(3) indicates that NP must be chosen
at least 4.

3) Crossover. The non-uniform crossover is applied between the mutant
and parent solution vectors by:

(4)

Ziq, if rand(d) < CR or j = rn;,
Ujq =
w T;q, oOtherwise,
where CR is the user predefined crossover rate, rand(d) is the uniformly gen-
erated number between [0,1] for parameter j, rn; is the randomly chosen index

and wiq is the dth parameter of a trial vector U; = {u;1, ui2, ..., Wij, ..., win }-

4) Selection. Greedy selection is applied between the current solution
X; and trial solution U;. If U; is better than X;, U, is represented in next
generations instead of Xj.



The population is updated by applying mutation, crossover and selection
operators from generation to generation until a stopping criterion is met.

2.2. Multi-Objective Optimization

Many problems involve two or more objectives that are conflicting to each
other. Multi-objective optimization is concerned with more than one objective
function to be optimized simultaneously. This type of problems have more than
one optimal solutions, typically referred as Pareto-optimal solutions.

Let f(z) = (fi(x), f2(x), ..., fu,(x)) € O C R™ be an objective vector com-
prising of multiple (ng) conflicting functions and let Sy C S (where S is the
search space) represents the feasible space constrained by n, inequalities and
ny equality constraints;

Sp={z:gm(x) <0, l(z)=0,m=1,..,ngl=1,...,n5} (5)

where g, (z) and h;(z) are constraints. Using this notation, a multi-objective
(minimization) problem can be formulated as follows:

minimize f(z) subject to x € Sy (6)

When there are multiple objectives, for two solutions y and z, y dominates
z if y is is not worse than z in all objective functions and better than z in at
least one objective function:

Vk: fi(y) < fe(2) A3k fi(y) < fir(z) (7)

A solution z* € Sy is defined as a Pareto-optimal (non-dominated) solution
if there does not exist a solution x # z* € Sy that dominates *. The set of all
non-dominated solutions form a Pareto-optimal front surface, known as Pareto
front.

2.8. Information Theory

Information theory was first proposed for communication theory to find lim-
its concerning data compression and transmission rate [30]. Due to its suit-
ability, now it has been used in a variety of fields, including natural language
processing, cryptography, pattern recognition and data analysis [31]. The basic
concepts of information theory are as follows.

1) Entropy (H). Entropy is a measure of uncertainty of a random variable.
The uncertainty is related to the probability of occurrence of an event, defined
by Eq.(8). While high entropy means that each value of the variable is about
the same probability of occurrence, low entropy means that each value of the
variable is about the different probability of occurrence.

H(X)=-=> p(ax)logyp(zx) (8)
k



where X is a random variable and p(zg) = Pr{X = (zx),xr € X} is the mass
probability. The joint and conditional entropy of two random variables X and
Y are defined as follows:

H(Xa Y) = _Zp(xkayz)log2p(xkvyz) (9)
k,z

H(X[Y) ==Y p(xky:)log, p(zily:) (10)
k,z

where X = {1, 29, ..xp, ..., xn}t and Y = {y1, Y2, - .Yz, -, Ym }-

2) Mutual information. The mutual information is a measure of mutual
dependence between random variables. It therefore provides a way to evaluate
the relevance of a feature subset. Mutual information between any two variables
X and Y can be expressed as follows:

I(X;Y) = Zp(xkvyz)10g2p<w> (11)

e p(r)-p(y-)

Eq.(11) can be also rewritten as I[(X;Y) = H(X)+H(Y)—-H(X,Y)or I(X;Y) =
H(X)-HX|Y)=H(Y)-HY|X).

2.4. Recent studies on filter approaches

For a given data X € R¥*M and the class labels Y € RV*! where N is
the number of instances (samples) and M is the number of features, the aim of
a filter-based feature selection approach is to choose a feature subset with size
m based on some prior knowledge or statistical criterion, where m < M. The
optimal feature subset provides the maximum combined information content of
all selected features with respect to the class labels. However, it is an NP-hard
combinatorial problem and the optimal feature subset can only be obtained by
a brute-force (exhaustive) search [1]. Due to its difficulty and complexity, there
has been extensive research on filter approaches. We consider these approaches
in three subsections.

1) Traditional Filter Approaches. One of the simplest filter approaches
is to rank the features with target to the class labels based on a suitable crite-
rion or metric. Pearson correlation coefficient [32] ranks features in descending
order with target to the class labels using the mean and standard deviations.
Then, a predictor is applied on M nested subsets and the subset with the lowest
validation error is chosen. Although it is simple to implement and computation-
ally efficient, it assumes all features are independent and is only able to detect
linear relationship between each feature and the class labels. Another simple fil-
ter approach is Laplacian Score [33] which does not only consider features with
larger variances, but also considers the features with stronger locality preserv-
ing ability. After ranking features according to the Laplacian values, it uses the
K-means clustering method to choose the best k features. Laplacian Score has
been proved effective and efficient. However, the shortcomings of K-means also
lead problems in Laplacian Score. Some improved versions of Laplacian Score



can be found in [34, 35]. In contrast to Pearson Correlation and Laplacian
Score, Fisher Score [28] is a supervised ranking approach and it orders features
according to their discriminant ability. It evaluates features individually; thus,
it cannot consider redundancy (no correlations amongst filters). Relief and its
extended version (ReliefF) [27] assign a ranking score for each feature individ-
ually based on a k nearest neighbor algorithm. Although it is one of the best
representative samples for filter approaches, it does not unfortunately consider
redundancy which is the for other mentioned traditional filter approaches. Hall
[36] developed correlation based feature selection (CFS) as a heuristic method
for feature selection, which aims to find a feature subset highly correlated to
the class label and uncorrelated with each other. Systematical uncertainty was
used in [36] to evaluate the correlation, but it cannot handle relationship among
multiple variables.

2) Information Theoretic Filter Approaches. Since traditional filter
approaches rely solely on the relationship between features and the class labels
(referred as ‘relevance’), they cannot work well in the presence of dependent
features (e.g. overlapping information amongst the features). By considering the
information between features (referred as ‘redundancy’), information theoretic
filter approaches can be treated as an alternative to the traditional approaches.
One of the most famous approaches is mutual information feature selection
(MIFS) [13]. MIFS is a greedy heuristic approach consisting of following steps:
1) add the highest relevant feature to the empty subset S and 2) add next (m—1)
features to the subset S sequentially based on criterion, defined by Eq.(12);

MIFS = max | I(z; I(z;; ) 12
g Hsn) - A5 ) (12
Televance s€
redundancy

where @ is the initial feature set, x; is the ith feature in Q which is not selected
for subset S yet, z; is the selected feature in the subset S, y is the class labels
and B is the predefined parameter satisfying balance between relevance and
redundancy.

As seen in Eq.(12), MIFS requires a user-specified parameter () that may
vary according to the size of feature subset, but it is hard to determine. To
avoid the fine tuning of the specified parameter, Peng et al. [14] improved the
MIFS criterion by introducing the maximum relevance and minimum redun-
dancy method (mRmR), defined in Eq.(13);

mRmR = iggaxg( i3 Y) \S| ZI Ti; T ) (13)

ses

where |S] is the size of subset S.

mRmR follows the same methodology as in MIFS, but performs better than
MIFS. Estevez et al. [37] normalized the relevance component (between two
features) of mRmR by dividing with the minimum entropy of the two features.
Brown [38] added the class-conditional correlations to Eq.(12), referred as the



first-order utility (FOU). Al-Ani and Deriche [39] introduced a criterion, named
as mutual information feature selection (MIEF). MIEF achieved better results
than MIFS in image sets. Zhang et al. [40] proposed a two-stage feature selec-
tion approach for text classification, which ranks features based on gain ratio
and then try to select best feature subset among high ranked features based on
the classification performance obtained by a classifier. Freeman et al. [41] pre-
sented a comprehensive comparative study of recent filter approaches, including
ReliefF, mRmR, CMIM and FOU. Yu et al. [42] developed a comprehensive li-
brary for feature selection which introduces measures, such as Fisher Score and
mutual information to calculate correlations between features. Due to the chal-
lenges of two-way relationships in high dimensional problems, Chen et al. [43]
developed a new feature selection approach using high order inter-correlation
(redundancy). To verify the effectiveness of the proposed approach, a compre-
hensive comparative study was made by comparing it with seven representative
feature selection methods, including mRmR, ReliefF and CMIM. However, the
computational cost may be extremely increased proportional to the number of
features due to more than two relations between features. In addition, mutual
information has also been used for feature selection in multi-label classification
problems [44] and intrusion detection systems [45]. Due to the difficulties on
calculating probabilities of continues variables via standard mutual information,
fuzzy mutual information measures have also been proposed for solving feature
selection tasks [46, 47].

3) EC based Filter Approaches. As information theory and traditional
feature selection approaches are mostly greedy heuristic approaches, they often
cannot search the possible feature space effectively. Therefore, their performance
may deteriorate in large-scale datasets. Therefore, researchers have applied EC
techniques to feature selection. Ge and Hu [18] proposed a feature selection
approach that combines GA and mutual information (FSGM). In FSGM, FOU
was chosen as the objective function. The results show that FSGM was superior
to sequential forward selection and ReliefF. However, it was not compared with
GA based on other existing mutual information criteria like MIFS and mRmR.
Huang and Rong [48] introduced a two stage (filter-wrapper) GA to increase the
classification accuracy. While the filter stage as an inner loop tries to optimize
the improved MIF'S criterion with the parameter free conditional mutual infor-
mation, the wrapper stage as an outer loop tries to optimize the kappa statistic.
Cervante et al. [17] introduced a binary PSO based information theoretic fea-
ture selection approach by adopting mRmR as an objective function. However,
the parameter in the objective function that compromises between the relevance
and redundancy needs to be predefined by a user. Nyguen et al. [49] integrated
mRmR criterion as a local search into wrapper based PSO, and they [50] fur-
ther investigated the use of mutual information estimation in PSO for feature
selection to be applied on continuous datasets. In [50], mRmR is redesigned as
the objective function in a PSO framework using pairwise mutual information
instead of multivariate mutual information due to its computational efficiency.
Al-Ani [51] proposed an ACO based filter approach (ANT) based on MIEF for
the classification of speech segments. According to the results, it was superior to
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GA. Khushaba et al. [52] extended the ANT filter approach by hybridizing with
DE (referred as ANTDE). It was seen that the results obtained by ANTDE were
very promising when compared to BPSO, GA and ANT. Moradi and Rostami
[63] introduced a two-stage ACO based filter approach based on graph repre-
sentation and a community detection algorithm. The results indicated that
the introduced approach was superior to a number of filter approaches such
as mRmR and ReliefF and Fisher Score. However, it may be computationally
intensive due to the representation scheme. Xue et al. [54] considered mRmR
criterion as a multi-objective problem through non-dominated sorted GA (NS-
GAII) and strength Pareto evolutionary algorithm 2 (SPEA2). It was observed
that multi-objective schemes can provide more promising results than single-
objective schemes. Rough set theory and multivariate mutual information are
used in a GA based two-objective framework for feature selection[55], but both
rough set theory and multivariate mutual information are expensive measures.

Although a number of filter approaches have been proposed in the literature,
there are still some open issues that need to be considered. First, there are just
only few DE based filter approaches, especially inspired by information theory,
although DE is one of the most robust and stable EC techniques and has been
successfully applied to a variety of applications [5]. Second, most of the existing
filter based feature selection approaches are single-objective and the idea of
simulating feature selection as a multi-objective problem has just come into
consideration in recent years. Third, most of the recent information theoretic
feature selection criteria have been developed by introducing similar variants of
MIFS. In other words, only a few new approaches have been proposed as an
alternative to MIFS and mRmR in the literature.

3. Proposed Filter based Approaches

8.1. The Owverall Structure

The overall structure is shown in Figure 1, where the training set is fed to the
proposed DE or multi-objective DE (MODE) based feature selection algorithms
to select a small number of informative features. Then the features that are not
selected will be removed from both the training set and the test set. Finally, a
classification algorithm is applied to the new training and test sets to evaluate
the classification performance. This system is designed to avoid feature selection
bias (which is a common issue in a large number of papers [56]), and keep the test
set completely unseen from the feature selection algorithms. The performance

10



of the DE or MODE based feature selection methods will be evaluated based
on the achieved classification accuracy and the number of selected features.

The rest of this section describes the proposed four feature selection algo-
rithms, particularly the new fitness functions, which are the key in any fea-
ture selection algorithm. Section 3.2 describes the two algorithms, the sin-
gle objective algorithm (DE,,;) and the multi-objective algorithm (MODE,,;),
which are based on the most well-known information theoretic feature selec-
tion criterion (i.e. MIFS) with modifications. Section 3.3 describes the two
algorithms, the single objective algorithm (DE,,; ;) and the multi-objective
algorithm (MODE,,;,¢), which are based on our newly develop evaluation crite-
rion (referred as MIRFFS) inspired by Mutual Information, ReliefF and Fisher
Score. Four algorithms (instead of a single algorithm) are developed as a sys-
tematic research to investigate the performance of DE, information theory and
feature ranking for feature selection.

3.2. DFE for Feature Selection based on MIFS

DE based on MIFS (DE,,;): As mentioned in Section 2, MIFS is a well-
known representative information theoretic approach. However, MIFS considers
features individually and applies a greedy approach to form the feature subset,
i.e, it does not search the solution space effectively. Therefore, DE is chosen
and Eq.(12) is reformulated into Eq.(14) to be used as the fitness function in
DE to guide the search to find optimal feature subsets. Note that normalization
is implemented for the calculations of mutual information values to keep the
consistency between possible feature subsets.

fitmi(S) = max (Z NI(xg;y) — 8 Z Z Nl(xk;xz)> (14)

xR €S eSS xS

relevance redundancy

where k # [, S is the selected feature subset, § is the predefined value, xj; and
x; are the kth and lth selected features, and y is the class label. NI (xg;y)
is the normalized I(xy;y) representing mutual relevance, and NI(zy;x;) is the
normalized I(xy;x;) representing mutual redundancy:

Ni(nisy) = ——o 2t (15)
> om=11(Tmiy)?
Nl(xk;xl) = I(xk;xl) (16)

M—1 M
\/Zm:l Zj:m+l I(@m; x;)?

where M is the total number of features in the dataset.

A new method named DE,,; is proposed by using DE as the search method
with Eq.(14) as the fitness function to find optimal feature subsets. The repre-
sentation of an individual is a M-bit continuous vector representing a possible
feature subset where the possible values in the vector is in the range of [0, 1].
If any dimension of an individual is greater than 0.5, the corresponding feature

11



is selected; otherwise, it is not selected. The pseudo-code of the DE based on
MIFS can be found in Algorithm 1. If any value (or gene) in the mutant indi-
vidual is out of the range [0,1], that value is constrained within the range by
Eq. (17), which is the most common way to deal such with out-of-range cases.

Uij(t) =1, ifVvje {1, ,M} : Uij(t) > 1, (17)

MODE based on MIFS (MODE,,;): Eq.(14) considers both the rele-
vance between features and the class labels, and the redundancy among features
in a weighted manner, i.e., 8 that provides the balance between these two com-
ponents needs to be predefined. In most cases, users may tend to make an
informed decision from available feature subsets. Therefore, it is necessary to
consider the two components in Eq.(14) in a multi-objective design with the
objectives of maximizing the relevance and minimizing the redundancy.

DE was first proposed as a single objective optimizer for continuous prob-
lems. To apply DE to multi-objective problems, a new selection mechanism
(see Section 2.1) should be reformed according to more than one objective. Al-
though there exist various multi-objective DE variants in the literature [26],
multi-objective DE (MODE) [57, 58] is chosen as a multi-objective DE opti-
mizer due to its simplicity and low time complexity. It is easy to implement
and does not include any complex structure such as non-dominated sorting and
archive keeper. MODE uses dominance-based selection inspired by Lampinen’s
criterion [59] to determine Pareto-optimal solutions. The dominance-based se-
lection is defined by Eq. (18) and its general implementation is presented in
Fig. 2. The pseudo-code of using MODE for multi-objective feature selection,
i.e. the proposed MODE,,; algorithm, is shown in Algorithm 2. The possible
feature subset representation scheme of an individual in MODE,,; is same as
DE,,; within the range of [0, 1]. If any position of an evolved is out of the range,
that position is constrained within the range by Eq. (17).

{Uij(t) =0, lij S {1, ,M} : Uij(t) <0,

Ui(t), ifVEke{l,...K}: fi(Ui(t) < fe(Xi(t)),

. (18)
X, otherwise.

Xi(t+1):{

where ¢ is the cycle number and K is the total number of objectives.

3.3. DE for Feature Selection based on the New Criterion (MIRFFS)

DE based on MIRFFS (DE,,;,¢): Although MIFS is a well-known infor-
mation theoretic feature selection approach, more than two-way relationships
between features are mostly ignored or underestimated by MIFS and its vari-
ants, i.e., they generally focus on the relationships between pair of features as
shown in Eqs.(12), (13) and (14). Accordingly, it is not possible to fully evaluate
the mutual redundancy among features. To address the problem, high order in-
teractions can be evaluated via conditional mutual information or other mutual
information techniques. However, the computation of high order interactions is
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Figure 2: The flowchart of dominance-based selection

highly computationally expensive and substantially increases algorithmic com-
plexity. In order to reduce the time complexity and find better feature subsets,
it is necessary to propose a new criterion.
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begin

Calculate mutual relevance between features in both DE,,;.; and DEyy,;

Calculate order values of all features using ReliefF and Fisher Ranking in DE;f;

Initialize individuals using Eq.(1);

Evaluate the fitness of individuals using Eq.(19) for DE,, ;¢ (Eq.(14) for DEyy,;);

for iter < 1 to Mazlter do

foreach individual i do

Select three individuals 71, r2 and r3 randomly;

Generate a mutant solution X; by applying the mutation operator shown
by Eq.(2);

Generate a trial vector U; by applying the crossover operator shown by
Eq.(4);

Evaluate fitness value of the trial vector U; using Eq.(19) for DE,,;, ¢
(and Eq.(14) for DE,,;);

// Greedy selection:

if fitness of U; is better than i then
L Use U; to replace i;

else
L discard Uj;

Collect the features selected by the individual with the best fitness value;
Calculate the classification accuracy of the selected features on the test set;
Return the individual and its classification accuracy rate;

Algorithm 1: Pseudo-code of DE, ;¢ (and DE,,;)

In this study, we propose a new filter criterion inspired by feature ranking and

information theory, in particular mutual information, ReliefF and Fisher Score,
so the new criterion is named MIRFFS and defined by Eq.(19). In contrast to
MIF'S and its variants, MIRFFS aims to eliminate low ranked features detected

13



1 begin
2 Calculate mutual relevance between features in both MODE,, ;. and MODE,;;
3 Calculate order values of all features using ReliefF and Fisher Ranking in DE,;;f;
a Initialize individuals by Eq.(1);
5 Evaluate the objective values of each individual;
// Three objectives shown as relevance, ReliefF ranking and Fisher
Ranking in Eq.(19) for DE,f
6 // Two objectives shown as relevance and redundancy in Eq.(14) for
MODE,,;
7 for iter < 1 to Mazlter do
8 foreach individual i do
9 Select three individuals 71, r2 and r3 randomly;
10 Generate a mutant solution X; using the mutation operator, Eq.(2);
11 Generate a trial vector U; using the crossover operator, Eq.(4);
12 Evaluate the objectives of trial vector U;;
// Pareto-dominance-based selection:
13 if ¢ does not dominate U; then
14 L Use U; to replace i;
15 else
16 L discard Uj;
17 Find the Pareto non-dominated solutions (feature subsets) in the final generation
of the population ;
18 Calculate the classification accuracy of the feature subsets on the test set;
19— Return the feature subsets and their testing classification accuracy rates;

Algorithm 2: Pseudo-code of MODE,,,;,; (and MODE,,;)

by ReliefF and Fisher Score.

Fitprp(S) = max Z NI(xk;y)—ﬁ( Z N Relieforger(xr) + NFisherorder(xk))
IkGS ZkGS

relevance

ranking
(19)
where NI(xp,y) is the normalized mutual relevance between kth feature and
the class labels, defined by Eq.(15);
NRelief: NRelieforqer(x) is the normalized ranking/order values of kth
feature, determined by Eq.(20);

Relieforder(xk)
* an[:l Relieforger (k)2

where Reliefyrqer (1) is the order value of kth feature between [1, M], where 1
means kth feature is ranked as top 1 (the best) and M means the worst. p is
a parameter to control the balance in different datasets. The Relief score for
feature xj can be calculated by Eq.(21) (details can be seen in [27]), where P
means probability:

NReliefordeT (xk) = (20)

ReliefF(xy) = P(xy, value|different class) — P(z}, value|same class) (21)

NFisher: NFisherorqer(zk) is the normalized order value of kth feature,

14



determined by Eq.(22);

Fisherorder(x))

P * Z%Zl Fisherorder(Tm)?

NFisherorder(zy) = (22)

where M is the total number of features in the dataset; Fisherypqer () is the
order value of kth feature between [1, M| among M features according to Fisher
Score values, calculated by Eq.(23) to maximizing the between-class scatter and
minimizing the within-class scatter (details can be seen in [28]);

N pul — ok
FisherScore(xy) = Z |ﬁ| (23)
n=1 9 — 0y

where pf and ¥ are the mean of the kth feature in the ith and jth classes, and
oF and (T? are the corresponding standard deviation values.

As seen in Eqgs. (20) and (22), the normalized order values are decreased
inversely proportional to M value, but as seen in Eq.(15), the mutual relevance
values will be increased proportional to M value. It is therefore difficult to keep
balance between relevance and ranking for high dimensional datasets. With p
parameter, it is aimed to keep normalized order values at a reasonable level
for high dimensional problems. p parameter is set to 1/2, 1/3 or 1/4 for the
datasets including more than 50 features; otherwise, it is chosen as 1.

By using Eq.(19) as the fitness function in DE, a new feature selection ap-
proach is proposed in this study, which is named DE,,;,¢. The individual repre-
sentation scheme of this approach DE,,;, s is same as DE;,,;. The pseudo-code of
DE,,irf can be illustrated in Algorithm 1, where the major difference between
DE,,; and DE,,;, is the fitness function.

An example: We include the following example to show the calculation of
fitness function in DE,;r. Let, Z = {x1, 2,...,xs} be a dataset comprising of
8 features, § is set to 1. After calculations, features (from x; to xg) are ordered
as {7,4,8,3,2,6,1,5} in terms of ReliefF, and are ordered as {7,8,6,2,3,5,1,4}
in terms of Fisher Score. The normalized mutual relevance, Fisher Score rank-
ing and ReliefF ranking values are calculated according to Egs.(15), (22) and
(20), which are shown as follows:

NT ={0.3472,0.0130, 0.0689, 0.2223,0.3591, 0.1534, 0.7863, 0.2330}

N Relie forger = {0.4901,0.2801,0.5601, 0.2100, 0.1400, 0.4201,0.0700, 0.3501 }
NFishery.qer = {0.4901,0.5601, 0.4201, 0.1400, 0.2100, 0.3501, 0.0700, 0.2801}
Let [0.30,0.80,0.65,0.23,0.75,0.45,0.15,0.85] be an individual in DE. The fea-
tures ({x2,3,s5,258}) who’s the corresponding positions in the individual are
greater than 0.5 are selected. According to the selected feature subset, the fit-
ness value is computed as -2.1268 via Eq.(19). Note that the mutual relevance,
ReliefF and Fisher Score values of all available features are computed only once
before the evolutionary process of DE. During evolutionary process of DE, these
values can be used to calculate the fitness value of each individual.

MODE based on MIRFFS (MODE,,;,¢): Asin MIFS, MIRFFS (Eq.(19))
uses 3 parameter to provide the balance between the mutual relevance and the
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feature ranking. Furthermore, p parameter is used in normalization process of
ranking values to keep the ranking values at a reasonable range for high dimen-
sional problems. The determination of optimal parameter values is generally
time consuming and the performance of DE,,;.¢ highly dependents on these
parameters. Therefore, MIRFFS needs to be considered in multi-objective DE
design. In contrast to MODE,,; and existing multi-objective studies in the
literature, MODE,,;,; is proposed in this work to optimize three objectives,
which are mutual relevance, ReliefF ranking and Fisher Score ranking. By si-
multaneously optimising these three objectives, the archived feature subsets are
expected to achieve better classification performance by automatically finding
a balance among these criteria. The representation scheme of MODE,, ;s is
same as in MODE,,; and the pseudo-code of MODE,,,;,.y can be illustrated in
Algorithm 2.

4. Experimental Design

To examine the performance of the feature selection approaches, ten datasets
from UCIT machine learning repository [60], one biomedical data (DNA) and
one text classification data (listed in Table 1) are chosen, including different
numbers of features, samples and classes. Since mutual information cannot be
computed on continuous data, all chosen datasets are categorical data. For each
dataset, 70% of the samples are randomly selected as the training set and the
remaining (30%) samples are as the test set. Notice that we also consider the
distribution of instances over classes during the data division process. To cope
with missing values in some datasets, there exist a number of techniques in the
literature such as imputation, recovering and deletion. As only three datasets
used for comparisons contain a small number of missing values, we eliminate
data instances for datasets which include any missing value.

The filter approaches are first run on the training set to get the optimal
feature subset(s). Then, the performance of the optimal feature subset(s) is
evaluated by the learning/classification algorithm on the test set. Note that the
learning algorithm is solely applied to the test set to obtain the classification
performance of the optimal feature subset(s). Due to its simplicity and popu-
larity, the learning algorithm is selected as K-nearest neighbor (KNN), where
K is set to 5 as in [54] in the experiments.

The $ values in Eq.(19) are set to 0.9, 0.7, 0.5, 0.3 and 0.1, respectively. For
the comparative study of multi-objective and single objective approaches, the
B value of single-objective approaches is set to 0.3 that generally provides the
best classification performance.

The experiments are conducted for 30 runs. In the experiments, the popu-
lation size is set to 50 and the maximum number of generations is defined as 50
for all approaches. For single objective approaches, the scaling factor and the
crossover rate are experimentally chosen as 0.8 and 0.7, and for multi-objective
approaches, the scaling factor and the crossover rate are set to 0.5 and 0.2,
respectively as suggested in [20]. To show the significant difference between
the proposed and existing criteria, the Wilcoxon Rank Sum test is performed
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Table 1: Datasets

Daitaset of Features | of Clases | Examples
Lymph 18 4 148
Spect 22 2 267
Leddisplay 24 10 1000
Soybean large 35 19 307
Connect 42 3 3196
Promoter 57 2 106
Splice 60 3 3190
Optic 64 10 5620
Audiology 68 24 226
Coil2000 85 2 9000
DNA 180 2 3186
PCMAC 3289 2 1943

with the significance level of 0.05. If the p-value is equal or smaller than 0.05,
the approach based on the proposed criterion performs significantly better than
based on the existing criterion at 95% of confidence.

Two traditional correlation based filter approaches (CfsF and CfsB [61]) and
one wrapper approach (GSBS [62]) are employed for comparisons in the experi-
ments. While CfsF performs forward search, CfsB and GSBS performs backward
search. The experiments of the three traditional approaches are performed in
Waikato Environment for Knowledge Analysis (WEKA) [63] platform. To make
fair comparisons, the experiments of all approaches are first conducted using the
same 10-fold cross-validation on the same training set to obtain feature subsets.
Then, the same classifier is used to evaluate the classification performance of
the feature subsets obtained by the approaches on the same test set.

5. Results and Discussions

In this section, results are mainly considered in two subsections. First, we
analyze the classification performance and the number of features obtained by
the approaches: DE,,;.¢ vs. DE;,;, MODE,,;; vs. MODE,,;, multi-objective
vs. single objective and comparisons with traditional approaches. Second, we
compare the computational time of the approaches: DE,,; .y vs. DE;,;, and
MODE,ir ¢ vs. MODE,,;.

5.1. Comparisons between DEyr and DEp,;

Table 2 shows the results of DE,,;,s and DE,,; with 8 values from 1 to
0.1 in descending order. In Table 2, in the first column, below the caption of
each dataset, the numbers correspond to the number of available features and
the classification accuracy using all features. The standard deviation values of
classification accuracy are presented in brackets and the mean values of feature
subset size appear below the results of the classification accuracy for each ap-
proach over 30 independent runs. The results of the Wilcoxon Rank Sum Test
are shown via ‘Sig. Test’, where ‘+’ or ‘-’ means the classification performance
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Table 2: The results of single objective DE based on MIFS and MIRFFS

Dataset| Method B=1 £=0.9 £=0.7 £=0.5 £=0.3 £=0.1
84.60 (2.14) [83.49 (0.60) [85.71 (4e-16)[80.95 (1e-16)[88.09 (3¢-16)[88.09 (3e-16)
Lymph DEmi 5.26 5 6.03 I 11 17
(18,&;:3.09%)])E ~ [B3:33 (5¢-16)[83.33 (5¢-16)[88.09 (3¢-16)[80.95 (1e-16)[88.09 (3¢-16)[88.09 (3¢-16)
mirf 5 5 3 9 12 17
Sig. Test - = + = = =
bE. . [P0:00 (3¢-16)[80.00 (3e-16)[80.00 (3e-16)] 81.25 (0) [78.75 (2¢-16)[77.50 (2e-16)
Spect mi [ 8.03 10 12 14 20
(22,78.75%)DE _ 81.25 (0) 81.25 (0) 81.25 (0) 81.25 (0) [80.00 (3e-16)[78.75 (2e-16)
mirf 2 3 7 9 14 22
Sig. Test —+ + + = + +
bE 83.23 (2.27)[73.61 (1.85)]93.26 (1.52) [ 93 (2e-16) |88.88 (0.42) [90.00 (4e-16)
Leddisplay i 7.3 8.9 9.1 12 16 24
(24,90.00%)]:)E , 100 (0) 100 (0) 100 (0) 100 (0) 100 (0) 100 (0)
mirf 7 7 7 7 7 7
Sig. Test + + + +
DE. . 72.67 (7.65)]76.62 (5.86)]78.37 (4.05) [83.11 (2.42)[84.29 (1.98)[85.70 (0.96)
Soybean mi 10.03 10.63 12.4 16.63 22.4 33.76
(35,85.53%)DE ‘ 82.98 (3.60) [82.06 (2.79) [83.15 (1.39) | 85.87 (1.28)|85.92 (1.04) |83.51 (0.89)
mirf 10.6 11.23 13.3 16.53 21.23 27.76
Sig. Test —+ —+ + —+ + -
70.63 (0.06) [70.67 (0.09) [71.27 (0.14) [72.73 (0.53)]73.66 (0.17)|74.17 (0.18)
Connect DB 11.83 12.4 13.66 15.63 19.53 27.66
(42,71.69%)DE _ 71.57 (0.69) | 71.78 (0.68) | 72.53 (0.87) | 73.47 (0.66) | 73.98 (0.31)[73.95 (0.26)
mirf 8.46 8.9 10.26 12.23 14.8 20.36
Sig. Test + + + + + +
DE. 86.00 (5.49)[85.11 (6.17)[86.88 (4.01) [86.44 (5.39)[86.11 (4.80) [86.55 (4.33)
Promoter mi 9.63 9.8 10.83 12.53 16.16 30.36
(57,90.00%)13E _ 85.44 (6.52) |84.11 (5.51) | 83.88 (5.87) | 85.77 (4.62) |87.44 (4.34) | 87.66 (3.05)
mirf 9.06 9.8 10.53 11.23 14.6 28.23
Sig. Test = = - = = =
bE 67.85 (3.27)[70.55 (4.17)]72.49 (3.71) [74.52 (2.03)[74.85 (1.85)[73.39 (1.40)
Splice i 9.03 9.5 10.6 12 14.76 23.93
(60,66.77%)DE —[71.68 (4.17)|72.32 (3.95) | 73.52 (3.62) | 74.71 (2.67) | 75.59 (2.21) |74.34 (1.34)
mirf 9.56 9.46 11.13 11.9 14.06 20.2
Sig. Test + -+ = = -+ +
DE. . 79.58 (5.48)[84.17 (3.12)]89.38 (2.34) [94.26 (1.02)[97.37 (0.40) [98.75 (0.12)
Optic i 12.96 135 16.1 18.9 25.6 48.23
(64, 98.87%)DE ‘ 89.12 (7.04) [91.34 (3.62) [90.51 (4.69) |94.17 (2.67)|97.63 (0.65) |98.57 (0.16)
mirf 11.73 12.33 12.46 15.3 22.96 39.8
Sig. Test + —+ = = = _
64.25 (3.76)[63.84 (2.70) [64.61 (2.91) [64.56 (2.33)]64.20 (2.24) [63.53 (2.21)
Audiology DB 21.16 20.90 22.30 24.83 28.03 37.50
(68, 64.62%)DE _ 72.00 (5.27) | 67.38 (7.03) | 70.10 (5.49) |68.30 (5.66) | 65.17 (2.69) |64.82 (1.92)
mirf 14.26 13.86 16.13 17.66 22.16 36.16
Sig. Test + + + + = +
DE. 93.47 (0.18)[93.58 (0.18)[93.58 (0.17) [93.59 (0.16)[93.68 (0.12) [93.74 (0.06)
C0il2000 mi 30.33 30.33 32.93 36.1 43.13 58.33
(85,93.73%)DE _ 93.69 (0.15) | 93.71 (0.14) | 93.63 (0.18) [93.71 (0.17)|93.65 (0.11)[93.80 (0.12)
mirf 17.16 18.03 18.8 20.36 23.56 39.03
Sig. Test + + + + = +
bE 81.13 (2.55) [81.42 (2.41)82.82 (2.05) | 83.38 (1.31)]82.90 (1.34)[82.31 (1.09)
DNA m 57.63 57.50 60.26 65.53 73.06 95.83
(180,81.70%)DE [81.57 (2.37)|81.07 (2.66) | 82.47 (2.35)|83.69 (1.75)|83.26 (1.72)|83.14 (1.01)
mirf 55.80 56.73 58.03 61.23 65.73 81.13
Sig. Test = = = = — +
DE. . 70.40 (2.56)[70.85 (2.52)]71.27 (2.86) [72.82 (2.63)[72.77 (2.95)[75.08 (2.65)
PCMAC mi 1523.40 1523.76 1523.23 1524.53 1529.33 1552.26
(3289,70.10%)DE ‘ 73.63 (2.60) [ 73.92 (2.32) [ 74.03 (2.33) | 74.62 (2.38) | 75.24 (1.98) |75.94 (1.62)
mirf 1484.60 1487.53 1494.50 1499 1519.93 1619.60
Sig. Test —+ —+ + —+ -+ =
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of DE,,rs is significantly better or worse than DE,,,; and ‘=" means there is no
significant difference between DE,,;,r and DE,,;.

According to Table 2, it can be observed that with at least two of the § val-
ues, DE,,,; can generally evolve a small number of features and achieve similar or
better classification performance than using all features except for the Promoter,
Optic and Coil2000 datasets. Although DE,,; performs slightly worse than us-
ing all features in terms of the classification accuracy in the Coil2000 dataset, it
can select only around 30 features from the available 85 features. In the Optic
dataset, it can select only around 48 features from the available 64 features and
achieve 98.75% classification accuracy (which is very close to 98.87% obtained
using all available features). Therefore, it can be suggested that DE,,; has the
potential to reduce the feature subset and increase the classification accuracy.

According to Table 2, it can be also observed that DE,,;,¢ evolve a small
number of features and achieve similar or better classification performance than
using all features for all values of 8 in the Spect, Leddisplay, Connect (except
for 1 case of B), Splice, Audiology, DNA (except for 1 case of §) and PCMAC
datasets. In the Lymph and Soybean datasets, it can perform better than using
all features in 3 values of 5. Only, it cannot obtain better performance in the
Promoter and Optic datasets, but the classification performance of DE,,;.¢ is
very close to the results obtained by using all features. Therefore, DE,,,;r can
significantly reduce the dimensionality of the data and maintain or increase the
classification performance. Further, it reaches this success with more 5 options
than DE,,;.

As seen in Table 2, the classification performance and the number of fea-
tures tend to increase inversely proportional to the 3 value in both DE,,;.¢
and DE,,;. It is also seen that both approaches mostly achieve the best per-
formance when the 3 value is 0.3. Comparing DE,;,y with DE,,;, the average
size of the feature subsets evolved by DE,,; s is smaller than DE,,; in most
cases. Not only obtaining smaller feature subset size, but also DE,, ;s provides
higher classification performance in most cases. Further, the classification per-
formance of DE,,;,s is significantly better than DE,,; in almost all cases except
for the Lymph, Promoter, Optic and DNA datasets. Although there is generally
no difference between DE,,;,; and DE,,; in the Promoter and Optic datasets,
DE,,irs selects a smaller number of features. Thus, DE,,;y can be also treated
as successful in the Promoter and Optic datasets. It can be suggested that the
proposed criterion outperforms the most-widely used existing criterion in terms
of the classification accuracy and the number of features.

Generally, DE,,;»y and DE,,; can be applied to feature selection problems.
DE,,iry which is the combination of feature ranking and mutual information is
a better feature selection approach than DE,,;. However, it is unclear whether
more features can be removed and the classification accuracy can still be main-
tained or even increased. Furthermore, the parameter to balance between the
components in both the MIRFFS and MIFS criteria is difficult to predefine in
advance. Therefore, it would be interesting to consider feature selection as a
multi-objective problem to explicitly examine the trade off between the classifi-
cation accuracy and number of features.
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5.2. Comparisons between MODE,,;,; and MODE,,;

In the experiments, single objective approaches obtain a single feature sub-
set/solution in each independent run (30 feature subsets for the 30 independent
runs). Multi-objective approaches obtain a set of nondominated solutions in
each independent run. In order to compare the single objective algorithms
with the multi-objective algorithms, the 30 sets of solutions obtained by multi-
objective approaches are collected into a union set. In the union set, the classifi-
cation performance of the solutions that have the same subset size are averaged.
A new set of average solutions is referred as the “average” front. In addition to
the “average” front, the non-dominated solutions in the union set (referred as
the best front) are also used for the comparison of the approaches.

The results of MODE,,;,s, MODE,,; and single objective approaches on the
test sets are shown in Fig. 3, where each chart corresponds to the solutions of
one dataset used in the experiments. In each chart, the horizontal axis repre-
sents the number of features, and the vertical axis represents the classification
accuracy. On top of each chart, the numbers in the brackets correspond to the
number of available features and the classification accuracy using all features.
In charts, ‘-A’ and ‘-B’ represents the “average” and the “best” fronts, respec-
tively. Single objective approaches may obtain the same feature subset size and
same classification accurary in different runs in some datasets. Therefore, the
plotted points on some charts for single objective approaches may be fewer than
30 distinct points.

According to Fig. 3, the average fronts of MODE,,; (shown by MODE-
MIFS-A) include a smaller number of features and achieve similar or higher
classification performance than using all features except for the Lymph and
Leddisplay datasets. Especially in the Leddisplay dataset, the average front
performance of MODE,,; is very low when compared to the classification per-
formance obtained by using all features, but the classification performance in
MODE-MIFS-B is high. Therefore, it can be inferred that for the solutions
including the same number of features, there are a variety of combinations of
feature subsets with different classification performance. It can be also inferred
that in different runs, for the same feature subset size with the same fitness
value (evaluated by Eq.(12)), MODE,,; does not guarantee the same classifi-
cation performance. In terms of the best fronts, MODE,,; evolves the feature
subsets that achieve higher classification performance than using all features in
almost all cases. Especially in some cases which provides higher classification
accuracy, MODE,,,; is able to eliminate at least 50% of available features. For
instance, in the Soybean dataset, one non-dominated solution reduced the fea-
ture subset size from 35 to 16 and increased the classification accuracy from
85.53% to 88.15%. The results suggest that MODE,,; can search the solution
space and automatically evolve a set of feature subsets (solutions) to reduce the
feature subset size and potentially increase the classification accuracy.

According to Fig. 3, the average fronts of MODE,,;,; (MODE-MIRFFS-A)
are able to obtain the feature subsets providing similar or higher classification
performance than using all features except for the Lymph dataset. It is also seen
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Figure 3: Results of multi-objective approaches on test sets




that the average fronts of MODE,,;,; get more feature subsets than MODE,,;
in terms of achieving better classification performance than using all features.
As in MODE,,;, the non-dominated solutions of MODE,,;,; include a smaller
number of features and achieve better classification performance than using all
features in all datasets. In a significant number of MODE-MIRFFS-B solutions
which provided better classification performance than using all features, the size
of the feature subsets were reduced between 50% and 70% of available features.
Therefore, MODE,,;¢ can effectively explore the possible solution space to
reduce the feature subset size and increase the classification accuracy.

Comparing MODE,,,;,-y with MODE,,,;, it can be seen that MODE,, ;- out-
performs MODE,,; in terms of average fronts except for only some solutions of
the Spect and Promoter datasets. The gap between MODE,,;,; and MODE,,;
can be easily observed, i.e., the lines representing the results of MODE,,;
mostly lay below the lines of MODE,,;, ¢, indicating a lower classification than
MODE,,;¢. For instance, on the Leddisplay dataset, the feature subsets with
13 features get 90.71% average classification accuracy in MODE,,;, ¢, but the av-
erage classification accuracy of the feature subsets with 13 features in MODE,,;
is only 60.80%. It is therefore not difficult to extract that the classification
performance in MODE,,;,¢ does not vary widely for the solutions including the
same number of features as in MODE,,,;. The possible reason is that MODE,,;,
aimed to optimise three different criteria, which can capture different properties
of the data to increase the classification performance consistently. Furthermore,
MODE,,;,; is also superior to MODE,,; in terms of the non-dominated solu-
tions in almost all datasets. The comparisons show that both single objective
and multi-objective DE approaches based on the proposed criterion can better
explore the search space and achieve better solutions than the approaches based
on the existing criterion.

5.8. Comparisons between Multi-Objective and Single Objective Approaches

Comparing MODE,,; with DE,,; and DE,,;,, it is seen that in most cases,
MODE,,; (MODE-MIFS-B) eliminates irrelevant or redundant features more
effectively and achieves better classification performance than DE,,; and DE,,;, ¢
with 8 = 0.3. When comparing MODE,,,;,; with DE,,,;.¢ and DE,,;, in almost
all cases, MODE,;,; (MODE-MIRRFS-B) also outperforms DE,,,;»; and DE,,;
with 6 = 0.3 in terms of both the classification performance and the number of
features. Therefore, considering both the MIFS and MIRFFS criteria in multi-
objective design is more suitable and has more potential to explore the search
space than single-objective design for feature selection problems. Furthermore,
parameter 8 which keeps the balance between components does not need to be
predefined in multi-objective design.

5.4. Comparisons with Traditional Approaches

Table 3 shows the results of the two traditional filter approaches (CfsF and
CfsB) and one traditional wrapper approach (GSBS). The three traditional
approaches produce a unique feature subset, so have a single accuracy for each
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Table 3: Results of Traditional Approaches

Lymph Spect Leddisplay
Method CfsF CfsB GSBS CfsF CfsB GSBS CfsF CfsB GSBS
Accuracy | 90.48 | 93.48 84.21 81.25 80 82.50 100 100 100
Size 9 9 24 12 10 18 7 7 5
Soybean Connect Promoter
Method CfsF CfsB GSBS CfsF CfsB GSBS CfsF CfsB GSBS
Accuracy | 85.53 | 85.53 84.21 70.73 | 70.73 71.68 90 90 90
Size 12 11 24 6 6 41 6 6 50
Splice Optic Audiology

Method CfsF CfsB GSBS CfsF CfsB GSBS CfsF CfsB GSBS
Accuracy | 72.83 72.83 68.65 98.69 98.69 98.75 64.62 64.62 64.62

Size 28 28 47 36 36 38 9 10 24
Coil2000 DNA PCMAC

Method CfsF CfsB GSBS CfsF CfsB GSBS CfsF CfsB GSBS

Accuracy | 93.58 93.53 93.83 85.08 85.08 82.63 83.51 Null Null

Size 10 20 31 34 34 173 47 Null Null

test set. Note that it is not completely fair to compare filter approaches with
wrapper approaches since wrappers use a classifier during the evaluation process.

Comparing single objective approaches (Table 2) with traditional filter ap-
proaches, it can be seen that DE,,; achieves higher classification accuracy than
traditional filter approaches in the Connect, Splice, Coil2000 and Audiology
datasets. For the other datasets, traditional approaches outperform DE,,;. On
the other hand, DE,,; s performs similar or better classification accuracy than
traditional approaches except for some cases. Comparing single objective ap-
proaches with the wrapper approach, GSBS, it is seen that single objective
approaches outperform GSBS in all cases.

Comparing multi-objective approaches (Fig. 3) with traditional filter ap-
proaches, it is seen that two multi-objective approaches select a smaller number
of features and achieve higher classification performance than two traditional
filter approaches except for the Promoter and Coil2000 datasets. Furthermore,
multi-objective approaches outperform GSBS in all datasets in terms of the
classification accuracy and the feature subset size.

5.5. Further Comparisons

To further test the performance of the proposed algorithms, we compared the
proposed both single objective method (DE,,;rs) and multi-objective method
(MODE,;r ) with six existing PSO based filter feature selection methods pro-
posed in [64], including two single objective methods (PSOMI based on PSO
and MIFS, and PSOF based on PSO and an entropy based information gain
measure), and four multi-objective PSO methods (NSfsMI and NSfsE based
on non-dominated sorting based multi-objective PSO [65] with MIFS and the
entropy measures, respectively, and CMDfsMI and CMDfsE based on multi-
objective PSO proposed in [66] with MIFS and the entropy measures, respec-
tively). The second multi-objective PSO framework [66] has shown to be better
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than the first one and other popular evolutionary multi-objective frameworks in
[67].

There are 5 datasets in common in this work and in [64], which are Lymph,
Spect, Leddisplay, Soybean and Connect. When comparing the single objec-
tive methods, the proposed DE,,;,; achieves better performance than PSOMI
and PSOE on four of the five datasets, with a slightly worse performance on
Soybean than PSOMI and on Connect than PSOE but with a much smaller
number of features. When comparing the multi-objective methods, the pro-
posed MODE,,;,s achieves better performance than NSfsE and NSfsMI on four
of the five datasets, and better than CMD{sMI and CMDf{sSE on three datasets,
similar on one dataset, but worse on the other one dataset. Note that differ-
ent data splitting may cause a slightly different accuracy on the dataset, but
the superior performance of the new methods are significant, e.g nearly 10 per-
cents accuracy increases. This is only a simple multi-objective DE framework,
but the compared multi-objective PSO framework [66] is a sophisticated one.
The above comparisons indicate that multi-objective DE with more advanced
search mechanisms is very likely to have the potential of achieving even better
performance, which confirms one of the motivations of this work.

5.6. Analysis of Computational Time

5.6.1. Comparisons of CPU Time between DE,,;ys and DE,,;

The computational time results of single objective approaches are presented
in terms of mean and standard deviation values over the 30 independent runs in
Table 4. The standard deviation values are shown in brackets. The experiments
are implemented in MATLAB2013a and are executed on a computer with an
Intel Core i7-4700HQ 2.40 GHz CPU and 8 GB RAM. The results of Wilcoxon
Rank Sum Test are shown via ‘Sig. Test’ as in Table 2, where ‘+’ or ‘-’ means
that the computational time performance of DE,,;.¢ is shorter or longer than
DE,,; and ‘=" means that there is no significant change between DE,,;,; and
DE, ;.

According to Table 4, the computational time of DE,,; is increased inversely
proportional to the S value, i.e., proportional to the feature subset size. The
CPU time of DE,,; for 8 = 0.1 is about two times as high as § = 1 in most
cases. On the other hand, the computational time of DE,,;.s does not tend to
increase inversely proportional to the § value, i.e., proportional to the feature
subset size except for the Connect, Optic, Coil2000 and PCMAC datasets. The
CPU time is increased in these datasets only between 8 = 0.5 and 8 = 0.1.
Therefore, DE,,;rs can be treated as stable without no doubt in terms of the
computational time.

Comparing DE,,;y with DE,,;, it is seen that DE,,;,s can reduce the com-
putational time at least a half or a quarter compared with DE,,,; in most cases.
The computational time difference between DE,,;,; and DE,,; is higher for the
lower values of 3. For instance, the gap between DE,,;, s and DE,,; is increased
from 0.31 to 0.62 sec in the Promoter and Splice datasets, while the 3 value is
decreased from 1 to 0.1. The results show that DE,,;.; achieves significantly

24



Table 4: The CPU Time Results of Single Objective Approaches

Dataset Method p=1 £5=0.9 £=0.7 £=0.5 $5=0.3 £5=0.1
DE,,;| 0.20 (0.02) | 0.20 (0.02) | 0.20 (0.02) | 0.22 (0.03) | 0.27 (0.03) | 0.37 (0.03)
Lymph DE,,;rf| 0.16 (0.03) | 0.15 (0.02) | 0.16 (0.02) | 0.15 (0.02) | 0.15 (0.01) | 0.14 (0.02)
Sig. Test —+ + + —+ + —+
DE,,;| 0.25 (0.03) | 0.25 (0.02) | 0.26 (0.02) | 0.31 (0.02) | 0.38 (0.03) | 0.50 (0.04)
Spect DE,,i-f| 0.16 (0.02) | 0.15 (0.02) | 0.16 (0.01) | 0.15 (0.02) [ 0.16 (0.03) | 0.17 (0.02)
Sig. Test + + + + + +
DE,,;| 0.28 (0.03) | 0.28 (0.03) | 0.31 (0.03) | 0.33 (0.03) | 0.41 (0.03) | 0.51 (0.01)
Leddisplay| DE,,;~f| 0.16 (0.02) | 0.16 (0.01) | 0.15 (0.01) [ 0.17 (0.02) | 0.16 (0.01) | 0.16 (0.02)
Sig. Test —+ + + —+ + —+
DE,,;| 0.34 (0.03) | 0.35 (0.02) | 0.37 (0.03) | 0.44 (0.03) | 0.55 (0.03) | 0.65 (0.03)
Soybean DE,,;-f| 0.17 (0.02) | 0.17 (0.01) | 0.16 (0.02) | 0.17 (0.02) | 0.17 (0.02) | 0.16 (0.02)
Sig. Test + + + + + +
DE,,;| 14.3 (2.29) 12.3 (3.01)[ 13.85 (0.64) [ 14.81 (1.04) | 18.15 (1.11) |25.23 (1.87)
Connect DE,,irf| 3.53 (0.77) 4.21 (2.93)] 4.43 (3.01) | 9.91 (4.38) | 13.91 (0.92) [17.69 (1.73)
Sig. Test + + + + + +
DE,,;| 0.48 (0.05) 0.48 (0.06)| 0.49 (0.04) | 0.50 (0.04) | 0.58 (0.03) | 0.79 (0.02)
Promoter | DE,,;f| 0.17 (0.02) | 0.17 (0.02) | 0.16 (0.01) [ 0.18 (0.02) | 0.16 (0.02) | 0.17 (0.02)
Sig. Test —+ + + —+ + —+
DE,,;| 0.52 (0.04) 0.52 (0.02)| 0.52 (0.03) | 0.56 (0.05) | 0.67 (0.04) | 0.84 (0.03)
Splice DE,,irf| 0.21 (0.02) 0.22 (0.02)| 0.23 (0.03) | 0.21 (0.02) | 0.22 (0.02) | 0.22 (0.02)
Sig. Test —+ + + + + —+
DE,,;| 0.65 (0.06) 0.64 (0.04)| 0.67 (0.04) | 0.73 (0.04) | 0.86 (0.04) | 1.34 (0.06)
Optic DE,,irf| 0.26 (0.03) | 0.26 (0.03) | 0.27 (0.04) | 0.27 (0.03) | 0.30 (0.02) | 0.38 (0.02)
Sig. Test + + + + + +
DE,,;| 0.60 (0.07) 0.58 (0.07)| 0.57 (0.06) | 0.57 (0.04) | 0.58 (0.07) | 0.65 (0.03)
Audiology | DE,,;-f| 0.26 (0.03) 0.26 (0.02)| 0.26 (0.02) | 0.27 (0.05) | 0.27 (0.05) | 0.23 (0.02)
Sig. Test —+ + + —+ + —+
DE,,;| 1.51 (0.08) 1.58 (0.09)| 1.61 (0.09) | 1.73 (0.10) | 1.93 (0.07) | 2.49 (0.09)
Co0il2000 DE,,irf| 0.59 (0.06) 0.59 (0.03)| 0.58 (0.03) | 0.59 (0.04) | 0.62 (0.04) | 0.81 (0.05)
Sig. Test —+ + + + + +
DE,,;| 3.30 (0.15) 3.31 (0.06)| 3.42 (0.08) | 3.58 (0.07) | 4.04 (0.11) | 5.21 (0.25)
DNA DE,,irf| 0.43 (0.03) 0.42 (0.02)| 0.42 (0.04) | 0.48 (0.05) | 0.44 (0.03) | 0.47 (0.03)
Sig. Test + + + + + +
DE,,;(124.33 (7.68)|136.39 (3.17)[137.30 (5.09)[140.28 (4.56)(136.96 (16.42)(134.45 (7.57)
PCMAC DE,,;rf| 4.37 (0.29) 4.33 (0.18)| 4.17 (0.15) | 4.35 (0.22) | 4.46 (0.10) | 4.71 (0.18)
Sig. Test —+ + + —+ + —+

better computational performance than DE,,;. That can be illustrated via ‘Sig.
Test’ in Table 4. Therefore, DE,,;.f is superior to DE,,; not only in terms of
the classification performance and the number of features, but also in terms of
the CPU computational time.

How can DE,,;y complete the process in a shorter time in all cases and
why cannot DE,,; provide the stability in CPU computational time for dif-
ferent values of §? Given m selected features, as seen in Eq.(14), the time
complexity of relevance and redundancy is o(m) and o(m?), respectively; thus,
the time complexity of DE,,; is o(m?) + o(m) ~ o(m?). On the other hand,
the time complexity of relevance, ReliefF ranking and Fisher ranking is o(m)
as seen in Eq.(19); therefore, the time complexity of DE,,;..ss is about o(m).
Furthermore, DE,,;,.; can remove/reduce irrelevant or redundant features more
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effectively than DE,,;, which also contributes to the improvement of the com-
putational time.

5.6.2. Comparisons of CPU Time between MODE,;,; and MODE,,;

The computational time results of multi-objective approaches are presented
in terms of mean and standard deviation values over the 30 independent runs
in Table 5. The standard deviation values are shown in brackets. The experi-
ments are implemented and executed on the same computer as in Section 5.2.1.
The results of Wilcoxon Rank Sum Test are shown via ‘Sig. Test’, where ‘+’
or ‘- means the computational time performance of MODE,;,; is shorter or
longer than MODE,,,; and ‘=" means there is no significant difference between
MODE,,;;; and MODE,;.

According to Table 5, it is seen that MODE,,;,s can complete feature selec-
tion in a shorter time than MODE,,; in all datasets, although the number of
objectives in MODE, ;¢ is higher than MODE,,;. The efficiency of MODE,,;, s
is also supported by the Wilcoxon Rank Sum Test, which shows MODE, ;s is
significantly better than MODE,,; in all datasets. How can MODE,,; s be
computationally more efficient? First, as mentioned in Section 5.2.1, the redun-
dancy component of Eq.(14) increases the time complexity (o(m?)) in MODE,,;.
Furthermore, MODE [57] uses no complex and time consuming components to
sort or renew individuals based on objective values like nondominated sorting
genetic algorithm (NSGAII) [68] or multi objective particle swarm optimization
(MOPSO) [69]. Instead of complex components such as non-dominated sorting
and external archive, MODE uses multi-way greedy selection to renew or select
individuals. Therefore, the computational time is not adversely affected by the
number of objectives.

The comparisons confirm that both single objective and multi-objective DE
approaches based on the proposed criterion can better explore the search space
and achieve better solutions than the approaches based on the existing criterion.
The comparisons also confirm to the fact that the proposed criterion (Eq.(19))
significantly improves the efficiency and effectiveness of both single objective
and multi-objective DE algorithms in feature selection problems compared to
the MIFS criterion (Eq.(14)).

5.6.3. Comparisons of CPU Time with Existing Methods

When comparing with traditional methods, the forward selection method,
i.e. CfsF, is much faster than the proposed methods, especially when the total
number of features is small. CfsB following a backward selection method but
with a filter measure is also faster than the proposed methods on small datasets,
but slower than the proposed methods on large datasets, such as the PCMAC
datasets, where both CfsB and GSBS cannot finish running within hours, but
the proposed methods used minutes of time. The reason is that the backward
selection method start with the full set of features, i.e. each evaluation involves
a large dataset leading to a long computation time.

For making fair comparisons on CPU computational time, all approaches
should be executed in computation environment, but in this work, we can in-
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Table 5: The CPU Time Results of Multi-Objective Approaches

Dataset MODE,,; MODE,,;ry Sig. Test
Lymph | 0.12 (0.01) 0.10 (0.01) T
Spect | 0.14 (0.01) 0.11 (0.01) T
Leddisplay | 0.39 (0.01) 0.27 (0.01) T
Soybean 0.22 (0.01) 0.13 (0.01) +
Connect | 754.00 (37.57) | 705.03 (25.05) T
Promoter 0.31 (0.01) 0.10 (0.01) +
Splice 2.42 (0.04) 2.29 (0.07) T
Optic | 8.43 (0.22) 7.56 (0.19) T
Audiology 0.43 (0.05) 0.18 (0.03) +
Coil2000 | 34.77 (0.81) 29.92 (0.66) T
DNA | 8.16 (0.37) 6.91 (0.35) ¥
PCMAC | 130.72 (27.46) | 70.01 (9.95) +

directly compare the proposed multi-objective MODE, ;. with the PSO based
methods in [64]. The main reason is that when using EC methods for feature
selection, the majority of the computational cost is used in the fitness evalua-
tions. For (relatively) fair comparisons, different algorithms should use the same
number of fitness evaluations. Since MODE,,;,. has shown to be faster than
MODE,,;, and PSOMI, NSfsMI and CMDfsMI used the same fitness evaluation
as MODE,,,;, it is reasonable to say that MODE,,;, s is faster than PSOMI, NS-
fsMI and CMD{sMI. Furthermore, NSfsMI and CMDfsMI are much faster than
PSOE, NSfsE and CMDfsE, which indicates that MODE,,;.¢ is faster than
PSOE, NSfsE and CMDfsE. Of course, this is a general comparison on the com-
putational cost, and the efficiency of all the algorithms can be improved in using
a different programming language for implementation and a better computation
environment.

6. Conclusions

The overall goal of this study was to develop new single objective and multi-
objective DE based filter feature selection approaches to better searching for a
set of feature subsets, which can eliminate irrelevant or redundant features and
achieved better classification performance than using all features. This goal was
successfully achieved by introducing a novel criterion inspired by feature ranking
and mutual information, and adopting the most widely used criterion. Thus,
two single objective (DE,,;ry and DE,,;) and two multi-objective (MODE,,;, ¢
and MODE,,;) approaches were proposed for feature selection problems. The
effectiveness of the approaches is demonstrated by comparing them to each
other.

Experimental results show that in almost all cases, DE based on both the pro-
posed and existing criteria can automatically evolve a small number of features
and achieve better classification performance than using all features. Comparing
the proposed and existing criteria, DE based on the proposed criterion outper-
formed the existing criterion in almost all cases in terms of both the number of
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features and the classification accuracy. Moreover, DE based on the proposed
criterion searched the solution space much more efficiently than the existing
criterion due to lower time complexity.

Experimental results also show that MODE based on both the proposed and
existing criteria achieved similar or better classification performance than using
all features and the single objective approaches in most datasets. Comparisons
also indicate that MODE based on the proposed criterion outperformed the ex-
isting criterion in terms of both the best and the average fronts. Furthermore,
the fluctuations on the classification performance among the solutions with the
same number of features obtained by MODE based on the proposed criterion
were lower than those produced by the existing criterion, which improved the
performance of the average fronts. The computational time efficiency of the pro-
posed criterion can be also illustrated in multi-objective approaches. Although
the multi-objective design of the proposed criterion includes three objectives, it
is also able to complete the feature selection process in a shorter time.

Instead of applying an existing criterion as an objective function which was
mostly preferred in the literature, this paper proposes new DE-based approaches
based on a novel criterion for filter based feature selection. The effectiveness and
the efficiency of the approaches have been demonstrated in both single objective
and multi-objective experimental studies. In future, we will further develop the
multi-objective DE based filter approaches based on the proposed criterion to
better explore the Pareto front of non-dominated solutions in feature selection
and will try to redesign the proposed criterion for the continuous datasets.
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Appendix: Further Comparisons Using Naive Bayes Classifier

To investigate whether the successful performance of the proposed single
objective and multi-objective approaches can carry on other classification algo-
rithms in addition to KNN. Naive Bayes (NB) is used in the further experiments,
since it is efficient, easy to implement and particularly useful for large datasets.

The results of single objective approaches are presented in Table 6, which
are obtained from 30 independent runs. The results include the classification
performance, the feature subset size and the Wilcoxon Rank Sum Test. The
numbers in the brackets underlying the caption of each dataset in Table 6 rep-
resent the available number of features and the classification accuracy of NB
using all features, respectively. According to Table 6, both DE,,; and DE,,;,¢
obtain generally similar or higher classification accuracy than using all features.
Only in the Splice, Optic and PCMAC datasets, single objective approaches
cannot achieve better classification accuracy than using all features, but the
obtained classification accuracies in Optic are very close to the accuracy ob-
tained by using all features. Comparing DE,,;, ¢ with DE,,;, it can be observed
that DE,,;y outperforms DE,,; in the Lymph, Leddisplay, Promoter, Splice
and PCMAC datasets almost in all 8 values in terms of both the classification
accuracy and the feature subset size. On the Spect, Soybean, Connect and Op-
tic datasets, DE,,;,f mostly achieves similar classification performance using a
smaller number of features than DE,,;. Overall, the results of the significance
tests can show that the successful performance of DE,,;,s also carries on when
using NB as a classifier.

The results of multi-objective approaches are presented with single objective
approaches where 8 = 0.3 in Fig. 4. On top of each chart in Fig. 4, the numbers
in brackets represent the feature subset size and the classification accuracy using
NB with all features. The other concerning definitions and explanations related
to charts can be found in Section 5.2. According to Fig. 4, both MODE,,;; and
MODE,,;,s can automatically evolve a set of feature subsets yielding higher
classification performance than using all features on all datasets. Especially in
terms of the best fronts, high classification accuracies are achieved with less
than 50% of the available features. For instance, on the Coil200 dataset, one
best solution increased the classification accuracy from 74.48% to 92.52%, while
the feature subset size was decreased from 85 to 32. Comparing multi-objective
approaches with single objective approaches, it can be inferred from Fig. 4 that
multi-objective approaches are more likely to find smaller feature subsets which
achieves higher classification performance than DE,,; on all the datasets and
DE,,ir s except for the Audiology dataset. Accordingly, it is clear that both the
MIFS and MIRFSS criteria in the multi-objective approach are able to search
the possible solution space more effectively than single objective approaches in
feature selection problems.

Comparing MODE,,; and MODE,,;, it can be observed from Fig. 4 that
the best and average front lines of MODE,,; are mostly lay below the lines of
MODE,,;, ¢ except for the Audiology and Coil2000 datasets. Furthermore, the
gap between MODE,;,y and MODE,,; is extremely high, especially in terms of
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the average fronts. In other words, the classification performance of solutions
with the same feature subset size obtained by MODE,,; are more likely to
vary, i.e., not stable and consistent compared to MODE,,;.¢. From the above
comparisons, it can be concluded that considering the proposed criterion in both
the single objective and multi-objective design can better search the possible
solution space and obtain better solutions than the existing criterion in terms
of the classification performance and the feature subset size over a different
classification method.
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Table 6: The results of single objective DE based on MIFS and MIRFFS over Naive Bayes

Dataset| Method B=1 £=0.9 B=0.7 £=0.5 £5=0.3 £=0.1
DE. . 84.68 (1.20) [ 84.68 (1.21)[85.23 (0.97) [85.71 (4e-16)[85.71 (4e-16)] 90.47 (0)
Lymph me 5.43 5.43 6.23 8 11 17
(18,90.47%)]:)E 8571 (4e-16)[85.71 (4¢-16)[88.09 (3¢-16)[88.09 (3¢-16)[88.09 (3e-16)| 90.47 (0)
mirf 5 5 B 9 12 17
Sig. Test + + + + + =
DE.. . 81.25 (0) 81.25 (0) 81.25 (0) 81.25 (0) 81.25 (0) [78.75 (2e-16)
Spect m 8 8.1 10 12 14 20
(22,73.75%)DE ' 81.25 (0) 81.25 (0) 81.25 (0) 81.25 (0) 81.25 (0) [78.75 (2e-16)
mérf 2 3 7 9 14 22
Sig. Test = = = = = =
DE.. . 82.13 (0.27) | 82 (2e-16) [93.33 (3e-16)] 90 (4e-16) [99.70 (0.10)[99.33 (4e-16)
Leddisplay me 7.26 9 9.1 12 16.1 24
(24,99.3:’,%)]3E » 100 (0) 100 (0) 100 (0) 100 (0) 100 (0) 100 (0)
mirf 7 7 7 7 7 7
Sig. Test + + —+ + —+ +
63.99 (7.32)[64.95 (7.43)]71.97 (5.62)[81.62 (3.19)[90.87 (1.42)[89.12 (0.59)
Soybean DEqm; 9.56 10.13 12.7 16.6 22.53 33.88
(35,89.47%)DE v 70.96 (1.98)|71.53 (1.77)]72.32 (1.35) | 81.53 (2.38) |86.35 (1.44)|88.85 (1.07)
mirf 10.46 10.8 13.3 15.96 21.33 27.93
Sig. Test + + = = - =
DE. . 70.39 (3e-16)[70.39 (3e-16)[70.39 (3e-16)[70.39 (3e-16)[70.39 (3e-16)[70.39 (3e-16)
Connect me 12.56 12.06 13.96 15.46 19.8 27.86
(42,70.39%) E 70.39 (3e-16)[70.39 (3¢-16)[70.39 (3e-16)[70.39 (3e-16)[70.39 (3¢-16)[70.39 (3e-16)
mirf 356 838 9.9 11.9 1413 20.06
Sig. Test = = = = = =
DE.. 78.66 (7.03) [ 78.55 (4.84)[79.66 (5.41)[81.11 (6.27)| 80 (4.28) 80 (3.60)
Promoter me 9.3 9.83 11 12.16 16.53 29.83
(57,80.00%)DE v 81.44 (4.68) |81.11 (6.27)|83.88 (5.47)| 84 (5.70) |85.11 (4.35)83.33 (4.46)
mérf 8.5 9.33 10.1 11.6 14.06 27.33
Sig. Test + + + + + +
DE.. . 55.15 (5.92) [57.73 (5.79)]58.46 (6.14)[62.89 (2.78)[67.39 (2.04)[73.30 (1.02)
Splice me 9.13 9.16 10.4 12.16 15.1 245
(60,75.97%)DE » 62.87 (4.75) |61.36 (5.81) |63.01 (5.82)66.13 (5.06) | 69.47 (2.69)|72.84 (1.16)
mirf 9.53 10.73 10.36 12.06 14.33 20.06
Sig. Test + + —+ + —+ =
72.31 (4.56)[76.16 (3.37)]79.58 (2.06)[84.96 (1.62)[88.17 (0.86)]90.01 (0.40)
Optic DEqm; 13.43 14.1 15.66 18.3 25.63 49.83
(64, 90.09%)DE v 77.53 (5.56) | 76.88 (4.90) | 79.72 (3.77) | 83.57 (3.07) | 87.86 (1.23)]89.88 (0.61)
mirf 11.93 11.36 12.43 15.53 22.13 40.1
Sig. Test + + = = = =
DE. . 72.76 (1.72)]73.33 (2.92)[72.56 (2.85)[73.23 (2.66)[71.43 (2.73)[64.71 (2.21)
Audiology me 20.96 21.5 21.8 25.3 28.66 38.1
(68, 33.85%)DE v 69.48 (4.96) [69.79 (5.38)]70.25 (4.30) |69.33 (2.58)| 70 (3.89) |60.05 (4.47)
mirf 13.66 13 15.33 17.73 20.96 35.4
Sig. Test - - = - = -
DE.. 89.99 (1.49)[89.10 (2.42)]88.15 (1.85)[86.24 (2.05) [82.64 (2.23)[75.40 (0.51)
Coil2000 me 20.7 30.76 32.23 36.56 42.33 58.83
(85,74.48%)DE v 85.51 (4.75) | 82.37 (4.26) | 83.33 (4.8) |81.52 (4.57) | 78.99 (2.84)[75.59 (0.73)
mérf 17.83 18.33 18.5 19.4 23.6 38.7
Sig. Test - - C z Z —
DE. . 85.50 (1.93)[86.80 (2.01)]88.01 (1.64)[89.37 (1.41)[91.23 (1.05)[92.78 (0.51)
DNA me 57.26 59.4 60.06 64.3 72.83 97.23
(180,91.23%)DE » 85.48 (2.45) | 86.68 (2.16) | 87.99 (1.86) |88.73 (2.01) [89.41 (1.80) [92.46 (0.74)
mirf 55.16 56.66 58.6 60.33 65.76 81.8
Sig. Test = = = = - =
83.93 (1.62)[84.26 (1.97)]84.61 (1.52)[85.31 (1.49)[85.24 (2.07)[87.09 (1.32)
PCMAC DEqm; 1523.4 1523.76 1523.23 1524.53 1529.33 1552.26
(3289,89.52%)DE 85.26 (1.63) |85.59 (1.44)|85.97 (1.49)|86.23 (1.63) [86.81 (1.22)|87.73 (0.97)
mirf 1478 1480.86 1495.13 1495.33 1512.73 1621.83
Sig. Test + + + + + +
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Figure 4: Results of multi-objective approaches on test sets over Naive Bayes
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