1	The Bostrychia tenella species complex: morphospecies and genetic cryptic species
2	with resurrection of <i>B. binderi</i>
3	
4	
5	GIUSEPPE C. ZUCCARELLO ^{1*} , NARONGRIT MUANGMAI ¹ , MAREN PREUSS ¹ , LAURA B.
6	SANCHEZ ¹ , SUSAN LOISEAUX DE GOËR ² , AND JOHN A. WEST ³
7	
8	
9	¹ School of Biological Sciences, Victoria University of Wellington, Wellington 6140,
10	New Zealand
11	
12	² 11 Rue des Moguerou, 29680 Roscoff, France
13	
14	³ School of Botany, University of Melbourne, Victoria 3010, Australia
15	
16	
17	* corresponding author: Joe Zuccarello, joe.zuccarello@vuw.ac.nz
18	

19 ABSTRACT: The question of whether morphological differences observed in specimens 20 is due to multiple species or one variable species has always caused problems for 21 taxonomists. The most recent taxonomic treatment of the 'Bostrychia tenella species 22 complex' suggested that much of the morphological variation represented a single 23 highly variable entity. We used molecular data from all three genomes to clarify the 24 phylogeny, species status and phylogeography of samples collected world-wide, and 25 also in sympatry, of this complex. Our data strongly supports five genetic species in this 26 complex, but only three morphological entities were recognized. The first, divided into 27 two genetic species, fits characters associated with *B. binderi*, occasionally possessing 28 short monosiphonous determinate laterals but lacking them most of the time. We 29 therefore resurrect B. binderi, even though we could not assign a name to either of the 30 two genetic species as we are missing molecular evidence from the type specimen. One 31 genetic species was morphologically recognized as *B. montagnei*. Another lineage 32 consisted of the two genetic species that fall into a new circumscription of *B. tenella*, 33 with long monosiphonous determinate laterals. Again we were unable to assign either of 34 these two lineages to a type, nor could we find morphological differences between the 35 two lineages. Many of the genetic species have world-wide distributions, except for B. 36 montagnei, which appears to be restricted to the Americas. Our molecular assisted 37 taxonomy has helped clarify some of the morphological variation within the Bostrychia 38 tenella species complex into three named species, but two cryptic species were still 39 recognized that remain morphologically cryptic.

40

Keywords: *Bostrychia tenella*, *cox*2-3 spacer, large-subunit ribosomal DNA, phylogeny, *rbc*L, Rhodophyta, Rhodomelaceae, RuBisCo spacer, species delimitation.

43

44 INTRODUCTION

45 The question of whether morphological differences observed in specimens is due to 46 multiple species or one variable species has always caused problems for taxonomists. 47 Environmental conditions are known to change the morphology of genetically similar 48 entities (phenotypic plasticity) and genetically distinct entities have been found that 49 fulfil most of the criteria used in species delimitation (i.e. genetically distinct, 50 reproductively isolated), but can not be distinguished morphologically (cryptic 51 species)(e.g. Zuccarello & West 2003; Payo et al. 2012). These problems are even 52 greater in organisms that have relatively simple morphologies to begin with and few 53 morphological characters for species distinction. With molecular data we now have a 54 method to easily designate putative species based on DNA sequencing (molecular-55 assisted alpha taxonomy) (Cianciola et al. 2010; Leliaert et al. 2014). 56 The taxonomy of *Bostrychia* has received a great deal of attention using 57 molecular methods, since the last monographic account of King & Puttock (1989; 58 reviewed in Zuccarello & West 2011). These studies have shown that the species 59 diversity is greater than previously assumed (Zuccarello & West 2003, Muangmai et al. 60 2014) and have lead to a rearrangement of the generic circumscriptions within the 61 Bostrychieae (Zuccarello & West 2006). For example, the genus Stictosiphonia which 62 was distinguished from Bostrychia based on the number of tier cells per axial cell (>3 63 versus 2, respectively)(King & Puttock 1989) was merged with Bostrychia as tier cell 64 number has evolved multiple times and is even variable within species (B. montagnei, 65 Zuccarello et al. 2012).

Molecular studies have so far mostly focussed on the ecorticate species. The
 species diversity and taxonomy of corticated species have been largely ignored.

68	Corticated species of Bostrychia restricted to the southern hemisphere are Bostrychia
69	arbuscula J.D. Hooker & Harvey and B. gracilis (R.J. King & Puttock) Zuccarello &
70	J.A. West, both with three or more tier cells per axial cell (Muangmai et al. 2014).
71	The most common tropical, and warm temperate, corticated marine Bostrychia
72	with (mostly) two tier cells per axial cell is a group of species variously described as
73	Bostrychia tenella (Lamouroux) J. Agardh, B. binderi Harvey, B. montagnei Harvey
74	and B. flagellifera E. Post. These species make up the B. tenella species complex. These
75	names, except for <i>B. montagnei</i> , were synonymized into one species (King et al. 1988;
76	King & Puttock 1989). The morphological characters used to distinguish these species
77	for the most part overlapped (King et al. 1988), except for samples identified as B.
78	flagellifera which were morphologically significantly different and assigned to a
79	separate subspecies, B. tenella subspecies flagellifera (E. Post) R.J. King & Puttock.
80	Later it was shown that <i>B. tenella</i> ssp. <i>flagellifera</i> was distantly related to other samples
81	of the Bostrychia tenella species complex and it was returned to species status
82	(Zuccarello & West 2006). Within the remaining species, except for <i>B. montagnei</i> , only
83	the proportion of monosiphonous ultimate laterals appears to have any taxonomic value
84	but even this was believed to be continuous and be part of a single highly variable
85	species (King et al. 1988). Taxonomic questions still remain as to the relationships of
86	the remaining species.
87	Molecular-assisted taxonomy (Cianciola et al. 2010) is a powerful tool to aid in
88	untangling morphological variation (intra-species plasticity) from species status (species

90 molecular data from many worldwide samples are we able to better understand the

diagnostic characters) and allows for more natural taxonomies to be produced. By using

89

91 taxonomy of the *B. tenella* species complex? Genetic species have been discovered

92 often with a modification of the 'barcode gap' (i.e. clear difference between inter-93 versus intra-species variation), a procedure that has been automated (ABGD- Puillandre 94 et al. 2012). There are also other methods that take into account particular population 95 and evolutionary parameters (general mixed Yule-coalescent, GMYC; Pons et al. 2006). 96 These methodologies have been summarized from an algal perspective (Leliaert et al. 97 2014). The genetic clusters produced have been used to form tentative groups that then 98 can be assessed using more traditional methods (i.e. search for diagnostic morphological 99 characters, reproductive isolation) (Tronholm et al. 2010; Vieira et al. 2014). 100 We investigated the phylogeny and species level relationships of the *B. tenella* 101 species complex to determine if we can produce a more natural taxonomy. As with 102 many well sampled widely distributed tropical species we expect multiple cryptic 103 species and it is possible that genetic species delimitation will facilitate the discovery of

104 morphological characters that can be used in the field to identify these lineages.

105

106 MATERIALS AND METHODS

107 Most samples were field collected and dried in silica-gel soon after collection. Some
108 samples were maintained in unialgal culture for up to 33 years following the procedures
109 in West & Zuccarello (1999) and West (2005).

110 DNA extraction followed a Chelex extraction procedure (Zuccarello *et al.* 1999).

111 Amplification of the plastid-encoded large subunit of the ribulose bisphosphate

112 carboxylase/oxygenase gene (rbcL) used primers presented by Nam et al. (2000) and

113 Freshwater & Rueness (1994). RuBisCo spacer amplification protocols followed

114 Zuccarello et al. (1999a). Amplification of an approximately 900-1000 bp region (Y-

115 fragment) of the nuclear encoded large subunit ribosomal DNA gene (LSU), followed

116 Harper & Saunders (2001). Amplification of the cox2-cox3 spacer followed Zuccarello 117 et al. (1999b). All successfully amplified products were cleaned using an ExoSAP-IT 118 (USB, Cleveland, Ohio) before being sequenced commercially (Macrogen Inc., Korea) 119 Sequences were edited, assembled and aligned using the Geneious software 120 package version 7 (Biomatters, available from http://www.geneious.com/). Alignment 121 was straight forward as no gaps were found in the *rbcL* data set. Alignment for the 122 RuBisCo spacer used MAFFT (Katoh et al. 2002) as implemented in Geneious and 123 visually refined. LSU alignment used the online version of MAFFT v7 and the Q-INS-I 124 algorithm that takes into account RNA secondary structure (Katoh & Standley 2013) 125 and visually refined. Cox2-3 spacer sequences were difficult to align, and thus we 126 aligned using a posteriori lineages (block alignment). The 5-prime end of cox2 was 127 alignable between all samples, and produced a phylogeny consistent with the other 128 genes (not shown), the spacer was then aligned as blocks between samples from the 129 different lineages. For the *rbcL* and LSU analyses the outgroup used was *Bostrychia* 130 kelanensis a species with cladohaptera, in a group that is shown to be distinct from 131 species with peripherohaptera in the tribe Bostrychieae (Zuccarello & West 2006). 132 The program Modeltest version 3.7 (Posada & Crandall 1998) was used to find 133 the model of sequence evolution that best fit the data set by a Akaike Information 134 Criterion (AIC) (Posada & Crandall 2001). Maximum likelihood was performed with 135 RAxML 7.2.8 (Stamatakis 2006). RAxML was performed, with all three codons 136 partitioned (where appropriate) and the GTR+gamma model and 500 non-parametric 137 bootstrap replicates (Felsenstein 1985). Bayesian inference was performed with 138 MrBayes v3.2 (Ronquist et al. 2012). Analyses consisted of two independent 139 simultaneous runs of one cold and three incrementally heated chains, and 3×10^6

generations with sampling every 1000 generations. The log files of the runs were
checked with Tracer v1.5 (Rambaut & Drummond 2009) and a burn-in sample of 500
trees was removed from each run before calculating the majority rule consensus tree.
TCS 1.21 (Clement *et al.* 2000) was used to construct a haplotype network based on
RuBisCo spacer sequence data.

145 DNA-based species delimitation were conducted using the RuBisCo spacer data 146 set (most complete sampling) by two different methods: GMYC (Pons et al., 2006) and 147 ABGD (Puillandre et al. 2012). For the GMYC delimitation method, an ultrametric tree 148 was constructed in BEAST v2.0.2 (Drummond et al. 2012), relying on the uncorrelated 149 lognormal relaxed clock, the GTR + I + R and a coalescent tree prior. Bayesian Markov 150 chain Monte Carlo (MCMC) was run for 20 million generations, and trees and 151 parameters sampled every 1000 generations. Log files were visualized in Tracers v1.5 152 (Rambaut & Drummond 2009) for assessing the stationary state of parameters based on 153 the value of estimate effective sample size. After removing 25% of trees as burn-in, the 154 remaining trees were used to generate a single summarized tree in TreeAnnotator v2.0.2 155 (BEAST v2.0.2 package) as an input file for GMYC. The GMYC analyses with a 156 single- and multiple- threshold model were performed in R (R Core Team, 2013) under 157 "splits" package using the 'GMYC' function (R - Forge, http://r-forge.r-158 project.org/projects/splits/). The ABGD method was tested via a web interface (ABGD 159 web, http://wwwabi.snv.jussieu.fr/public/abgd/ abgdweb.html). 160

161 **RESULTS**

162 The *rbc*L data set consisted of 1163 basepairs (bp) and 58 specimens. The sister

163 relationships to the *B. tenella* species complex are not well resolved, nor is the *B.*

164	tenella species complex strongly supported with this data set (73% ML bootstrap
165	support, 1.0 Bayesian posterior probabilities; Fig. 1). Within the B. tenella species
166	complex three major clades are evident. One clade is sister to the other two, designated
167	lineage A, consisting of samples from around the world (e.g. Brazil, Indonesia,
168	Australia; Fig. 1., Supplementary Table 1). Within lineage A, a single sample is
169	genetically distinct, sublineage A1. Samples identified as <i>B. montagnei</i> also form a well
170	supported clade and are exclusively from tropical America. The clade sister to B.
171	montagnei is composed of two sublineages with high support. These sublineages are
172	designated B and C. This <i>rbc</i> L phylogeny is fully compatible with the LSU phylogeny
173	(Supplementary Fig. 1), although LSU has only moderate support for sublineage C.
174	The RuBisCo spacer was sequenced for nearly all the samples (n=137, aligned
175	data set 303bp) and produced 27 unique haplotypes (Fig. 2). Again the phylogeny
176	produced three main clades (Fig. 2). Lineage A consisted of a sister group (sublineage
177	A1) with six samples all of the same RuBisCo haplotype (1A1; Fig. 2, Supplementary
178	Table 1) from the Pacific and southern Indian Ocean (South Africa, Guam, Thailand,
179	Papua New Guinea, Philippines). Samples of the remaining samples, sublineage A, had
180	11 haplotypes, all derived from common haplotype, A1 (n=34; Fig. 2). Haplotype A1 is
181	found in the western Pacific, all other haplotypes are found throughout the Indo-Pacific,
182	except haplotype A5 found in central Atlantic (Puerto Rico) and A9 found exclusively
183	in Brazil (Supplementary Table 1). Bostrychia montagnei makes a supported clade with
184	the RuBisCo spacer data with two haplotypes. Haplotype M1 is exclusive to the
185	American Atlantic (USA, Brazil) and M2 is found in both the Atlantic and Pacific (e.g.
186	Belize, El Salvador; Fig. 2, Supplementary Table 1). The third clade is again divided
187	into two sublineages, B and C, that are well supported. Sublineage B has seven

188	haplotypes with the putative ancestral one found throughout the world (B1; n=39, e.g.
189	Cuba, Panama, South Africa, Australia, Papua New Guinea, Korea; Fig. 2). The other
190	six haplotypes are found only in the western Pacific (e.g. the Philippines, Palau).
191	Sublineage C consists of 6 haplotypes with the putative ancestral haplotype, C1 (n=17),
192	again found throughout the world (e.g. Brazil, Madagascar, Papua New Guinea).
193	Haplotype C3 is from Madagascar, C4 from the eastern Indian Ocean (Western
194	Australia), while the remainder are from the western Pacific. The cox2-3 spacer data
195	(n=101) produced a phylogeny congruent with all other phylogenies (Supplementary
196	Fig. 2) although not all lineages received strong support.
197	The GMYC model produced grouping significantly different from the null
198	model (one population) and estimated five entities (putative species), these correspond
199	to sublineages A1, A, B, C and B. montagnei. The ABGD also proposed five species
200	groups corresponding to the same entities as the GYMC model (Table 1).
201	Morphological investigation based on samples from culture and the field from
202	around the world revealed that samples in clade A in the phylogenetic analyses had very
203	short or few monosiphonous laterals and were heavily corticated in culture. Samples
204	from culture either lacked secondary laterals on the determinate branches (Figs 3, 4) or
205	had short 'spine-like' polysiphonous secondary laterals (Figs 5, 6). Field samples from
206	Western Australia were consistent with culture material. Both possessed spine-like
207	secondary laterals and the main axis was heavily corticated (Fig. 6). Samples in lineages
208	B and C had varying degrees of monosiphonous secondary laterals (Figs 7-10) and
209	cortication, at least at the apex of primary shoots (Fig. 7). Monosiphonous sections on
210	secondary laterals were mostly over 10 cells long, and were abundant, especially in
211	culture (Figs 7, 8). Field samples from the Atlantic and Indian Oceans also had long

monosiphonous lateral branches and light cortication on the secondary laterals (Figs 9,
10). We found no consistent pattern in these characters to distinguish between lineages
B and C using samples from the Atlantic, Indian and Pacific Oceans.

The morphological difference (degree of monosiphonous filaments on secondary branches) between samples in clade A and clade B-C investigated in samples collected on the same date from Dyual Island, New Ireland, Papua New Guinea showed that samples in sublineage A were heavily corticated and only had short monosiphonous filaments (5-10 cells long) at the tips of unbranched secondary laterals (Figs 11, 13). Monosiponous laterals were often lacking on secondary laterals (Fig. 12). Samples in

sublineage C had abundant and long monosiphonous branches on secondary laterals

222 (Figs 14, 15). This abundance of monosiphonous laterals in isolates genetically

223 identified as belonging to sublineage B or C was seen in all isolates investigated.

224

225 **DISCUSSION**

Our data revealed the phylogenetic relationships within the *Bostrychia tenella* species
complex. We showed that this complex contained multiple lineages, some of which can
be characterized based on their morphological variation and some can not. These data

again highlight the utility of molecular assisted taxonomy in unravelling a

230 morphologically variable and widely distributed species. Our results clearly showed that

231 the Bostrychia tenella species complex consists of several 'putative genetic species'

using two different species delimitation methods (Leliaert et al. 2014). As model

assumptions were different for different techniques more than one method indicating the

same species delimitations is recommended (Carsten *et al.* 2013). Both methods showed

that there are five 'species' in the Bostrychia tenella species complex. Several of these

'genetic species' are morphologically distinguishable. *Bostrychia montagnei*, while
morphologically similar to *B. tenella*, is clearly distinct because of its circinate apices
(King & Puttock 1989). *Bostrychia montagnei* is restricted to the Americas (Atlantic
and Pacific Oceans) and at present has limited genetic variation with the markers used. *Bostrychia montagnei*, therefore, meets two important criteria used to define species
(i.e. morphological and phylogenetic).

242 The remainder of the isolates fell into four genetic species (A, 1A, B, C). One 243 large clade consists of samples, in two groupings, which we have designated as A and 244 1A. Most of the samples are in sublineage A and found world-wide. A sister sublineage 245 (1A) is also recognized as a species using species delimitation criteria. This sublineage 246 consists of only one haplotype, is rarer, but also widely distributed, although not found 247 yet in the Americas. These entities (sublineages A and 1A) are also morphologically 248 distinct from other samples of the *Bostrychia tenella* species complex both in culture 249 and from sympatric field samples. Bostrychia binderi was synonymized with B. tenella 250 (King & Puttock 1989) based on a morphological study indicating that the distribution 251 and length of monosiphonous laterals did not clearly distinguish between isolates a 252 priori identified as B. binderi and B. tenella (King et al. 1988). This study indicated that 253 the only character that could be used to separate the species was the length of 254 monosiphonous cells in determinate lateral branches. Still King et al. (1988) proposed 255 that these samples were part of a morphological continuum within one morphologically 256 variable species and merged the two species (King & Puttock 1989). The question of 257 whether observed morphological variation in a character is due to inter- or intra-species 258 variation is one of the main issues in taxonomic studies. Quantitative characters (e.g. 259 degree of monosiphonous lateral branches) are known to vary based on environment

260	plus genetics, and untangling these factors in species descriptions is difficult. It is
261	unclear from the King et al. (1988) paper how the species were designated for the a
262	priori classification, except maybe voucher specimen designation. Now with molecular
263	data we can assign samples to evolutionary lineages and we see a fairly consistent
264	morphological pattern. Samples in sublineages A and 1A seem to be more robust (more
265	heavily corticated) both in culture and the field, and have no, or sparse and short,
266	monosiphonous laterals. Therefore we resurrect Bostrychia binderi.
267	Bostrychia binderi Harvey
268	W. H. Harvey. Neries australis. 68. pl. XXVIII (upper group of figures).
269	
270	Resurrecting B. binderi clearly separates the B. tenella species complex into a
271	taxonomy that more closely reflects the phylogeny of the group (B. binderi, B.
272	montagnei, B. tenella). And yet important issues remain unresolved. First, our genetic
273	species delimitation data indicate at least two 'genetic species' under this nomenclature
274	for both <i>B. binderi</i> (lineage A and A1) and <i>B. tenella</i> (lineages B and C). While most of
275	our samples of <i>B. binderi</i> are found in lineage A, the only sample from South Africa is
276	in lineage A1 (JAW3176, Isipingo, Natal). Durban, Natal province is the type locality
277	for B. binderi (King & Puttock 1989). We attempted to sequence DNA from the type
278	specimen of B. binderi (MEL672330, Durban, Port Natal, c. 1839 Krauss or Ecklon) but
279	were unsuccessful (designed RuBisCo spacer primers targeting a 175bp fragment,
280	information available on request). This type sample and the illustrations (Harvey 1847)
281	of the type match the above description of <i>B</i> . <i>binderi</i> as lacking monosiphonous lateral
282	branches. As our sampling was poor in South Africa it is unclear if samples of both
283	lineage A and 1A are found in the type locality, as they are in other more extensively

sampled sites (Thailand, Papua New Guinea- this study). It is increasingly evident that
increased sampling uncovers genetic diversity not seen with limited sampling
(Zuccarello *et al.* 2006; Dijoux *et al.* 2014). We reserve the assignment of the species
name to one or the other lineage and consider all samples in this clade, with the set of
morphological characters, as *B. binderi* with only DNA sequencing able to distinguish
the species within this cryptic species complex.

290 It is also clear that there are two 'genetic species' of *B. tenella* (B and C). The 291 type for B. tenella is from St. Croix, Caribbean Sea, and the only samples we collected 292 of *B. tenella* from that area (Puerto Rico) is in lineage B. Should this be the designated B. tenella lineage? At present we can not distinguish morphologically between the two 293 294 lineages, nor do we have access to the type for potential genetic characterization. 295 Therefore we do not designate the species name to either lineage, at present, and 296 consider *B. tenella* another cryptic species complex with lineages only designated 297 molecularly. This conservative approach takes into account the idea that morphology 298 may never distinguish between these cryptic lineages. Sequencing of the type will help 299 pinpoint the lineage that is associated with the type specimen, and this has been done in 300 other algae (e.g. Lindstrom et al. 2011; Hughey & Gabrielson 2012; Hind et al. 2014). 301 While samples of *B. binderi* are morphologically distinct from *B. tenella* by 302 lacking monosiphonous determinate laterals, there are cases where samples of B. 303 binderi can be confused with B. tenella. Some samples identified morphologically as B. 304 *tenella*, due to the presence of short monosiphonous laterals, are genetically in the *B*. 305 binderi lineage. So while we have improved the taxonomy and determined characters 306 that best identify lineages, clear diagnostic characters are still elusive. Morphological 307 species boundaries are difficult to characterize in many cases as many environmental

308 characters can influence morphology (light levels, disturbance). While morphometrics 309 and other methods are informative in morphological species delimitation in organisms 310 with complex morphologies (e.g. Halimeda, Verbruggen et al. 2005) in simple 311 filamentous algae these methods may not useful. 312 An important criterion in species recognition and evolution is reproductive 313 isolation. Are these genetic species reproductively compatible? In other Bostrychia 314 species cryptic lineages are reproductively isolated (Zuccarello & West 1997, 2003). 315 We attempted to perform crosses between culture isolates of *B. tenella* and *B. binderi* 316 but were unsuccessful. In culture, isolates became bisexual and self-fertile. Bisexuality 317 is well known in *Bostrychia* species, and even mixed-phase reproduction occurs in *B*. 318 tenella (West & Calumpong 1988) and B. moritziana (West & Zuccarello 1999). 319 Results indicated that the successful crosses were self-crosses. 320 321 ACKNOWLEDGEMENTS

322 We thank staff of the Royal Botanical Garden Melbourne herbarium for help with

323 Bostrychia binderi type specimens. The following people were helpful in collections:

324 Rosario Braga (Brazil), Nida Calumpong (Philippines), Judy Connor (Panama), John

325 Huisman (Australia), Jhoana Larrea (Cuba), Chris Lobban (Guam), and Laurie Sullivan

326 (Belize). Long-term financing for this work was provided through personal funds of

327 JAW and from the Australian Research Council, Australian Biological Resources Study

328 and Hermon Slade Foundation grants to JAW/GCZ.

330 REFERENCES

- CARSTENS B.C., PELLETIER T.A., REID, N.M. & SATLER J.D. 2013. How to fail at species
 delimitation. *Molecular Ecology* 22: 4369–4383.
- 333 CIANCIOLA E., POPOLIZIO T., SCHNEIDER C. & LANE C. 2010. Using molecular-assisted
- alpha taxonomy to better understand red algal biodiversity in Bermuda. *Diversity*2: 946–958.
- CLEMENT M., POSADA D. & CRANDALL K.A. 2000. TCS: a computer program to estimate
 gene genealogies. *Molecular Ecology* 9: 1657–1659.
- 338 DIJOUX L., VIARD F. & PAYRI C. 2014. The more we search, the more we find: Discovery
- of a new lineage and a new species complex in the genus *Asparagopsis*. *PLoS ONE* 9: e103826.
- 341 DRUMMOND A.J., SUCHARD M.A., XIE D. & RAMBAUT A. 2012. Bayesian phylogenetics
- with BEAUti and the BEAST 1.7. *Molecular Biology and Evolution* 29: 1969–
 1973.
- FELSENSTEIN J. 1985. Confidence intervals on phylogenies: an approach using the
 bootstrap. *Evolution* 39: 783-791.
- 346 FRESHWATER D. & RUENESS J. 1994. Phylogenetic relationships of some European
- 347 *Gelidium* (Gelidiales, Rhodophyta) species, based on *rbc*L nucleotide sequence
 348 analysis. *Phycologia* 33: 187-194.
- 349 HARPER J.T. & SAUNDERS G.W. 2001. The application of sequences of the ribosomal
- 350 cistron to the systematics and classification of the florideophyte red algae
- 351 (Florideophyceae, Rhodophyta). *Cahiers de Biologie Marine* 26: 25-38.
- 352 HARVEY W.H. 1847. *Nereis australis*. Part II. pp. 65-124. London: Reeve Brothers.

354	HIND K.R.,	GABRIELSON P.W	LINDSTROM S.C. &	MARTONE P.T.	2014. Misleading

- 355 morphologies and the importance of sequencing type specimens for resolving
- 356 coralline taxonomy (Corallinales, Rhodophyta): *Pachyarthron cretaceum* is

357 *Corallina officinalis. Journal of Phycology* 50: 760-764.

- 358 HUGHEY J.R. & GABRIELSON P.W. 2012. Comment on "Acquiring DNA sequence data
- from dried archival red algae (Florideophyceae) for the purpose of applying
- available names to contemporary genetic species: a critical assessment" *Botany*90: 191–203.
- 362 KATOH K., MISAWA K., KUMA K.-I. & MIYATA T. 2002. MAFFT: a novel method for rapid
- 363 multiple sequence alignment based on fast Fourier transform. *Nucleic Acids*364 *Research* 30: 3059–3066.
- 365 KATOH K. & STANDLEY D.M. 2013. MAFFT Multiple Sequence Alignment Software
- 366 Version 7: Improvements in Performance and Usability. *Molecular Biology and*367 *Evolution* 30: 772–780.

368 KING R.J. & PUTTOCK C. 1989. Morphology and taxonomy of *Bostrychia* and

- 369 *Stictosiphonia* (Rhodomelaceae, Rhodophyta). *Australian Systematic Botany* 2: 1370 73.
- 371 KING R.J., PUTTOCK C.F. & VICKERY R.S. 1988. A taxonomic study on the Bostrychia
- *tenella* complex (Rhodomelaceae, Rhodophyta). *Phycologia* 27: 10-19.
- 373 LELIAERT F., VERBRUGGEN H., VANORMELINGEN P., STEEN F., LÓPEZ-BAUTISTA J.M.,
- 374 ZUCCARELLO G.C. & DE CLERCK O. 2014. DNA-based species delimitation in algae.
- *European Journal of Phycology* 49: 179-196.

376	LINDSTROM S.C., HUGHEY J.R. & MARTONE P.T. 2011. New, resurrected and redefined
377	species of Mastocarpus (Phyllophoraceae, Rhodophyta) from the northeast
378	Pacific. Phycologia 50: 661–683.
379	MUANGMAIN., WEST J.A. & ZUCCARELLO G.C. 2014. Evolution of four Southern
380	Hemisphere Bostrychia (Rhodomelaceae, Rhodophyta) species: phylogeny,
381	species delimitation and divergence times. <i>Phycologia</i> 53: 593–601.

- 382 NAM K.W., MAGGS C.A., MCIVOR L. & STANHOPE M.J. 2000. Taxonomy and phylogeny of
- 383 Osmundea (Rhodomelaceae, Rhodophyta) in Atlantic Europe. Journal of
- 384 *Phycology* 36: 759-772.
- 385 PAYO D.A., LELIAERT F., VERBRUGGEN H., D'HONDT S., CALUMPONG H.P. & DE CLERCK O.
- 386 2013. Extensive cryptic species diversity and fine scale-scale endemism in the
- 387 marine red alga *Portieria* in the Philippines. *Proceeding of the Royal Society B* -
- 388 Biological Sciences 280: 20122660.
- 389 PONS J., BARRACLOUGH T., GOMEZ-ZURITA J., CARDOSO A., DURAN D., HAZELL S.,
- 390 KAMOUN S., SUMLIN W. & VOGLER A. 2006. Sequence-based species delimitation
- 391 for the DNA taxonomy of undescribed insects. *Systematic Biology* 55: 595-609.
- 392 POSADA D. & CRANDALL K.A. 1998. MODELTEST: testing the model of DNA
- 393 substitution. *Bioinformatics* 14: 817-818.
- 394 POSADA D. & CRANDALL K.A. 2001. Selecting the best-fit model of nucleotide
- 395 substitution. *Systematic Biology* 50: 580-601.
- 396 PRUD'HOMME VAN RIENE W.F & SLUIMAN H.J. 1980. Red algae found on European salt-
- 397 marshes. I. *Bostrychia scorpioides* (Rhodomelaceae). *Aquatic Botany* 9: 323-342.

- 398 PUILLANDRE N., LAMBERT A., BROUILLET S. & ACHAZ G. 2011. ABGD, Automatic
- Barcode Gap Discovery for primary species delimitation. *Molecular Ecology* 21:
 1864-1877.
- 401 RAMBAUT A. & DRUMMOND A.J. 2009. Tracer v1.5. http://beast.bio.ed.ac.uk/tracer.
- 402 RONQUIST F., TESLENKO M., VAN DER MARK P., AYRES D.L., DARLING A., HOHNA S.,
- 403 LARGET B., LIU L., SUCHARD M.A. & HUELSENBECK J.P. 2012. MrBayes 3.2:
- 404 Efficient Bayesian phylogenetic inference and model choice across a large model
 405 space. *Systematic Biology* 61: 539–542.
- 406 STAMATAKIS A. 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic
- 407 analyses with thousands of taxa and mixed models. *Bioinformatics* 22: 2688-408 2690.
- 409 TALAVERA G., DINCĂ V. & VILA R. 2013. Factors affecting species delimitations with the
- 410 GMYC model: insights from a butterfly survey. *Methods in Ecology and*
- 411 *Evolution* 4: 1101-1110.
- 412 TRONHOLM A., STEEN F., TYBERGHEIN L., LELIAERT F., VERBRUGGEN H., ANTONIA RIBERA
- 413 SIGUAN M. & DE CLERCK O. 2010. Species delimitation, taxonomy, and
- 414 biogeography of *Dictyota* in Europe (Dictyotales, Phaeophyceae). *Journal of*
- 415 *Phycology* 46: 1301-1321.
- 416 VERBRUGGEN H., DE CLERCK O., COCQUYT E., KOOISTRA W.H.C.F. & COPPEJANS E. 2005.
- 417 Morphometric taxonomy of siphonous green algae: A methodological study
- 418 within the genus *Halimeda* (Bryposidales). *Journal of Phycology* 41: 126-139.
- 419

421	VIEIRA C., D'HONDT S., DE CLERCK O. & PAYRI C.E. 2014. Toward an inordinate fondness
422	for stars, beetles and Lobophora? Species diversity of the genus Lobophora
423	(Dictyotales, Phaeophyceae) in New Caledonia. Journal of Phycology 50: 1101-
424	1119.
425	WEST J.A. 2005. Long term macroalgal culture maintenance. In: Andersen, R. (Ed.)
426	Algal Culturing Techniques. Academic Press, New York, pp. 157-163.
427	WEST J.A. & CALUMPONG H.P. 1988. Mixed-phase reproduction in <i>Bostrychia</i> in culrure.
428	I. B. tenella. Japanese Journal of Phycology (Sorui) 36: 292-310.
429	WEST J.A. & ZUCCARELLO G.C. 1999. Biogeography of sexual and asexual populations in
430	Bostrychia moritziana (Rhodomelaceae, Rhodophyta). Phycological Research 47:
431	115-123.
432	ZUCCARELLO G.C., BUCHANAN J. & WEST J.A. 2006. Increased sampling for inferring
433	phylogeographic patterns in Bostrychia radicans/Bostrychia moritziana in the
434	eastern USA. Journal of Phycology 42: 1349-1352.
435	ZUCCARELLO G.C., KAMIYA M., OOTSUKI R., DE GOËR S.L., PEDROCHE F.F. & WEST, J.A.
436	2012. New records of red algae from mangroves in El Salvador and Pacific
437	Mexico, combining culture and molecular observations. Botanica Marina 55:
438	101-111.
439	ZUCCARELLO G.C., WEST J.A., KAMIYA M. & KING R.J. 1999a. A rapid method to score
440	plastid haplotypes in red seaweeds and its use in determining parental inheritance
441	of plastids in the red alga Bostrychia (Ceramiales). Hydrobiologia 401: 207-214.
442	ZUCCARELLO G.C., BURGER G., WEST J.A. & KING R.J. 1999b. A mitochondrial marker for
443	red algal intraspecific relationships. Molecular Ecology 8: 1443-1447.
444	

445	ZUCCARELLO G.C. & WEST J.A. 1997. Hybridization studies in Bostrychia: 2. Correlation
446	of crossing data and plastid DNA sequence data within <i>B. radicans</i> and <i>B.</i>
447	moritziana (Ceramiales, Rhodophyta). Phycologia 36: 293-304.
448	ZUCCARELLO G.C. & WEST J.A. 2002. Phylogeography of the Bostrychia calliptera/B.
449	pinnata complex (Rhodomelaceae, Rhodophyta) and divergence rates based on
450	nuclear, mitochondrial and plastid DNA markers. Phycologia 41: 49-60.
451	ZUCCARELLO G.C. & WEST J.A. 2003. Multiple cryptic species: Molecular diversity and
452	reproductive isolation in the Bostrychia radicans/B. moritziana complex
453	(Rhodomelaceae, Rhodophyta) with focus on North American isolates. Journal of
454	<i>Phycology</i> 39: 948-959.
455	ZUCCARELLO G.C. & WEST J.A. 2006. Molecular phylogeny of the subfamily
456	Bostrychioideae (Ceramiales, Rhodophyta): subsuming Stictosiphonia and
457	highlighting polyphyly in species of Bostrychia. Phycologia 45: 24-36.
458	ZUCCARELLO G.C. & WEST J.A. 2011. Insight into evolution and speciation in the red alga
459	Bostrychia: 15 years of research. Algae 26: 21-32.
460	
461	

- 463 Table 1. Species delimination techniques with all RuBisCo spacer haplotypes of the *B*.
- *tenella* species complex.

GMYC analysis	Single threshold	Multiple threshold		
		I		
Log likelihood of null model	154.82	154.82		
(one population)				
Log likelihood of GMYC	159.69	159.69		
model				
Result of likelihood ratio test	<i>p</i> = 0.208*	<i>p</i> = 0.208*		
Number of GMYC entities	5 (5-14)	5 (4-11)		
(confidence intervals)				
ABGD analysis				
Partitions (groups)	5			

469	Figure	Legend	ls
-----	--------	--------	----

471	Fig. 1. Maxim	um-likelihood	tree of <i>rbc</i> L	sequence d	lata of Bos	trychia s	species,
• / •			mee er ee e				-p

- 472 highlighting the position and multiple lineages within the *B. tenella* species complex.
- 473 Thickened branches = \geq 95% ML bootstrap values and \geq 0.95 Bayesian posterior
- 474 probabilities. Other values associated with branches = RaxML bootstrap
- 475 percentage/Bayesian posterior probabilities.
- 476

```
477 Fig. 2. Left: Maximum-likelihood tree of the 27 RuBisCo spacer haplotype of the B.
```

478 *tenella* species complex showing the 6 lineages inferred as genetic species by species

479 delimitation algorithms (*B. binderi* = A, A1; *B. tenella* = B, C; *B. montagnei* = M).

480 **Right:** Haplotype network of the 27 RuBisCo spacer haplotypes for five putative

481 genetic species (A1 only one haplotype, left out). Line= one mutational step, small

482 circle= missing haplotype. n= number of samples.

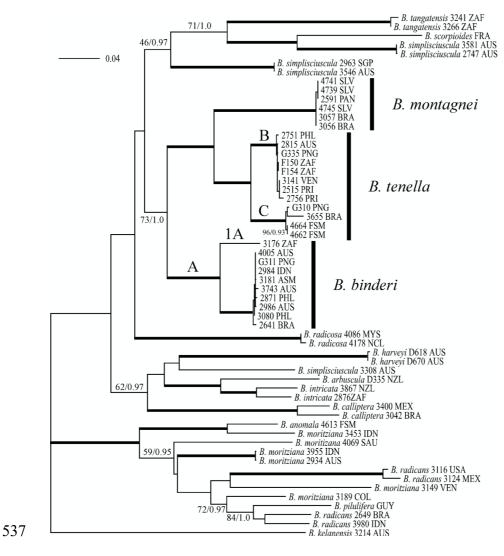
483

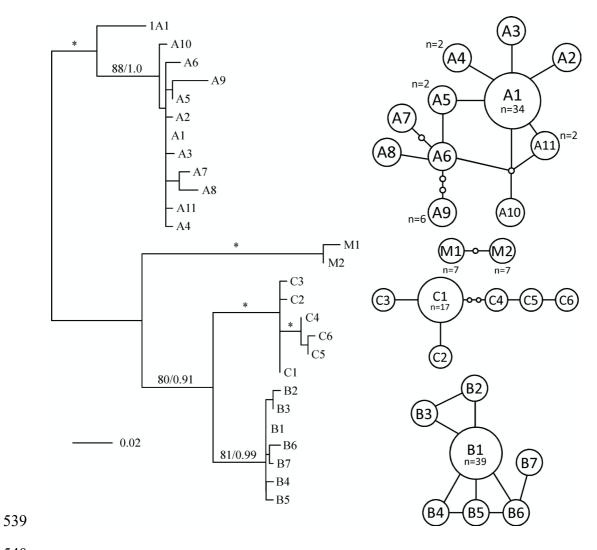
Figs 3-10. Cultured and field specimens of samples *B. binderi* and *B. tenella*. Samples
live or from dried specimens. 4-digit numbers = JAW culture numbers (more details in
Supplementary Table 1).

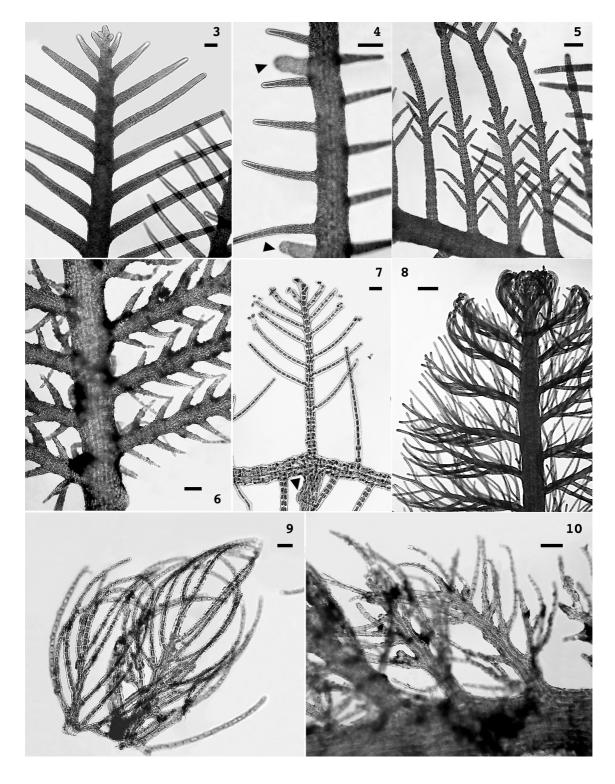
487

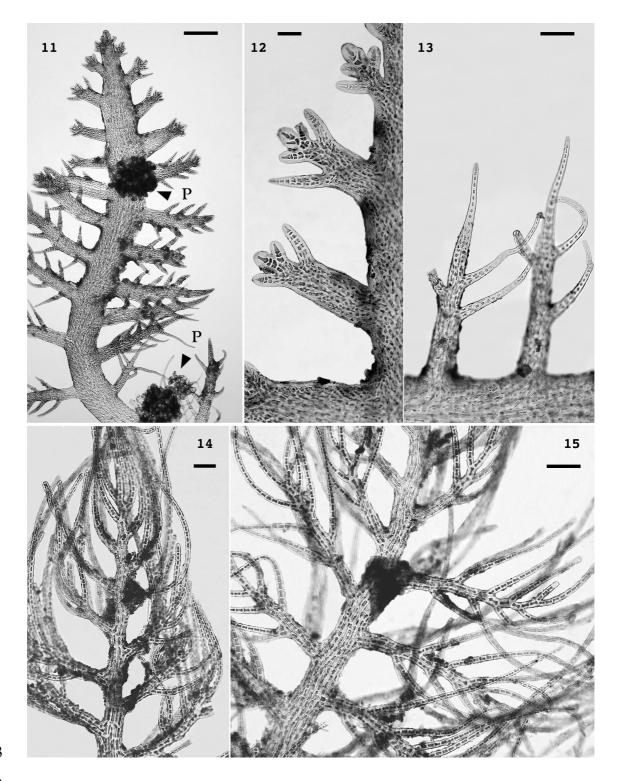
Fig. 3. *B. binderi*, 2514, Puerto Rico, lineage A. Culture specimen with polysiphonous
primary laterals, secondary laterals absent. Scale bar = 100 μm.

490

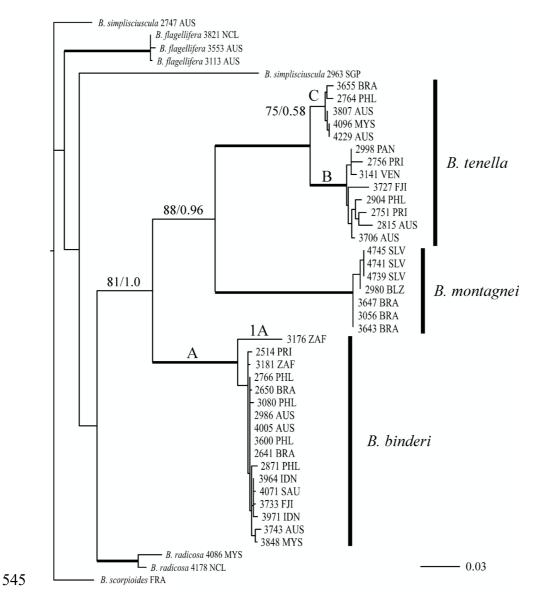

491 Fig. 4. B. binderi, 2641, Brazil, lineage A. Culture specimen with polysiphonous

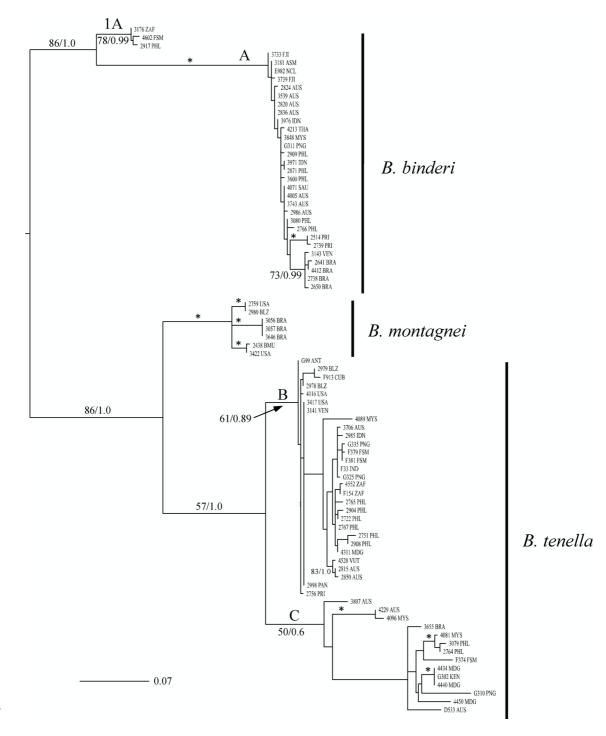

492 primary laterals, secondary laterals absent. Peripherohaptera (arrowheads) at intervals


493 along the main shoot. Scale bar = $50 \mu m$.


495	Fig. 5. B. binderi, 2851, Queensland, Australia, lineage A. Culture specimen with only
496	spine-like polysiphonous laterals. Scale bar = $100 \ \mu m$.
497	
498	Fig. 6. B. binderi, 3743, Western Australia, lineage A. Field specimen. Primary
499	polysiphonous laterals with spine-like polysiphonous secondary laterals. Scale bar =
500	100 μm.
501	
502	Fig. 7. B. tenella, 2515, Puerto Rico, lineage B. Culture specimen with monosiphonous
503	primary laterals and lightly corticated main axis. Peripherohapteron (arrowhead)
504	opposite indeterminate shoot. Scale bar = $100 \ \mu m$.
505	
506	Fig. 8. B. tenella, 2815, Queensland, Australia, lineage B. Shoot apex of cultured
507	specimen with polysiphonous primary laterals and many monosiphonous laterals. Scale
508	bar = 50 μ m.
509	
510	Fig. 9. B. tenella, 3655, Brazil, lineage C. Field specimen with polysiphonous laterals
511	and many monosiphonous laterals. Scale bar = $100 \ \mu m$.
512	
513	Fig. 10. B. tenella, 3807, Western Australia, lineage C. Field specimen with primary
514	polysiphonous laterals and many monosiphonous laterals. Scale bar = $100 \ \mu m$.
515	
516	Figs 11-15. Specimens from Dyual Island, New Ireland, Papua New Guinea.
517	Figs 11-13, B. binderi G311, lineage A. Figs 14-15, B. tenella G396, lineage C.

519	Fig. 11. Heavily corticated main axis with peripherohaptera (arrowheads, P). Heavily
520	corticated primary laterals, secondary laterals, spine-like, with polysiphonous base and
521	occasionally short monosiphonous tips. Scale bar = $100 \ \mu m$.
522	
523	Fig. 12. Heavily corticated primary laterals, short polysiphonous secondary laterals.
524	Scale bar = $50 \ \mu m$.
525	
526	Fig. 13. Older lower axis with primary laterals corticated at bases and monosiphonous
527	upper sectors (to 10-15 cells long), bearing secondary laterals with very short (2-3 axial
528	cells long) polysiphonous bases and upper monosiphonous sectors up to 20 cells long.
529	Scale bar = $100 \ \mu m$.
530	
531	Fig. 14. Upper main shoot and primary laterals not corticated, secondary laterals
532	entirely monosiphonous. Scale bar = $100 \ \mu m$.
533	
534	Fig. 15. Mid-shoot axis lightly corticated, primary laterals polysiphonous but not
535	corticated, secondary laterals entirely monosiphonous. Scale bar = $150 \ \mu m$.
536	





Species	Culture No./ID	LatLong.	Location	Coll. Date	RuBisCo haplotypes	<i>cox</i> 2-3 spacer lineage	<i>rbc</i> L lineage	pLSU lineage
B. binderi	2917	5° 09' N, 120° 04' E	Tawi-tawi, Mindanao, PHI	29 v 1988	1A1	Al		
B. binderi	3176	30° 00' S, 30°56' E	Isipingo, Natal, ZAF	16 vii 1991	1A1	A1	A1	A1
B. binderi	4727	13° 29' N, 144°52'E	Marbo Cave, GUM	15 x 2008	1A1			
B. binderi	G367	08° 47' S, 115° 13' E	Nusa Dua Beach, IDN	26 iv 2013	1A1			
B. binderi	G402	6° 38' S, 99° 41' E	Pulao Na, Satun, THA	8 iv 2008	1A1			
B. binderi	G410		Satun Province, THA	11 iii 2014	1A1			
B. binderi	2820	15° 59' S, 145° 26' E	Cowie Point, QLD, AUS	13 vi 1987	A1	А		А
B. binderi	2824	19° 08' S, 146° 52' E	Alma Bay, Magnetic I., QLD, AUS	4 vi 1987	A1	А		А
B. binderi	2836	19° 07' S, 146° 52' E	Florence Bay, Magnetic I., QLD, AUS	4 vi 1987	A1	А		А
B. binderi	2838	16° 09' S, 145° 26' E	Bouncing Stones Beach, QLD, AUS	13 vi 1987	A1	А		
B. binderi	2851	19° 07' S, 146° 52' E	Florence Bay, Magnetic I., QLD, AUS	4 vi 1987	A1	А		
B. binderi	2909	08° 30' N, 124°18' E	Libertad, Initao, Misamis Oriental, PHI	9 vi 1988	A1	А		А
B. binderi	2935	13° 29' N, 144°52' E	Marbo Cave, GUM	10 xii 1988	A1	А		
B. binderi	3181	14° 16' S, 170°41' W	Tutuila, ASM	26 vii 1991	A1	А	А	А
B. binderi	3539	15° 29' S, 145° 16' E	Quarantine Bay, QLD, AUS	4 x 1995	A1	А		
B. binderi	3733	18° 08' S, 177° 24' E	Yanuca I., Cuvu Bay, Viti Levu, FJI	6 vi 1997	A1	А		А
B. binderi	3739	17° 37' S, 177° 25' E	Saweni Beach, Viti Levu, FJI	5 vi 1997	A1	А		
B. binderi	3743	17° 57' S, 122° 14' E	Mangrove Trail, Broome, WA, AUS	18 vi 1997	A1	А	А	А

Supplementary Table 1. *B. tenella* species complex samples used. Culture No.= JAW 4-digit culture number or field sample ID. Latitude and longitude where known. Genetic markers used: Plastid-encoded RuBisCo spacer, mitochondria-encoded *cox2-cox3* spacer, Plastid-encoded *rbc*L, nuclear encoded partial large subunit ribosomal rRNA. RuBisCo spacer haplotype designation or lineage designation in column.

B. binderi	3848	02° 31' N, 101° 48'E	Port Dickson, Selangor, MYS	14 v 1998	A1	А		А
B. binderi	3964	08° 06' S, 114° 30'E	Bali Barat National Park, IDN	8 iv 1999	A1	А		А
B. binderi	3976	08° 50' S, 116° 24'E	Teluk Ekas, Lombok, IDN	27 iv 1999	A1	А		
B. binderi	4071	16° 56′ N, 42° 00′ E	Farasan Island, Red Sea, SAU	8 vii 2000	A1	А		А
B. binderi	4104	05 ° 18' 48" S, 115 ° 23' 14" E	Merumbok, Sabah, MYS	14 viii 2000	A1	А		
B. binderi	4176	21° 06' 27" S, 164° 49' 76" E	Plage de Foué Fishing Village NCL	02-vii-2001	A1	А		А
B. binderi	4543	168° 21' E. 17° 48' S	Eratap, Efate I., VUT	14 vi 2005	A1	А		
B. binderi	G315	2° 58' S, 150° 53' E	Dyaul Island, NI, PNG	8 vi 2013	A1			
B. binderi	G364	28° 23' N, 129° 29' E	Kasari, Kagoshima, JPN		A1			
B. binderi	G390	2° 58' S, 150° 53' E	Dyaul Island, NI, PNG	8 vi 2013	A1			
B. binderi	G393	2° 58' S, 150° 53' E	Dyaul Island, NI, PNG	8 vi 2013	A1			
B. binderi	G398	?	Kozban, Malang, IDN	6 ix 2012	A1			
B. binderi	G399	?	Kozban, Malang, IDN	6 ix 2012	A1			
B. binderi	G401	?	Satun Province, THA	7 iv 2012	A1			
B. binderi	G411	6° 50' N, 99° 41' E	Khao Yai, Satun Province, THA	11 iii 2014	A1			
B. binderi	G414	6° 50' N, 99° 41' E	Khao Yai, Satun Province, THA	11 iii 2014	A1			
B. binderi	G415	6° 53' N, 99° 43' E	La Ngu Canal, Satun, THA	12 iii 2014	A1			
B. binderi	G424	6° 53' N, 99° 43' E	La ngu Canal, Satun, THA	12 iii 2014	A1			
B. binderi	G526	6° 26' N, 99° 51' E	Langkawi, MYS	12 viii 2014	A1	А		
B. binderi	G527	6° 26' N, 99° 51' E	Langkawi, MYS	12 viii 2014	A1	А		
B. binderi	G528	6° 26' N, 99° 51' E	Langkawi, MYS	11 viii 2014	A1	А		
B. binderi	G529	6° 26' N, 99° 51' E	Langkawi , MYS	11 viii 2014	A1	А		
B. binderi	2766	20° 24' N, 121° 56' E	Mahatao, Batan I., Batanes, PHI	22 iv 1987	A10	А		А
B. binderi	2986	12° 21' S, 130° 51' E	Darwin, NT, AUS	4 vi 1989	A11	А	А	А
B. binderi	4005	12° 02' 30" S, 134° 30' 07" E	Maningrida, Arnhem Land, NT, AUS	22 viii 1999	A11	А	А	А

B. binderi	4213	8° 11' 7" N, 98° 17' 26"	Sirinath National Park, Phuket I., THA	15 iii 2002	A2	А		А
B. binderi	3971	E 08° 41' S, 115° 28 E	Nusa Lembongan, Bali, IDN	25 iv 1999	A3	А		А
B. binderi	3080	9° 34' N, 123° 10' E	Talabong, Negros Oriental, PHI	19 vii 1990	A4	А	А	А
B. binderi	3600	10° 24' N, 123° 38' E	Toledo, Cebu, PHI	1 v 1996	A4	А		А
B. binderi	2514	17° 58' N, 67° 03' W	La Parguera, PRI	20 iii 1981	A5	А		
B. binderi	2739	17° 58' N, 62° 02' W	La Parguera, PRI	14 viii 1986	A5	А		
B. binderi	2984	1° 04' N, 103° 55' E	Batam I., IDN	17 vi 1989	A6	А	А	
B. binderi	2871	5° 09' N, 120° 04' E	Tawi-Tawi, Mindanao, PHI	15 i 1988	A7	А	А	А
B. binderi	4225	10° 41'S, 142° 31' E	Pajinka, Cape York, QLD AUS	19 vi 2002	A8	А		
B. binderi	2641	12° 45' S, 38° 10' W	Arembepe, Bahia, BRA	20 vii 1982	A9	А	А	А
B. binderi	2650	23° 48' S, 42° 25' W	São Sebastião, São Paulo, BRA	2 vii 1982	A9	А		А
B. binderi	2738	23° 59' S, 46° 15' W	Guaruja, São Paulo, BRA	18 viii 1986	A9	А		
B. binderi	4412	13° 22' S, 38° 54' W	Garapuá, Ilha de Tinharé, Bahia, BRA	1 i 2004	A9	А		А
B. binderi	E740	27° 08' S, 48° 29' W	Praia do Recanto, Santa Caterina, BRA		A9	А		
B. binderi	E741	27° 08' S, 48° 29' W	Praia do Ribeiro, Santa Caterina, BRA		A9			
B. binderi	3143	10° 18' N, 64° 24' W	I. Larga, Bahia Mochima, Edo Sucre, VEN	9 iv 1991		А		
B. binderi	4602	06° 48' N, 158° 09' E	Lehn Mesi River, Pohnpei, FSM	4 ii 2006		A1		
B. binderi	G311	2° 58'S, 150° 53'E	Dyaul Island, NI, PNG	8 vi 2013		А	А	А
B. binderi	E982	21° 10' S, 165° 32' E	Cape Bocage, NCL			А		А
B. montagnei	2759	24° 38' N, 81° 15' W	Bahia Honda, FL, USA	10 xii 1986	M1	Х		
B. montagnei	3056	25° 07' 28"S, 47° 54' 15" W	Rio Sitio Grande, Ilha do Cardoso, S.P., BRA	5 iv 1990	M1	Х	Х	Х

B. montagnei	3057	25° 07' 28" S, 47° 54' 15" W	Rio Sitio Grande, Ilha do Cardoso, S.P., BRA	5 iv 1990	M1	Х	Х	
B. montagnei	3428	24° 58' N, 80° 32' W	Plantation, Florida Keys, FL, USA	19 vi 1994	M1			
B. montagnei	3643	23° 03' S, 43° 33' W	Guaratiba, Rio de Janeiro, BRA	15 xi 1996	M1	Х		Х
B. montagnei	3646	2° 46' S, 44° 18' W	Parra Açu, Maranhão, BRA	17 xi 1996	M1	Х		
B. montagnei	3647	2° 46' S, 44° 18' W	Parra Açu, Maranhão, BRA	20 xi 1996	M1	Х		Х
B. montagnei	2438	32° 21' N, 64° 42' W	concrete block on main island, BMU	16 ix 1980	M2	Х		
B. montagnei	2591	9° 23' N, 79° 52' W	Galeta, PAN	10 xii 1981	M2	Х	Х	
B. montagnei	2980	16° 49' N, 88° 06' W	Twin Cays, BLZ	15 vii 1989	M2	Х		Х
B. montagnei	3422	27° 28' N, 80° 19' W	Intracoastal Waterway, Ft. Pierce, FL, USA	19 vi 1994	M2	Х		
B. montagnei	4739	13° 15' N 88° 39' W	3 km from Isla Mendez, SAL	6 iii 2009	M2		Х	Х
B. montagnei	4741	13° 17' N, 88° 52' W	Playa al Puntilla, SAL	7 iii 2009	M2		Х	Х
B. montagnei	4745	13° 17' N, 88° 52' W	Playa al Puntilla, SAL	7 iii 2009	M2	Х	Х	Х
B. tenella	2515	17 ° 58' N, 67 ° 03' W	La Parguera, PRI	20 iii1981	B1		В	
B. tenella	2722	20° 20' N, 121° 47' E	Deguey Is., PHL	10 v 1986	B1	В		
B. tenella	2756	17° 58' 31"N, 62° 02' 48" W	La Parguera, PRI	2 xi 1986	B1	В	В	В
B. tenella	2765	20° 54' N, 121° 53' E	Siayan I., Batanes, PHI	24 iv 1987	B1	В		
B. tenella	2815	16° 09'S, 145° 26'E	Bouncing Stones Beach, QLD, AUS	13 vi 1987	B1	В	В	В
B. tenella	2850	19° 07' S, 146° 52' E	Florence Bay, Magnetic I., QLD, AUS	4 vi 1987	B1	В		
B. tenella	2978	16° 49' N, 88° 06' W	Twin Cays, BLZ	15 vii 1989	B1	В		
B. tenella	2979	16° 49' N, 88° 06' W	Twin Cays, BLZ	15 vii 1989	B1	В		
B. tenella	2985	1° 04' N, 103° 55'E	Batam I., IDN	17 vi 1989	B1	В		
B. tenella	2998	9° 23' N, 79° 52' W	Galeta, PAN	20 viii 1989	B1	В		В
B. tenella	3141	10° 59' N, 64° 08' W	Laguna de la Restinga, I. Margarita, VEN	13 iv 1991	B1	В	В	В

B. tenella	3417	25° 46' N, 80° 01' W	Miami R., Miami, FL, USA	14 vi 1994	B1	В		
B. tenella	3706	20° 53' S, 115° 20' E	Barrow I., WA, AUS	8 ii 1997	B1	В		В
B. tenella	3727	217° 52' S, 177° 53' E	Koro Levu, Viti Levu, FJI	4 vi 1997	B1	В		В
B. tenella	4116	26° 01' N, 81° 44' W	Rookery Bay, FL, USA	19 ix 2000	B1	В		
B. tenella	4311	23° 10' S, 43° 36' E	Angeva, MDG	22 iv 2003	B1	В		
B. tenella	4528	17° 44' S, 168° 33' E	Eton Beach, Efate Island, VUT	14 vi 2005	B1	В		
B. tenella	4552	29° 44' S, 31° 05' E	Umhlanga Rocks, KwaZulu, Natal, ZAF	17 viii 2005	B1	В		
B. tenella	4089	05° 49' S, 118° 09' E	Pulai Bai, Sandakan, Sabah, MYS	16 viii 2000	B1	В		
B. tenella	E743	27° 08' S, 48° 32' W	Ilha Joao de Cunha, Porto Belo, Santa Catarina, BRA		B1			
B. tenella	F150	29° 44' S, 31° 05 E	Umhlanga Rocks, KwaZulu Natal ZAF	17 viii 2005	B1	В	В	
B. tenella	F154	28° 22' S, 32° 25' E	Rocktail Bay, Kwazulu Natal, ZAF (WPvR)	10 viii 2005	B1	В	В	
B. tenella	F33		03-418 (Indonesia) (Leiden)		B1	В		
B. tenella	F378	05° 17' N, 163° 01' E	Malem, Kosrae, FSM	7 ii 2006	B1	В		
B. tenella	F379	09° 56' N, 123° 42' E	Nan Madol, Pohnpei, FSM	4 ii 2006	B1	В		
B. tenella	F381	07° 19' N, 151° 50' E	Fefen, Chuuk, FSM	10 ii 2006	B1	В		
B. tenella	F905	22° 2' N, 80° 26' W	Rancho Luna (RL4), Cuba (J. Larrea)		B1			
B. tenella	F907	22° 2' N, 80° 26' W	Rancho Luna (RL6), Cuba (J. Larrea)		B1			
B. tenella	F912	22° 2' N, 80° 26' W	Rancho Luna (RL10), Cuba (J. Larrea)		B1			
B. tenella	G194	22° 2' N, 80° 26' W	Rancho Luna (RL2), Cuba (J. Larrea)		B1			
B. tenella	G196		J II, Cuba (J. Larrea)		B1			
B. tenella	G325	08° 47' S, 115° 13',E	Nusa Dua Beach, Bali, IDN		B1	В		
B. tenella	G327	02° 45' S, 151° 05' E	Put Put Village, Losuk, NI, PNG		B1			

B. tenella	G366	08° 47' S, 115° 13' E	Nusa Dua Beach, Bali, IDN	26 iv 2013	B1			
B. tenella	G385	2° 49' S, 151° 2' E	Sicaciu, NI, PNG	7 vi 2013	B1			
B. tenella	G389	3° 39'S, 152° 26' E	Namatanai, NI, PNG	5 vi 2013	B1			
B. tenella	G99		French Antilles (R. Lewin)		B1	В		
B. tenella	G397	33° 14' N, 126° 35' E	Jeju Is., KOR	20 vi 2012	B1			
B. tenella	G409		Satun Province, THA	11 iii 2014	B1			
B. tenella	2905	08° 30' N, 124° 18' E	Initao, Misamis Oriental, PHI	14 iii 1988	B2	В		
B. tenella	2751	8° 31' N, 124° 18' E	Initao, Misamis Oriental, PHI	25 x 1986	B3	В	В	В
B. tenella	2904	13° 34' N, 124° 14' E	Talisoy, Virac, Catanduanes, PHI	14 v 1988	B4	В		В
B. tenella	2908	08° 30' N, 124° 18' E	Libertad, Initao, Misamis Oriental, PHI	9 vi 1988	B5	В		
B. tenella	2767	21° 06' N, 121° 57' E	Y'Ami I., Batanes, PHI	25 iv 1987	B6	В		
B. tenella	E616	07° 36' N, 134° 36' E	Palau (Y. Hara)	21 iii 2001	B7			
B. tenella	F913	22° 2' N, 80° 26' W	Rancho Luna (RL11), Cuba			В		
B. tenella	G335	03° 28'S, 152° 13',E	Karu, NI, PNG	4 vi 2013		В	В	
B. tenella	3655	13° 02' S, 38° 40' W	Ilha do Itaparica, Bahia, BRA	11 xi 1996	C1	С	С	С
B. tenella	4434	20° 44' S, 43° 59' E	River Sangara, Belo sur Mer, MDG	27 v 2004	C1	С		
B. tenella	D533	25° 17' S, 152° 49' E	Hervey Bay, QLD, AUS		C1	С		
B. tenella	F374	07° 27' N, 151° 53' E	Weno I., Chuuk, FSM	11 ii 2006	C1	С		
B. tenella	F375	06° 58' N, 158° 13' E	Nett Point, Pohnpei FSM	5 ii 2006	C1			
B. tenella	G302		Kenya (O. De Clerck)		C1	С		
B. tenella	G310	2° 58' S, 150° 53' E	Dyaul Island, NI, PNG	8 vi 2013	C1		С	
B. tenella	G314	2° 58' S, 150° 53' E	Dyaul Island, NI, PNG	8 vi 2013	C1			
B. tenella	G391	2° 58' S, 150° 53' E	Dyaul Island, NI, PNG	8 vi 2013	C1			
B. tenella	G392	2° 58' S, 150° 53' E	Dyaul Island, NI, PNG	8 vi 2013	C1			-
B. tenella	G394	2° 58' S, 150° 53' E	Dyaul Island, NI, PNG	8 vi 2013	C1			-
B. tenella	G395	2° 58'S 150° 53'E	Dyaul Island, NI, PNG	8 vi 2013	C1			
B. tenella	G396	2° 58' S, 150° 53' E	Dyaul Island, NI, PNG	8 vi 2013	C1			

B. tenella	2764	8° 31' N, 124° 18' E	Initao, Misamis Oriental, PHI	13 v 1987	C1	С		С
B. tenella	3079	9° 34' N, 123° 10' E	Talabong, Negros Oriental, PHI	19 vii 1990	C1	С		
B. tenella	4440	20° 44' S, 43° 59' E	Chenal d'Ampanarata , Belo sur Mer, MDG	27 v 2004	C1	С		
B. tenella	4662	07° 26' N, 151° 53' E	Peniyak Village, Weno I., Chuuk, FSM	11 ii 2006	C1	С	С	
B. tenella	4664	07° 26' N, 151° 53' E	Peniyak Village, Weno I., Chuuk, FSM	11 ii 2006	C1	С	С	
B. tenella	4081	06° 53' S, 116 ° 42' E	Sikuati beach, Sabah, MYS	13 viii 2000	C2	С		
B. tenella	4450	17° 05' S, 49° 48' E	Anafialy, I. St. Marie, MDG	22 v 2004	C3	С		
B. tenella	3807	20° 18' S, 118 ° 36' E	Port Hedland, WA, AUS	9 xii 1997	C4	С		С
B. tenella	4229	10° 41' S, 142° 31' E	Pajinka, Cape York, QLD, AUS	19 vi 2002	C5	С		С
B. tenella	4096	05° 49' S, 118 ° 09' E	Sandakan, Sabah, MYS	16 viii 2000	C6	С		С