An Efficient Feature Selection Algorithm for
Evolving Job Shop Scheduling Rules with Genetic
Programming

Yi Mei, Member, IEEE, Su Nguyen, Member, IEEE, Bing Xue, Member, IEEE and Mengjie Zhang, Senior
Member, IEEE

Abstract—Automated design of job shop scheduling rules using
genetic programming as a hyper-heuristic is an emerging topic
that has become more and more popular in recent years. For
evolving dispatching rules, feature selection is an important issue
for deciding the terminal set of genetic programming. There
can be a large number of features, whose importance/relevance
varies from one to another. It has been shown that using a
promising feature subset can lead to a significant improvement
over using all the features. However, the existing feature selection
algorithm for job shop scheduling is too slow and inapplicable in
practice. In this paper, we propose the first “practical” feature
selection algorithm for job shop scheduling. Our contributions
are twofold. First, we develop a niching-based search framework
for extracting a diverse set of good rules. Second, we reduce the
complexity of fitness evaluation by using a surrogate model. As a
result, the proposed feature selection algorithm is very efficient.
The experimental studies show that it takes less than 10% of
the training time of the standard genetic programming training
process, and can obtain much better feature subsets than the
entire feature set. Furthermore, it can find better feature subsets
than the best-so-far feature subset.

Index Terms—Job shop scheduling, genetic programming,
feature selection, hyper-heuristic

I. INTRODUCTION

Job Shop Scheduling (JSS) [43] is an important problem in
the scheduling and artificial intelligence fields. It has many
applications in the real world such as manufacturing [7],
[31], project scheduling [55] and resource allocation in cloud
computing, and has attracted many research interests from both
researchers and practitioners. In JSS, a number of jobs and ma-
chines are given, each job contains a sequence of operations,
each of which has an eligible machine to process it. Then,
the aim is to design a schedule to process the operations with
the machines subject to the predefined constraints (e.g. the
operations are processed in order by their eligible machines)
to achieve the desired goals such as minimising the makespan,
flowtime and tardiness.

In practice, the environment is usually dynamic, and jobs
can arrive in real time with no prior information (e.g. its arrival
time, due date and processing time). Traditional optimisation
approaches such as mathematical programming and meta-
heuristic methods can hardly tackle dynamic JSS (DJSS) well,

Yi Mei, Su Nguyen, Bing Xue and Mengjie Zhang are with the School
of Engineering and Computer Science, Victoria University of Welling-
ton, Wellington 6012, New Zealand. e-mail: {yi.mei, su.nguyen, bing.xue,
mengjie.zhang} @ecs.vuw.ac.nz. Su Nguyen is also with Department of Busi-
ness, Hoa Sen University, Vietnam.

since they cannot immediately react to the occurrences of
unpredicted events such as new job arrivals and machine
breakdowns. On the contrary, dispatching rules can respond
to the environment change instantaneously. Therefore, dis-
patching rules have been widely adopted for solving DJSS
[2], [14]. Briefly speaking, a dispatching rule consists of a
priority function considering the features of the current job
shop state and the operation to be processed. At each decision
point when a machine becomes idle and there are operations
waiting in its queue, the dispatching rule calculates the priority
value for each waiting operation, and selects the operation
with the highest priority value to be processed next. So far,
there have been a large number of dispatching rules designed
manually to tackle different job shop scenarios and objectives.
A comprehensive comparison between manual dispatching
rules can be found in [50].

It has been shown in literature (e.g. [25], [46], [S1]) that the
manually designed dispatching rules are still not satisfactory
enough. Due to the complex interactions involving different
waiting operations and job shop states, it is very hard, if not
impossible, to manually capture all the underlying relation-
ships to design a promising dispatching rule. Recently, Genetic
Programming (GP) has attracted more and more research inter-
ests for automatically designing dispatching rules. There have
been plenty of works proposed for evolving dispatching rules
with GP (e.g. [10], [16], [21], [36], [42]), which successfully
obtained much better rules than the manually designed rules.

A challenge for evolving dispatching rules using GP is the
huge search space due to the variable-length representation.
For example, as indicated in [48], if using the tree-based
representation with the maximal depth of D and all the
functions are binary, i.e. they take two arguments, then the
size of GP search space is | F|2”~1 - |T|2", where F and T
stand for the function and terminal sets. It can be seen that the
size of GP search space depends on the maximal depth of the
tree, function set and terminal set. Therefore, in order to reduce
the GP search space and improve efficiency, one can decrease
the maximal tree depth, the number of function nodes and the
number of terminals. In this paper, we will particularly focus
on reducing the number of terminals by feature selection.

For GP-evolved dispatching rules, the candidate terminals
include the global shop-level features (e.g. the current time),
job-related features (e.g. the processing time and due date)
and machine-related features (e.g. the machine ready time
and work in the queue). In addition to the instantaneous

information, one can also look ahead to the future (e.g. the
work in the next queue) and back to the past (e.g. the historical
utilisation level and average waiting time of the previous 5
jobs) [20]. Obviously, not all these features are (strongly)
relevant to the performance of rule, and the contributions of the
features vary from one objective to another (e.g. minimising
makespan and minimising total weighted tardiness require
different features). It has been demonstrated that including
irrelevant features can lead to negative effect in evolving GP
rules [16]. To reduce the search space without losing promising
regions, it is important to select a proper set of relevant
features as the terminal set of GP. However, it is a challenging
task due to the complex interactions between the features.

Intuitively, an important feature tends to make a consider-
able contribution to good dispatching rules. In most previous
works, the contribution of a feature is estimated by the
frequency it occurs in GP individuals with high fitness values
[9], [40], [47] during the search process. However, such an
estimation has two major issues. First, the estimation for each
GP individual may not be accurate due to the redundant
feature occurrences such as x/x and x — xz. Second, the
estimation may be biased to the individuals in the particular
local optimal region that GP converges to. In this case, the
features that contribute to other local optima but not in the
current population will be missed.

To address the above issues, we proposed a new feature
selection approach in [34]. To address the first issue, we pro-
posed a more accurate and domain-knowledge-free measure
based on a feature removal operation, and empirically verified
its effectiveness in several job shop scheduling scenarios [34].
To address the second issue, we selected the best individuals
from 30 independent runs of GP to reduce the estimation bias.
However, the proposed feature selection approach is still not
to applicable in practice, mainly because of its low efficiency.
Specifically, a diverse set of good individuals is required to
achieve a high accuracy of the feature selection. There is no
efficient way for obtaining such a set of individuals so far. In
[34], the 30 individuals were obtained from 30 independent
runs of GP, requiring computational time of 30 - Time(GP),
where Time(GP) is the computational time of a single GP
run.

A. Goals

This paper aims to address the above issues and propose a
better feature selection algorithm with higher efficiency and
accuracy. It has the following research objectives:

1) To propose a more efficient method to obtain a diverse set
of good individuals by employing niching and surrogate
model.

2) To develop a new feature selection scheme that takes both
the fitness of the individuals and the feature contribution
to the individuals into account.

3) To verify the efficacy of the proposed feature selection
algorithm in terms of number of selected features and the
quality of the selected feature set.

4) To analyse the effect of the selection of each feature on
the capability of GP in evolving promising dispatching
rules.

B. Organisation

The rest of the paper is organised as follows: Section II gives
the background introduction, including the problem descrip-
tion, automated dispatching rule design and feature selection.
Then, the proposed feature selection algorithm (NiSuFS) is
described in Section III. Experimental studies are carried out
in Section IV to investigate the behaviour and performance of
NiSuFS. Further analysis is conducted in Section V. Finally,
Section VI gives the conclusions and future work.

II. BACKGROUND
A. Job Shop Scheduling

A Job Shop Scheduling (JSS) problem aims to process a
number of jobs J = {J1,...,J,} with a set of machines
M = {M,...,M,}. Each job J; has a sequence of I; (I; <
m) operations O; = (Oyj,...,0y, ;). It has a release time
to(J;) and a due date p(J;). Each operation O;; can only be
processed by machine w(O;;) € M, and its processing time
is (0;;). Then JSS is to find the best schedule subject to the
following constraints:

1) For each job, O, ; cannot be processed before the com-
pletion of its preceding operations O;;, ¥V 7 = 1,...,n.
The first operation O1; cannot be processed until the job
is release at time to(J;).

2) Operation O;; must be processed on machine 7(O;;).

3) Each machine can only process one operation at the same
time.

4) The scheduling is non-preemptive, i.e. the processing of
an operation cannot be disrupted or stopped until it is
completed.

The commonly considered JSS objectives include min-
imising the makespan (Chax), total flowtime (3 C;), total
weighted tardiness (3 w;7}), number of tardy jobs, etc [43].

B. Automated Design of Dispatching Rules

Dispatching rules are commonly used in DJSS due to its
flexibility, scalability and ease of implementation. It generates
the schedule in real time and can adapt to the environment
change (e.g. new job arrivals) well. At each decision point,
at least one machine is idle and the queue of that machine
is not empty. Then, the dispatching rule uses some priority
function to select the next operation among those waiting in
the queue. The priority function assigns a priority value for
each candidate operation, and the one with the highest priority
value is selected. For example, in the Shortest Processing Time
(SPT) rule, the priority function is defined as —0(O;;).

Dispatching rules can be divided into two categories accord-
ing to their definitions of the decision points. The first category
is called the non-delay rules. In the non-delay rules, no delay
is allowed as long as a machine is idle and its waiting queue is
not empty, i.e. an operation has to be selected and processed
immediately. On the other hand, the active rules allow some
delay in case that a new urgent job will arrive soon. In this
paper, we will focus on the non-delay category only, since it
is simpler to use and have achieved much success in previous
studies (e.g. [16], [36]).

A great amount of effort has been made to manually design
more effective dispatching rules (e.g. [17], [23], [45]). How-
ever, due to the subtle interactions involving various factors
in affecting the performance of the rule, the performance of
existing manually designed rules are not satisfactory enough.
Moreover, the best dispatching rule depends on the shop sce-
nario and objective to be optimised. Therefore, it is difficult to
manually obtain an effective dispatching rule for the given JSS.
In this situation, hyper-heuristics [5] are promising approaches
to search for dispatching rules automatically.

Hyper-heuristics optimise heuristics rather than solutions by
searching in the heuristic space. Genetic Programming (GP)
[26] has been demonstrated to be a powerful hyper-heuristic
for DJSS ([10], [16], [20], [22], [36], [37], [42], [52]). For
JSS, it is shown to outperform other methods such as neural
network and linear combination [3]. Therefore, in this paper,
we choose GP as the hyper-heuristic framework for evolving
dispatching rules.

The framework of GP is given in Fig. 1. It is similar to
the conventional genetic algorithm framework, except that it
adopts special representations for individuals (i.e. GP pro-
grams), and evolves them using specific crossover and muta-
tion operators. For evolving dispatching rules, GP represents
each individual (candidate dispatching rule) as a syntax tree.
An example of the well-known 2PT+WINQ+NPT rule [18] is
given in Fig. 2. The crossover operator randomly selects a sub-
tree from each parent, and then swaps them to produce two
children. The mutation operator randomly selects a sub-tree
from the parent, and replaces it with a newly generated sub-
tree. For evaluating a dispatching rule, the rule is first applied
to a set of JSS instances. The fitness value is then set to the
average objective values of the resultant solutions.

programs

Return the best
GP program

[Evaluate the GP programs J

[Initialise a population of GP J

\d

Generate a new population using
GP crossover and mutation
operators

Fig. 1. The GP framework.

For evolving dispatching rules with GP, feature selection is
an important and challenging issue. It has been demonstrated
that including irrelevant features in the terminal set of GP can
deteriorate the performance [16]. On the contrary, carefully se-
lecting relevant features can lead to a significant improvement

/G)\

|PT| [wiNQ| [NPT]

[PT]

Fig. 2. The tree-based representation of the 2PT+WINQ+NPT rule.

[34]. Feature selection in GP for evolving dispatching rules
has been overlooked so far. This paper conducts an in-depth
study on this important topic.

C. Feature Selection

Feature selection is an important and necessary process
in machine learning and data mining tasks [12], [56]. By
removing irrelevant, redundant and misleading features, fea-
ture selection can reduce the number of features (i.e. di-
mensionality) of the data, increase the learning performance,
reduce the training time, and improve the interpretability of the
learned models [12], [56]. There have been a large number
of feature selection methods proposed in the past decades
[12], [28], mainly for classification and regression tasks [8],
[32], [57]. Based on the evaluation criterion, existing feature
selection methods can be classified into three categories [28],
which are wrapper, filter and embedded approaches. Despite
its importance, feature selection has seldom been used in
designing dispatching rules for JSS.

Traditional feature selection approaches are not applicable
to GPHH for dynamic JSS. First, the task (i.e. prioritising
the operations in the queue) in GPHH for dynamic JSS is
completely different from the traditional machine learning/data
mining tasks (e.g. classification, regression and clustering),
which makes traditional feature selection approaches inappli-
cable. Second, the instances in GPHH for dynamic JSS have
dependencies on each other, while they are assumed to be
independent in traditional machine learning/data mining.

GP is able to perform embedded feature selection, also
called terminal selection, since GP can simultaneously identify
relevant features and evolve the best GP tree using the relevant
features in an adaptive evolutionary process. The relevance
of the features/terminals are typically evaluated by counting
their occurrence frequencies in the good individuals. During
the evolutionary process, the probabilities of selecting features
change accordingly based on the updated relevance. A typical
example is the adaptive mutation [9], [40], [47], which selects
the features to create a sub-tree based on their relevance rather
than randomly, so that the more relevant features are more
likely to be selected.

However, the commonly used frequency analysis has a
major drawback that there may be many unnecessary or even
meaningless occurrences of the features. For example, given
a rule represented as (A — B)/(A — B) + C/D, A and B
occur twice, while C' and D occur only once. According to
frequency analysis, A and B are more relevant than C' and
D. However, after simplification, the rule becomes C/D + 1.

This means that both A and B are in fact not needed and may
be useless features. In [34], a feature ranking and selection
approach is proposed to improve the performance of GP for
job shop scheduling, which is based on the contribution of
features to the fitness. That approach has been demonstrated
to be able to identify the relevant features more accurately.
However, it requires a diverse set of good dispatching rules,
which cannot be obtained in a trivial way. It simply extracts
these rules by running GP for multiple times with different
random seeds. As a result, it is very time consuming (about 70
hours on Intel(R) Core(TM) i7 CPU @3.60GHz for obtaining
30 rules) and thus inapplicable in practice. A new efficient
feature selection algorithm is highly desired.

III. PROPOSED FEATURE SELECTION ALGORITHM

In this section, we propose an efficient feature selection
algorithm (called NiSuFS) to select relevant features to im-
prove the effectiveness of GP in evolving more promising
dispatching rules. The proposed algorithm has the following
two advantages:

1) It employs niching techniques to obtain a diverse set of
good individuals (local optima) in a single GP run.

2) It replaces the original fitness evaluation with a surro-
gate model, which is based on a simplified and much
less computationally expensive simulation. This way, the
fitness evaluation becomes much more efficient without
losing much accuracy.

A. Niching-GP Feature Selection Framework

The niching techniques [30], [49] have been demonstrated
to be very effective to locate multiple local optimal solutions in
the search space simultaneously. Niching-based evolutionary
algorithms have been demonstrated to perform competitively
for solving multi-modal [44] and multi-objective [19], [60]
optimisation problems. There have been a variety of nich-
ing methods proposed, such as the fitness sharing methods
[11], [35], the crowding methods (e.g. restricted tournament
selection [13]) and the clearing method [41]. Here, we adopt
the clearing method [41] since it is easier to control than
the crowding methods and more efficient than the fitness
sharing methods. The niching-GP feature selection framework
of NiSuFS is described in Algorithm 1. The framework follows
a standard GP process [26], except that it adjusts the fitness
of the individuals using the clearing method before generating
the offsprings (line 5). This way, the population is expected
to converge to a number of different local optima instead of
a single optimum. After that, a diverse set of good rules R
are selected from the population P by BestDiverseSet(-)
(line 9). Finally, a feature subset T is selected based on the
selected rules R (line 10).

1) The Clearing Method: The basic idea of the clearing
method is to “clear” the poor individuals in the crowding areas.
The pseudo code of Clearing(-) is described in Algorithm
2. It has two parameters: the radius o controlling the range of
each niche, and the capacity x which determines the number
of individuals in each niche. Note that the fitness fit(-) is to

Algorithm 1: 7 «+ NiSuFs(7,N)
Input: The feature set 7. ~
Output: A selected feature subset 7.
Initialise a population P randomly, set gen < 0;
while gen < N do
gen < gen + 1;
Evaluate(P);
P’ < Clearing(P,o,k);
Q < GenerateOffsprings(P’);
P+ Q;
end
R + BestDiverseSet(P,o, K);
T < FeatureSelection(7,R);

R NN N R W N -

—
>

Algorithm 2: P’ < Clearing(P,o,k) [41]

Input: A population P, a radius o, a capacity .
Output: A population P’ with adjusted fitness values.
P’ «+ sortFitness(P); // from best to worst
fori=1— |P'| do
if fit(P’[i]) < oo then
size < 1;
for j=i+1— |P'|do
if fit(P'[j]) < oo and A(P'[j], P'[i]) < o then
if size < k then
| size < size+1;
else
| fit(P']j]) « oo
end
end
end

D-TEE-IEE B Y N7 S

—
W N =

end

[
N

end
return P’;

-
N W

be minimised in JSS (e.g. makespan and tardiness). Therefore,
in line 10, an individual is cleared by setting its fitness to co.

In Algorithm 2, a distance measure A(rq,72) between two
rules r; and ro is needed. In GP, a rule is represented as
a GP tree. Unlike traditional tree distance measures such
as tree edit distance [1], [59], two dispatching rules with
different tree structures can essentially have exactly the same
behaviour in making decisions. For example, the rules with the
priority functions of z, 2z, and =z + 1 will always make the
same decision. In addition, the redundant branches in the tree
evolved during the GP process can also generate duplicated
GP trees, such as z + y and 4+ max{y, y}). For comparing
between two dispatching rules for JSS, the distance measure
A(-,-) should reflect the difference in phenotypic behaviour
instead of genotypic structure.

To this end, we adopt a phenotypic characterisation ap-
proach [15] to characterise the behaviour of a dispatching
rule r as a fixed-length numeric vector. The phenotypic
characterisation is described in Algorithm 3. It is based on
a reference dispatching rule 7 and a set of decision situations
Q. Each decision situation 2 € €2 includes a set of candidate
operations and a job shop state, i.e. an instantiation of all the
feature values (e.g. processing time, due date, current time,
work remaining, etc.) of these candidate operations. In the
algorithm, for the ith decision situation, the reference rule 7 is
first applied to obtain the ranking vector E of all the candidate

operations (line 2). Then, the index j of the operation with the
highest priority assigned by 7 is identified (line 3). Finally,
the ranking vector k of the operations assigned by rule r is
obtained, and the rank of the jth operation in k is set to the

ith element of the characteristic vector (lines 4 and 5).

Algorithm 3: d <+ PhenoCharacterisation(r;#,) [15]

Input: A dispatching rule r to be characterised, a reference
dispatching rule 7, a set of decision situations 2.

Output: A numeric (integer) characteristic vector d.

1 for i =1— || do

k «+ ranks(f, Q[i));

j + index(1,k);

k < ranks(r, Q[i));

dli] < k[jl;

6 end

7 return d;

Obviously, if r and 7 have the same behaviour, then they
will always give rank 1 to the same operation. Thus, d(r) =
d(7) = 1. Otherwise, the more different r behaves from 7, the
more distant d(r) is from d(7). Then, the distance between
two rules r; and 7o can be defined as the Euclidean distance
between the two characteristic vectors, as shown in Eq. (1).

|€2]

> (di(r1) — di(r2))*. (1)

i=1

A(Tl, TQ) =

According to Algorithm 3, a set of decision situations €2
and a reference rule 7 are needed to calculate A(-). In this
study, € is generated as follows:

Step 1. Apply the Shortest Processing Time rule on a
JSS simulation with 10 machines, 2500 jobs, full
operations, utilisation level of 0.95, and record all
the decision situations as €2'.

Remove all the decision situations from €’ whose
number of candidate operations are smaller than 10.
Randomly select 20 decision situations from the
remaining decision situations in €2’ to form 2.

Step 2.

Step 3.

The characteristic vector only considers the ranking of
the operation selected by the reference rule. Therefore, a
better reference rule tends to lead to a more accurate and
representative characterisation. To this end, at each generation,
we reset 7 to the best individual in the population.

2) Final Best Diverse Set: Given the final population P,
a diverse set of K good individuals are to be selected. For
this purpose, we continue to use the niching technique, and
select only the best individual in each niche. The function
BestDiverseSet(P,o,K) is described in Algorithm 4.
First, the set R is set to empty, and the individuals in P are
sorted from the best to the worse. Then, for each individual
P'[i] in the sorted population, we examine whether it is in
the niche of any individual in R (lines 4-10). If not, then
it is added into R. The above steps are repeated until the
number of individuals R reaches K or all the individuals in
the population have been examined.

3) Feature Selection: A more important feature tends
to make higher contribution to more good individuals.

Algorithm 4: R < BestDiverseSet(P, o, K)

Input: A population P, a radius o, the number of selected
individuals K. _
Output: A diverse set of good individuals R.
1 Set R « (;
2 P’ « SortFitness(P);
3fori=1—|P'| do

4 inNiche + false;

5 foreach r € R do

6 if A(P'[i],r) < o then
7 inNiche < true;
8 break;

9 end

10 end

11 if not inNiche then

12 R« RUP'[i];

13 if |R| = K then

14 ‘ return 7%;

15 end

16 end

17 end

18 return R;

In other words, the importance of a feature depends on
both individual fitness and its contribution to individuals.
Therefore, given the selected individuals 7~2, the function
FeatureSelection(7,R) takes both these two aspects
into account to select features out of the feature set 7. It is
described in Algorithm 5. It is a weighted majority voting
process, in which the selected rules in R vote for the features
in 7. First, the contribution ((¢,7) of each feature t € T
to each rule # € R is calculated by Eq. (2) developed in
[34], where (7|t = 1) stands for the rule obtained by fixing
the feature ¢ to 1 in the rule 7 (lines 1-5). For example,
(PT + WINQ|PT = 1) = (1 + WINQ).

C(t,7) = fit(r) — fit(F]t = 1). 2)

Since the fitness is to be minimised, a rule with a smaller
fitness should have a larger voting weight. Then, the voting
weight of each rule 7 is defined as a a monotonically decreas-
ing function of its fitness, given by Eqgs. (3)—(6).

w(r) = max{g(r) — 9min ,0} , 3)

9max — Ymin

1
g(r) = T i)’ “4)
- ! 5)
Imax = T min{fit(r)]r € R}’
1
Jmin — (6)

1+ max{ fit(r)lr € Ri.,}’

where Rp.,, is the set of the best rules in the population in
each generation of the niching-based GP process.

After calculating the voting weights for the rules (lines 6—
8), the weighted majority voting process starts. Specifically, a
rule 7 € R votes for a feature ¢ € T if ¢(t,7) is greater than
the contribution threshold € (lines 13-15). The contribution

threshold is set to a small positive value to prevent selecting

weakly relevant features. Here it is set to € = 0.001'. Then, a
feature ¢ is selected if the total weight voting for it is larger
than the total weight not voting for it (lines 17-19).

Algorithm 5: 7 + FeatureSelection(R)

Input: A selected set of individuals R.
Output: The selected terminals 7.
foreach t € T do
foreach 7 € R do
| Calculate the contribution ¢(t,7) by Eq (2);
end
end
foreach 7 € R do
| Calculate w(7) by Eqgs. (3)-(6);
end
Set T« 0;
foreach t € T do
Set the total voted weight W (t) < 0;
foreach 7 € R do
if ¢(¢,7) > € then
W (t) = W (t) + w(7F);

DI B R R L

HHHHHHHH_
RN SN N R W N =S
— =g

%Q-

[N ®__

s B

Y,

(Yser w(F)) /2 then

e
1)
=
(=%

end
1 return 7

S
=l

B. Surrogate Model for Fitness Evaluation

The main computational complexity of GP comes from
the fitness evaluation. For evolving dispatching rules using
GP, the fitness evaluation is very computationally expensive,
as a fitness evaluation requires one or more complex JSS
simulations (e.g. 10 machines and 2500 jobs, each with 10
operations). Therefore, it is highly desired to improve the
efficiency of fitness evaluation. Surrogate model [24], [54],
[58] is a common strategy to this end.

In DIJSS, an intuitive surrogate model is to use simplified
instances or simulations with fewer jobs and machines. For
static JSS, we have demonstrated that under the same or
similar ratio between the numbers of jobs and machines, the
dispatching rules trained on smaller instances can be reused on
larger instances [33]. For DJSS, Nguyen ef al. [39] proposed
a number of simplified surrogate models for the original
simulation model, which have much fewer jobs and machines
than the original one. In our work, we adopt the HalfShop
surrogate model, since it showed the best evaluation accuracy
among all the surrogate models proposed in [39]. Following
the settings in [39], the HalfShop surrogate model sets the
number of jobs and warmup jobs to 500 and 100 respectively.

Based on the surrogate model, when evaluating each indi-
vidual r (line 4 in Algorithm 1), the fitness function is defined
as follows:

o [HS(1)
th(T) - |Itrain| [u’:';m\m fref(I_LS’(I))7 (7)

'In preliminary experiment, we have compared different values including
0.001, 0.005, 0.0005, and found no significant difference between them.

where Zy,ip is the training set (simulation replications), H.S(T)
stands for the HalfShop surrogate model of the simulation I.
f(r; HS(I)) is the objective value (e.g. makespan or tardiness)
of the schedule obtained by applying the dispatching rule r to
HS(I). fref(I) is the reference objective value for training
instance HS(I), obtained by the WATC rule, which is an
effective dispatching rule to minimise the mean weighted
tardiness. The only difference between Eq. (7) and the original
fitness function is that each original simulation [is replaced
by its HalfShop surrogate model HS(I).

IV. EXPERIMENTAL STUDIES

The configuration of the DJSS simulation used in the
experimental studies is described in Table I. It is the same
as that in [16] except that the due date factor is set to 1.3
(which has been used in previous studies, e.g. [27]) to generate
tighter due dates. For the number of operations per job, missing
means that the number of operations for each job is randomly
sampled between 2 and 10, while full indicates that the number
of operations is 10 for all the jobs.

TABLE I
THE DJSS SIMULATION SYSTEM CONFIGURATION.

Parameter Value
#machines 10
#jobs 2500 for training, 5000 for test

#warmup jobs
#operations per job
Job arrival process

20% of the total number of jobs
missing, full
Poisson process
{0.95, 0.8} for training
0.95, 0.9, 0.85 and 0.8 for testing
1.3 times the total processing time
Uniform discrete distribution
Uniform discrete distribution between 1 and 49

Utilisation level

Due date
Eligible machine
Processing time

The training set consists of two utilisation levels (0.95 and
0.8) and two settings of the number of operations (missing
and full). Thus, there are 4 different training configurations.
We generate only one replication for each configuration, but
change the random seed for generating the replications in each
generation of the GP process to improve the generalisability
of the rules. Therefore, 4 training instances are used for
evaluating the rules. For the sake of convenience, the training
set is called the H2010 set, since it is the same as that used
by Hildebrandt et al. in 2010 [16]. For testing the evolved
rules, we use 8 test sets with different job shop scenarios
(4 utilisation levels x 2 configurations on the number of
operations, i.e. missing and full). For each test set, 20 random
replications were generated independently. The 8 test sets can
well represent a wide range of dynamic job shop scenarios.

In the experiment, the objective is set to minimising the
mean weighted tardiness.

A. Parameter Settings of Genetic Programming

First, the terminal set of GP is to be determined. An
overview of the promising features is given in [4]. For the basic
JSS model considered in this study, we selected 16 commonly
used features, which are listed in Table II.

TABLE II
THE 16 COMMONLY USED FEATURES SELECTED IN THE TERMINAL SET OF
GP.
Notation Description

NOW The current time.

NOIQ Number of operations in the current queue.

WIQ Work in the current queue.

MRT Ready time of the machine.

PT Processing time of the operation.

NOPT Processing time of the next operation.
ORT Ready time of the operation.
NMRT Ready time of the next machine.
WKR Work remaining (including the current operation).
NOR Number of operations remaining.
WINQ Work in the next queue.
NOINQ Number of operations in next queue.
FDD Flow due date of the operation.
DD Due date of the job.
w Weight of the job.
AT Arrival time of the job.

The function set is {4, —, X, /, min, max, ifte}. The first
three are traditional arithmetic operations. The function / is
the protected division, which returns 1 if the denominator is 0.
The function min (max) takes two arguments and returns the
smaller (larger) one. The ifte function takes three arguments
a, b and c in order. If a > 0, then it returns b. Otherwise, it
returns c.

The parameter setting of GP is given in Table III. Most
parameters take the standard values in this field [6], [34] and
also GP research [53]. The algorithm was implemented by
ECJ [29].

TABLE III
THE PARAMETER SETTING OF GP.

Notation Description Value
popsize Population size 1024
depth Maximal depth 8
Pr, Crossover rate 0.85
Pr, Mutation rate 0.1
Pr, Reproduction rate 0.05
N Number of generations 51

B. Parameter Analysis for Feature Selection

NiSuFS employs the niching technique, more specifically
the clearing method [41]. Therefore, its performance de-
pends on the two parameters o (radius) and x (capacity) of
Clearing(-). In addition, o is also used in Algorithm 4 to
find the best diverse set. These two parameters interact with
each other, and determine the balance between convergence
and diversity of the population in Algorithm 1. The population
will become more diverse with the increase of o and the
decrease of x. In the experiments, we fix k = 1 to have a
finer control of the diverse set of individuals. Specifically, with
x = 1, we can ensure that for each individual in the diverse
set, no other individual is within the radius o around it. It
has also been demonstrated that x = 1 can reach more peaks
[41]. Then, we compared between different o values. In the
experiments, we tested the following o values:

e o = 0: For each considered individual, all the remaining

individuals with zero distance (i.e. “clones”) are cleared;

e o = 1: For each considered individual, all the remaining

individuals with distance of 1 are cleared;

e o = 5: For each considered individual, all the remaining

individuals with distance of 5 are cleared.

For each of the three o value, we conducted 30 independent
runs of GP (with the parameter settings given in Table III and
the terminal set given in Table II) on both the original H2010
training set and the HalfShop surrogate model of the H2010
training set. As a result, we obtained 6 sets of results (3 o
values x 2 training sets).

Figs. 3 and 4 show the distribution of the fitness of the 30
selected individuals in Algorithm 1 with £ = 1 and different o
values in 30 independent runs. In Fig. 3, the training set is the
original H2010 set. In Fig. 4, the training set is the half-shop
surrogate model of the H2010 set.

From Fig. 3, it can be seen that when using the original
H2010 training set, both the mean and standard deviation of
the distribution of the fitnesses increase with the increase of
o. This implies that if o is larger, then the selected individuals
are more diversely distributed. This is consistent with our
expectation, as a larger o value indicates more bias to diversity,
and thus a larger standard deviation in the distribution of the
fitnesses. However, the search tends to be less capable of
refining the promising regions and finding better solutions.
As a result, the GP obtained much worse fitness values with
o = 5 than with ¢ = 0 and ¢ = 1. Note that when ¢ = 0, the
30 selected individuals have very similar fitness values (e.g.
reflected by the small standard deviations in runs 8, 13, 14
and 15). This indicates that the selected individuals may not
be diverse enough and the resultant feature selection may be
too biased.

Fig. 4 shows similar patterns as Fig. 3. As o increases,
both the mean and standard deviation of the distribution of the
fitnesses increase. One can see that when using the HalfShop
surrogate training set, the selected individuals seems to be
more diversely distributed (with a larger standard deviation),
especially for 0 =0 and 0 = 1.

Given the distributions of the selected individuals, it is
important to know how these different distributions affect the
results of feature selection, which is the ultimate goal of this
work. To this end, we plot the feature selection results of
Algorithm 1 with different o values for both using the original
training set and using the HalfShop surrogate training set
in Figs. 5 and 6. Each figure includes three matrices, each
corresponding to the results obtained by one o value (0, 1 or
5). In each matrix, each row indicates a run (from 1 to 30),
and each column represents a feature (details given in Table
II). If a feature X is selected in the ¢th run, then we draw a
point in the location corresponding to the feature X and the
ith run.

From Figs. 5 and 6, one can see that the 6 feature selection
results are similar to each other (especially the results obtained
by 0 = 0 and ¢ = 1). To be more specific, we have the
following observations:

e In all the 6 matrix plots, PT and W were selected in all the

30 runs. This is consistent with our domain knowledge

0.975-

*Y il

0925 Fﬁ”#

Fitness

il

#yﬂ#?

M 1, HYH”H”’

t *HH

i 2 3 4 5 6 7 8 9 10 11 12 13 14 1‘5R 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
un
& sigma=0#sigma=1#sigma=5

Fig. 3. The distribution of the fitness of the 30 selected individuals in Algorithm 1 with x = 1 and different o values in 30 independent runs. The training
0.98- Y
0.96- * ﬁ*y

’*Y , 1”’”*”‘*Y J) ﬁﬁww M*’ W,”

i 2 3 4 5 6 7 8 9 10 11 12 13 14 1‘5R 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
un

Fitness

& sigma=0#sigma=1&sigma=5

Fig. 4. The distribution of the fitness of the 30 selected individuals in Algorithm 1 with x = 1 and different o values in 30 independent runs. The training
set is the HalfShop surrogate model of the H2010 set.

sigma=0 sigma=1 sigma=5
30- o o o o . o o A A A A A A A A { B |]] []
o o o o o o o o . . A A A A A A A u [] O |
o o o o o PO o o o A A A A A A A A A N | O |
o o . o . o o o A A A A A A [B | u | [] []
e o o o o o o . A A A A A A A A A mnm u []]
o o o o o . o o . A A A A A A A A u " EEE []
o o o o o PO o o A A A A A A A A A] u N
. . o o o . A A A A A A A | u [
o o o o o o o o A A A A A A A A u u]
o o o o o o o o . A A A A A A A A A u N | " u
20 e o o o o o o o o o . A A A A A A A A | | u]
. P . . o A A A A A A A A A = u u |
. A :: A A:A :]] u | []
. . . o o PO . N | |
s e o o e o o o o o A A A A A A A A u u |
z o o o . e o o o o o . A A A A A A A A A A u u NN
o o o o . . . A A A A A A A A A A A =]]]
o o e o o o o o o o A A A A A A A A A I | [] |
. . . . o o o o o A A A A A A A A A A]]
o o o PS e o o . A A A A A A u [] L |
10- . o o o . A A A A A A A A A A A [] u u [] []
. . o o o o o o . A A A A A A A AAA A A [] [|
o o o o o o . . o A A A A A]] |
o o o e o o o . A:: ::A A::A A:A | u |
o o o o o o PO o o o N u LI
. o o o . . . A A A A A A A A A u u B
o o o o o o o o A A A A A A A A []] O |] []]
o o o o o o o . A A A A A A A u " EE]
o o o o o o o o A A A A A A A A A [] N | N [|]
. o o o o o o . A A A A A A A A A A A []] []
0- [[[i
2
\N ~N\Q \@ o \on &‘““ @L \N\ @\V\,oo 00 W w“ \“\Q »N?{\ Qx\@? \Nq\ \ﬂ\ V\0\»\ ?00 o‘) W K \“ *\Q»@ Qx \@v \N\(\ »\0@ \ﬂ\ o*@o‘) 00 \N N

Fig. 5. The matrix plot of the feature selection results of Algorithm 1 when using the original training set and different o values. If a feature X is selected
in the 4th run, then a point is added in the location corresponding to the feature X (column) and the ith run (row).

that PT and W are extremely important features to the workload information (total processing time and/or

minimise the mean weighted tardiness. number of operations) in the next queue is very important
e In all the 6 matrix plots, WINQ and NOINQ were to minimise the mean weighted tardiness.

selected in most runs. Furthermore, in all the runs, at least e The feature NOPT was selected in most runs (more than

one of WINQ and NOINQ are selected. This implies that 70% of the time), especially when o = 1. This shows that

sigma= sigma= sigma=
0 1 5]
30- A A A A A A
A A A A A A
A A A A A A A
A A A A A A A A
A A A A A A A A
A A A A A A
A A A A A A A A A
A A A A A A
A A A A A A A
A A A A A A A
20- A A A A A A A A A
A A A A A A A A A
A A A A A A A
A A A A A A
s A A A A A
x A A A A A A A
A A A A A A A A
A A A A A A A A A A
A A A A A A A A
A A A A A A A A A
10- A A A A A A A
A A A A A A A A A A
A A A A A A
A A A A A A A A
A A A A A A A
A A A A A A
A A A A A A A A A A A
A A A A A A A
A A A A A A A
A A A A A A A A
o]
< < Q < < Q, < < Q,
VOO ¢ (S w%*%oﬁ\ﬁo\‘* PP WK OO ¢ (o \@m\@\@mﬁo@ PP W R OO ¢ (o \N@\N\ﬁo@@g@@ PP W g

Fig. 6. The matrix plot of the feature selection results of Algorithm 1 when using the HalfShop surrogate training set and different o values. If a feature X
is selected in the 4th run, then a point is added in the location corresponding to the feature X (column) and the <th run (row).

NOPT is an important feature for minimising the mean
weighted tardiness.

MRT, NMRT, FDD and DD were not selected in most
runs, indicating that they may be redundant or irrelevant
for minimising the mean weighted tardiness. The elimina-
tion of DD looks counter-intuitive, since DD seems to be
closely related to tardiness. However, this actually makes
sense considering the configuration of the experiments,
in which the due date factor is so tight that almost all
the jobs are tardy. With such a tight due date factor, the
problem becomes completing the jobs, especially those
with higher weights, as soon as possible. In this situation,
minimising the mean weighted tardiness is nearly reduced
to minimising the mean weighted flowtime, where DD is
actually irrelevant. This is consistent with the findings
in [38], [50], where the best rules for minimising mean
tardiness are 2PT+WINQ+NPT and 2PT+LWKR+FDD,
which do not have due date information. The results
clearly show the advantage of the NiSuFS, as it can iden-
tify DD as an unimportant feature in this particular case,
while humans tend to include DD due to a wrong intuition
that it is always important in minimising tardiness.

It is not very clear whether the remaining features (NOW,
NOIQ, WIQ, ORT, WKR, NOR, AT) are important or not.

Overall, Figs. 5 and 6 show that using the HalfShop
surrogate model in fitness evaluation can maintain a very high
accuracy in terms of feature selection, and the results are not
sensitive to the parameter settings, at least when o is not too
large. This verifies the efficacy of NiSuFS.

On average, NiSuFS selected 7.73, 7.50 and 7.17 features
for c = 0, 0 =1 and o0 = 5 respectively, which are much
smaller than the original feature set consisting of 16 features.

In the subsequent experiments, we choose the feature se-
lection results obtained by o = 1 for NiSuFS. The reason for
selecting o = 1 is that from Fig. 6, it is observed that NOPT,
which is known to be an important feature based on our prior
knowledge, was selected more often with 0 = 1 than with
other o values.

C. Efficiency

Since one of the major goals of this paper is to improve the
efficiency of the feature selection, it is important to analyse
the computation time. Table IV gives the mean and standard
deviation of the computational time of the 30 independent runs
of the standard GP and the feature selection algorithm 1 with
the original training set and the HalfShop surrogate training
set.

TABLE IV
THE COMPUTATIONAL TIME (MEAN AND STANDARD DEVIATION) OF THE
STANDARD GP AND THE FEATURE SELECTION ALGORITHM 1 WITH THE
ORIGINAL TRAINING SET AND THE HALFSHOP SURROGATE TRAINING SET.

Algorithm Time (second)
mean (std)
Standard GP 8449.32 (863.55)

Algorithm 1 + Original
Algorithm 1 + Surrogate (NiSuFS)

8767.96 (629.15)
740.74 (43.80)

From the table, it is clear that Algorithm 1 with the
original training set has similar computational time as the
standard GP. This implies that the niching component (line 5 of
Algorithm 1) does not significantly increase the computational
time of GP. The computational time of Algorithm 1 with the
surrogate training set is much smaller than (less than 10%
of) that of both other algorithms. This is consistent with
our expectation. In the original training set, a full job shop
has 2500 jobs, each with 10 operations. Therefore, there are
2500 x 10 = 25000 decision points, each for an operation. In
the HalfShop surrogate model, a full job shop consists of only
500 jobs, each with 5 operations. This leads to 500 x 5 = 2500
decision points. In addition, at each decision point, the queue
in the surrogate model tends to be shorter than that in the
original model. Therefore, the fitness evaluation when using
the HalfShop surrogate model is expected to take less 10%
computational time of that when using the original model.

D. Quality of Selected Features — Test Performance

In this sub-section, we investigate the effectiveness of
NiSuFS in terms of the quality of the selected feature sets. First

we obtain the 30 feature sets selected by the 30 independent
runs of NiSuFS. For the sake of convenience, these feature
sets are denoted as FSx (zr = 1,...,30) hereafter. Then,
for each feature set FSz, its quality is evaluated by the test
performance of the dispatching rules evolved by GP using FSx
as the terminal set. To this end, for each FSz, 30 independent
runs of the standard GP (parameter settings given in Table
II) are carried out on the H2010 training set. Then the
test performance of the 30 evolved rules are evaluated and
compared with the rules evolved by GP with the compared
feature sets.

To verify the effectiveness of NiSuFS as a feature selection
algorithm, a fair comparison should be with other feature
selection algorithms. However, there is no existing practical
feature selection algorithm for evolving dispatching rules so
far. The only feature selection algorithm proposed in [34] is
too time consuming (70 hours even when running on power
i7 CPUs) and thus impractical. In this case, we compare with
the following two feature sets rather than feature selection
algorithms:

« The entire feature set given in Table II, denoted as “All”.
The entire feature set can be seen as a baseline feature
set.

o The best-so-far feature set {MRT, PT, NOPT, WINQ,
NOINQ, W} that was preselected in [34], denoted as
4‘BSF”'

Note that additional 740 seconds (shown in Table IV) are
required to obtain the feature sets by NiSuFS, which is around
the computational time of 4 GP generations. To make a fair
comparison, we give 55 generations to the GP with “All”, and
51 generations to the GP with the FSx’s, so that they will have
comparable computational time.

Fig. 7 shows the boxplots of the test performance of the
rules evolved by GP (in 30 independent runs) using all the
features (“All”), the best-so-far feature set (“BSF”), and the
30 feature sets selected by NiSuFS on the 8 test sets. For
each test set and each feature set selected by NiSuFS, the
Wilcoxon rank sum test was conducted to compare with “All”
and “BSF” under significance level of 0.05. Given that the
result of “BSF” is significantly better than that of “All”, we
fill the boxplots in Fig. 7 based on the two tests as follows:

o If the result of a feature set is significantly worse than
that of “All”, then the boxplot is filled in red;

« If there is no statistical difference between the results of
a feature set and of “All”, then the boxplot is filled in
white (“All” is filled in white);

o If the result of a feature set is significantly better than
that of “All”, then

— if it is significantly worse than that of “BSF”, then
the boxplot is filled in orange;

— if there is no statistical difference between the results
of a feature set and of “BSF”, then the boxplot is
filled in blue (“BSF” is filled in blue);

— if it is significantly better than that of “BSF”, then
the boxplot is filled in green.

From Fig. 7, we have the following observations:

e About 15 to 20 of the 30 feature sets showed signifi-
cantly better test performances than “All” (the boxplots
in orange, blue and green), especially when the utilisation
level is high. Almost all the feature sets performed no
worse than “All” statistically. In other words, NiSuFS can
select much better feature sets than the entire feature set
in most cases, and can almost guarantee to select feature
sets that are not significantly worse than the entire feature
set.

o Only 7 out of the total 30 feature sets (FS10, FS14, FS17,
FS20, FS22, FS27 and FS29) showed significantly worse
test performances than “All” on part of the test sets (the
red boxplots). When looking into the details, it is found
that these 7 feature sets missed at least one important
feature (e.g. FS10, FS14, FS17, FS20, FS22 and FS29
missed NOPT, and FS27 missed WINQ). This shows the
importance of keeping all the important features, although
challenging, while removing the redundant/irrelevant fea-
tures.

o At least half of the 30 feature sets performed significantly
better than or the same as the best-so-far feature set
“BSF” (the blue and green boxplots). This indicates that
NiSuFS can often select very promising feature sets (at
least the same as the best-so-far feature set).

e There are 2 to 5 feature sets that significantly out-
performed “BSF” (the green boxplots) in almost all
cases (except for 0.95-missing). In other words, NiSuFS
managed to find better feature sets than the best-so-far
feature set {MRT, PT, NOPT, WINQ, NOINQ, W} for
minimising the mean weighted tardiness.

Fig. 8 shows the computational time of the GP with “All”
(55 generations), “BSF” (51 generations) and the 30 feature
sets (51 generations) plus the time for NiSuFS. Wilcoxon
rank sum test was conducted between the computational time
of each feature set and that of “All”. If a feature set has
a significantly shorter computation time (under significance
level of 0.05), then the boxplot is filled in green. If there is
no statistical difference between the two computational times,
then the boxplot is filled in white.

From Fig. 8, it can be seen that the computational time of
the GP with the selected feature sets (51 generation) plus the
feature selection time is at least statistically the same as the
computation time of the GP with “All” (55 generations).

In summary, Figs. 7 and 8 show that NiSuFS can help GP
evolve significantly better rules within similar or even shorter
computational time.

V. FURTHER ANALYSIS
A. Generalisability

First, we investigate the effect of the selected feature set
on the generalisation of the dispatching rules evolved by GP.
To this end, we plot the training and test performances of the
dispatching rules evolved by 30 independent runs of GP with
different feature sets in Fig. 9. Here, we select (a) the entire
feature set “All”, (b) the feature set preselected in [34], and
(c) the feature sets FS10, FS16, FS21 and FS28 selected by
NiSuFS. FS10 is a representative poor feature set that does

0.95-missing
95.0-

92.5-

0.85-missing
98- f

0.95—full

st Perf (%)

e

2 95.0-

87.5-
0.85—full

0.9-missing

b A S ey e sl bl S

0.8-missing

gg¢+é$$éﬁé%$+*$;$$$g4éé+#$#ﬁéﬁéé+éSE$;**#%ﬁé%?+$$;¥$ﬁééﬁ%$$%*+éﬁéé%é

0.9—full

R RN C R

0.8—full

ggﬁ4ﬁéﬁ%ﬁ%é$$*$4¢%ﬁ¢é¥é*+*¢++#$éé§ggé;éé+égéé%4%%¥é¢¢$;ﬁ%$ég++éﬁ+¢¢ﬁ

PSS 22 55 01 & O A0 AD AN AD AD AT 4D 49 90 9% 42 93 9h 99 90 71 9 99 o

PMeFFa 22 55 61 & O A0 AD AN DO AT 4D 49 90 93 2 3 9h 95 90 71 9D 99 o0

Fig. 7. The boxplots of the test performance of the rules evolved by GP (in 30 independent runs) using all the features (All), the best-so-far feature set (BSF),
and the 30 feature sets selected by NiSuFS. The Wilcoxon rank sum test was conducted between each feature set selected by NiSuFS and “All” (“BSF”)
feature set under significance level of 0.05. Based on the test results, the filled colours from best to worse are green, blue, orange, white, red.

12000~

11000~

10000~

I
{11
I
I

Time (second)

9000~

0
I
I

8000~

7000~

NeFA 23 5 9 61 2 0022 AM 010 N1 A 10 90 95 92 93 9h 95 90 41 79 99 o

Fig. 8. Computational time of the GP with “All” (55 generations), “BSF” (51
generations) and the 30 feature sets (51 generations) plus the time for NiSuFS.
If one feature set has a significantly shorter computational time than that of
the GP with “All”, then the boxplot is filled in green. If the two computational
times are statistically the same, then the boxplot is filled in white.

not select the feature NOPT. FS16, FS21 and FS28 represent
three promising feature sets that included all the important
features (i.e. PT, NOPT, WINQ, NOINQ and W), and achieved
significantly better test performances than “BSF” on some test
sets. However, they have different selected features. For the
sake of convenience, the elements in these feature sets are
given below:

« “BSF” = {MRT, PT, NOPT, WINQ, NOINQ, W},
« FS10 = {WIQ, PT, WINQ, NOINQ, DD, W, AT},
« FS16 = {PT, NOPT, WINQ, NOINQ, W},

» FS21 = {PT, NOPT, WKR, NOR, WINQ, NOINQ, W},

« FS28 = {NOIQ, WIQ, PT, NOPT, WINQ, NOINQ, W}.

In other words, based on FS16, “BSF” has an additional
feature MRT, FS21 has two additional features {WKR, NOR},
and FS28 has two additional features {NOIQ, WIQ}.

Note that we changed the random seed for the training sim-
ulations in each generation, and set different maximal number
of generations for “All” (55 generations) and other feature sets
(51 generations). To eliminate the effect of different training
simulations on the training performance, we use the training
performance in generation 51 for all the feature sets.

From Fig. 9, we can have the following observations:

« For all the selected feature sets, there is a strong positive
correlation between the training and test performances
of the dispatching rules. That is, given the same feature
set, the rule with a better training performance tends to
perform better on the test sets.

o Compared to other feature sets, the rules obtained by
“All” have larger standard deviations in their training and
test performances. This demonstrates that a larger feature
set with redundant/relevant features makes it harder for
GP to search in the larger search space, and thus less
capable of finding promising regions.

o FS16, FS21 and FS28 and “BSF”’ have much better
training and test performances than “All” (their results
are located towards the bottom-left areas). The training
and test performances of FS10 are much worse than that
of “All” (located towards the top-right areas) due to the
lack of NOPT in the terminal set.

o Compared to “BSF”, FS16 achieved both better training
and test performances, as well as better generalisability,
i.e. smaller difference between training and test perfor-
mances. Note that the only difference between FS16

0.95-missing 0.9-missing 97 0.85-missing 0.8—-missing
. .
98-
96-
92-
g et " o o7- i
51--' LS .:?-‘f 951 b '.."l. - ud (]
90- R & 8 mg ® u -l“'- -
o - " [] - + 96- u ‘!};-
o + 4 92- o 94- 4 A F . Ll i
e EOL) Sl 4+ el + T -
8g- LB e e W £ + 95- 5 Y o=
o i g 93- Nl Foiat
S v fyr e Ea e L *
S - J k= U 94- o
Cse- 90 b 9. T +
& 0.95-full 0.9-full 0.85-full 0.8-full
g 95- - 98- 99
o
- 96-] 98-
93- ',l"'{ . "u o7 . .
5
o s 9- o 97- L
91- e o+ 941 'u..:" L a=ug’ ’ - 2T "
J Lo 95 LT 96- M e
P b - AR A €++ +]'
3 . 4- - =
89~ T 92 e 9 L 95- , AL B
= e 93- TPk + g
91 92 93 94 91 92 93 94 91 92 93 94 91 92 93 94
Train Perf (%)
Al = FS10 = FS21
BSF + FS16 * FS28

Fig. 9. The training versus test performance scatter plots of the dispatching rules evolved by 30 independent runs of GP with the entire feature set (All), the
best-so-far feature set obtained in [34] (BSF), and several feature sets selected by NiSuFS (FS10, FS16, FS21 and FS28) on the 8 test sets.

and “BSF” is that FS16 removes the feature MRT from
“BSF”. This demonstrates that MRT might be redundant
given the feature set {PT, NOPT, WINQ, NOINQ, W}.
Moreover, it shows that even a slight modification of
the terminal set can significantly affect the search effec-
tiveness of GP and the generalisability of the evolved
dispatching rules.

o Although FS21 obtained slightly better training perfor-
mance than FS16, its generalisability is much worse than
that of FS16. The difference between the training and
test performances is much larger for FS21 than for FS16,
especially when the training performance is extremely
good (the most left areas). Compared to FS16, FS21 has
two extra features WKR and NOR, which are both related
to the work remaining (total processing time and number
of operations). These two features might be useful in
minimising the mean weighted tardiness (more than 20
runs selected at least one of them according to Fig. 6).
However, a larger feature set tends to result in more com-
plex dispatching rules, and thus worse generalisability.

o FS28 showed similar generalisability and test perfor-
mance as that of FS16, which are better than FS21.
However, it has two outliers on the top-right side, with
much worse training and test performances. This indicates
that the additional NOIQ and WIQ features may not
provide extra useful information, but may mislead GP
to poor local optima sometimes.

B. Feature Selection vs Training Performance

Fig. 9 shows a strong correlation between the training and
test performances. Here we conduct further analysis to inves-
tigate the relationship between feature selection and training
performance.

First we focus on the training curves. Fig. 10 shows the
training curves of GP using feature sets of “All”, “BSF”,

FS10, FS16, FS21 and FS28 (note that “All” has 55 gener-
ations). From the figure, one can see that during the early
stage of GP (before the 10th generation), the GP with “All”
converged more slowly than the GPs with other feature sets.
This demonstrates the efficacy of using smaller feature sets in
improving convergence speed. Then, the disadvantage of not
including NOPT in the terminal set became more obvious,
and the GP with FS10 started to be stuck in poor local
optima. It was finally outperformed by the GP with “All”.
On the other hand, the GPs with “BSF”, FS16, FS21 and
FS28 continued to improve, and finally achieved much better
training performances than the GP with “All”. This shows that
these more compact feature sets led to both faster convergence
speed and better final results.

Then, for each feature, we investigate the relationship be-
tween whether it is selected in the terminal set and the resultant
training performance of GP. Fig. 11 shows the distributions of
the training performances of the 30 independent runs of GP,
categorised by whether each feature is selected or not.

From Fig. 11, it is obvious that when NOPT is not selected,
the training performance is much worse than when it is
selected. Similar (but less obvious) phenomena can be found
for NOR and WKR, indicating that these two features are
likely to be important features. On the other hand, for AT,
DD, FDD, MRT, NMRT, NOIQ, NOW, ORT and WIQ, the
best training performance can be achieved without selecting
them. Therefore, they tend to be redundant given the remaining
features (i.e. NOINQ, NOPT, NOR, PT, W, WINQ, WKR).

C. Program Size

Fig. 12 shows the program size (number of nodes) of the
best individual in each generation of the GPs with “All”,
“BSF”, FS10, FS16, FS21 and FS28. From the figure, one
can hardly distinguish the effect of different feature sets on the
program size of the best individual. We expect more compact

102-
99-
i
b
)
\
S
< g6 i
A A
3 Vi
£ i '
[o
2 n
.?1\‘ - Bo2d o I!I AN T
W d 20 ‘AN [} [I
93- g & B\ A RAS AV I I
TR TS WA, TARARL W/ Al
| B WO ¥t s T B PR T
] L a2y LRON AL AVAIR N TS
\?»v_' :I j“'i "‘4-}‘/ \ !
- T+ ! [y '
4 s VYR)
v Y
90-]
J
0 20 40
Generation
All = FS10-= FS21
BSF -+ FS16 - FS28

Fig. 10. The training curves of GP using feature sets of “All”, “BSF”, FS10,
FS16, FS21 and FS28.

AT DD FDD MRT

>
»

© ©
NN

o w

OS> DBRD D> >
PRSI P
BREDOD B>
PIIRPRS IS B

NMRT NOINQ NOIQ NOPT
2 7y Y
93.5 +
A A
: i -
92,5 t * -
£92.0 A 1
S
S NOR NOW ORT PT
£
c 7 7'y A
8935 T
A
93.0 %
92.5
92.0 i
w WINQ wIQ WKR
Y
93.5
A A A
93.0- a 4 Y
A A
92.5 4 4
92.0- - § 3

ge\e'c\edUnseieC‘ed Se\e'c\edu“seiec‘ed Se\e'c\edunseiec‘ed Se\e'c\edu“seiec\ed

Fig. 11. The distributions of the training performances of the 30 independent
runs of GP, categorised by whether each feature is selected or not.

feature sets (e.g. FS16, FS21, FS28 and “BSF”) to help GP
obtain simpler and shorter rules. However, this phenomenon
is not obvious from Fig. 12. The reason may be that GP
individuals need a large fraction of redundant branches to
protect its truly useful building blocks from being destroyed
regardless of the terminal set of GP. In order to evolve shorter
and more understandable rules, we need more sophisticated
search process such as grammar-based GP. We will do more

FoE®
',h L)
A\ iR h.,’\-, AJEY Y
604 ; ﬁ:\"\\)‘ wace, W F?"‘u‘*
LN A L A By
\/ oy o L
oMYA Foitie Tau
/ : I ﬁbj i
4 [y X
g) e SOl
wn p ¥¥
£ i
g 40 I B
g e
o I 1
[y,
A
Al
pu
| \l
20 ‘_v Vi
i
W
1
0 20 40
Generation
All = FS10-= FS21
BSF -+ FS16 - FS28

Fig. 12. The program size (number of nodes) of the best individual in each
generation of the GPs with “All”, “BSF”, FS10, FS16, FS21 and FS28.

investigation on this direction in our future work.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed the first practical feature se-
lection algorithm to evolve dispatching rules for JSS with
GP. So far, there is only one existing feature selection algo-
rithm [34], which is computationally impractical (70 hours on
power CPUs). The proposed feature selection algorithm, called
NiSuFS, employs a niching-based GP framework to obtain
a diverse set of good rules efficiently. In addition, it uses a
surrogate model to significantly decrease the complexity of the
fitness evaluation. The efficacy of NiSuFS is demonstrated by
the experimental studies on the H2010 DJSS simulation [16]
that minimises the mean weighted tardiness. NiSuFS is shown
to be very efficient (only take less than 10% of the standard
GP training time to obtain the selected features). Furthermore,
the quality of the feature sets obtained by NiSuFS is verified.
It has been demonstrated that about half of the feature sets
selected by NiSuFS can help GP evolve significantly better
rules than using the entire feature set within similar or even
shorter computational time. Almost 66%(2/3) of the selected
features are statistically no worse than the best-so-far “BSF”
feature set ({MRT, PT, NOPT, WINQ, NOINQ, W}) in terms
of the test performance of the rules evolved by GP by using
that feature set as terminals. Moreover, NiSuFS managed to
identify feature sets (e.g. {PT, NOPT, WINQ, NOINQ, W}
and {PT, NOPT, WKR, NOR, WINQ, NOINQ, W}) that are
significantly better than the best-so-far “BSF” feature set.

Further analysis shows that a better feature set than “BSF”
can lead to both better test performance and generalisation
(difference between training and test performances) of the
rules evolved by GP, as well as a consistently better con-
vergence curve. In other words, GP can achieve both faster

convergence speed and better final solution than “BSF” when
using a better feature set (e.g. {PT, NOPT, WINQ, NOINQ,
W1). Finally, we observed that simply using a more compact
feature set cannot effectively reduce the program size and
complexity of the evolved rules.

In the future, more investigations will be conducted on fur-
ther improving the accuracy of the feature selection. NiSuFS
sometimes failed to identify all the important features (e.g.
NOPT and WINQ in the experimental studies), and the cor-
responding selected feature set led to a significantly worse
performance than other selected feature sets (and the best-so-
far “BSF” set). A possible future direction is to transform the
output of feature selection from binary values (select or not)
to the probability of selecting each feature in the terminal set.
Then, one can adaptively change the terminal set according to
the individuals in the current population. In addition, we will
verify our feature selection method on more job shop scenarios
with other objectives (e.g. makespan and total flowtime).

REFERENCES

[1] P. Bille. A survey on tree edit distance and related problems. Theoretical
computer science, 337(1):217-239, 2005.

[2] J. H. Blackstone, D. T. Phillips, and G. L. Hogg. A state-of-the-art

survey of dispatching rules for manufacturing job shop operations. The

International Journal of Production Research, 20(1):27-45, 1982.

J. Branke, T. Hildebrandt, and B. Scholz-Reiter. Hyper-heuristic

evolution of dispatching rules: A comparison of rule representations.

Evolutionary Computation, 23(2):249-277, 2015.

J. Branke, S. Nguyen, C. Pickardt, and M. Zhang. Automated design

of production scheduling heuristics: A review. IEEE Transactions on

Evolutionary Computation, 20(1):110-124, 2016.

[5] E. Burke, M. Gendreau, M. Hyde, G. Kendall, G. Ochoa, E. Ozcan, and
R. Qu. Hyper-heuristics: A survey of the state of the art. Journal of the
Operational Research Society, 64(12):1695-1724, 2013.

[6] E. K. Burke, M. R. Hyde, G. Kendall, and J. Woodward. Automating

the packing heuristic design process with genetic programming. Evolu-

tionary computation, 20(1):63-89, 2012.

J. Ceberio, E. Trurozki, A. Mendiburu, and J. A. Lozano. A distance-

based ranking model estimation of distribution algorithm for the flow-

shop scheduling problem. IEEE Transactions on Evolutionary Compu-

tation, 18(2):286-300, 2014.

[8] Q. Chen, B. Xue, and M. Zhang. Improving generalisation of genetic

programming for high-dimensional symbolic regression with feature

selection. In IEEE Congress on Evolutionary Computation. IEEE, 2016.

A. Friedlander, K. Neshatian, and M. Zhang. Meta-learning and

feature ranking using genetic programming for classification: Variable

terminal weighting. In Proceedings of IEEE Congress on Evolutionary

Computation (CEC), pages 941-948. IEEE, 2011.

[10] C. Geiger and R. Uzsoy. Learning effective dispatching rules for batch
processor scheduling. International Journal of Production Research,
46(6):1431-1454, 2008.

[11] D. E. Goldberg and J. Richardson. Genetic algorithms with sharing
for multimodal function optimization. In Proceedings of the Second
International Conference on Genetic Algorithms, pages 41-49. Hillsdale,
NJ: Lawrence Erlbaum, 1987.

[12] 1. Guyon and A. Elisseeff. An introduction to variable and feature
selection. The Journal of Machine Learning Research, 3:1157-1182,
2003.

[13] G. R. Harik. Finding multimodal solutions using restricted tournament
selection. In Proceedings of International Conference on Genetic
Algorithms, pages 24-31, 1995.

[14] R. Haupt. A survey of priority rule-based scheduling. Operations-
Research-Spektrum, 11(1):3-16, 1989.

[15] T. Hildebrandt and J. Branke. On using surrogates with genetic
programming. Evolutionary computation, 23(3):343-367, 2015.

[16] T. Hildebrandt, J. Heger, and B. Scholz-Reiter. Towards improved dis-
patching rules for complex shop floor scenarios: a genetic programming
approach. In Proceedings of Genetic and Evolutionary Computation
Conference, pages 257-264. ACM, 2010.

[3

=

[4

=

[7

—

[9

—

[17]

(18]

[19]

[20]

[21]

(22]

[23]

[24]

[25]
[26]
(271

[28]

[29]
[30]

[31]

(32]

[33]

[34]

[35]

[36]

[37]

[38]

(39]

[40]

[41]

[42]

O. Holthaus and C. Rajendran. Efficient dispatching rules for scheduling
in a job shop. International Journal of Production Economics, 48(1):87—
105, 1997.

O. Holthaus and C. Rajendran. Efficient jobshop dispatching rules:
further developments. Production Planning & Control, 11(2):171-178,
2000.

J. Horn, N. Nafpliotis, and D. E. Goldberg. A niched pareto genetic
algorithm for multiobjective optimization. In Proceedings of the IEEE
Congress on Evolutionary Computation, pages 82—87. IEEE, 1994.

R. Hunt, M. Johnston, and M. Zhang. Evolving less-myopic scheduling
rules for dynamic job shop scheduling with genetic programming.
In Proceedings of the 2014 conference on Genetic and evolutionary
computation, pages 927-934. ACM, 2014.

D. Jakobovi¢ and L. Budin. Dynamic scheduling with genetic program-
ming. In Genetic Programming, pages 73—84. Springer, 2006.

D. Jakobovi¢ and K. Marasovié. Evolving priority scheduling heuristics
with genetic programming. Applied Soft Computing, 12(9):2781-2789,
2012.

M. Jayamohan and C. Rajendran. New dispatching rules for shop
scheduling: a step forward. International Journal of Production Re-
search, 38(3):563-586, 2000.

Y. Jin. Surrogate-assisted evolutionary computation: Recent advances
and future challenges. Swarm and Evolutionary Computation, 1(2):61-
70, 2011.

A. S. Kiran and M. L. Smith. Simulation studies in job shop sheduling—
i a survey. Computers & Industrial Engineering, 8(2):87-93, 1984.

J. Koza. Genetic programming: on the programming of computers by
means of natural selection, volume 1. MIT press, 1992.

S. Kreipl. A large step random walk for minimizing total weighted
tardiness in a job shop. Journal of Scheduling, 3(3):125-138, 2000.

H. Liu and L. Yu. Toward integrating feature selection algorithms for
classification and clustering. IEEE Transactions on Knowledge and Data
Engineering, 17(4):491-502, 2005.

S. Luke et al. A java-based evolutionary computation research system.
https://cs.gmu.edu/~eclab/projects/ecj/.

S. W. Mahfoud. Niching methods for genetic algorithms. PhD thesis,
University of Illinois at Urbana-Champaign, 1995.

M. K. Marichelvam, T. Prabaharan, and X. S. Yang. A discrete firefly
algorithm for the multi-objective hybrid flowshop scheduling problems.
IEEE transactions on evolutionary computation, 18(2):301-305, 2014.
Y. Mei, B. Xue, and M. Zhang. Fast bi-objective feature selection using
entropy measures and bayesian inference. In Proceedings of Genetic and
Evolutionary Computation Conference, pages 469-476. ACM, 2016.
Y. Mei and M. Zhang. A comprehensive analysis on reusability of
gp-evolved job shop dispatching rules. In Proceedings of Congress on
Evolutionary Computation. IEEE, 2016.

Y. Mei, M. Zhang, and S. Nyugen. Feature selection in evolving job shop
dispatching rules with genetic programming. In Proceedings of Genetic
and Evolutionary Computation Conference, pages 365-372. ACM, 2016.
B. L. Miller and M. J. Shaw. Genetic algorithms with dynamic niche
sharing for multimodal function optimization. In Proceedings of IEEE
International Conference on Evolutionary Computation, pages 786—791.
IEEE, 1996.

S. Nguyen, M. Zhang, M. Johnston, and K. Tan. A computational study
of representations in genetic programming to evolve dispatching rules
for the job shop scheduling problem. IEEE Transactions on Evolutionary
Computation, 17(5):621-639, 2013.

S. Nguyen, M. Zhang, M. Johnston, and K. Tan. Automatic design of
scheduling policies for dynamic multi-objective job shop scheduling via
cooperative coevolution genetic programming. [EEE Transactions on
Evolutionary Computation, 18(2):193-208, 2014.

S. Nguyen, M. Zhang, M. Johnston, and K. C. Tan. Dynamic multi-
objective job shop scheduling: A genetic programming approach. In
Automated Scheduling and Planning, pages 251-282. Springer, 2013.
S. Nguyen, M. Zhang, and K. C. Tan. Surrogate-assisted genetic
programming with simplified models for automated design of dis-
patching rules. [EEE Transactions on Cybernetics, pages 1-15, DOI:
10.1109/TCYB.2016.2562674, 2016.

S. Ok, K. Miyashita, and S. Nishihara. Improving performance of gp
by adaptive terminal selection. In PRICAI 2000 Topics in Artificial
Intelligence, pages 435-445. Springer, 2000.

A. Pétrowski. A clearing procedure as a niching method for genetic
algorithms. In Proceedings of IEEE International Conference on
Evolutionary Computation, pages 798-803. IEEE, 1996.

C. Pickardt, T. Hildebrandt, J. Branke, J. Heger, and B. Scholz-Reiter.
Evolutionary generation of dispatching rule sets for complex dynamic

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

(571

[58]

[59]

[60]

scheduling problems. International Journal of Production Economics,
145(1):67-77, 2013.

M. L. Pinedo. Scheduling: theory, algorithms, and systems. Springer
Science & Business Media, 2012.

B. Qu, J. J. Liang, and P. N. Suganthan. Niching particle swarm
optimization with local search for multi-modal optimization. Information
Sciences, 197:131-143, 2012.

C. Rajendran and O. Holthaus. A comparative study of dispatching rules
in dynamic flowshops and jobshops. European Journal of Operational
Research, 116(1):156-170, 1999.

R. Ramasesh. Dynamic job shop scheduling: a survey of simulation
research. Omega, 18(1):43-57, 1990.

M. Riley, Y. Mei, and M. Zhang. Feature selection in evolving job
shop dispatching rules with genetic programming. In IEEE Congress
on Evolutionary Computation. IEEE, 2016.

J. Rosca and D. Ballard. Genetic programming with adaptive represen-
tations. Technical report, University of Rochester, Computer Science
Department, Rochester, NY, USA, 1994.

B. Sareni and L. Krihenbiihl. Fitness sharing and niching methods
revisited. IEEE Transactions on Evolutionary Computation, 2(3):97—
106, 1998.

V. Sels, N. Gheysen, and M. Vanhoucke. A comparison of priority
rules for the job shop scheduling problem under different flow time-
and tardiness-related objective functions. International Journal of
Production Research, 50(15):4255-4270, 2012.

V. Subramaniam, T. Ramesh, G. Lee, Y. Wong, and G. Hong. Job
shop scheduling with dynamic fuzzy selection of dispatching rules.
The International Journal of Advanced Manufacturing Technology,
16(10):759-764, 2000.

J. Tay and N. Ho. Evolving dispatching rules using genetic programming
for solving multi-objective flexible job-shop problems. Computers &
Industrial Engineering, 54(3):453-473, 2008.

K. Veeramachaneni, O. Derby, D. Sherry, and U.-M. O’Reilly. Learning
regression ensembles with genetic programming at scale. In Proceedings
of the 15th annual conference on Genetic and evolutionary computation,
pages 1117-1124. ACM, 2013.

H. Wang, Y. Jin, and J. O. Janson. Data-driven surrogate-assisted
multi-objective evolutionary optimization of a trauma system. [EEE
Transactions on Evolutionary Computation, 20(6):939-952, 2016.

J. Xiong, J. Liu, Y. Chen, and H. A. Abbass. A knowledge-based
evolutionary multiobjective approach for stochastic extended resource
investment project scheduling problems. IEEE Transactions on Evolu-
tionary Computation, 18(5):742-763, 2014.

B. Xue, M. Zhang, W. Browne, and X. Yao. A survey on evolutionary
computation approaches to feature selection. IEEE Transactions on
Evolutionary Computation, 20(4):606—626, 2016.

B. Xue, M. Zhang, and W. N. Browne. Particle swarm optimization
for feature selection in classification: A multi-objective approach. /IEEE
Transactions on Cybernetics, 43(6):1656-1671, 2013.

B. Yuan, B. Li, T. Weise, and X. Yao. A new memetic algorithm
with fitness approximation for the defect-tolerant logic mapping in
crossbar-based nanoarchitectures. [EEE Transactions on Evolutionary
Computation, 18(6):846-859, 2014.

K. Zhang and D. Shasha. Simple fast algorithms for the editing distance
between trees and related problems. SIAM journal on computing,
18(6):1245-1262, 1989.

Q. Zhang and H. Li. Moea/d: A multiobjective evolutionary algorithm
based on decomposition. IEEE Transactions on Evolutionary Computa-
tion, 11(6):712-731, 2007.

Yi Mei (S’09-M’13) is a Lecturer at the School of
Engineering and Computer Science, Victoria Uni-
versity of Wellington, Wellington, New Zealand. He
received his BSc and PhD degrees from University
of Science and Technology of China in 2005 and
2010, respectively. His research interests include
evolutionary computation in scheduling, routing and
combinatorial optimisation, as well as evolutionary
machine learning, genetic programming, feature se-
lection and dimensional reduction.

Dr Mei has more than 50 fully referred publica-
tions, including the top journals in EC and Operations Research (OR) such
as IEEE TEVC, IEEE Transactions on Cybernetics, European Journal of
Operational Research, ACM Transactions on Mathematical Software. He is an
Editorial Board Member of International Journal of Bio-Inspired Computation.
He currently serves as a Vice-Chair of the IEEE CIS Emergent Technologies
Technical Committee, and a member of three IEEE CIS Task Forces. He is a
guest editor of a special issue of the Genetic Programming Evolvable Machine
journal. He serves as a reviewer of over 25 international journals including
the top journals in EC and OR.

Su Nguyen received the B.E. degree in Industrial
and Systems Engineering from the Ho Chi Minh
City University of Technology, Vietnam, in 2006, the
M.E. degree in Industrial Engineering and Manage-
ment from the Asian Institute of Technology (AIT),
Bangkok, Thailand, in 2008, and the Ph.D. degree
in Operations Research and Data Analytics from
Victoria University of Wellington (VUW), Welling-
ton, New Zealand, in 2013. He is currently a David
Myers Research Fellow attached to the Centre for
Research in Data Analytics and Cognition, La Trobe

University, Australia.

Su Nguyen has taken different research positions focusing on quantita-
tive methods for operations management. He was a Research Associate in
Industrial and Manufacturing Engineering at the School of Engineering and
Technology, AIT from 2009 to 2010 and the Research Assistant at VUW from
2011 to 2013. He was a postdoctoral research fellow at VUW from 2013
to 2016, focusing on automated design of production scheduling heuristics.
From 2014 to 2016, he was also the lecturer at International University, VNU-
HCMC and Hoa Sen University in Vietnam. His primary research interests
include evolutionary computation, optimization, data analytics, large-scale
simulation, and their applications in operations management. Su Nguyen is
a member of IEEE and IEEE Computational Intelligence Society and the
Chair of IEEE Task Force on Evolutionary Scheduling and Combinatorial
Optimization.

Bing Xue (M’10) received the B.Sc. degree from
the Henan University of Economics and Law,
Zhengzhou, China, in 2007, the M.Sc. degree in
management from Shenzhen University, Shenzhen,
China, in 2010, and the PhD degree in computer
science in 2014 at Victoria University of Wellington,
New Zealand. She is currently a Senior Lecturer
in School of Engineering and Computer Science
at Victoria University of Wellington. Her research
focuses mainly on evolutionary computation, feature
selection, feature construction, multi-objective opti-
misation, data mining and machine learning.

Dr Xue is an Associate Editor/member of Editorial Board for five interna-
tional journals including IEEE Computational Intelligence Magazine, Applied
Soft Computing, International Journal of Swarm Intelligence, and Interna-
tional Journal of Computer Information Systems and Industrial Management
Applications. She is a Guest Editor for the Special Issue on Evolutionary
Feature Reduction and Machine Learning for the Springer Journal of Soft
Computing. She is also a Guest Editor for Evolutionary Image Analysis and
Pattern Recognition in Journal of Applied Soft Computing.

She has also been a program chair, special session chair, tutorial chair,
symposium chair, and publicity chair for a number of international confer-
ences. She is serving as a reviewer of over 20 international journals and
a program committee member for over 50 international conferences. She is
currently the Chair of the IEEE Task Force on Evolutionary Feature Selection
and Construction. She is chairing the IEEE CIS Graduate Student Research
Grants Committee and the Secretary of the IEEE Computational Intelligence
Chapter in New Zealand.

Mengjie Zhang (M’04-SM’10) received the B.E.
and M.E. degrees from Artificial Intelligence Re-
search Center, Agricultural University of Hebei,
Hebei, China, and the Ph.D. degree in computer
science from RMIT University, Melbourne, VIC,
Australia, in 1989, 1992, and 2000, respectively.

Since 2000, he has been with the Victoria Univer-
sity of Wellington, Wellington, New Zealand, where
he is currently Professor of Computer Science, Head
of the Evolutionary Computation Research Group,
and the Associate Dean (Research and Innovation) in
the Faculty of Engineering. His current research interests include evolutionary
computation, particularly genetic programming, particle swarm optimization,
and learning classifier systems with application areas of image analysis, mul-
tiobjective optimization, feature selection and reduction, job shop scheduling,
and transfer learning. He has published over 350 research papers in refereed
international journals and conferences.

Prof. Zhang has been serving as an Associated Editor or Editorial Board
Member for ten international journals (including IEEE Transactions on
Evolutionary Computation, IEEE Transactions on Cybernetics, Evolutionary
Computation Journal, and IEEE Transactions on Emergent Topics in CI)
and as a Reviewer of over 20 international journals. He has been serving
as a Steering Committee Member and a Program Committee Member for
over 100 international conferences. He has supervised over 50 postgraduate
research students. He is the Chair of the IEEE CIS Intelligent Systems and
Applications Technical Committee, a member of the IEEE CIS Evolutionary
Computation Technical Committee, a Vice-Chair of the IEEE CIS Task Force
on Evolutionary Computer Vision and Image Processing, a Vice-Chair of the
IEEE CIS Task Force on Evolutionary Computation for Feature Selection
and Construction, a member of IEEE CIS Task Force of Hyper-heuristics,
and the Founding Chair for IEEE Computational Intelligence Chapter in New
Zealand.

