
A Hybrid Particle Swarm Optimisation for
Feature Selection in Classification on

High-Dimensional Data
Binh Tran, Mengjie Zhang, and Bing Xue

Evolutionary Computation Research Group
Victoria University of Wellington, PO Box 600, Wellington, New Zealand

Email: binh.tran,mengjie.zhang,bing.xue@ecs.vuw.ac.nz

Abstract—Recent research has shown that Particle Swarm Op-
timisation is a promising approach to feature selection. However,
applying it on high-dimensional data with thousands to tens of
thousands of features is still challenging because of the large
search space. While filter approaches are time efficient and
scalable for high-dimensional data, they usually obtain lower
classification accuracy than wrapper approaches. On the other
hand, wrapper methods require a longer running time than
filter methods due to the learning algorithm involved in fitness
evaluation. This paper proposes a new strategy of combining
filter and wrapper approaches in a single evolutionary process in
order to achieve smaller feature subsets with better classification
performance in a shorter time. A new local search heuristic
using symmetric uncertainty is proposed to refine the solutions
found by PSO. The proposed method is examined and compared
with three recent PSO based methods on eight high-dimensional
problems of varying difficulty. The results show that the hybrid
PSO is more effective and efficient than the other methods.

I. INTRODUCTION

Feature selection (FS) is a data preprocessing technique
used to reduce the dimensionality of the problem while main-
tain or increase the discriminating ability of the feature sets.
FS has been applied to different machine learning tasks espe-
cially in classification where an instance is classified into its
corresponding category. FS helps classification algorithms to
obtain simpler classifiers with better performance in a shorter
time [1]. It is considered as an essential step to deal with
high-dimensional data with thousands to tens of thousands
of features.These datasets usually include many irrelevant
and redundant features which may significantly degrade the
performance of learning algorithms.

Researchers have proposed a large number of FS methods
which can be generally classified into wrapper and filter
approaches [1]. Filter methods evaluate features based on their
intrinsic characteristics. On the other hand, wrapper methods
use classification accuracy of a learnt classifier to evaluate the
feature subset. Although wrapper methods are typically less
time efficient than filter methods, they usually achieve better
classification performance than filters.

Although FS has been studied for decades, applying it on
high-dimensional data is still challenging since exhaustive
search for an optimal solution in 2n possible solutions for
a dataset with n features is impractical.

Feature ranking or feature weighting is one of the scalable
approaches to FS on high-dimensional data. In these methods,
features are individually ranked based on their degrees of
relevance using some measure such as distance [2], [3], and
feature dispersion [4]. The top ranked features are used to
form the final feature subset. Therefore, a certain domain
knowledge is required to determine the number of features
should be selected. Moreover, since features are evaluated
individually, these methods cannot identify redundancy and
interaction among features.

To address these limitations, a two-stage approach was
proposed where feature ranking is performed following by an
heuristic search to remove redundant features in the ranked
list [5], [6]. In the second stage, a filter measure can be used
to evaluate feature redundancy such as coefficient correlation
[7] and symmetric uncertainty [6] or a wrapper measure
such as classification accuracy [5]. In general, these methods
have shown to be effective and efficient to remove redundant
features. However, since the features are ranked individually
and the proposed redundancy measures can only detect redun-
dancy between two features, they may fail to identify multiple
feature interactions [6], [8]. Therefore, a more powerful search
technique is necessary to obtain better performance.

Particle Swarm Optimisation (PSO) [9] is a global search
technique that simulates the social behaviors of birds flocking.
In PSO, a swarm consists of many particles moving in the
solution search space. Each solution is encoded as the position
of each particle and evaluated by a fitness function. During
the search process, each particle remembers the best solution
it has found so far (pbest) and shares this information with its
neighbours. In this way, each particle knows the best solution
that the whole population has explored so far (gbest). By
moving towards these good locations with its own velocity,
particles are able to explore better solutions.

PSO has been applied and shown its high potential to FS
[10], [11], [12]. However, due to the large search space, PSO-
based methods on high-dimensional data still face the problem
of stagnation in local optima. To overcome this problem,
different strategies have been proposed such as changing gbest

when its fitness does not improve [13], [14] or combining
filter and wrapper in two stages to reduce the number of
features before using PSO for feature subset selection [15],

A PSO Based Hybrid Feature Selection Algorithm
for High-Dimensional Classification

A PSO Based Hybrid Feature Selection Algorithm
for High-Dimensional Classification

[16]. Hybrid approaches are also proposed as a flexible way
to combine filter and wrapper in a single stage. For example,
in a wrapper based PSO for FS [17], a local search using
mutual information is applied on gbest to remove redundant
features. In contrast, the filter based PSO proposed in [18]
uses classification accuracy to decide if a new pbest should
be updated or not. Results showed that the proposed method
achieved higher classification accuracy than purely filter based
PSO method. However, different combinations of filter and
wrapper evaluations also showed that the more filter evalua-
tions the algorithm used, the worse classification performance
and the larger feature subsets it obtained. Therefore, how to
combine filter and wrapper to synthesize their strengths while
limiting their drawbacks is still challenging.

In a recent study [19], we proposed to use the gbest resetting
mechanism in [14] and a local search on every new pbest

found during the evolutionary process to find better solutions
surrounding the new pbest location. The local search was
done by randomly flipping a small percentage of features from
selected to not selected and vice versa. If a better flipped
solution is found, then pbest is updated. The proposed method
achieved a significantly better classification accuracy with a
smaller number of features than the previous method [14].
However, using a randomly flipping mechanism, the chance
of reaching better solutions in this local search may be low.
In order to improve its performance, the local search should
be guided by some general or common sense knowledge in FS
which can identify relevant and redundant features. Therefore,
in this paper, we propose a new local search heuristic that uses
a filter measure in choosing features for flipping in such a way
that better solutions are more likely to be found.

A. Goals

The main goal of this paper is to develop a new local search
PSO-based FS in classification on high-dimensional data. The
proposed method will be examined and compared with other
local search based PSO methods for FS. Specifically, we will
investigate the following research objectives:

• Whether the feature subsets selected by the proposed
algorithm are smaller and achieve similar or better clas-
sification performance than the original feature sets and
those selected by the standard PSO.

• Whether the proposed local search heuristic significantly
reduces the number of features and increases the clas-
sification performance over the randomly flipping local
search.

• Whether the proposed method is more effective than
the method proposed in [19] which combines both local
search and resetting gbest.

• Whether the proposed method has significant shorter
running time than the above compared methods.

II. BACKGROUND AND RELATED WORK

A. Particle Swarm Optimisation

Particle swarm optimisation (PSO) [9] is a population based
algorithm. It works by maintaining a swarm or population

of particles. Each particle encodes a candidate solution in its
position which is a vector of n real numbers where n is the
dimensionality of the problem. Besides position, each particle
also has a velocity which is n-dimension vector with each
dimension showing the speed and direction that the particle
should move in the next iteration. In each iteration, a fitness
function is used to evaluate the particles. The best position
that each particle has explored so far (pbest) is recorded and
share among particles to find the best position of the whole
population (gbest). Then, the velocity of a particle is updated
based on its current velocity, and these two best positions.
Specifically, the velocity and the position of each particle in
each dimension are updated as follows:

v
t+1
id = w⇤vtid+c1⇤r1i⇤(ptid�x

t
id)+c2⇤r2i⇤(ptgd�x

t
id) (1)

x
t+1
id = x

t
id + v

t+1
id (2)

where v
t
id and x

t
id are the velocity and the position of particle

i in dimension d at time t, respectively. pid and pgd are
pbest and gbest positions in dimension d. c1 and c2 are
acceleration constants, and r1 and r2 are random values
uniformly distributed in [0, 1].

When applying PSO to FS, a candidate solution which is a
feature subset is encoded in the position vector. The value in
each dimension ranges from 0 to 1 indicating the probability
of selecting the corresponding feature. Therefore, a threshold
(e.g. 0.6) is used to convert this value into 1 or 0 indicating
the feature is selected or not.

B. PSO for feature selection in classification on high-

dimensional data

In the last decades, many PSO-based FS methods have been
proposed and shown promising results in general [20], [21] as
well as on high-dimensional data [22]. To tackle the problem
of early convergence of PSO in the large search space, differ-
ent approaches have been proposed. Yang et al. [13] replaced
gbest by applying a Boolean operator ‘AND’ on each bit
of the pbest of all particles. Similarly, Chuang et al. [14]
proposed to reset gbest to zero which is equivalent to an empty
subset, which encourages particles to explore smaller feature
subsets. Experiments on gene expression datasets showed that
this method effectively reduced the number of selected features
and got higher classification accuracy than [13] in most cases.

A two-stage approach which employs a filter method to re-
duce the number of features before applying PSO has become
popular in FS on high-dimensional data. In [15], gain ratio was
first used to select 500 top-ranked genes. Then, in PSO, speed
concept was introduced to update particles’ positions instead
of velocity to increase the probability of not choosing a feature.
In this way, the proposed algorithm was enabled to find much
smaller feature subsets than [14] and other compared methods;
however, with the deterioration in classification performance.
Another strategy to reduce the number of features in the first
stage is to build clusters of “similar” features and choosing
only one or some features from each cluster to put into the
second stage [23], [24]. The results showed that much smaller

feature subsets with higher accuracy were achieved. However,
domain knowledge is required to set an appropriate number of
clusters for each dataset [24]. Another two-stage method was
proposed in [16] where F-statistic was used as a filter to select
top ranked features before applying PSO. However, instead
of predefining the number of features used in the second
stage, cross-validation was used to choose this value from
predefined ones. Results showed that the proposed method
achieved good performance. However, the computational time
was very high. In general, the results of these methods show
that two-stage approach is feasible for high-dimensional data.
However, the inherent drawback of individually evaluating
features in the first stage may hinder PSO from achieving good
better performance.

To overcome this limitation, hybrid approaches combining
filter and wrapper method in a flexible way have been pro-
posed. In a wrapper based PSO FS method [17], a filter local
search was used to remove redundant features in gbest using
mutual information to evaluate feature relevance and redun-
dancy. All features were first clustered into N clusters using a
statistical clustering technique. In the local search, features in
gbest are removed if more than a predefine number of features
from its cluster are selected. The results on UCI datasets
showed that the proposed method achieve better solutions
than previous PSO-based methods and traditional methods.
However, it is not easy to define an appropriate number of
features that should be chosen from each cluster especially
for high-dimensional data where there may exist thousands of
irrelevant or redundant features. In [18], mutual information
was used to evaluate particles. However, a better solution is
only updated to pbest if its classification accuracy is also
improved. The proposed methods had a shorter running time
than wrapper based PSO; however, with lower classification
performance and larger feature subsets.

III. THE PROPOSED METHOD

A. Local search heuristic

In order to improve the performance of the local search
proposed in [19], we used a filter measure to incorporate some
general knowledge in FS to identify relevant and redundant
features. A feature is relevant to the target concept if it
demonstrates a significant degree of correlation to the class
label. Similarly, features f1 and f2 are redundant features if
they highly correlate with each other, which means f1 can
represents f2 and vice versa; therefore, only one of them
should be selected.

To evaluate the correlation of two variables, in this study,
we use a normalised version of information gain (IG) [25]
called symmetric uncertainty (SU) [26], which is defined as
follows:

SU(X,Y) =

IG(X|Y)

H(X) +H(Y)

�
(3)

IG(X|Y) = H(X)�H(X|Y) (4)

where H(X) is the entropy of X and H(X|Y) is the con-
ditional entropy of X given Y . The value of SU(X|Y) is in

the range [0,1]. The higher the value of SU, the higher the
dependence between X and Y . Based on Eq. (3), we measure
the relevance of a feature f using the SU between f and the
class label. We denote this value as SUC . Similarly, we use
SUF to denote the redundancy between two features f1 and
f2 which is measured based on the SU between f1 and f2.

Algorithm 1: Local search heuristic
Input : pbest,↵,�
Output: better pbest
begin

for t = 1 to � do
m pbest subset size⇥ ↵;
ones Randomly pick m selected features in pbest;
zeros Randomly pick m non-selected features in pbest;
pbest0 pbest ;
Sort ones in descending order SUC values (Eq. 3);
for i = 1 to ones.length do

for j = i+ 1 to ones.length do
if (ones[i] and ones[j] are still in pbest0 and

SUF (ones[i], ones[j]) > SUC(ones[j])) then
Remove feature ones[j] from pbest0;

end
end

end
AvgSU Average SUC of all features in ones;
for i = 1 to zeros.length do

if SUC(zeros[i]) > AvgSU then
Add feature zeros[i] to pbest0;

end
end
if pbest0 is better than pbest then

pbest pbest0 ;
end

end
return pbest;

end

The objective of this local search is to find better pbest

by removing from the current pbest a certain number of
redundant features and introduce some more relevant features.
The pseudo-code of the local search is presented in Algorithm
1. The inputs of this procedure are the current pbest, a
percentage of features to flip (↵) and a maximum number of
flipping tries (�). While ↵ is used to specify how difference
the new pbest compared to the current pbest, � specifies how
long the local search should run. m is the number of features
that will be considered to flip, which is proportional to the
number of features selected in the current pbest. m selected
features are chosen randomly from current pbest to form the
ones list. ones is sorted based on the SUC of each feature
and the class label. Then it is scanned from the first feature
to remove any feature that is more correlated to the previous
features than to the class label. In other words, we remove
any feature that has its SUF with a previous selected feature
higher than its SUC value.

In addition to removing redundant features, introducing
more relevant features may improve the classification per-
formance of the whole feature subset. Therefore, m random
features are also chosen from the not selected features in pbest

to form the zeros list. Features in this list will be added only
if its SUC is greater than the average SUC values of the ones

list. After evaluated, if the new pbest is better than the current
pbest, the current pbest will be updated.

B. Fitness function

As a wrapper method, any learning algorithm can be used
to evaluate the classification performance of the candidate
solution. In this study, we choose K-Nearest Neighbours
(KNN) in our fitness function as it is simple, fast and non-
parametric. Since many datasets used in the experiment are
unbalanced, a balanced classification accuracy [27] as shown
in Eq. 5 is used to guide the search.

balanced accuracy =
1

n

nX

i=1

TPi

|Si|
(5)

where n is the number of classes of the problem, TPi is the
number of correctly identified instances in class i and |Si| is
the total number of instances in class i. Since there is no bias
to any specific class, the weight here is set equally to 1/n.

In addition to accuracy, a distance measure is used to better
evaluate feature subsets. Because in cases where the boundary
margin between different classes is quite large, many different
classifiers can achieve the same 100% classification accu-
racy. Therefore, using solely classification accuracy can not
distinguish these candidate solutions. An additional measure
is added with a weighting coefficient (µ) to maximize the
distance between instances of different classes and minimize
the distance between instances of the same class. The distance
measure [28] is used in the fitness function as follows.

fitness = (µ · balanced accuracy+(1�µ) ·distance) (6)
where

distance =
1

1 + exp�5(DB�DW)
(7)

Db =
1

|S|

|S|X

i=1

min
{j|j 6=i,class(Vi) 6=class(Vj)}

Dis(Vi, Vj) (8)

Dw =
1

|S|

|S|X

i=1

max
{j|j 6=i,class(Vi)=class(Vj)}

Dis(Vi, Vj) (9)

Dis(Vi, Vj) is any measure used to approximate the distance
between two vectors Vi and Vj . Here we choose the number of
matches or overlapping between two nominal vectors divided
by the size of the vectors. Since KNN also works based on this
overlapping distance calculation, adding this distance compo-
nent to the fitness function does not increase the computation
time to the evaluation process.

Db is the average distance between each instance and the
nearest instance of other classes. Dw is the average distance
between each instance to the farthest instance of the same
class. Although both are in the range [0,1], 1 is considered
as the best case for Db and the worst case for Dw. As a
result, Eq. (7) maximises Db and minimises Dw in order to
find feature subsets that keep the same class instances close
together and different class instances far away. The logistic
function is used to transform the difference between Db and
Dw from the range [-1,1] into the range [0,1] for distance
which 0 is the worst and 1 is the best case.

Fitness evaluation in Local Search: During the local search
process, the same fitness as shown in Eq. (6) is used to
evaluate the new pbest. This means that a significant amount
of computation will be added to the algorithm. Therefore, to
speed up the fitness evaluation process in this local search
procedure, we use the same strategy proposed in [19] where
distance between instances are calculated at the beginning of
each local search. Then during the local search process, these
distances are updated based only on a small number of flipping
features.

C. The overall algorithm

Algorithm 2: The pseudo code of PSO-LSSU
input : Training set
output: The best feature subset
begin

Discretise the training set using MDL method [?];
Calculate SUC and SUF ;
Randomly initialise particles;
while Maximum iterations or stopping criterion is not met do

for i = 1 to Population Size do
Fi Calculate the fitness of particle i using Eq. (6);
if Fi is better than pbest’s fitness then

Update pbest ;
if Local search then

pbest Local Search(pbest,↵,�);
end

end
end
Update gbest of the swarm;
for i = 1 to Population Size do

Update velocity of particle i using Eq. (1);
Update position of particle i using Eq. (2);

end
end
Return the position of gbest;

end

The aim of the proposed method is to apply local search on
pbest when a new pbest is found in PSO so that smaller feature
subsets with better classification performance can be achieved.
The overall algorithm is shown in Algorithm 2. First, data is
discretised using the MDL method [?]. Then, the symmetric
uncertainty between each feature and the class label (the SUC)
and the symmetric uncertainty between pairs of features (the
SUF) are recorded for the local search procedure. The whole
swarm will be randomly initialised. During the evolutionary
process, local search is applied to the new found pbest. Since
every local search will try 100 times to find better pbest, the
computational time will significantly increase. On the other
hand, running local search on every iteration may not increase
the chance of finding better solutions. Therefore, we only
apply local search in the first ten odd iterations.

IV. EXPERIMENT DESIGN

This section shows the datasets used to test the performance
of the proposed method and the parameter settings used for
all methods in the experiment.

TABLE I
DATASETS

Dataset #Features #Ins. #Class %Smallest
class

%Largest
class

SRBCT 2,308 83 4 13 35
DLBCL 5,469 77 2 25 75
9Tumor 5,726 60 9 3 15
Leukemia 1 5,327 72 3 13 53
Brain Tumor 1 5,920 90 5 4 67
Leukemia 2 11,225 72 3 28 39
Prostate 10,509 102 2 49 51
11Tumor 12,533 174 11 4 16

A. Datasets

To test the performance of the proposed method, we use
8 gene expression datasets with thousands of features. These
datasets are publicly available on http://www.gems-system.org.
Details about these datasets are shown in Table I. It can be seen
that these datasets have a small number of instances compared
to their number of features. They are also imbalanced with the
percentages of instances in the smallest class and the largest
class are quite different. These characteristics make the FS
problems in these datasets very challenging.

B. Experiment Configuration and Parameter Settings

To test the performance of the proposed method (called
PSO-LSSU), we compared the classification accuracy of the
selected features versus the original features, the feature
subsets selected by the standard PSO, the PSO with random
local search (PSO-LS) [19], and the PSO with random local
search and resetting gbest (PSO-LSRG) [19]. We also com-
pare PSO-LSSU with two traditional FS methods, which are
Linear forward selection (LFS) and greedy stepwise backward
selection (GSBS). LFS and GSBS were derived from two
typical FS approaches, which are sequential forward selection
(SFS) and sequential backward selection (SBS), respectively.
By restricting the number of features to be considered in each
step, LFS [29] runs faster and found smaller feature subsets
with better classification performance than SFS. On the other
hand, GSBS (implemented based on the greedy stepwise FS
in Weka [30]) starts with the full feature set and gradually
remove features until no further improvement in classification
accuracy.

In PSO-LS and PSO-LSRG, the fitness function is only
based on the classification accuracy. The parameter settings
for these two methods are kept the same as in [19]. However,
the results reported in this paper will be different from those
in [19] because in [19] the whole dataset was used in the FS
process and training accuracy was reported, which included
a selection bias [31]. Therefore, this experiment uses 10 fold
cross-validation (10F-CV) in which one fold is kept as test data
and the rest will be used to train PSO for FS. The training and
test sets will be transformed based on the feature subset and
put into the learning algorithm to evaluate its performance.
Another difference is that in this experiment, all the datasets
are discretised using MDL method [?] while [19] used the
original continuous features.

TABLE II
PARAMETER SETTINGS

Parameters Settings
Population Size #features/20 (restriction to 300)
Maximum iterations 70
c1 = c2 2
w 0.9� 0.5 ⇤ current iteration

max iteration
Threshold for selected feature 0.6
Communication topology Fully connected
Stopping criterion PSO-LSSU: same gbest for 10 itera-

tions
Local search tries 100
Local search flipping size – PSO-LS and PSO-LSRG: 2% number

of original features
– PSO-LSSU: 25% of current pbest’s
size

gbest resetting PSO-LSRG: same gbest’s fitness for 3
iterations

Since PSO is a stochastic optimisation technique, 30 inde-
pendent runs with different seeds are executed for each training
set. As a result, PSO is run 300 times (30 runs x 10 folds) for
each dataset. Table II shows the parameter settings used in the
experiment. Since these datasets have quite different numbers
of features ranging from 2,000 to 12,000, which means that
their search space are also very different, we set the population
size equals to one twentieth of the number of features, but
limited to 300 due to memory limitation.

V. RESULTS AND DISCUSSIONS

Table III shows the results of the PSO based algorithms.
“Full” means KNN using the original full set of continuous
features. “#F” shows the average number of features selected
by each method over the 30 runs. The best, the average and
the standard deviation of the training and the test accuracies
are shown in the “Training accuracy” and “Test accuracy”
columns. The reported accuracy is the balanced accuracy
calculated using Eq. (5). The best test classification accuracy
on each dataset is bold. T1 and T2 display the Wilcoxon
significant test results (with significant level of 0.05) of the
corresponding method over the proposed method on training
and test, respectively. “+” or “–” means the result is signif-
icantly better or worse than the proposed method and “=”
means they are similar in the Wilcoxon tests. In other words,
the more “–”, the better the proposed methods.

A. PSO-LSSU versus Full

It can be seen from Table III that PSO-LSSU always achieve
significantly better classification performance than using all
features. The highest improvement is more than 16% on
11Tumor. In 6 out of 8 datasets, the feature subsets selected by
PSO-LSSU are reduced one to two orders of magnitude with
the best ratio of 1/209 in Leuk2. On SRBCT, the proposed
method selects about 60 features among 2,308 features to
achieve 100% accuracy in almost all 300 runs.

B. PSO-LSSU versus PSO

According to Table III, PSO-LSSU generates feature subsets
giving significantly higher accuracy than PSO on 6 of the
8 datasets and selects at least an order of magnitude fewer

TABLE III
AVERAGE RESULTS OF 30 INDEPENDENT RUNS.

Dataset Method #F Training accuracy Test accuracy
Best Avg±Std T1 Best Avg±Std T2

SRBCT

Full 2308.0 83.35 – 87.08 –
PSO 916.2 100.0 100.0 ± 0.02 = 98.75 96.61 ± 1.49 –
PSO-LS 545.1 100.0 100.0 ± 0.00 = 99.17 96.08 ± 1.73 –
PSO-LSRG 27.0 100.0 100.0 ± 0.00 = 92.50 86.39 ± 4.21 –
PSO-LSSU 59.7 100.0 100.0 ± 0.00 100.0 99.97 ± 0.15

DLBCL

Full 5469.0 81.71 – 83.00 –
PSO 2286.5 100.0 99.86 ± 0.09 – 96.67 93.70 ± 2.01 +
PSO-LS 1417.4 100.0 100.0 ± 0.00 = 97.33 93.72 ± 1.79 +
PSO-LSRG 5.9 100.0 100.0 ± 0.00 = 85.83 76.90 ± 5.33 –
PSO-LSSU 47.4 100.0 100.0 ± 0.00 96.67 90.86 ± 3.19

9Tumor

Full 5726.0 33.44 – 36.67 –
PSO 2551.6 96.80 95.67 ± 0.65 – 60.00 53.28 ± 3.43 =
PSO-LS 1352.0 97.78 97.76 ± 0.05 = 58.33 48.39 ± 4.88 –
PSO-LSRG 1122.5 97.78 97.77 ± 0.03 = 56.67 47.50 ± 4.50 –
PSO-LSSU 46.7 97.78 97.78 ± 0.00 60.00 51.39 ± 4.22

Leuk1

Full 5327.0 79.77 – 79.72 –
PSO 2141.1 100.0 99.89 ± 0.13 – 95.56 93.93 ± 1.33 –
PSO-LS 1534.9 100.0 100.0 ± 0.00 = 95.56 93.45 ± 1.71 –
PSO-LSRG 16.5 100.0 100.0 ± 0.00 = 93.19 77.39 ± 6.01 –
PSO-LSSU 31.9 100.0 100.0 ± 0.00 95.42 94.84 ± 1.16

Brain1

Full 5920.0 65.07 – 72.08 –
PSO 2478.1 100.0 99.26 ± 0.45 – 77.50 75.28 ± 1.48 –
PSO-LS 1549.0 100.0 99.75 ± 0.22 – 77.50 75.00 ± 1.80 –
PSO-LSRG 85.0 100.0 100.0 ± 0.00 = 73.33 63.81 ± 5.01 –
PSO-LSSU 1081.5 100.0 99.96 ± 0.12 82.50 76.78 ± 2.09

Leuk2

Full 11225.0 88.82 – 89.44 –
PSO 4579.5 100.0 99.98 ± 0.05 = 95.00 92.05 ± 1.42 –
PSO-LS 3426.5 100.0 100.0 ± 0.00 = 93.89 91.72 ± 1.46 –
PSO-LSRG 16.5 100.0 100.0 ± 0.00 = 91.67 86.19 ± 2.94 –
PSO-LSSU 53.7 100.0 100.0 ± 0.00 98.33 95.56 ± 1.68

Prostate

Full 10509.0 82.08 – 85.33 –
PSO 4590.3 97.82 97.39 ± 0.20 – 87.17 84.91 ± 1.30 –
PSO-LS 2690.3 98.48 98.18 ± 0.12 – 89.17 85.79 ± 1.49 –
PSO-LSRG 237.0 100.0 99.93 ± 0.07 + 89.33 84.33 ± 2.80 –
PSO-LSSU 2670.3 98.92 98.64 ± 0.16 91.17 86.98 ± 1.76

11Tumor

Full 12533.0 71.01 – 71.42 –
PSO 5585.7 99.35 99.01 ± 0.20 – 87.63 84.58 ± 1.40 –
PSO-LS 3163.9 99.92 99.83 ± 0.09 – 87.77 84.19 ± 1.47 –
PSO-LSRG 1139.9 100.0 99.94 ± 0.05 – 88.58 82.50 ± 2.19 –
PSO-LSSU 266.8 100.0 100.0 ± 0.00 90.72 87.51 ± 1.73

features than PSO on most datasets. The highest reduction
can be seen in Leuk2, PSO-LSSU selects 85 times fewer
features than PSO and still improves on the PSO performance
more than 3%. On 9Tumor, PSO-LSSU obtains a similar
classification performance to PSO with only 46 features which
is 2,505 fewer features than PSO. Only on DLBCL does
PSO achieve a higher accuracy but it selects a much larger
number of features. We also note that the accuracy of PSO-
LSSU feature set on the training data is always higher than
that obtained by standard PSO except on SRBCT where both
obtain 100%. Therefore, the proposed local search heuristic
of PSO-LSSSU has achieved the goal of removing redundant
features to obtain smaller feature subsets while maintaining or
improving the classification performance.

C. PSO-LSSU versus PSO-LS

Compared to the random local search (PSO-LS), the pro-
posed local search heuristic (PSO-LSSU) achieves signifi-
cantly better classification accuracy on 7 out of 8 datasets.
Although PSO-LS further reduces the number of features
selected by PSO, it still selects an order of magnitude more
features than PSO-LSSU. On 9Tumor and Leuk2, while PSO-
LS selects 1,352 and 3,426 features, PSO-LSSU selects only
46 and 53 features to further improve 3% and 4% accuracy,

respectively. The results show that by using a filter measure to
guide the flipping process, the local search effectively removes
redundant features so that much smaller feature subsets with
better discriminating power can be found.

D. PSO-LSSU versus PSO-LSRG

The significant test results (T2) in Table III show that
in terms of classification performance, PSO-LSSU outper-
forms PSO-LSRG on all datasets. Even though PSO-LSSU
selects more features than PSO-LSRG on six datasets, the
features selected by PSO-LSSU are important in improving
or maintaining the discriminating ability of the feature subset.
For example on Leuk1 and DLBCL, PSO-LSSU selects 15
and 42 more features than PSO-LSRG to achieve 23% and
24% higher accuracy, respectively. However, on 9Tumor, PSO-
LSSU selects 24 times fewer features than PSO-LSRG while
obtaining 4% higher accuracy than PSO-LSRG. A similar
pattern can be seen on 11Tumor.

We also observe that PSO-LSRG obtains the smallest
feature subsets on 6 datasets. Although its training results
are similar to or better than those of PSO and PSO-LS,
which is consistent with the results reported in [19], its test
results is always the worst among the compared methods. This
observation shows that resetting gbest to an empty subset
effectively guides PSO to smaller solution space; however,
without guarantee to maintain the same performance on the
test set, especially when there are a large number of redundant
features and the number of instances for training is limited as
in these datasets. As a result, using general knowledge in FS
to guide the search for smaller feature subsets is better than
solely resetting gbest to an empty set.

E. Computation Time

Fig. 1. Average running time.

Figure 1 shows the average running time (in minutes) of
PSO, PSO-LS, PSO-LSRG and PSO-LSSU in a single run
on each dataset. It can be seen that PSO-LSSU used the
shortest time on 6 out of 8 datasets. Although PSO-LSSU
has to spend additional time on the local search, it always
runs faster than the standard PSO on all datasets. On SRBCT,
9Tumor, Leuk1, and 11Tumor, its running time is five to six
times shorter than PSO. By applying local search on pbest to
remove redundant features, PSO-LSSU significantly reduces
the number of features selected in each candidate solution,
which dramatically speeds up the fitness evaluation process.

Although the proposed local search has extra steps for
considering the flipping features based on their symmetric
uncertainty values, PSO-LSSU has a much shorter running
time than PSO-LS on six datasets and similar on the other two.
Thanks to the small feature subsets and the strategy of running
local search only in the first ten odd iterations, PSO-LSSU
has significantly reduced its running time while still achieve
much better discriminating subsets than PSO-LS. The results
suggest that applying a small number of informed local search
is better than applying an extensive number of random local
search. Similarly, PSO-LSSU also has a significant shorter
running time than PSO-LSRG on six datasets. In general, the
results indicate that the proposed local search heuristic is not
only an effective but also efficient combination of wrapper and
filter approach to achieve a much smaller feature subsets with
significantly better classification performance.

F. Comparisons with Traditional Methods

TABLE IV
RESULTS OF LFS

SRBCT DLBCL 9Tumor Leuk1
#F Accuracy T #F Accuracy T #F Accuracy T #F Accuracy T
6.1 88.75 – 4.0 74.00 – 12.6 41.67 – 4.8 81.39 –

Brain1 Leuk2 Prostate 11Tumor
#F Accuracy T #F Accuracy T #F Accuracy T #F Accuracy T
9.9 59.17 – 4.3 90.00 – 4.9 73.17 – 14.3 61.71 –

Table IV shows the average number of features and the
average accuracy obtained by LFS on 10 fold cross validation
of the 8 datasets. Column T shows the significance test
result of LFS over PSO-LSSU. The results of GSBS are not
displayed because GSBS cannot finish its run in a week for
any of the 8 datasets.

Comparing the result of PSO-LSSU in Table III with Table
IV, we can see that LFS selected a much smaller number
of features than PSO-LSSU. However, in terms of the clas-
sification performance, PSO-LSSU outperformed LFS on all
datasets with the biggest difference of 25% on 11Tumor. This
indicates that PSO-LSSU can better explore the solution space
to obtain better solutions than LFS.

G. Further Analysis

In this experiment, each algorithm has run 300 independent
times producing 300 different solutions for each dataset. To
see if the features selected by the proposed method in all runs
are relevant and not selected by chance, we compare the Z-
score [32], [8] of the top 100 features selected by each method.
Z-score of a feature indicates the significance of the selection
frequency of that feature. Z-score of feature i is defined as
follows:

Zi =
fi � µ

�
(10)

where fi is the number of times feature i appeared in M solu-
tions, µ and � are the mean and standard deviation of fi. Let
A be the average feature subset size of M solutions, T is the
total number of features, then the probability of feature i being
selected is denoted as, P (fi) = A/T . Using this probability,

the mean and the standard deviation of fi are calculated using
µ = P (fi) ·M and � =

p
P (fi) · (1� P (fi)) ·M .

It can be seen from Eq. (10) that the higher the value of Zi,
the less likely that feature i is selected by chance. Therefore,
an algorithm that selects more features with higher Z-score
is said to be more robust. To compare the robustness of the

Fig. 2. Z-score of the top 100 selected features on SRBCT, DLBCL, 9Tumor
and Leuk1.

Fig. 3. Z-score of the top 100 selected features on Brain1, Leuk2, Prostate
and 11Tumor.

four methods, we sort all features in descending order based
on their selection frequency in each method. Z-score of the
top 100 selected features by each method on each dataset are
plotted in Fig. 2 and Fig. 3. It can be seen from these figures
that the features selected by PSO-LSSU have much larger
Z-score than other methods. Further more, these Z-scores
form a gentle slope in almost all cases which indicates that
more relevant features are selected by the proposed method.
On Brain1 and Prostate, although the top-ranked feature of
PSO-LSRG has higher Z-score than PSO-LSSU, the following
features have their Z-score dramatically dropped in PSO-
LSRG while PSO-LSSU still maintain these values with a
flatter slope. The results show that PSO-LSSU is more robust
than the other methods.

VI. CONCLUSIONS

This paper has developed a new PSO-based FS method
(PSO-LSSU) that dynamically employed local search during
the evolutionary process of PSO. While PSO uses classifica-
tion accuracy to guide the search, the local search is guided by

a filter measure to remove redundant features and add more
relevant features to the current pbest solution.

The experimental results on 8 high-dimensional datasets
with varying difficulty have shown that the proposed method
achieve much smaller feature subsets with significantly better
classification performance than the original feature sets and
the standard PSO. Compared to the random local search
[19], the use of symmetric uncertainty to choose features for
flipping helps local search can effectively discover relevant
and redundant features. As a result, PSO-LSSU obtained much
smaller feature subsets with higher discriminating ability than
the PSO-LS. Compared to PSO-LSRG, although PSO-LSSU
selects slightly more features on six datasets, it significantly
outperformed PSO-LSRG on all datasets in terms of classifica-
tion accuracy. PSO-LSSU’s performance is confirmed by the
analysis on the Z-score of the top 100 selected features. The
results show that PSO-LSSU selected more relevant features
than the other compared methods.

The results and analysis have suggested that local search
using general knowledge in FS can significantly improve the
performance of PSO in FS on high-dimensional data. In this
study, we have applied local search on pbest, it would be
interesting to investigate where we should apply local search,
whether on particles, pbest, or gbest or any combination of
these candidate solutions will produce the best results. Other
investigations can be on when and how long the local search
should be run to have the best compromise between effective-
ness and efficiency as well as to balance the exploration and
exploitation in PSO search.

REFERENCES

[1] I. Guyon and A. Elisseeff, “An introduction to variable and feature
selection,” Journal of Machine Learning Research, vol. 3, pp. 1157–
1182, 2003.

[2] M. Robnik-Sikonja and I. Kononenko, “Theoretical and Empirical
Analysis of ReliefF and RReliefF,” Machine Learning, vol. 53, pp. 23–
69, 2003.

[3] K. Kira and L. A. Rendell, “The feature selection problem: Traditional
methods and a new algorithm,” in Proceedings of the Tenth National

Conference on Artificial Intelligence, 1992, pp. 129–134.
[4] A. J. Ferreira and M. A. Figueiredo, “Efficient feature selection filters

for high-dimensional data,” Pattern Recognition Letters, vol. 33, no. 13,
pp. 1794–1804, 2012.

[5] C. Ding and H. Peng, “Minimum redundancy feature selection from
microarray gene expression data,” Journal of bioinformatics and com-

putational biology, vol. 3, no. 02, pp. 185–205, 2005.
[6] L. Yu and H. Liu, “Efficient feature selection via analysis of relevance

and redundancy,” J. Mach. Learn. Res., vol. 5, pp. 1205–1224, 2004.
[7] M. A. Hall, “Correlation-based feature selection for discrete and numeric

class machine learning,” in Proceedings of the Seventeenth International

Conference on Machine Learning, 2000, pp. 359–366.
[8] Z. Zhu, Y.-S. Ong, and M. Dash, “Markov blanket-embedded genetic

algorithm for gene selection,” Pattern Recognition, vol. 40, no. 11, pp.
3236–3248, 2007.

[9] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in IEEE

International Conference on Neural Networks, vol. 4, 1995, pp. 1942–
1948.

[10] H. Banka and S. Dara, “A Hamming distance based binary particle
swarm optimization (HDBPSO) algorithm for high dimensional feature
selection, classification and validation,” Pattern Recognition Letters,
vol. 52, pp. 94–100, 2015.

[11] B. Chakraborty and G. Chakraborty, “Fuzzy consistency measure with
particle swarm optimization for feature selection,” in IEEE International

Conference on Systems, Man, and Cybernetics, 2013, pp. 4311–4315.

[12] B. Xue, L. Cervante, L. Shang, W. Browne, and M. Zhang, “A multi-
objective particle swarm optimisation for filter-based feature selection
in classification problems,” Connection Science, vol. 24, no. 2-3, pp.
91–116, 2012.

[13] C. S. Yang, L. Y. Chuang, C. H. Ke, and C. H. Yang, “Boolean binary
particle swarm optimization for feature selection,” in IEEE Congress on

Evolutionary Computation, 2008, pp. 2093–2098.
[14] L.-Y. Chuang, H.-W. Chang, C.-J. Tu, and C.-H. Yang, “Improved binary

PSO for feature selection using gene expression data,” Computational

Biology and Chemistry, vol. 32, no. 29, pp. 29–38, 2008.
[15] M. Mohamad, S. Omatu, S. Deris, and M. Yoshioka, “A modified

binary particle swarm optimization for selecting the small subset of
informative genes from gene expression data,” Information Technology

in Biomedicine, vol. 15, no. 6, pp. 813–822, 2011.
[16] W. Zhou and J. A. Dickerson, “A novel class dependent feature selection

method for cancer biomarker discovery,” Computers in biology and

medicine, vol. 47, pp. 66–75, 2014.
[17] H. B. Nguyen, B. Xue, I. Liu, and M. Zhang, “Filter based backward

elimination in wrapper based pso for feature selection in classification,”
in IEEE Congress on Evolutionary Computation, 2014, pp. 3111–3118.

[18] T. Butler-Yeoman, B. Xue, and M. Zhang, “Particle swarm optimisa-
tion for feature selection: A hybrid filter-wrapper approach,” in IEEE

Congress on Evolutionary Computation, 2015, pp. 2428–2435.
[19] B. Tran, B. Xue, and M. Zhang, “Improved PSO for Feature Selection

on High-Dimensional Datasets,” in Simulated Evolution and Learning,
ser. Lecture Notes in Computer Science, 2014, vol. 8886, pp. 503–515.

[20] A. Unler and A. Murat, “A discrete particle swarm optimization method
for feature selection in binary classification problems,” European Jour-

nal of Operational Research, vol. 206, no. 3, pp. 528–539, 2010.
[21] B. Xue, M. Zhang, and W. Browne, “Particle swarm optimization for

feature selection in classification: A multi-objective approach,” IEEE

Transactions on Cybernetics, vol. 43, no. 6, pp. 1656–1671, 2013.
[22] B. Xue, M. Zhang, W. N. Browne, and X. Yao, “A survey on evolutionary

computation approaches to feature selection,” IEEE Transactions on

Evolutionary Computation, vol. 20, no. 4, pp. 606–626, 2016.
[23] M. Lane, B. Xue, I. Liu, and M. Zhang, “Gaussian based particle

swarm optimisation and statistical clustering for feature selection,” in
Evolutionary Computation in Combinatorial Optimisation, ser. Lecture
Notes in Computer Science, 2014, vol. 8600, pp. 133–144.

[24] B. Sahu and D. Mishra, “A Novel Feature Selection Algorithm using
Particle Swarm Optimization for Cancer Microarray Data,” Procedia

Engineering, vol. 38, no. 0, pp. 27–31, 2012.
[25] J. R. Quinlan, C4.5: Programs for Machine Learning. Morgan

Kaufmann Publishers, Inc., 1993.
[26] W. H. Press, S. Teukolsky, W. Vetterling, and B. Flannery, “Numerical

recipes in c,” Cambridge University Press, vol. 1, p. 3, 1988.
[27] G. Patterson and M. Zhang, “Fitness functions in genetic programming

for classification with unbalanced data,” in Advances in Artificial Intel-

ligence. Springer, 2007, pp. 769–775.
[28] H. Al-Sahaf, M. Zhang, M. Johnston, and B. Verma, “Image descriptor:

A genetic programming approach to multiclass texture classification,” in
IEEE Congress on Evolutionary Computation, 2015, pp. 2460–2467.

[29] M. Gutlein, E. Frank, M. Hall, and A. Karwath, “Large-scale attribute
selection using wrappers,” in IEEE Symposium on Computational Intel-

ligence and Data Mining, 2009, pp. 332–339.
[30] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.

Witten, “The weka data mining software: an update,” ACM SIGKDD

explorations newsletter, vol. 11, no. 1, pp. 10–18, 2009.
[31] C. Ambroise and G. J. McLachlan, “Selection bias in gene extraction

on the basis of microarray gene-expression data,” Proceedings of the

National Academy of Sciences, vol. 99, no. 10, pp. 6562–6566, 2002.
[32] T. Jirapech-Umpai and S. Aitken, “Feature selection and classification

for microarray data analysis: Evolutionary methods for identifying
predictive genes,” BMC bioinformatics, vol. 6, no. 1, p. 148, 2005.

