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Feature selection is an important data preprocessing step in machine learning and data
mining, such as classification tasks. Research on feature selection has been extensively
conducted for more than fifty years and different types of approaches have been proposed,
which include wrapper approaches or filter approaches, and single objective approaches
or multi-objective approaches. However, the advantages and disadvantages of such ap-
proaches have not been thoroughly investigated. This paper provides a comprehensive
study on comparing different types of feature selection approaches, specifically includ-
ing comparisons on the classification performance and computational time of wrappers
and filters, generality of wrapper approaches, and comparisons on single objective and
multi-objective approaches. Particle swarm optimisation based approaches, which in-
clude different types of methods, are used as typical examples to conduct this research.
A total of 10 different feature selection methods and over 7000 experiments are involved.
The results show that filters are usually faster than wrappers, but wrappers using a
simple classification algorithm can be faster than filters. Wrapper often achieve bet-
ter classification performance than filters. Feature subsets obtained from wrappers can
be general to other classification algorithms. Meanwhile, multi-objective approaches are
generally better choices than single objective algorithms. The findings are not only useful
for researchers to develop new approaches to addressing new challenges in feature selec-
tion, but also useful for real-world decision makers to choose a specific feature selection
method according to their own requirements.
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1. Introduction

Classification tasks often have a large number of features, which include not only

relevant features, but also redundant and irrelevant features. They increase the

difficulty of classification as the size of the search spaces grows, known as “the curse

of dimensionality” 1. The redundant or irrelevant features may also deteriorate the

classification performance 2. Feature selection is proposed to select a small subset of

relevant features to reduce the dimensionality of the data and maintain or increase

the classification performance 1,2.
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Feature selection has been widely investigated in the data mining and machine

learning communities. A large number of feature selection algorithms have been pro-

posed 1,2. A feature selection approach typically needs a search technique to find the

optimal feature subsets and an evaluation criterion to assess the quality of the ob-

tained feature subsets to guide the search. Based on the evaluation criterion, feature

selection algorithms can be generally grouped into two categories: wrapper and fil-

ter approaches 3. Feature selection has two main conflicting objectives, which are to

maximise the classification accuracy and minimise the number of selected features.

Both single objective approaches and multi-objective approaches have been pro-

posed. Therefore, there are four main types of feature selection approaches, which

are single objective wrapper methods, multi-objective wrapper methods, single ob-

jective filter methods, and multi-objective filter methods.

A major challenge in feature selection is the large search space, where the total

number of possible solutions is 2n for a dataset containing n features. Evolution-

ary computation (EC) techniques have recently gained much attention to address

feature selection problems due to their powerful search ability. To our best knowl-

edge, all the existing multi-objective feature selection approaches are based on EC

techniques because their population based search mechanism is particularly suitable

for multi-objective optimisation. Particle swarm optimisation (PSO) 4,5 is one of

the most popular EC techniques and is considered the most popular EC technique

in addressing feature selection problems in the recent five years 6,7,8,9,10. PSO has

been used to propose all the four main types of feature selection approaches, i.e. sin-

gle objective wrapper methods 11,12,6,7,8, multi-objective wrapper methods 13,14,15,

single objective filter methods 16,17,18,19, and multi-objective filter methods 9,10,20.

There are a large number of different feature selection algorithms, but compar-

isons across different types of approaches have not been investigated. There are still

important open issues in feature selection, which can be seen as follows:

• Wrapper and filter approaches are argued to have their own advantages and

disadvantages 21. Wrappers can achieve better classification performance

than filters, but filters are computationally less expensive and more general

than wrappers. However, no thorough investigations have been made on

how much difference there is between the two approaches in terms of the

classification performance and the computational cost.

• Wrapper approaches employ a learning/classification algorithm during the

feature selection process. Therefore, they are argued to be less general than

filter approaches, i.e. the features selected by a wrapper algorithm can not

achieve good performance when used with other classification algorithms 21.

However, no serious investigation has been conducted to test this statement.

• For single objective and multi-objective methods, some direct comparisons

on the final results have been made in the literature 9,10, but observations

and analyses through the search process have not been investigated.

The overall goal of this paper is to compare and contrast the four types of
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feature selection algorithms to provide suggestions for future researchers and real-

world users. There will be three specific objectives, each of which aims to address one

of the three open issues listed above. PSO-based approaches are used as examples

because of the extensive study in PSO for feature selection. This paper uses a total

of 10 feature selection methods and over 7000 runs of experiments to thoroughly

investigate these objectives. Note that the contribution of this work is not to develop

a new PSO-based approach for feature selection, but to provide a comprehensive

comparison and analysis across different types of feature selection algorithms and

PSO-based approaches are used as a typical example.

2. Different Feature Selection Approaches

To investigate the above three objectives, 10 feature selection algorithms are used

in the empirical study, which are briefly described in this section.

2.1. Wrapper Approaches

To investigate the first two objectives, four wrapper based single objective algo-

rithms were used in the experiments. Multi-objective algorithms were not chosen

since they produced multiple solutions in each run and hard to do comparisons.

Four most commonly used classification algorithms in wrapper feature selection are

chosen as representative examples in the four wrapper approaches. The four classifi-

cation algorithms are support vector machine (SVM), decision tree (DT), K-nearest

neighbours (KNN) with K=5, and Näıve Bayes (NB), and the four corresponding

wrapper methods are W-SVM, W-KNN, W-DT, and W-NB.

In W-SVM, W-KNN, W-DT and W-NB, PSO was used to search for the optimal

feature subset (s). The dimensionality of the search space equals to n, i.e. the total

number of features in the dataset. Each particle represents a feature subset and

its position is typically specified by an ndimensional vector, where each dimension

corresponds to one feature in the dataset. Each element of the position vector is

a real valued number between [0, 1], which represents a confidence level that the

corresponding feature is selected. The feature subset is typically constructed by

selecting each feature if the confidence level is above a predefined threshold. The

fitness functions are to maximise the classification accuracy of the selected feature

subsets.

To investigate the third objective, i.e. single objective versus multi-objective al-

gorithms, two wrapper approaches are used as examples since the change of the

classification performance is easier to observe in wrapper approaches than filter ap-

proaches during the search process. The representative single objective algorithm

is PSOIniPG 22 and the representative multi-objective algorithm is CMDPSOFS
14. PSOIniPG is chosen because PSOIniPG simultaneously handled the two objec-

tives during the feature selection process and achieved better performance than the

commonly used way of aggregating two objectives into a single objective function
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22. The representation of each particle in PSOIniPG is the same as in W-SVM,

W-KNN, W-DT and W-NB. In PSOIniPG 22, an initialisation strategy and a pbest

and gbest updating mechanism were proposed in PSO to improve its performance

on feature selection 22. The initialisation strategy was inspired by two classical fea-

ture selection selection methods, forward selection and backward selection, to utilise

their advantages and avoid their disadvantages. The pbest and gbest were updated

not only according to the classification performance of the feature subsets, but also

considered the number of features. CMDPSOFS 14 is the best-so-far multi-objective

wrapper algorithm, where the two objectives are to maximise the classification accu-

racy and minimise the number of features. CMDPSOFS employed a multi-objective

search mechanism in PSO and the representation of each particle in CMDPSOFS

is the same as in PSOIniPG. CMDPSOFS employed two mutation operators, a

crowding distance measure, and a dominance measure to improve the performance

of multi-objective PSO for feature selection. More details can be found in14.

2.2. Filter Approaches

To investigate the first objective, i.e. comparing wrapper algorithms with filter

algorithms, four filter algorithms are used in this paper. They are based on two of

the most popular theories used in feature selection, which are information theory

and rough set theory. The four filter algorithms are F-MI 18 and F-E 18 based on

information theory, and F-RS 19 and F-PRS 19 based on rough set theory. F-MI,

F-E, F-RS and F-PRS used PSO as the search technique and the representation of

each particle is the same as in the above wrapper methods. The fitness functions

are described as follows.

2.2.1. F-MI and F-E

Both F-MI and F-E are based on information theory, where F-MI uses a mutual

information based fitness function and F-E uses a entropy based fitness function.

Entropy and mutual information in information theory are able to measure the in-

formation of random variables 23. Due to page limit, only closely relevant equations

are presented here and more details can be found in 18.

F-MI: The fitness function of F-MI is shown by Equation (1).

FitMI =
∑
Fi∈S

I(F ; c)−
∑

Fi,Fj∈S

I(Fi;Fj) (1)

where
∑

Fi∈S I(Fi;C) represents the relevance between the selected feature subset

S and the class label C, while
∑

Fi,Fj∈S I(Fi, Fj) represents the redundancy within

the feature subset S, where I(Fi, Fj) measures the mutual information between two

features, Fi and Fj , in S. Therefore, Equation (1) is a maximisation fitness function,

which aims maximise the relevance and minimise the redundancy of the selected

feature subset.
F-E: The fitness function of F-E is shown by Equation (2).



March 12, 2015 22:49 WSPC/INSTRUCTION FILE FeatureSelection

5

FitE = IG(C|S)− 1

|S|
∑
Fi∈S

IG(F |{S/Fi} (2)

where IG(C|S) evaluates the information gain of the class label C given in-

formation of the features in S, which shows the relevance between S and C.
1
|S|

∑
Fi∈S IG(Fi|{S/Fi} evaluates the redundancy contained in S by summing up

the information gained for each Fi ∈ S by giving S/Fi, where S/Fi means all the

features in S except for feature Fi. Both relevance and redundancy involve calculat-

ing the information gain of a single feature given a set of features. Taking IG(C|S)

as an example,

IG(C|S)=H(C)−H(C|S)

=H(C)− (H(C ∪ S)−H(S))

=H(C) + H(S)−H(C ∪ S)

where H(C) means the entropy of the class label C and H(S) is the joint entropy of

all the features in S. If S = {F1, F2, F3} (F1, F2, and F3 are the selected features),

then

H(F1, F2, F3) = −
∑

f1∈F1

∑
f2∈F2

∑
f3∈F3

p(f1f2f3) log2 p(f1f2f3).

where p(f1f2f3) shows the probability density function of F1, F2, and F3.

2.2.2. F-RS and F-PRS

The fitness functions of F-RS and F-PRS are based on standard rough set theory

and probabilistic rough set theory, respectively. In rough set theory, an information

system can be denoted as T = (U,A), where U is the universe of objects (i.e.

instances) in the system and A is the set of attributes (i.e. features) that describe

each object. Equivalence relation is a relation that partitions a set so that every

element of the set is a member of one and only one cell of the partition. Based on all

equivalence relations described by A, the equivalence class relation partitions of U

is U1, U2, U3, ..., Uc, where c is the number of classes that objects in U may belong

to.

For any S ⊆ A and X ⊆ U , the equivalence relation is defined as IND(S) =

{(x, y) ∈ U2|∀a ∈ S, a(x) = a(y)} an the equivalence classes of IND(S) are de-

noted [x]S , this means that ∀y ∈ [x]S (x, y) are indiscernible with regards to S.

Based on equivalence class, rough set theory defines a lower approximation and an

upper approximation of X based on the equivalent classes described by S 24. The

lower approximation SX is defined as SX = {x ∈ U |[x]S ⊆ X} while the upper

approximation SX is defined as SX = {x ∈ U |[x]S ∩X 6= ∅}. SX contains all the

objects, which can be surely classified to the target set X. SX contains the objects,

which probably belong to the target set X.
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F-RS: When using rough set theory for feature selection, the datasets for a

classification problem can be treated as an information system T = (U,A), where

all available attributes (features) can be considered as A in the rough set theory.

Based on the equivalence described by A, U can be partitioned to U1, U2, U3, ..., Uc,

where c is the number of classes in the dataset. After feature selection, the obtained

reduct (i.e. feature subset) can be considered as S ∈ A. Therefore, the fitness of S

can be evaluated by how well S represents each target set in U , which is a class in the

dataset. For U1 ∈ U , let SU1 = {x ∈ U |[x]S ⊆ U1} be the lower approximation of S

according to U1 if [x]S only contains instances in U1. Let SU1 = {x ∈ U |[x]S ∩U1 6=
∅} be the upper approximation of S according to U1 if [x]S contains at least one

element not in U1. Therefore, the purity of [x]S according to U1 can be measured

by SU1

SU1
, which shows how well S represents the target set U1. Therefore, how well

S describes each target in U can be calculated by Equation (3), which is also the

fitness function of F-RS.

FitRS =

∑
Ui∈U |SUi|
|U| (3)

If a feature selection algorithm obtains a reduct with FitRS = 1.0, it means the

reduct can completely separate each class from other classes in the dataset.

F-PRS: F-PRS is based on probabilistic rough set theory, which relaxes the

definitions of the lower and upper approximations 25. For the target set U1, µS [x] =
|[x]S∩U1|

|[x]S | . µS [x] quantifies the proportion of [x]S is in U1. apr
S
U1 = {x|µS [x] ≥ α}

defines the lower approximation of S according to U1 rather than SU1. [x]S does

not have to completely contained in U1. α can be adjusted to restrict or relax the

lower or upper approximations. When α = 1.0, the definition of apr
S
U1 is the same

as SU1. The fitness function of F-PRS is shown by Equation (4), which essentially

measures the number of instances that S correctly makes indistinguishable from

others.

FitPRS =

∑n
x=1 |aprSXi|
|U| (4)

Note that the fitness functions of F-MI and F-E combines the maximisation of

the relevance and the minimisation of the redundancy into single objective functions.

The fitness function of F-RS and F-PRS are to maximise the rough set and proba-

bilistic rough set based relevance measures to maximise the classification accuracy.

In filter approaches, the relevance measure is closely related to the classification

accuracy while the redundancy is closely related to the number of features. One

can see that the fitness functions of F-MI and F-E include both the relevance and

redundancy, while the four wrapper algorithms, F-RS and F-PRS only include the

classification accuracy or the relevance measure. The reason is that maximising the

relevance measure in F-MI and F-E will include all the available features. By con-

trast, the measures used in F-RS and F-PRS have been shown to be able to remove
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some redundancy because adding the minimisation of the number of features in the

fitness function did not significantly reduce the size of the feature subset (detailed

experimental results can be seen from the literature 19). Furthermore, the fitness

function using the classification accuracy in the wrappers is expected to automat-

ically remove some redundancy because highly redundant feature subsets usually

deteriorate the classification performance of a classifier.

3. Wrappers versus Filters

This section focuses mainly on comparing wrapper approaches with filter approaches

in terms of the classification performance and the computational cost. The four

wrapper methods W-SVM, W-KNN, W-DT, and W-NB, and the four filter meth-

ods, F-MI, F-E, F-RS, and F-PRS, are used as representative algorithms in the

experiments.

3.1. Experiments Configuration

Experiments have been conducted on 12 datasets chosen from UCI machine learning

repository 27 as representative examples. The details of the datasets can be seen

from Table 1, which indicated by “3” in the last column. The 12 datasets include

10 discrete/categorical datasets because all the four filter algorithms only work on

discrete features, and two continuous datasets (Hillvalley and Madelon), which were

discretised and used as the representative examples of datasets with medium and

large numbers of features (since the available discrete datasets include a relatively

small number of features). The Lung dataset includes discrete data but not used

here because it has a very small number of instances, which is not enough for filter

measures to capture the characteristics of the data. In the experiments, all the

instances in each dataset are randomly divided into two sets: 70% as the training

set and 30% as the test set. The instances are selected so that the proportion of

instances from different classes remains the same in both the training set and the

test set. All the algorithms are firstly run on the training set to obtain a good

feature subset.

Note that during the evolutionary feature selection (training) process, each eval-

uation in a wrapper approach involves a classification process that needs a training

set and a test set 3. Therefore, for all the wrapper algorithms, the training set is

further split into a sub-training set and a sub-test set. The reason for this is to avoid

feature selection bias 3,28. Note that the results of W-SVM on the Madelon dataset

is not available because it could not finish the running process within one week,

which is shown as “N/A” in the figures. Two Java based machine learning libraries
29,30 were used to conduct the experiments. The parameters of PSO follow the com-

mon settings suggested by Clerc and Kennedy 31. Since PSO is a stochastic search

technique, the experiment of each algorithm on each dataset have been conducted

for 40 independent runs. So in total, the results of 3840 (8*12*40) experiments are
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Table 1: Datasets

Dataset
NO. of NO. of NO. of Data Used in

Features Classes Instances Type Section
Lymphography (Lymph) 18 4 148 Categorical 3
Mushroom 22 2 5644 Categorical 3
Spect 22 2 267 Categorical 3
Leddisplay 24 10 1000 Categorical 3
Dermatology 34 6 366 Categorical 3
Soybean Large 35 19 307 Categorical 3
Chess 36 2 3196 Categorical 3
Statlog 36 6 6435 Categorical 3
Waveform 40 3 5000 Categorical 3
Splice 60 3 3190 Categorical 3
Lung Cancer (Lung) 56 3 32 Categorical 4, 5
Wine 13 3 178 Continuous 4, 5
Australian 14 2 690 Continuous 4, 5
Zoo 17 7 101 Continuous 4, 5
Vehicle 18 4 846 Continuous 4, 5
German 24 2 1000 Continuous 4, 5
Wisconsin Breast Cancer
Diagnostic (WBCD) 30 2 569 Continuous 4, 5
Ionosphere (Ionosp) 34 2 351 Continuous 4, 5
Sonar 60 2 208 Continuous 4, 5
Movementlibras(MoveLib) 90 15 360 Continuous 4, 5
Hillvalley 100 2 606 Continuous 3, 4, 5
Musk Version1 (Musk1) 166 2 476 Continuous 4, 5
Madelon 500 2 2600 Continuous 3, 4, 5
Isolet5 617 26 1559 Continuous 4, 5

used here to compare these wrapper and filter algorithms.

3.2. Computational Time

Fig. 1 shows the computational time of the four wrapper algorithms and the four

filter algorithms. Each chart in the figure corresponds to one of the twelve datasets

used in the experiments. The numbers in the bracket shows the number of features

and the number of instances included in the corresponding dataset.

3.2.1. Computational Time of Filters

F-MI. As can be seen from Fig. 1, the computational time used by F-MI is the

shortest in all datasets. F-MI as a filter approach does not involve any classification

process during the evolutionary feature selection process. The mutual information

based fitness function of F-MI takes a very short time to calculate. Meanwhile, the

calculation of the mutual information between each feature and the class labels, and

the mutual information between each pair of features, only needs to be performed

once for each dataset before the evolutionary feature selection process. During the

evolutionary process, the calculation of the fitness only needs to refer to these values.

Therefore, F-MI is fast for all the datasets used in the experiments.
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Fig. 1: Comparisons on Computational Time.
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F-E. According to Fig. 1, the computational time used by F-E is longer than F-

MI in all cases and longer than F-RS and F-PRS on datasets with a large number

of features. The main reason is that the fitness function of F-E is more complex

than the fitness function used in F-MI. The complexity of the fitness function in

F-E increases rapidly along with the number of features. Therefore, on the datasets

with a relatively small number of features, F-E is often faster than F-PR and F-

PRS, but on the datasets with a large number of features, F-E is usually slower

than F-RS and F-PRS.

F-RS and F-PRS. According to Fig. 1, there is no much difference between the

time used by F-RS and F-PRS. The main reason is that the calculation of the

standard rough set based measure in F-RS is similar to that of the probabilistic

rough set based measure in F-PRS. The only difference is that probabilistic rough

set (F-PRS) determines equivalent classes based on a threshold while the standard

rough set (F-RS) does not have any threshold. F-PRS used a shorter time than

F-RS on some datasets because F-PRS selected a smaller number of features than

F-RS. The calculation of the measures in both F-RS and F-PRS are significantly

influenced by the number of instances. Therefore, on the datasets with a relatively

small number of instances, F-RS and F-PRS is faster than F-E, but on the datasets

with a large number of instances, F-RS and F-PRS are slower than F-E.

3.2.2. Computational Time of Wrappers

W-SVM. According to Fig. 1, it can be seen that W-SVM used longer time than

other methods in most cases. As a wrapper approach, each evaluation in W-SVM

needs a training and testing classification process of a SVM to evaluate the goodness

of the selected features. The SVM used here is the library LIBSVM developed

by Chang and Li 32, which involves a number of iterations and a cache method

during the training of LIBSVM. The time complexity of LIBSVM is between O(n ∗
m2) and O(n ∗ m3), where n is the number of features and m is the number of

instances. The computational time depends on how efficiently the cache method

is used (dataset dependent) and the number of iterations. There is no theoretical

analysis on the number of iterations needed in LIBSVM. Empirically, the number

of iterations may be higher than linear to the number of training instances 32.

Therefore, LIBSVM may take a very long time for large datasets. For the Madelon

dataset with 500 features, W-SVM could not finish the evolutionary feature selection

(training) process within one week. The possible reason is that on Madelon with a

large number of features, the number of iterations needed for LIBSVM is huge and

the cache method was not able to be used efficiently. Another reason for W-SVM

using longer time than other wrapper algorithms is that W-SVM selected a larger

number of features than the other algorithms. A large number of features need

longer computational time for each evaluation than a smaller number of features.
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W-KNN. In most cases, the computational time used by W-KNN is shorter than

W-SVM, but longer than other algorithms, especially on the datasets with a large

number of instances. The main reason is that in the classification process of KNN,

each instance in the sub-testing set is compared with all the instances in the sub-

training set to determine its class label. The time complexity for each testing in-

stance is around O(n ∗ m) 33. If there are q instances in the sub-testing set, the

time complexity of KNN is O(n ∗m ∗ q). Therefore, the increase of the number of

instances causes a significant increase in the computational time of W-KNN.

From Fig. 1, it can be observed that the computational time used by W-KNN

is significantly influenced by the number of instances while that of W-SVM is sig-

nificantly influenced by the number of features in the datasets. For example, the

Mushroom and Spect datasets include the same number of features, but different

numbers of instances. W-KNN spent a shorter time than W-SVM on the Spect

dataset with a smaller number of instances, but spent a longer time than W-SVM

on the Mushroom dataset with a larger number of instances. By contrast, the Chess

and Splice datasets contain a similar number of instances, but different numbers of

features. W-SVM spent a shorter time than W-KNN on the Chess dataset with

a smaller number of features, but W-SVM spent a longer time than W-KNN on

the Splice dataset with a larger number of features. On the Madelon dataset with

the largest number of features, W-SVM even could not finish the feature selection

process within one week.

W-DT and W-NB. According to Fig. 1, the computational time of W-DT and

W-NB is shorter than that of W-SVM and W-KNN in almost all cases. The main

reason is that the time complexity of is around O(n2 ∗m) 34 in DT and O(n ∗m)

in NB, which is less than that of KNN and SVM on these datasets. The number of

features produces greater influence to W-DT than to W-NB in the computational

time. Therefore, on the datasets with a large number of features, i.e. Hillvalley and

Madelon, W-NB is faster than W-DT.

3.2.3. Comparisons Between Filters and Wrappers

According to Fig. 1, it can be seen that the wrapper algorithms using SVM and

KNN spent longer time than all other algorithms. Wrappers using DT and NB used

a similar or even shorter time than filter algorithms in some cases, such as on the

Chess and Madelon. When the number of features increases, the computational time

used by W-SVM, W-DT and F-E increased more than other algorithms. When the

number of instances increases, the computational time used by W-KNN, F-RS and

F-PRS increased more than other algorithms. Overall, F-MI (filter) is always the

fastest algorithm regardless of the number of features and the number of instances.

For wrapper algorithms, when the number of features is large, the fastest wrapper

algorithm is W-NB. When the number of instances is small, one can choose the

wrapper algorithm W-DT to perform a fast feature selection process.
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3.3. Classification Performance

Fig. 2 shows the classification performance of the four wrapper algorithms and the

four filter algorithms. In the wrapper approaches, the classification performance

is evaluated by the internal classification algorithm used during the evolutionary

feature selection process, e.g. the classification performance of the features selected

by W-KNN is evaluated by KNN. Filter approaches do not involve any classification

algorithm during the evolutionary feature selection process. All the classification

algorithms can be used to evaluate the classification performance. SVM was used

here because W-SVM using SVM achieved better performance than the other three

wrapper algorithms and a slight bias is given to filter approaches. The performance

of using other classification algorithms is often similar or worse than that of SVM,

so are not presented here due the the limited space.

According to Fig. 2, the best classification performance is achieved by one of the

wrapper approaches in almost all cases. The worst classification performance is pro-

duced by one of the filter approaches. For the four filter algorithms, the performance

of F-MI and F-E are better than that of F-RS and F-PRS. F-E is slightly better

than F-MI because the fitness function of F-E considers the selected features as a

whole rather than each pair of features in F-MI. All the four wrapper algorithms

achieved almost the same performance on the Leddisplay dataset, which is 100%

and because this problem is relatively easy. W-SVM achieved better performance

than the other three algorithms on 5 of the 11 datasets (except for Leddisplay). This

number is 2 for W-KNN, 2 for W-DT, and 2 for W-NB. Clearly, these classification

algorithms performed differently on different datasets, depending on characteristics

of the algorithm and the dataset itself. The choice of the best classification algo-

rithm for a certain type of data is beyond the scope of this paper, but the results

here show that any of the four wrapper algorithms can be used to obtain feature

subsets with reasonable good classification performance.

Overall, considering both the classification performance and the computational

cost, if users have enough time, wrapper approaches W-SVM and W-KNN are

good choices. If the demand of users is more on the computational time than the

classification performance, it is better to use a filter algorithms, such as F-MI.

Furthermore, if users need to avoid poor classification performance, fast wrapper

algorithms, such as W-DT and W-NB, are good choices.

3.4. Further Comparisons

This section further investigates individual features selected by the eight different

algorithms to test their consistency. Fig. 3 takes the Chess dataset as an example to

show the number of appearances of each individual feature over the 40 independent

runs in the eight algorithms, where each chart corresponds to one of the eight

algorithms. In each chart, the vertical axis shows the frequency of the feature being

selected, where 40 means that the feature was selected in all the 40 independent

runs while 0 means the feature was never selected. The horizontal axis shows the
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Fig. 2: Comparisons on Classification Performance.
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Fig. 3: Comparisons on the Selected Features in the Chess Dataset.
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index of all the 36 features in the Chess dataset.

Fig. 3 shows that the eight algorithms selected different numbers of features.

For example, W-NB and F-MI usually selected a relatively small number of fea-

tures while F-RS and F-PRS usually selected a relatively large number of features.

This is mainly because they used different criteria to evaluate the quality of the

feature subsets, where the best feature subset for one criterion may not be the best

feature subset for another criterion. Fig. 3 also shows that all the eight algorithms

consistently selected Features 10, 21 and 33 on all their 40 independent runs. These

three features may be the “core” features of the Chess dataset. The detailed results

also reveal that they selected other different individual features. This is due mainly

to the feature interaction problem, where some other different (complementary) fea-

tures are needed to work together with such “core” features to optimise their fitness

functions (based on different criteria).

The other datasets show a similar pattern to the Chess dataset, i.e. there are

always some “core” features selected by all the eight algorithms and also some dif-

ferent complementary features selected by different algorithms. Further investiga-

tion of “core” features and feature interaction in different datasets requires domain

knowledge, which forms part of the future work.

4. Generality of Wrappers

This section tests the generality of the four wrapper algorithms, i.e. W-SVM, W-

KNN, W-DT, and W-NB. The classification performance of the features selected

by each wrapper algorithm is tested using all the four classification algorithms, i.e.

SVM, KNN, DT and NB. 14 datasets are used here in the experiments in this section,

which are different from the ones in Section 3 because the wrapper algorithms do

not require the data to be discrete values and a variety of datasets can used in this

section to further and better test the algorithms. The detailed parameter settings are

the same as in Section 3.1. Each algorithm has been conducted for 40 independent

runs on each dataset, which are in total 2240 (4*14*40) experiments producing

2240 feature subsets. Then each of the 2240 feature subsets were tested by the four

classification algorithms resulting in 8960 (2240*4) classification accuracies, which

are used to test the generality of wrappers.

The experimental results are shown in Table 2. The feature subsets selected

by each of the four wrappers (W-KNN, W-NB, W-DT, and W-SVM) are tested

using all the four classification algorithms. The classification performance of KNN

(or NB, DT, SVM) using the selected features are then compared with KNN (or

NB, DT, SVM) using all features. In order to make the results easy to observe, the

detailed classification performance are not presented here. Only the results of the

statistical significance tests between the classification performance of the selected

features and that of all features are shown in the table. The pairwise Student’s T-

test with a significance level of 0.05 (or confidence interval of 95%) was performed

here. Note that a non-parametrical significance test named Wilcoxon test was also
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used here and the results are not shown here since they are almost identical to

that of T-test. In the table, “+” (or “−”) means one classification algorithm (e.g

KNN) using the selected feature subsets achieved significantly better (or worse)

performance than using all features. “=” means there is no significant different

between the results. The last row summaries the total number of datasets where

the classification performance of a classification algorithm is similar or significantly

better than using all features. The results of W-SVM on Madelon are not presented

because the dataset is too big and the evolutionary feature selection process could

not finish within one week.

According to Table 2, when using KNN during the evolutionary feature selec-

tion (training) process, KNN itself using the selected feature subsets increased or

maintained the classification performance on 13 out of the 14 datasets. On 7 of the

14 datasets, the classification performance of NB, DT and SVM were maintained or

improved over using all features. The results show that W-KNN benefits KNN itself

more, but it also benefits the other classifiers. The possible reason is that KNN is

very simple, which has a small probability to overfit the training data.

When using NB during the feature selection process, NB itself using the selected

feature subsets increased or maintained the classification performance on 9 datasets.

The classification performance of KNN, DT and SVM were maintained or increased

over using all features in 8, 9 and 6 cases, respectively. The results show that W-

NB benefits NB itself more than the others. Although the total number of “+”

and “=” for DT is 9, the same as for NB, but 7 of these 9 cases is “=”. This

means the classification performance of DT using the feature selected by W-NB is

similar to that of all features. The possible reason is that NB assumes the features

are conditionally independent to each other and it is easy to select a group of

individually good features but not complementary features. Such features usually

contain most of the useful information in the original features, but may also have

redundancy.

When using DT during the feature selection process, as can be seen from Table

2, the classification performance of DT, KNN, NB and SVM were the similar or

increased over using all features on 7, 8, 8 and 7 datasets, respectively. When using

SVM during the feature selection process, the classification performance of SVM,

KNN, NB and DT were the same or increased over using all features on 7, 9, 6, and

7 datasets, respectively.

Overall, the results show that wrapper approaches can be reasonably general.

Wrappers using a relatively simple classification algorithms, e.g. KNN and NB,

can be general to different classification algorithms. Wrappers using a relatively

complicated classification algorithm, e.g. DT and SVM, are less general than using

KNN and NB. The possible reason is that the complicated classification process

of DT and SVM may select features that are particularly suitable for themselves.

The classification performance of SVM can be increased by features selected by W-

KNN and W-NB, which is faster and even better classification performance than

W-SVM. Meanwhile, SVM as a complicated algorithm using either all features or
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Table 2: Results to Test the Generality of Wrappers on 14 Datasets
E.g. KNN using the selected features compared with that of KNN using all features.

Feature Subsets from W-KNN Feature Subsets from W-NB
KNN NB DT SVM NB KNN DT SVM

Wine + - + + + + = +
Australian + + - + + + + +
Zoo + - + + - + = +
Vehicle + - = - - = = -
German = = - - + = - -
WBCD + - = + + - + +
Ionosphere + + - - + + = -
Lung + - - = - + = +
Sonar + - = - - - - -
Movementlibras - - = = - - = -
Hillvalley + = - - = = - -
Musk1 + + = - + - = -
Madelon + = - + + - - +
Isolet5 + = - - + - - -
Total NO. of “+” 12 3 2 5 8 5 2 6
Total NO. of “+” and “=” 13 3 7 7 9 8 9 6

Feature Subsets from W-DT Feature Subsets from W-SVM
DT KNN NB SVM SVM KNN NB DT

Wine + + - + + + - =
Australian + + + + + + - =
Zoo + + - = + + - =
Vehicle + - - - - - - -
German - = = - - + + -
WBCD = - - + + - - -
Ionosphere - + + - = + = -
Lung = + - + = + - =
Sonar - = - - - = - +
Movementlibras - - - = - - = =
Hillvalley - = = - = + = -
Musk1 + - + - - - + +
Madelon - - = +
Isolet5 - - = - - = = -
Total NO. of “+” 5 5 3 5 4 7 2 2
Total NO. of “+” and “=” 7 8 7 7 7 9 6 7

the selected features usually obtains high classification performance and the best

classification performance is often achieved by SVM. Therefore, if users want to

reduce the number of features but still achieve high classification performance, it is

good to use W-KNN and W-NB to select features and use SVM for classification

on the unseen test set.

Note that Table 2 aims to test the generality of wrappers, e.g. whether features

selected by a wrapper algorithm can increase the performance of other classifica-

tion algorithms. So, Table 2 only shows the comparisons between one classification

algorithm using the selected features and using all features, but does not show the

absolute classification accuracy since it is not the focus of this paper.

5. Single Objective versus Multi-Objective

Most of the existing feature selection algorithms are single objective approaches. A

relatively small number of multi-objective. In our previous research 13,35,9,14,10,36,

comparisons on the final solutions have shown that the multi-objective approaches

can usually discover multiple and better solutions than the single objective algo-



March 12, 2015 22:49 WSPC/INSTRUCTION FILE FeatureSelection

18 Bing Xue et al.

Table 3: Computational Time (In minutes)

Method Wine Australian Zoo Vehicle German WBCD Ionosp
PSOIniPG 0.21 2.57 0.07 6.02 9.37 2.07 0.71

CMDPSOFS 0.25 4 0.09 6.59 9.3 2.71 1.54

Method Sonar MoveLib Lung Hillvalley Musk1 Madelon Isolet5
PSOIniPG 0.37 1.88 0.02 14.6 7.22 651.88 247.12

CMDPSOFS 0.475 2.075 0.01 23.49 6.02 394.45 200.71

rithms, but there has not been serious comparisons between single objective and

multi-objective algorithms by looking deeply the evolutionary process. PSOIniPG 22

as a typical single objective algorithm considering both the number of features and

the classification accuracy, and CMDPSOFS 14 as the best-so-far multi-objective

algorithms are used in the section.

CMDPSOFS and PSOIniPG used the same classification algorithm (i.e. KNN

with K=5), population size and total number of evaluations in PSO. Other param-

eters can be seen in the literature 14,22. Each algorithm has been conducted for 40

independent runs on each dataset, which are in total 1120 (2*14*40) experiments

to compare single objective and multi-objective feature selection approaches.

5.1. Computational Time

Table 3 shows the average computational time used by PSOIniPG and CMDP-

SOFS for a single run, where PSOIniPG produces a single solution and CMDP-

SOFS produces a set of non-dominated solutions. As wrapper approaches, most of

the computational time is spent on the evaluation of the selected feature subsets,

which involves a classification process and the time is significantly influenced by

the number of features in a certain dataset. From Table 3, it can be observed that

on the datasets with a relatively small number of features, both PSOIniPG and

CMDPSOFS completed the evolutionary training (feature selection) process within

25 minutes. CMDPSOFS often used a slightly longer time than PSOIniPG on such

datasets. The main reason is that there is no significant difference between the eval-

uation time (depending on the number of selected features) used by PSOIniPG and

CMDPSOFS. Meanwhile, CMDPSOFS involves additional procedures related to

the multi-objective mechanism, which takes a slightly longer time than PSOIniPG.

However, on the large datasets, i.e. Madelon and Isolet5, CMDPSOFS used a much

shorter time than PSOIniPG. The main reason is that CMDPSOFS selected a much

smaller number of features than PSOIniPG on these datasets, which needs a much

shorter time for each evaluation during the evolutionary feature selection process.

5.2. Evolutionary Process

The number of features selected by PSOIniPG is larger than CMDPSOFS due

mainly to its single objective updating mechanism. Although PSOIniPG considers

both the classification performance and the number of features during the evolution-

ary search process, the classification performance is treated as the priority. When
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available, PSOIniPG will search toward the regions in the solution space with a low

classification error rate regardless of the number of features.

Fig. 4 shows the change of the classification error rate and the number of features

selected by the best particle (gbest) in each iteration during a single evolutionary

process of PSOIniPG on the Madelon dataset. The horizontal axis show the number

of iterations from 1 to 100. Since the total number of features is 500, which is much

larger than the error rate in [0, 100], the numbers of features are divided by 5 to

scale the range to [0, 100] in the vertical axis.

According to Fig. 4, it can be seen that the error rate of gbest always became

smaller and smaller since the classification performance is the fitness function (the

priority). The number of features fluctuated because gbest was updated whenever

the error rate became smaller, but the number of features might be larger. The blue

points in the red line shows the solutions that are non-dominated to each other

and dominate all other solutions of gbest during the evolutionary search process.

Since the single objective mechanism only keeps one single solution, only the solu-

tion with the lowest classification error rate was returned by PSOIniPG. Note that

PSOIniPG selected smaller feature subsets than other single objective algorithms

(see the paper 12) because PSOIniPG considers the number of features in the pbest

and gbest updating procedure. For other single objective algorithms, there are more

(non-dominated) solutions like the blue points found during the evolutionary search

process, but none of them were reported by the algorithm.

Fig. 5 shows the non-dominated solutions found by CMDPSOFS and all the non-

dominated solutions found by PSOIniPG (i.e. the blue points in Fig. 4). It can be

seen that the solutions of CMDPSOFS have a smaller number of features and a lower

classification error rate than that of PSOIniPG. This is due mainly to the multi-

objective mechanism in CMDPSOFS, where the non-dominated solutions obtained

during the evolutionary search process are kept as potential leaders (gbest) to guide

the algorithm to search around to find better solutions with smaller numbers of

features and higher classification performance. Furthermore, CMDPSOFS returns

multiple solutions, which provide more choices than PSOIniPG.
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6. Conclusions

This paper investigated three issues in feature selection. The first one is the com-

parisons on the classification performance and computational time of wrapper ap-

proaches and filter approaches. The second one is the generality of wrapper ap-

proaches. The third one is the discussions on the advantages of multi-objective

feature selection algorithms over single objective algorithms.

Wrapper approaches are argued to be computationally more expensive and can

achieve better classification performance than filter approaches. This paper shows

that when a wrapper algorithm using NB or DT, it can be computationally cheaper

than a filter algorithm with a complex measure, such as rough set based measures.

Meanwhile, because of the interaction between features and a given classification

algorithm, wrapper algorithms are often relatively good in terms of the classifica-

tion performance, although not always better than filter approaches. Some filter

methods, such as mutual information, are very fast and can usually achieve good

performance.

Wrapper approaches are also argued to be lack of generality. This paper shows

that this is not always the case, as wrappers using a simple classification algorithm,

e.g. KNN and NB, during the feature selection process are often general to other

classification algorithms. Wrappers using a relatively complicated classification algo-

rithm, e.g. SVM, are usually not general to other algorithms because SVM involves

a complicated classification process and the features selected are more specifically

suitable to itself rather than other classification algorithms.

This paper also shows that the multi-objective mechanism is a more appropriate

way than the single objective mechanism for feature selection tasks by directly

observing the evolutionary process. Single objective algorithms only keep one single

solution gbest to guide the search, which is more likely to become stuck in local

optima. Multi-objective algorithms keep the non-dominated solutions found during

the evolutionary search process, which are used as potential leaders to guide the

algorithm to search around and find better solutions.

Overall, this paper shows that wrapper algorithms can be faster than (some)

filter approaches and general to different classification algorithms. If users have a

high demand on the computational time and also need to avoid poor classification

performance, a filter algorithm (like F-MI) and a fast wrapper algorithm (W-DT or

W-NB) are good choices. If users have a high demand on the classification perfor-

mance, a fast classification algorithm (i.e. NB) can be used in a wrapper to select

features, and the selected features can be used in SVM for classification. Meanwhile,

a multi-objective algorithm is a better choice than a single objective algorithm in

most cases.
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