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ABSTRACT

An ensemble consists of multiple learners and can achieve a better
generalisation performance than a single learner. Genetic program-
ming (GP) has been applied to construct ensembles using different
strategies such as bagging and boosting. However, no GP-based en-
semble methods focus on dealing with image classification, which
is a challenging task in computer vision and machine learning. This
paper proposes an automated ensemble learning framework us-
ing GP (EGP) for image classification. The new method integrates
feature learning, classification function selection, classifier train-
ing, and combination into a single program tree. To achieve this,
a novel program structure, a new function set and a new terminal
set are developed in EGP. The performance of EGP is examined on
nine different image classification data sets of varying difficulty
and compared with a large number of commonly used methods
including recently published methods. The results demonstrate
that EGP achieves better performance than most competitive meth-
ods. Further analysis reveals that EGP evolves good ensembles
simultaneously balancing diversity and accuracy. To the best of our
knowledge, this study is the first work using GP to automatically
generate ensembles for image classification.
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1 INTRODUCTION

Ensemble learning is a popular topic in recent years [7]. An en-
semble often consists of multiple base/individual learners to solve
a problem [32]. Each base/individual learner is trained using a tra-
ditional machine learning algorithm. Generally, an ensemble can
achieve better generalisation performance than a single learner [33].
However, to achieve a strong generalisation ability, the learners in
an ensemble should be accurate and diverse. To obtain a good en-
semble, many methods have been developed, including bagging and
boosting methods [8, 13, 29]. However, in most existing ensemble
methods, the selection of the base learners and the combination of
them are often manually determined. The complementarity of the
learners may not be well considered and addressed during this pro-
cess. Therefore, this work develops a new approach to automating
ensemble learning to address the above limitations.

Genetic programming (GP) aims at automatically evolving com-
puter programs to solve problems [15] and is well-known for its
flexible representation, good search ability and high interpretability
of the solutions. Using GP to construct ensembles for classifica-
tion is not new since each GP tree can be a classifier for binary or
multi-class classification [9]. The bagging and boosting methods
are often employed to construct an ensemble of GP trees, such as in
[8, 13, 29]. The GP-based ensemble methods have shown promising
results in classification [29]. However, to the best of our knowledge,
there are no GP-based ensemble methods for image classification.

Image classification is a fundamental task in computer vision
and machine learning. But it is very challenging due to high varia-
tions of images. Generally, the raw pixels of the images are often
not meaningful so that feature extraction, which is able to extract
informative features from images, is often needed. Recently, GP has
been widely applied to feature learning and image classification
[4, 17, 27]. The flexible representation allows GP to integrate many
image-related operators, such as histogram of orientated gradient
(HOG) [17], Gaussian filter, Sobel filter, and Gabor filter [27], to
learn informative features for image classification. The features are
more effective and discriminative than many hand-crafted features
extracted by traditional feature extraction methods such as HOG
[27]. However, most existing GP-based methods are only suitable
for binary classification [1, 17] or a particular domain such as tex-
ture [2]. Therefore, a powerful GP-based method, which is able to
solve different types of image classification tasks, is needed.

This work aims to develop a new GP-based ensemble method
for image classification 1. The new method will provide end-to-end
solutions for image classification by performing feature learning,
classification algorithm selection, classifier training, combination,

The code is released on https://github.com/yingbi7460/egp
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and prediction, automatically and simultaneously. To achieve this,
a novel program structure, a new function set and a new terminal
set are developed in EGP. Specifically, this study will answer the
following questions.

(1) How to develop the program structure of the EGP approach?

(2) What are the function set and the terminal set for EGP?

(3) How to use the EGP approach for image classification?

(4) Can EGP achieve better performance than state-of-the-art
methods on image classification data sets?

(5) CanEGP evolve ensembles with high accuracy and diversity?

2 BACKGROUND

This section briefly provides important concepts of GP. Then it
reviews recent work related to this study and summarises current
limitations.

2.1 GP and Strongly Typed GP

GP uses a tree-based representation, where each individual is rep-
resented by a tree. A GP tree consists of a root node, a number
of internal nodes and leaf nodes. The leaf nodes are constructed
by selecting terminals from a predefined terminal set. The termi-
nal set often contains variables/features and constant parameters,
where the variables/features are related to problems. The root node
and internal nodes are built by selecting functions from a prede-
fined function set, which often has a number of functions including
arithmetic functions and domain-dependent functions.

In standard GP, the functions and the terminals deal with one
data type. To deal with multiple data types, strongly typed GP
(STGP) was proposed in [22]. In STGP, an input type and an output
type of each function need to be specified, and an output type of
each terminal needs to be specified. To construct a GP tree, the
input type of a node should be the same as the output type of its
child node. By such a constraint, STGP is very suitable for dealing
with multiple tasks, where different functions or terminals can
be used for each task. Because of the complexity of the image-
related tasks, STGP is commonly used for image analysis, including
feature extraction and image classification [4]. In order to deal with
multiple tasks using a single GP tree, it is necessary to develop
a program structure. For example, in [27], the program structure
of GP has an input layer, a filtering layer, a pooling layer, and a
concatenation layer. Each layer has its own functions that allow
GP to automatically select them to build GP trees.

2.2 Related Work

2.2.1 Ensemble Learning Using GP. For a classification prob-
lem, GP can evolve classifiers via the evolutionary learning process
from a training data set. A common GP-based classifier often uses
the features as the inputs and produces a float number as the out-
put, which can be used to make classification decision for a binary
classification task according to a predefined threshold. Considering
GP as a base learner, existing ensemble methods such as bagging
and boosting can be used to build an ensemble of GP-based clas-
sifiers. Karakati¢ and Podgorelec [14] developed a GPAB method
for classification, where AdaBoost was used to update the weights
for instances and for each GP-based classifier in the ensemble.
Kammerer and Affenzeller [13] integrated a confidence measure
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in GP-based classifier ensembles to determine reject or accept pre-
dictions based on the confidence value and a predefined threshold.
Tran et al. [29] employed bagging to build a set of interval GP (IGP)
classifiers for classification on missing data. This ensemble method
was more accurate than single IGP classier and other ensembles.
Instead of running GP multiple independent times to obtain a set
of classifiers using bagging, Dick et al. [8] proposed a new GP-
based approach that was able to generate an ensemble from a single
run. This method has improved the computational complexity of
building GP-based ensembles.

Existing work has shown promising results of GP-based ensem-
bles on classification or regression tasks. However, no GP-based
ensemble methods address image classification tasks, which are
challenging due to the high variations of images. Most existing GP-
based ensemble methods need to run GP multiple times, which are
time consuming [13, 29]. There are multiple ways of GP to obtain
an ensemble as GP has a flexible representation. This paper will
address the current limitations by further exploring the potential
of GP on ensemble learning for image classification.

2.2.2 GP for Feature Learning and Image Classification.
GP has been applied to feature learning for image classification
using raw pixels as inputs. Based on whether a classification method
is used for evaluation, the existing work can be broadly classified
into two groups, which are using GP to construct classifiers and
using GP to learn features from raw pixels. The first group uses
GP to construct classifiers with simultaneously dealing with region
detection, feature extraction and feature construction [1, 17]. The
methods in this group often have a new program structure with the
capability of dealing with multiple tasks in a single tree, and are
naturally suitable for binary image classification. The second group
uses GP to automatically learn a set of features and uses a machine
learning classification method, e.g., KNN and SVMs, to perform
classification [2, 27]. Compared with the methods in the first group,
the methods in this group can deal with binary or multi-class image
classification tasks, and are often more accurate. Therefore, this
paper focuses on the methods in the second group.

In recent years, many image-related operators such as Gaussian
filter, mean filter, Sobel filter, and HOG have been developed as
functions in GP to extract/learn high-level features for effective
classification [3, 17, 27]. These image-related operators were very
helpful for learning important features [3, 17, 27]. Based on the
framework of GP for feature learning in [3, 27], this paper uses a
set of image-related operators for feature learning with the consid-
eration of efficiency and effectiveness.

In [2, 27], a classification algorithm was employed to evaluate
each individual of GP. However, how to select the classification algo-
rithm and whether it is effective for classification using the learned
features are often determined manually via trial and error. Instead
of using a single classification algorithm, this paper proposes an
ensemble method to achieve better classification performance. The
new method is able to address the above limitations by using a set
of image-related operators for feature learning, and automatically
selecting suitable classification methods for classification, and find
the combinations for optimising the classification performance.
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Figure 1: The program structure of EGP and an example program that can be evolved by EGP.

3 PROPOSED APPROACH

This section describes the proposed EGP approach in detail, in-
cluding the overall algorithm, the new program structure, the new
function set, the new terminal set, and the test process of EGP.

3.1 Overall Algorithm

The overall algorithm of EGP for image classification is described
in Algorithm 1. The inputs of the EGP system are the commonly
used parameter settings for GP and the training data, i.e., images
X train and labels Y _train. The aim of EGP is to search for the
best individual, which produces the combined predictions/outputs
(class labels) for a image classification task.

Algorithm 1: Framework of EGP

Input :Commonly used parameter settings for EGP; X_train: the
training data; Y_train: the labels of training data.
Output :Best_Individual: the best program tree.

Py « Initialise the population using the ramped half-and-half method based
on a new program structure, a new function set and a new terminal set;

-

2 g0

3 while g < G do

4 Evaluate the fitness of each individual in Pg;

5 for each individual p in P, do

6 if p in Cache_Table then

7 | accyp « the fitness value of Cache_Table(p);
8 else

9 Feed X _trainand Y_train to p;

10 Obtain the predicted class labels Y_predict;

11 accyp « calculate the accuracy according to Y_train and

Y predict;

12 end

13 Assign accyp as fitness value to p;
14 end

15 Update Best_Individual;
16 Update Cache_Table;

17 Pg.1 < Use genetic operators to generate a new population;
18 ge—g+1
19 end

20 Return Best_Individual.

The overall learning process of EGP is similar to the standard
GP process except for that a Cache_Table is employed in EGP to
reduce the time of evaluation as GP is known for computationally
expensive on image data [25]. The Cache_Table stores the best
individuals of the past generations and a search is conducted in the
Cache_Table before evaluating each individual at each generation
[25]. The size of Cache_Table can be any number but a tradeoff

between the searching time of Cache_Table and the evaluation
time of an individual needs to be considered. In EGP, we set the
number of individuals in Cache_Table to 5 X N as the population
size of EGP is small, where N is the population size.

Fitness Function: The fitness function for EGP is the classifi-
cation accuracy, which is calculated according to the EGP system
output Y_predict and the real class labels Y_train. The classifica-
tion accuracy is the most commonly used fitness function for GP
on image classification [17, 27].

The main differences of EGP and existing GP methods on im-
age classification are the program structure, the function set and
the terminal set, which determine how each individual solves the
task by producing a combined output under a tree-based represen-
tation. The following subsections will introduce these distinctive
components of EGP.

3.2 New Program Structure

The EGP method is based on the STGP method, which has been
introduced in Section 2.2.2. A new program structure is developed
in EGP and it is important for specifying the type for each function.
Figure 1 shows the logical flowchart of constructing the program
structure and an example program that can be evolved by EGP.

As shown in Figure 1 with different colours, the new program
structure compounds of the input, filtering, pooling, concatena-
tion, classification, combination, and output processes. The inputs
of EGP are the image data, X_train and Y_train, where X_train
is the training set and Y_train is the class labels of X_train. The
processes of filtering, pooling and concatenation belong to feature
learning, where image data are transformed into a set of features.
The process of classification including classification method selec-
tion and training. In this process, the input image features produced
by the feature learning process are transformed into predicted class
labels. The combination process receives the predicted class labels
and produces combined predictions using voting functions. Finally,
the outputs of EGP are the predicted class labels Y_predict.

In the new program structure, the classification process is con-
nected with the feature learning process, which means that the
inputs for the classification functions in the evolved GP trees are
different if their child branches are different. As the classifiers will
be combined by the voting functions in the ensemble, this allows the
classifiers to have high diversity, which is one of the most important
issues in ensemble learning.
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It is noticeable that the tree depth of the feature learning process
and the tree depth of the combination process are flexible, and
the tree depth of the classification process is fixed as 1. Based on
this program structure, different processes have different functions,
which form the new function set of EGP.

3.3 New Function Set

The new function set has three different types of functions ac-
cording to the tasks, i.e., feature learning functions, classification
functions, and combination functions.

Feature Learning Functions: The feature learning functions
aim to transform the input data X_train into X_features, which
means that each image in the original data set is transformed into a
set of features/numbers. There are many functions than can be used
for this purpose. In EGP, the selection of feature learning functions
are based on the existing work on GP for feature learning in [3, 27],
where filtering, pooling and concatenation functions are employed.
The new set of feature learning functions employed in EGP is listed
in Table 1. The three concatenation functions aim to concatenate
multiple vectors/images into a vector to obtain X_features. The
pooling function is the MaxP function, which performs max-pooling
with a commonly used 2 X 2 kernel to each image in X_train.

Table 1: Feature learning functions

Type Functions Description
Concatenation | FeaConl, FeaCon2, FeaCon3 Concatenate two vectors or
two/three images into a vector,
respectively
Pooling MaxP Conduct max-pooling with 2 X
2 kernel to each image
Filtering Gau, GauD, Gabor, Lap, LoG1, | Performing the corresponding
LoG2, Sobel, SobelX, SobelY, LBP, | filtering operation to each im-
HOG, Med, Mean, Min, Max, Sqrt, | age
W-Add, W-Sub, ReLU

Note that each function takes a number of images as input, performs corresponding operation to each
image and returns a number of images/vectors.

The filtering functions are Gau, GauD, Gabor, Lap, LoG1, LoG2,
Sobel, SobelX, SobelY, LBP, HOG, Med, Mean, Min, Max, Sqrt, W-Add,
W-Sub and ReLU. The Gau and GauD functions are the Gaussian
filter and the Gaussian derivative filter. Gau has a parameter, i.e.,
standard deviation o, and GauD has three parameters, i.e., 01, 02
and o. The 01 and o0z represents the orders of derivative along the
X/Y axis, respectively. The Gabor function uses the Gabor filter with
orientation 6 and frequency f. The Lap function performs Laplacian
filtering to each image. The LoG1 and LoG2 functions conduct
Laplacian of Gaussian filtering with o = 1 or 2 to each image. The
SobelX and SobelY functions perform Sobel filtering along the X
and Y axis to each image, respectively. The Sobel function conducts
Sobel edge detection to each image. The LBP and HOG functions
calculate LBP and HOG image for each image, respectively, and
they may produce images containing informative features. The
Med, Mean, Max, and Min functions perform median, average, max,
and min filtering with 3 X 3 window to each image, respectively.
The Sqrt function returns +/p for each p in an image and returns
1if p < 0. The W-Sub and W-Add functions subtract or add two
weighted images with the same or different sizes, i.e., image; X
n1—/+ imagey X ny. If the sizes are not the same, the two functions
will cut the two images based on the smaller width and height. The
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ReLU function is the rectified linear unit and it returns max(0, p)
for each p in an image.

Classification Functions: Any existing classification methods
can be used as functions under the current framework of EGP.
However, to narrow the search space, we select six different classifi-
cation methods as classification functions of EGP based on [30]. The
functions are logistic regression (LR), KNN, SVM, RF, extremely ran-
domised forest (ERF), and AdaBoost, as listed in Table 2. Commonly
used parameters are set for the six functions [2, 33].

EGP uses the evolutionary learning process to find the best in-
dividual that is able to perform feature transformation, classifier
training, prediction and combination, simultaneously and auto-
matically. Because the traditional classification algorithms need a
learning process to learn a classifier, it is necessary to develop a
new process for these functions that suits the current framework
of the proposed method. Therefore, the six classification functions
perform differently during the evolutionary learning process and
after the evolutionary learning process, respectively.

Table 2: Classification functions

Methods| Description

LR Logistic regression

KNN k-nearest neighbour. The number of neighbour is 1

SVM Linear support vector machine. The penalty parameter C is 1.0

RF Random forest. The number of trees is 500 and the maximum tree depth
is 100 [33]

AdaBoost | Number of trees is 500 and the maximum tree depth is 100 [33]

ERF Extremely randomised forest. The number of trees is 500 and the maxi-
mum tree depth is 100 [33]

The implementations of these functions are based on the scikit-learn package [23] and the other
parameter settings are the default ones.

During the evolutionary learning process of EGP, each classi-
fication function uses k-fold cross-validation (CV) to obtain the
predicted class labels Y_predict for the training set X_train. The
number of k is set as 3 according to [33]. The consideration of using
k-fold CV is to avoid overfitting and to obtain a strong generalisa-
tion ability of each trained classifier. In this process, the inputs of
EGP are the training images X_train and the class labels Y_train.
Each classification function takes k — 1 folds of the split training
data to train the classifier and the remaining one fold is used for
prediction. The predicted class labels for each fold are combined to
form the outputs of the classification function.

Combination Functions: In ensemble learning, averaging and
voting are the most commonly used combination methods for ob-
taining the final output of an ensemble [32]. EGP generates an
ensemble using the classifiers trained from different or same clas-
sification algorithms so the ensemble may be a heterogeneous en-
semble or a homogeneous ensemble. In this case, the voting method
is more suitable than the averaging method for combination. Three
different voting functions are developed in EGP. They are Voting3,
Voting5 and Voting7, which perform plurality voting for the input
vectors (predicted labels). The three functions take three, five, and
seven class labels as inputs, respectively, and return one class label.
Each class label (discrete number) can be the output of a classifica-
tion function or a combination function. This means that multiple
combination functions can be evolved in a single EGP tree. This
is the main reason that we only develop three voting functions
requiring a small number of inputs.
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3.4 Terminal Set

A new terminal set is developed in EGP. The types and the de-
scriptions of all the terminals are listed in Table 3. The X_train
terminal represents the training images. The Y_train terminal rep-
resents the class labels for X_train. The 0,01, 02,0, f,n1, and na
terminals are the parameters for different feature learning functions.
They have predefined ranges, as listed in Table 3. Their values are
randomly initialised according to their ranges and automatically
evolved during the evolutionary learning process.

Table 3: Terminal set

Terminals Type
X_train Array

Description

The input image data with a number of grey-scale images
(3D array, where the pixel values are in the range of [0, 1])
The class labels for the training set. It is an array.

Y _train Array

o Integer The standard deviation of the Gaussian filter in the Gau and
GauD functions. Its range is in [1, 3].
01, 09 Integer The orders of the Gaussian derivatives. They are randomly

initialised from the range of [0, 2]

6 Float The orientation of the Gabor function. It is in the range of
[0, 77t /8] with a step of /8 [19]
'E
f Float The frequency of the Gabor function. It equals to ﬁ
where v is an integer in the range of [0, 4] [19]
ny, ny Float The parameters for the W-Add and W-Sub functions. They

are randomly generated from the range of [0, 1)

3.5 Test Process of EGP

After the evolutionary learning process of EGP, the best program
is found and employed to predict class labels for an unseen data
set, called the test set. The best program performs feature trans-
formation for both the training set and the test set, then feed the
training set and the class labels to the classification functions to
train classifiers, and use the trained classifiers to predict class labels
for the test set. In this process, the outputs of the classification func-
tion are actually the class labels of the test set. Each classification
function performs general classification process using the training
set and the test set. However, as the feature transformation and
classification processes happen in a single GP tree, the inputs of
each EGP tree are the training set, the test set and the class labels
of the training set. To simplify the process, the training set and
the test set are combined together to feed to the feature learning
functions and then are used separately to feed the classification
function to obtain the classifier and the prediction, respectively.

4 EXPERIMENT DESIGN

A number of experiments have been conducted to examine the
effectiveness of EGP for image classification. This section designs
the experiments.

4.1 Data Sets

Nine different data sets of varying difficulty are employed to con-
duct the experiments. The nine data sets include different types of
image classification tasks, such as facial expression classification,
texture classification, object classification, and scene classification.
They are FEI_1 [28], FEI_2 [28], JAFFE [20], ORL [26], KTH [21],
FS [10], MB [16], Rectangle [16], and Convex [16]. These data sets
are binary or multi-class classification tasks. The FEI 1, FEI_2 and
JAFFE data sets are facial expression classification tasks and they

contain two or seven different facial expressions of different people.
The ORL data set is to classify the face of 40 different people. The
KTH data set is a texture classification task that to categorise images
into 10 different groups. The FS data set contains 3859 natural scene
images of 13 classes, including highway, street, coast, mountain, etc.
The MB data set is a small subset of the famous digital recognition
data set MNIST. The Rectangle data set is to recognise whether
the width or the height of a rectangle in the image is bigger. The
Convex data set is to classify images into the convex or non-convex
sets. The details of the nine data sets are summarised in Table 4.

Table 4: Summary of the data sets

Data Sets #Class | Image Size | Train Set Test Set
FEL_1 2 60X40 150 50

FEI 2 2 60X40 150 50

ORL 40 50 X 55 240 160
JAFFE 7 55X 55 140 73
KTH 10 50X50 480 330

FS 13 55X55 1300 2559
MB 10 28 x 28 12000 50000
Rectangle 2 28 x 28 1200 50000
Convex 2 28 X 28 8000 50000

Rectangle Convex

Figure 2: Example images of the nine data sets.

Each training set of FEI_1, FEI_2, ORL, JAFFE, KTH, and FS is
constructed by randomly selected a number of images from each
class. Then the test set contains the remaining images. For FEI 1
and FEI_2, 75 images per class are used for training and 25 images
per class are for testing, respectively. For ORL, 6 images per class
are used for training and the remaining 4 images per class are used
for testing. For JAFFE, about 21 images per class form the training
set and the remaining images form the test set. For the KTH data set,
48 images per class form the training set and the remaining images
form the test set. Since the FS data set is large, 100 images per class
are used for training and the remaining images are used for testing.
MB, Rectangle and Convex are commonly used benchmark data
sets and have been well-split into the training and test sets. The
training and test sets are directly used in the experiments. Several
example images from the nine data sets are shown in Figure 2.

4.2 Benchmark Methods

To comprehensively demonstrate the effectiveness of EGP, a large
number of state-of-the-art methods are employed for comparisons.
On the FEI_1, FEI_2, ORL, JAFFE, KTH, and FS data sets, 12 compet-
itive methods are well chosen and implemented for comparisons.
On the MB, Rectangle and Convex data sets, 14 recent methods that
have the reported results are used for comparisons.
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4.2.1 Benchmark methods on FEI_1, FEI_2, ORL, JAFFE, KTH,
and FS. The 12 benchmark methods are six classification algorithms
using raw pixels, four SVM methods using different features and
two CNNs. The six classification algorithms are SVM, KNN, LR, RF,
AdaBoost, and ERF, which are the same as that used in EGP. The
six methods take the raw pixel values of each image as inputs and
train classifiers for classification. The goal of comparisons between
them and EGP is to show whether the feature learning process
and the combination in EGP are effective. The four SVM methods
using different features are uLBP+SVM, LBP+SVM, HOG+SVM,
and SIFT+SVM, which represent traditional image classification
methods [3]. In each method, the features are extracted using a
commonly used feature extraction method: i.e., uniform LBP (uLBP),
LBP, HOG, and SIFT [3]. The extracted features are feed to a linear
SVM for classification. The goal of comparisons is to show whether
EGP can beat the traditional methods using different features. The
two CNN methods are CNNs with five layers (CNN-5) and eight
layers (CNN-8), respectively. As CNNs are well-known for image
classification, the aim of the comparisons is to show whether EGP
can achieve better performance than state-of-the-art methods.

4.2.2  Benchmark methods on MB, Rectangle and Convex. As the
three data sets are the commonly used benchmark data sets, differ-
ent methods have been proposed to obtain a good classification per-
formance. The best reported results of 14 existing methods are used
for comparisons. These methods are SVM+RBF [16], SVM+Poly
[16], SAE-3 [24], DAE-b-3 [24], CAE-2 [24], SPAE [31], RBM-3 [24],
ScatNet-2 [5, 6], PCANet-2 (softmax) [6], LDANet-2 [6], NNet [16],
SAA-3 [16], DBN-3 [16], and SPCN [18]. Note that in some meth-
ods such as SVM+RBF and SVM+Poly, the parameters are tuned
using the training set and then the best model is used to obtain the
classification accuracy of the test set.

4.3 Parameter Settings

The parameter settings for EGP are based on the commonly used
settings for GP [12]. In EGP, the population size is 100 and the
number of generations is 50. A small population size is employed
to reduce the computational cost. The rates for elitism, crossover
and mutation are 0.01, 0.8 and 0.19, respectively. The selection
method is Tournament selection with size 7. The ramped half-and-
half method is used for population initialisation. The maximum
tree depth is 8 and the minimum tree depth is 2. In EGP, the type
constraint has a higher priority than the depth constraint so that
the tree depth may over 8.

The implementation of EGP is based on the DEAP (Distributed
Evolutionary Algorithm in Python) [11] package, which is the most
popular package for implementing GP. The classification methods
in EGP and in the benchmark methods are implemented using the
popular package scikit-learn [23]. To avoid the experimental bias,
the experiments of EGP and the compared methods on each data
set run 30 times independently. Note that on the MB, Rectangle
and Convex data sets, the benchmark methods have the reported
results so that there is no need to run these methods.

5 RESULTS AND DISCUSSIONS

This section discusses and compares the experimental results of
the EGP method and the benchmark methods on the nine data sets.
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The discussions are presented according to the different types of
benchmark methods employed on the nine data sets.

5.1 Results on FEI 1, FEI 2, ORL, JAFFE, KTH,
and FS

The classification results of EGP and the 12 benchmark methods are
listed in Table 5. Each block in Table 5 lists the maximum accuracy
(Max), mean accuracy and standard deviation (Mean+St.dev) on
each data set. The best accuracy on each data set is highlighted in
bold. For each data set, a commonly used non-parametric test for
multiple comparisons: Friedman test, is used for statistical test with
a 5% significance level. To compare the proposed EGP method with
a benchmark method, a post hoc test using the Holm method is
employed to the determine the differences between group means.
In Table 5, the symbols “+” and “~” indicate that EGP is significantly
better and worse than the benchmark method in terms of the classi-
fication results. The final row of each block in the table summarises
and highlights the overall results of the significance test.

Table 5: Classification results (%) of EGP and the compared
methods on FEI_1, FEI_2, ORL, JAFFE, KTH, and FS

Methods Max Meanz+St.dev Max Meanz+St.dev
Data Set FEI_1 FEI_2
SVM 90.00 90.00+0.00+ 88.00 88.00+0.00+
KNN 32.00 32.00+0.00+ 8.00 8.00+0.00+
LR 92.00 92.00+0.00+ 88.00 88.00+0.00+
RF 98.00 97.07+1.01- 90.00 89.20+1.13+
AdaBoost 80.00 78.67+1.32+ 80.00 76.00+3.44+
ERF 94.00 93.27+0.98+ 92.00 90.60+0.93+
uLBP+SVM 66.00 56.73+3.66+ 68.00 62.53+£3.52+
LBP+SVM 68.00 64.60+1.83+ 74.00 69.80+0.00+
HOG+SVM 96.00 96.00+0.00 82.00 82.00+0.00+
SIFT+SVM 56.00 56.00+0.00+ 62.00 62.00+0.00+
CNN-5 98.00 95.40+1.30 98.00 95.27+1.62+
CNN-8 98.00 95.33+1.32+ 96.00 90.93+1.87+
EGP 100.0 96.20+2.06 100.0 98.07+1.70
Overall 9+, 1- Overall 12+
Data Set ORL JAFFE
SVM 94.38 94.38+0.00+ 93.94 91.06+0.73-
KNN 94.38 94.38+0.00+ 71.21 71.21£0.00+
LR 93.75 93.75+0.00+ 89.39 89.39+0.00—
RF 93.12 92.33+0.63+ 75.76 72.48+1.99+
AdaBoost 59.38 52.27+4.00+ 53.03 47.93+£2.68+
ERF 97.50 96.71+0.59 77.27 73.89+1.72+
uLBP+SVM 87.50 87.42+0.21+ 31.82 26.87+3.30+
LBP+SVM 88.12 87.52+0.20+ 33.33 28.84+2.05+
HOG+SVM 91.25 91.25+0.00+ 81.82 80.30+0.40+
SIFT+SVM 93.75 93.75+0.00+ 33.33 33.33+£0.00+
CNN-5 96.88 95.29+1.06+ 95.45 90.96+2.68—
CNN-8 95.00 93.04+1.09+ 90.91 84.54+4.33
EGP 99.38 97.44+1.26 92.42 84.24+4.28
Overall 11+ Overall 8+, 3—
Data Set KTH FS
SVM 46.97 44.59+2.83+ 20.63 20.30+0.15+
KNN 34.24 34.24+0.00+ 24.35 24.35+0.00+
LR 48.79 48.79+0.00+ 23.49 23.49+0.00+
RF 60.00 57.81+0.83+ 37.36 36.53+0.49+
AdaBoost 37.88 33.44+1.37+ 17.47 13.04+1.47+
ERF 61.52 59.83+0.86+ 37.94 37.15+£0.36+
uLBP+SVM 78.79 73.29+4.18+ 49.79 33.27+8.90+
LBP+SVM 83.64 82.71+0.51- 53.50 50.45+1.80+
HOG+SVM 57.27 55.96+0.64+ 12.11 7.91+2.47+
SIFT+SVM 65.76 65.76+0.00+ 60.92 60.92+0.00
CNN-5 85.76 82.56+1.87— 50.14 48.03+£1.16+
CNN-8 76.36 71.63+£3.18+ 49.16 46.79+£1.01+
EGP 87.88 77.53+£5.17 67.17 61.07+2.91
Overall 10+, 2- Overall 11+
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Compared with SVM, KNN, LR, RF, AdaBoost, and ERF, which are
traditional classification methods using raw pixels, EGP achieves
significantly better or similar performance in 33 comparisons out of
the total 36 (6x6) comparisons. On the six data sets, EGP is signifi-
cantly better than or similar to KNN, AdaBoost and ERF. Compared
with the six methods, the overall learning process of EGP allows it
to automatically extract informative features, select the best classi-
fication algorithm and find the suitable combination of classifiers
for effective classification. Thus, the classification performance of
EGP is better than each single classification algorithm using raw
pixels in most comparisons.

Compared with uLBP+SVM, LBP+SVM, HOG+SVM, and SIFT+
SVM, which use different features, EGP achieves significantly bet-
ter or similar performance in 23 comparisons out of the 24 (4x6)
comparisons. The four methods are traditional image classification
methods. EGP is more accurate than the four methods on the six
data sets. Table 5 shows that the performance of the four compet-
itive methods varies with the data sets. For example, LBP+SVM
achieves 82.71% mean accuracy on KTH but only achieves 28.84%
mean accuracy on JAFFE. This confirms the difficulty of feature ex-
traction since successfully extracting informative features requires
domain knowledge and human intervention. EGP has a feature
learning process to automatically extract a set of features so that it
is more effective and adaptive than the four methods.

Compared with CNN-5 and CNN-8, the EGP method obtains
significantly better or similar results in 10 comparisons out of the
12 (2x6) comparisons. Compared with CNN-5, EGP achieves better
or similar performance on four data sets. Specifically, EGP improves
the mean accuracy by 2% on ORL and by 13.04% on FS. The EGP
methods is more accurate than CNN-8 as EGP achieves better per-
formance than CNN-8 on five data sets and similar performance to
CNN-8 on one data set. Among the three methods, EGP finds the
maximum accuracy on five data sets except for JAFFE. The overall
comparisons reveal the effectiveness of EGP on image classification.

Summary: Table 5 shows that EGP significantly outperforms
the 12 competitive methods in 61 comparisons out of the 72 (12x6)
comparisons. On five data sets except for JAFFE, EGP achieves the
maximum accuracy of all the methods. On the FEI_2, ORL, and
FS data sets, EGP achieves similar performance to or significantly
better performance than the 12 competitive methods. On the JAFFE
data set, EGP is better than eight methods except for SVM, LR,
CNN-5, and CNN-8. The results show that raw pixels of JAFFE are
effective for a linear classifier. While EGP may not generate such a
classifier because of the combination process. On the KTH data set,
EGP is significantly better than 10 methods except for LBP+SVM
and CNN-5 in mean accuracy. KTH is a texture classification task
so that the LBP features are effective for classification. But EGP
finds the maximum accuracy on KTH. On the large data set, FS,
with a number of natural images, the proposed EGP method is more
accurate than any of the benchmark methods. In summary, EGP is
an effective and promising approach for image classification.

5.2 Results on MB, Rectangle and Convex

The results of EGP and 14 state-of-the-art methods on the MB,
Rectangle and Convex data sets are listed in Table 6. Since the results
of the 14 competitive methods are the best results, the maximum

accuracy of EGP are used for comparisons. To better show the
overall performance of EGP, the mean accuracy and the standard
deviation are also listed in Table 6. The “+” denotes that EGP is better
than the compared method in terms of the maximum accuracy. The
overall comparisons are summarised in the final row of Table 6. Note
that the results of the three data sets are from the corresponding
references and some results have not been reported so that there are
13 competitive methods on Rectangle and 8 methods on Convex.

Table 6: Classification accuracy (%) of EGP and the compared
methods on the MB, Rectangle and Convex data sets

Methods MB Rectangle | Convex
SVM+RBF [16] 96.97+ 97.85+ 80.87+
SVM+Poly [16] 96.31+ 97.85+ 80.18+
SAE-3 [24] 96.54+ 97.86+ -
DAE-b-3 [24] 97.16+ 98.01+ -
CAE-2 [24] 97.52 98.79+ -
SPAE [31] 9668+ | - -
RBM-3 [24] 96.89+ 97.40+ -
ScatNet-2 [5, 6] 98.73 99.99 93.50+
PCANet-2(softmax) [6] 98.60 99.51+ 95.81
LDANet-2 [6] 98.95 99.86+ 92.78+
NNet [16] 9531+ 92.84+ 67.75+
SAA-3 [16] 96.54+ 97.59+ 81.59+
DBN-3 [16] 96.89+ 97.40+ 81.37+
SPCN [18] 93.18 99.81+ -
EGP (Max) 97.19 99.91 93.97
EGP (Mean) 96.59 99.41 91.50
EGP (St. dev) 0.24 0.15 1.52
Overall 9+ 12+ 8+

On the MB data set, the proposed EGP method achieves 97.19%
maximum accuracy, which is better than nine methods and worse
than five methods. The maximum accuracy of all these methods is
98.95%, which is 1.76% higher than the maximum accuracy obtained
by EGP. On the Rectangle data set, EGP is better than 12 compet-
itive methods and is worse than 1 method. EGP achieves 99.91%
accuracy, which is slightly less than the maximum accuracy 99.99%
achieved by ScatNet-2. On the Convex data set, EGP achieves better
results than eight methods and worse results than one method. The
maximum accuracy is 95.81% achieved by PCANet-2(softmax) and
the maximum accuracy achieved by EGP is 93.97%. From the results,
it is obvious that EGP can achieve a good classification performance,
which is very close to the best one reported.

Table 6 shows that the mean accuracy achieved by EGP is similar
to the maximum accuracy and the standard deviation is very small.
It can be concluded that EGP can achieve better or comparable
performance to the state-of-the-art algorithms on the well-known
benchmark data sets. On the three data sets, EGP is better than
SVM+RBF, SVM+Poly, SAE-3, DAE-b-3, SPAE, RBM-3, NNet, SAA-
3, and DBN-3 in terms of the maximum accuracy. EGP is worse
than ScatNet-2, PCANet-2(softmax), LDANet-2, and SPCN in some
comparisons, which may be because these competitive methods use
a number of filters to extract invariant and discriminative features.
In terms of the tasks, it seems that EGP is more effective for the
binary classification tasks, Rectangle and Convex, than for the
multi-class classification tasks, MB. This may due to the voting
employed functions for combination in EGP. The voting functions
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may be more effective for binary classification. The results and
comparisons show the potential of EGP in image classification with
a large number of training and testing instances.

6 FURTHER ANALYSIS

This section further analyses the programs evolved by EGP to reveal
why it achieves good performance on image classification and
whether the evolved ensembles can address accuracy and diversity
simultaneously.

As EGP achieves the best results on the ORL data set of all the
benchmark methods, an example program of EGP on this data
set is visualised in Figure 3. This program achieves 99.375% clas-
sification accuracy on the test set of ORL. This program contains
feature learning functions: MaxP, Max, ReLU, LoG2, Med, LoG1, and
FeaCon2; classification functions: ERF, SVM and RF; and combina-
tion function: Voting3. The inputs of the program are X_data and
Y_train, where X_data is actually the concatenations of the images
of the training set and the test set and Y_train is the class labels of
the training set. It is noticeable that the class labels of the test set
are unseen to the overall test process, which is very important for
avoiding the experimental bias.

Class Labels
L3

Figure 3: An example program of EGP on the ORL data set.

Splitting from the root node, the example program has three
different child branches. The first child branch (the left one) uses
ERF to train a classifier based on the features that described from
the FeaCon2 function. The trained ERF classifier is able to predict
class labels for a test set. Therefore, the performance of this branch
is tested on the test set. This branch achieves 96.875% accuracy on
the test set. The second branch (the middle one) selects SVM to train
a classifier using features that are different from the first branch
as the child branches are different. The SVM classifier using the
features produced by its child branches achieves 98.75% accuracy
on the test set. The third branch (the right one) employs RF to train
a classifier based on the features produced by the FeaCon2 function
with two different child branches. This branch achieves 94.375%
accuracy on the test set of ORL.

By the further analysis on the example program, four keypoints
of EGP can be summarised as follows:
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(1) EGP automatically constructs ensembles of different classi-
fiers. The performance of the ensembles is expected to be
better than each single classifier. For example, the example
program in Figure 3 achieves 99.375% accuracy, while each
classifier in the example program only achieves 96.875%,
98.75% and 94.375% accuracy, respectively.

(2) EGP automatically selects the best classification function/
method to build the ensemble for a target task. From Table 5,
it is obvious that ERF is the best classifier on the ORL data
set and AdaBoost is the least effective classifier on the ORL
data set. Thus, the example program in Figure 3 has the ERF
classification function and not the AdaBoost classification
function.

EGP automatically generates different high-level features to

train each classification function, which further improves

the diversity of the trained classifiers in the ensemble. From

Figure 3, it is obvious that different classification functions

have different inputs from their child nodes. These inputs are

high-level features transformed from raw pixels using dif-
ferent feature learning functions such as filtering functions
and pooling functions.

EGP produces end-to-end solutions for image classification

with a high generalisation ability. Each EGP solution takes

the images and the class labels of the training set as inputs
and produces the class labels for an unseen data set.

—
SY)
=
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N
=

7 CONCLUSIONS AND FUTURE WORK

The goal of this study was to develop an automated ensemble
learning approach using GP for image classification. The goal was
successfully achieved by developing the new EGP approach with
a novel program structure, a new function set and a new termi-
nal set. The new approach was evaluated on nine different image
classification data sets of varying difficulty and compared with a
large number of commonly used methods. The experimental results
show that EGP achieves better performance than most competitive
methods. Further analysis shows that EGP is able to evolve good
ensembles with high interpretability for image classification.

This is the first study using GP to automatically generate ensem-
bles for image classification. The multiple tasks including feature
learning, classification algorithm selection, classifier training and
combination are integrated into a single EGP program. The re-
sults suggest that EGP automatically generates different high-level
features to train each classification function, selects the best classifi-
cation functions, and finds the optimal combination of the classifiers
to predict the class labels with high accuracy.

In the future, the parameters of the classification algorithms will
be developed as terminals to allow GP to automatically evolve and
optimise their values. To achieve this and to improve the search
efficiency, an effective local search operator may be needed for
GP. It would be also interesting to use effective feature learning
and classification algorithms such as CNNs to replace the current
feature learning and classification processes of EGP to see whether
the performance can be further improved.
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