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Abstract Acoustic borehole televiewer (BHTV) logs provide measurements of fracture attributes
(orientations, thickness, and spacing) at depth. Orientation, censoring, and truncation sampling biases
similar to those described for one-dimensional outcrop scanlines, and other logging or drilling artifacts
specific to BHTV logs, can affect the interpretation of fracture attributes from BHTV logs. K-means, fuzzy
K-means, and agglomerative clustering methods provide transparent means of separating fracture groups
on the basis of their orientation. Fracture spacing is calculated for each of these fracture sets. Maximum
likelihood estimation using truncated distributions permits the fitting of several probability distributions
to the fracture attribute data sets within truncation limits, which can then be extrapolated over the entire
range where they naturally occur. Akaike Information Criterion (AIC) and Schwartz Bayesian Criterion
(SBC) statistical information criteria rank the distributions by how well they fit the data. We demonstrate
these attribute analysis methods with a data set derived from three BHTV logs acquired from the
high-temperature Rotokawa geothermal field, New Zealand. Varying BHTV log quality reduces the number
of input data points, but careful selection of the quality levels where fractures are deemed fully sampled
increases the reliability of the analysis. Spacing data analysis comprising up to 300 data points and
spanning three orders of magnitude can be approximated similarly well (similar AIC rankings) with several
distributions. Several clustering configurations and probability distributions can often characterize the data
at similar levels of statistical criteria. Thus, several scenarios should be considered when using BHTV log
data to constrain numerical fracture models.

1. Introduction

Defining the geometries of fracture systems in reservoirs requires a robust delineation of individual fracture
sets of similar orientation and of their geometrical variability. Each fracture set can result from a specific geo-
logical event and/or a different process [Bonnet et al., 2001; Dezayes et al., 2015]. Different fracture sets can have
different geometrical (e.g., size, aperture, and density) and mineralogical (infill material and quantity) prop-
erties and thus may have different impacts on the hydrology of the system [Agosta et al., 2010]. In addition,
numerical models of fracture systems and their associated fluid pathways in reservoirs can be constrained by
the assumed probability distributions of aperture, length, and density of each fracture set [e.g., Dershowitz
and Einstein, 1988; Bonneau et al., 2013], which thus need to be assessed carefully. Analogue outcrop studies
can provide extensive and detailed fracture system characterization but may not be directly comparable to
conditions in reservoirs. On the contrary, fracture data measured in boreholes are typically sparse and affected
by artifacts but directly reflect structural and hydrological properties in reservoirs.

Acoustic borehole televiewer (BHTV) logs provide an image of the inside of a borehole by measuring the
acoustic amplitude and return time of an ultrasonic signal emitted by the logging tool [Zemanek et al., 1970;
Poppelreiter et al., 2010]. Analysis of these logs yields continuous samples of fractures intersecting the bore-
hole, including their position, orientation, and thickness. In general, BHTV logs cannot discriminate between
open and closed fractures (unless the fractures are infilled with high acoustic impedance minerals such as
quartz [Milloy et al., 2015]), so we use the term “fracture” in the general sense of discontinuity and refer to the
distance between the two fracture walls as “thickness.” Image logs, such as BHTV logs, are particularly useful
in boreholes where continuous oriented drill cores are not available, as is commonly the case in hydrocarbon
and geothermal reservoirs. Image logs are subject to similar sampling biases to 1-D outcrop scanlines, as well
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as biases related to drilling and logging artifacts [e.g., Lofts and Bourke, 1999] that can decrease image quality
locally. All biases need to be evaluated and incorporated into the statistical analysis of fracture geometries.

The classical method for delineating fracture sets is to plot fracture orientations on hemispherical projections
(stereonets) and contour the projected poles to fracture planes by their areal density, yielding a “Fisher” den-
sity. This method is intuitive and straightforward to apply, thanks to stereonet software packages. However,
the delineation of fracture sets from these contours is subjective and may vary between data analysts. Clus-
ter analysis of fracture orientation provides a transparent means of separating fracture orientation data into
sets, as proposed by Shanley and Mahtab [1976]. Agglomerative, K-means, and fuzzy K-means clustering have
been used to analyze orientation data derived from scanline measurements, predominantly for engineering
purposes [e.g., Hammah and Curran, 1998, 1999; Zhou and Maerz, 2002; Tokhmechi et al., 2011; Li et al., 2014]
but rarely for reservoir borehole data interpretation.

Fracture attributes (e.g., thickness, spacing, and length) have been shown to variously follow power law,
exponential, gamma, lognormal, and power-exponential distributions [see Bonnet et al., 2001, and references
therein; Torabi and Berg, 2011]. Faults commonly exhibit power law spacings, although this may partially
reflect sampling bias and the mixing of different fracture sets [Gillespie et al., 1993; Nicol et al., 1996]. On the
contrary, joint spacing in layered systems is usually best approximated by distributions with characteristic
scales such as lognormal, gamma, or exponential distributions [Gillespie et al., 1993; Schöpfer et al., 2011]. In
consequences, determination of the distribution form and parameters of fracture attributes is not only nec-
essary for constraining reservoir-scale fracture models [Berkowitz, 2002] but also informs on the nature of
fracture systems. Distributions are commonly evaluated with linear regressions, with power law exponents
estimated using linear regression to the cumulative density function (CDF) of observations in doubly logarith-
mic axes (“log-log” plots, see McCaffrey et al. [2003] for example). However, this method is not mathematically
robust and does not unambiguously demonstrate that the observations are power law [Clauset et al., 2009].
The maximum likelihood estimation (MLE) method is preferred to least squares fitting for estimating which
probability distribution and associated parameters best fit a set of data [Laslett, 1982; Villaescusa and Brown,
1992; Clauset et al., 2009]. The MLE method estimates values for the parameters of a given distribution that
maximize a likelihood function, i.e., finds the parameter set that makes the observed data most likely.

This paper details methods with which to discriminate between fracture sets of different orientation using
clustering algorithms and to evaluate the probability distribution and parameters of fracture attributes
(thickness, spacing) via maximum likelihood estimations. While these methods are generally applicable to
1-D data sets, this paper addresses fracture data sets obtained from BHTV logs and their specific limitations,
which have not been fully considered to date. Fractures used as examples are interpreted from three BHTV
logs acquired in the high-temperature Rotokawa Geothermal field, Taupo Volcanic Zone, New Zealand. The
geologic implications of this statistical analysis are presented in a companion paper [Massiot et al., 2017]. Our
analysis includes consideration of sampling biases in BHTV logs, a strategy for accommodating varying BHTV
log quality, and qualitative estimation of the size and range of a data set required to fully constrain the dis-
tribution fitting. Similar analysis can be conducted on other fracture attributes (e.g., length) and with other
linear sampling methods (e.g., scanlines) taking into consideration relevant factors affecting those data.

2. Data

The fracture data set utilized in this paper was derived from three BHTV logs acquired in boreholes RK18L2,
RK30L1, and RK32 in the high-temperature Rotokawa geothermal field, located in the Taupo Volcanic Zone,
New Zealand. These data were described by McNamara et al. [2015], and here measurement of fracture thick-
ness has been further improved. The three boreholes heads are located within an area of 1 km2; the depth
intervals, and number of fractures identified in each well, are detailed in Table 1. The BHTV logs were acquired
with an ABI-85, a high-temperature logging tool able to operate at up to 300∘C [Ásmundsson et al., 2014]. The
boreholes intersect several lithologies; here we focus on the andesitic formations which form the main part of
the deep reservoir [McNamara et al., 2016]. Fractures are dominantly steeply dipping (> 60∘ dip) and striking
parallel to the azimuth of maximal horizontal compressive stress (SHmax) which varies between NNE-SSW and
ENE-WSW (Figure A1a), and reflects the regional normal faulting in the Taupo Rift [Seebeck et al., 20142014;
McNamara et al., 2015, 2016].

Fractures were identified in the BHTV logs using the RecallTM 5.3 software following the methods discussed by
Massiot et al. [2015]. Borehole deviations of up to 30∘ from vertical were accounted for during log processing,
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Table 1. Borehole Trajectory and Number of Fractures for Each Borehole, as Described by McNamara et al. [2015]a

RK18L2 RK30L1 RK32 Combined

Depth range (m) 995–1385; 1710–2255 1660–2060 1712–2639

Average deviation 23∘±2∘ 24∘±1∘ 20∘±1∘

Average azimuth 100∘±16∘ 220∘±4∘ 314∘±3∘

Total 358 321 539 1218

Number of fractures Quality 3–5 324 276 533 1133

Outliers 71 67 83 221
aDepth is measured along the boreholes. Total, total number of fractures; Quality 3–5, number of fractures in

BHTV log of intermediate quality, ranks 3-5; Outliers, number of outlier fractures in zones of moderate quality with
<1% Fisher density not used for orientation clustering (see text for details).

with the orientations presented here referenced to geographic north and horizontal. In total, 1218 fractures
were identified over 2073.5 m of BHTV logs (Figure 1 and Table 1); they are described in terms of their location
along the borehole, orientation, thickness, and descriptive characteristics (e.g., high or low acoustic ampli-
tude and cross-cutting relationships with nearby fractures). The apparent fracture thickness measured at the
borehole wall has been converted to the true thickness that would be measured perpendicular to the fracture
walls [Barton and Zoback, 1992; Massiot et al., 2015]. The apparent spacing between neighboring fractures of
the same set resolved in the BHTV logs has been measured along the borehole trajectory and was converted
to the fracture-normal spacing [Priest, 1993].

The BHTV logs acquired at Rotokawa commonly have only partial coverage of the borehole and contain a
number of logging- and drilling-induced artifacts that decrease the image quality [Lofts and Bourke, 1999;
McNamara et al., 2015]. Image quality has been qualitatively assigned using a five-class ranking scheme
[Massiot et al., 2015]. Fracture detection can be hindered in zones of low- or very poor-quality images, which
may adversely affect the statistical analysis of fracture attributes, particularly the spacing. Orientation analy-
sis has been performed for each borehole individually and the data combined, after correction for orientation

Figure 1. Example of a BHTV log with travel time and amplitude oriented images showing various fracture thickness
(“t”) and spacing (“s”) values.
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sampling bias [Terzaghi, 1965; Massiot et al., 2015]. Other biases associated with incomplete detection of small
attribute values, and the low probability of occurrence of high-attribute values, have also been addressed in
this paper.

3. Fracture Set Orientation Clustering
3.1. Cluster Analysis Methods
Fracture sets are commonly identified on stereonets using Fisher or Kamb contours, but discrimination
between fracture sets is not always clear where high-density zones overlap. Clustering algorithms divide a
data set into groups (clusters) of observations that are similar to each other. In such algorithms, a “dissimilarity”
metric must be selected to describe how far apart data points are from each other. The metric summarizes
all relevant aspects of similarity into a single measure. Here we use the acute angle between the normals of
each pair of fractures as the dissimilarity metric between fracture orientations. Two subparallel, steeply dip-
ping (> 80∘) fractures may have different dip directions (±180∘) but small acute angle between their normals
and may thus belong to the same set. Two types of cluster analysis are used in this paper: partitional, based
on a prior specification of the desired number of clusters (K); and hierarchical, which constructs a hierarchy
between one and n nested clusters, n being the number of observations.

K-means clustering is a partitional method that assigns each data point to one of K clusters [James et al., 2013].
The assignment is an iterative process that minimizes a sum of dissimilarities between the centroid of the
cluster and each data point within the cluster. Data points are reallocated between clusters until an optimal
configuration is reached. This process is computationally efficient, but issues can result from the selection of
initial centroid locations, which can lead to nonunique selection of a local minimum instead of the global
minimum of the sum of dissimilarities, and also to the possible generation of empty clusters [James et al.,
2013]. Comparing clustering results using different initial centroids mitigates these risks. The K-means method
is most successful when applied to globular clusters of similar sizes and densities, without too many outliers,
and to subclusters. Defining the optimal number of clusters for a data set is non trivial. Good clusterings have a
low cohesion, where objects are close to each other within their cluster, and a high separation, where clusters
are distinct from each other (Figure 2b). The silhouette value combines the cohesion and separation values
[Reynolds et al., 2006]. For each data point i, the silhouette value is calculated as

s(i) = b(i) − a(i)
max(a(i), b(i))

(1)

where a(i) is the average dissimilarity of the data point i with all other data within the same cluster (cohesion),
and b(i) is the lowest average dissimilarity of i to any cluster of which the ith datum is not a member
(separation). A value of s(i) close to 1 indicates that the datum is appropriately clustered. When testing several
input numbers of clusters, the optimal cluster number is found when the average s(i) for the entire data set is
maximized.

The fuzzy K-means approach allows the data points to belong to several clusters at once, with varying degrees
of membership to each cluster, which is appropriate when clusters are overlapping or not compact [Zadeh,
1965]. For example, a data point can belong 20% to one cluster and 80% to a second cluster; overall, the data
point belongs predominantly to the latter cluster (Figure 2d). A clustering result that maximizes the member-
ship level for each data point to their dominant cluster is thus desirable and is achieved here by calculating
the median of each data point’s highest membership level (80% for the data point in this example). A high
median membership indicates a well-separated clustering result.

The agglomerative hierarchical clustering method, also called bottom-up, starts with each observation con-
stituting a cluster and successively merges the two nearest clusters until only one large cluster remains
containing all observations [James et al., 2013] (Figure 2f ). Thus, each step j of the agglomerative process con-
tains (n − j + 1) clusters. In contrast with the K-means clustering, agglomerative hierarchical clustering is not
affected by the initialization step and local minima. However, the data point merges are definitive and the
process can produce unstable clusters when data points are allocated early to a cluster that they would not
belong to if they had been allocated later. Agglomerative clustering is also more computationally expensive
than the K-means process. The sequence of agglomerative clustering can be visualized on a dendogram, a
graphical representation of the nested clusters (Figure 2e). Dendograms represent the successive grouping of
subclusters until the entire data set belongs to a single cluster: observations that are grouped early, near the
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Figure 2. Evaluation of the optimal number of clusters for borehole RK30L1. The best clusterings are indicated by the
underlying arrows, and the configuration is interpreted from Fisher contours by overlying arrows. (a) K-means: average
silhouette width for each cluster (dots) and average of the average silhouette widths (line) for each number of clusters,
with either random initial centroids or located at the mean orientation of the fracture set. (b) Synthetic K-means
clustering with silhouette calculation as a function of cohesion and separation; the centroids of each clusters are open
symbols. (c) Fuzzy K-means: median membership level for each cluster (triangles) and overall median membership
level (line) for each number of clusters. (d) Synthetic fuzzy K-means of overlapping clusters with varying membership
levels. (e) Dendogram of the agglomerative clustering, with the levels at which each of the four main fracture sets
emerge. (f ) Synthetic representation of successive agglomeration of data points or clusters. (g) Stereonet showing the
agglomerative clustering result and associated cluster numbers (poles to plane, lower hemisphere Schmidt projection).
Evaluative plots for other boreholes and the combined data set are in Appendix A. See text for explanations about
separation, cohesion, and membership levels and Figure 3 for stereonets representing the Fisher and K-means
clustering results.

bottom of the dendogram, are similar to each other, whereas observations that fuse later (close to the top)
are more distinct from each other. A single dendogram can be used to obtain the partitioning of the data set
in any desired number of clusters.

3.2. Fracture Set Delineation Example
To estimate the number of clusters best characterizing the fracture data sets and to assign each data point to a
cluster, the fracture orientations are first analyzed using Fisher density contours on a stereonet (presented for
borehole RK30L1 in Figure 3a). The loci of poles to undersampled fracture planes subparallel to the borehole
are plotted as a shaded series of great circles. The fracture orientations are then clustered using K-means,
fuzzy K-means, and agglomerative methods, for 2 to 6 clusters using the pam, fanny, and agnes functions in R,
respectively [R Core Team, 2015]. Outliers, defined as having <1% Fisher density, were removed from the data
set prior to the cluster analysis. As suggested by K-means theory [James et al., 2013], tests run with outliers did
not provide satisfying results. In such cases, both gently (< 40∘) and steeply (> 70∘) dipping fractures of similar
dip direction were grouped in the same cluster, a result inconsistent with both Fisher contours analysis and
the normal faulting regime at Rotokawa, where steeply dipping fractures are associated with normal faults.
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Figure 3. Example of fracture orientation analysis for borehole RK30L1 (n = 321). (a) Fisher contour and pole to planes with the resulting delineation comprising
three fracture sets and outliers. (b) K-means clusters with the initial centroid specified at the mean orientation of the fracture sets, with 2 to 6 clusters (K). The
centroid of each cluster is noted as a black dot. (c) K-means clusters with random initial centroids. (d) Fuzzy K-means clustering, colors indicate the membership
level (input membership component is 1.5). (e) Agglomerative clustering. The colors in Figures 3b, 3c, and 3e are arbitrarily affected to each cluster, and
stereonets displayed with increasing number of clusters from left (K = 2) to right (K = 6). Similar figures for the two other boreholes and the combined data set
are available in the supporting information.

MASSIOT ET AL. BHTV FRACTURE DATA ANALYSIS 6841



Journal of Geophysical Research: Solid Earth 10.1002/2017JB014115

Each K-means clustering is made with two types of initial centroids: (1) imposed initial centroids located at
the mean orientation of the fracture sets defined from Fisher contours (Figure 3b) and (2) randomly allocated
centroids (Figure 3c). Fuzzy K-means clustering analysis highlights which fractures tend to lie between clusters
(Figure 3d). The dendogram of the agglomerative clustering is presented for the six highest-level clusters, i.e.,
corresponding to between 2 and 6 clusters (Figure 2e). The lower part of the diagram, which includes all input
data points, has been removed for clarity.

For configurations with two clusters, the results of K-means and agglomerative clusterings are similar to the
sets defined from Fisher contours (see Figures 2 and 3 for example in borehole RK30L1; results for other bore-
holes are in Appendix A). With more than two clusters, the K-means and agglomerative clusterings yield
different results. The optimal number of clusters for each data set is selected based on the highest average
silhouette width of the K-means clustering and the highest median membership levels of the fuzzy K-means
clustering (Figures 2a and 2c). For borehole RK30L1, the configurations with two and four clusters are the
best clusterings, contrary to the three-cluster allocation interpreted from Fisher contours. The decrease in
median membership for configurations with more than four clusters suggests that configurations with more
clusters are unlikely. In addition, the statistical analysis of fracture attributes requires a sufficient number of
fractures per set (see section 4.5), which is not the case for configurations with more than four clusters and thus
not desirable.

The choice of initial centroids of the K-means algorithm influences the clustering results for individual bore-
holes but not for the combined data set containing more data points (Appendix A and Figure A1). Tests
performed with several sets of randomly selected initial centroids yielded similar results. The use of random
initial centroids is preferred to the imposed initial centroids, because they produce similar or higher mean
silhouette widths than when the initial centroids are imposed at the mean orientation of each fracture set.

The dendogram of the agglomerative clustering provides additional insights into how well the clusters are
separated and potential subclusters within the four fracture sets identified in this study. In borehole RK30L1,
fracture set 3 is distinct from the combination of fracture sets 1, 2, and 4, as they are the last groups to
be agglomerated; fracture sets 1 and 4, agglomerated early, are quite similar and may form subclusters
(Figure 2e).

4. Fracture Attribute Probability Distribution Analysis
4.1. Sampling Biases
As in the case with 1-D scanline outcrop measurements, fracture data interpreted from BHTV logs are subject
to resolution limits and sampling biases [Laslett, 1982; Barton and Zoback, 1992; Pickering et al., 1995; Nicol
et al., 1996]. Small fracture thickness and spacing values are only partially recorded close to the resolution
limit of the data set (“left-hand truncation”); conversely, high values may not be recorded because they are
rare and may exceed the capacity of the measuring technique used to record them (“right-hand truncation”).
The probability distribution of fracture attributes measured on the BHTV logs is thus estimated by fitting trun-
cated distributions between truncation limits (scale range) within which all fractures are deemed to have been
sampled. Truncated distributions are conditional distributions that result from restricting the domain of valid-
ity of a probability density function. The resulting distribution form and parameters fitted to a truncated data
set can then be extrapolated to estimate the distribution of values beyond truncation limits.

At Rotokawa, fractures thinner than the BHTV log resolution of∼5 mm cannot be detected, except in rare cases
where there is a large acoustic impedance contrast between the fracture and the host lithology. Histograms of
fracture thickness indicate a paucity of fractures <8 mm thick in boreholes RK18L2 and RK30L1 and <9 mm in
borehole RK32 (Figure 4a). Therefore, 9 mm is used as the left-hand truncation limit for fracture thickness. The
right-hand truncation limit in BHTV logs is difficult to determine because it arises from a paucity of thick frac-
tures rather than their incomplete detection by the tool. In addition, it is possible that rare fractures exceeding
30 mm thickness comprise several closely spaced fractures not resolved individually on the BHTV log
(“censoring”). Zuquim and Rowland [2013] reported that extensional fractures in a paleo-hydrothermal system
hosted in lava flows in the Coromandel area, north of the Taupo Volcanic Zone, were typically up to 30 mm
thick, with some fractures up to a few hundred millimeters thick. Similarly, analysis of 3000 fractures in contin-
uous cores from the Soultz geothermal reservoir found the thickest fracture to be 250 mm thick (a quartz vein),
but that fractures exceeding 10 mm in thickness were rare [Genter and Traineau, 1996]. Overall, we consider
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Figure 4. Histogram and sampling bias limits for (a) fracture thickness and (b) spacing for wells RK18L2, RK30L1, and
RK32. Fracture spacing values from each fracture sets are superimposed in Figure 4b.

the 9–30 mm range of fracture thickness to be fully sampled in the BHTV logs acquired at Rotokawa; this
range is analogous to that used in a similar study at Cajon Pass, U.S.A. [Barton and Zoback, 1992].

The left-hand truncation limit for the fracture spacing analysis is estimated to be 30 mm, based on the low
probability of closely spaced fractures (i.e., <30 mm) being resolved by the BHTV log, and the right-hand limit
is set at 30 m due to the scarcity of fractures with larger spacings (Figure 4b).

4.2. Effects of BHTV Log Quality
We consider the BHTV logs to sample most fractures in zones of quality ranking≥3, as defined by Massiot et al.
[2015]. Indeed, the small number of fractures in the two lowest-quality ranking zones (1 and 2) is interpreted
to be due to incomplete sampling of fractures and, as a consequence, analysis of fracture spacing within these
zones was not completed. Fracture detection is best in zones of high-quality rankings (4 and 5), but these
zones are mostly <20 m long, preventing the evaluation of large spacings (i.e., >10 m). In addition, there can
be too few data points in zones of high-quality ranking (4 and 5) for statistical analysis (14 points in zones of
ranking 4 and 5 for fracture set 2 in borehole RK18L2, compared to 118 in zones of ranking 3-5; Figure 5b). The
cumulative density functions (CDFs) of fracture spacing in zones of high-quality rankings (4 and 5) are similar
to those of intermediate and high-quality ranking (3–5; Figure 5). As a result, statistical analyses of fracture
spacing in zones of both intermediate and high quality will provide similar results to those made in zones of
high quality, but with higher confidence in the results as there are more data points.

At Rotokawa, where 50% of the BHTV logs are of intermediate quality (rank 3), the statistical analysis of frac-
ture spacing in zones of ranks 3–5 thus represents a good compromise between (1) a sufficient log quality
allowing the sampling of most of the fractures that can be detected by the BHTV log and (2) sufficient length
of continuous sections of log to sample large spacings.

4.3. Maximum Likelihood Estimation Using Truncated Distributions
Five probability distributions are commonly used to describe fracture attributes such as thickness and spacing:
exponential, gamma, lognormal, power law, and power exponential (Table B1) [Gillespie et al., 1993; Bonnet
et al., 2001, and references therein]. All these distributions have characteristic scales, except for the power law
which is scale invariant.
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Figure 5. Cumulative density functions of fracture spacing with fractures in all BHTV log quality zones (rank 1–5), in
intermediate quality zones (rank 3–5), and in moderate to good BHTV log quality zones only (rank 4 and 5). (a) Fracture
set 1 in borehole RK32 (the curves for all and moderate quality ranks plot on top of each other). (b) Fracture set 2 in
borehole RK18L2. n is the number of data points in each subset.

Probability distributions are fitted to the fracture thickness and spacing data interpreted from BHTV logs using

the Generalized Additive Models for Location Scale and Shape library (GAMLSS) [Stasinopoulos and Rigby,

2007] (Table B1). This statistical modeling framework implemented in R uses the maximum likelihood estima-

tion (MLE) method, which provides robust estimators by maximizing the likelihood function of the considered

distribution [Newman, 2005; Guerriero et al., 2011]. GAMLSS can be used to evaluate numerous distributions,

which can all be truncated. The power law distribution is evaluated in GAMLSS with a Pareto type II distribu-

tion. Contrary to a power law distribution, the Pareto distribution does not appear as a straight line on log-log

plots, but its form and coefficients are directly related to a power law under certain conditions (satisfied for

thickness and spacing at Rotokawa; Table B1). The power law exponent is also fitted by MLE independently

from GAMLSS [Clauset et al., 2009, and references therein] (Table B1). For reference, the power law exponent

is also evaluated with a least squares regression on log-log plots, although this is not mathematically robust

[Pickering et al., 1995; Newman, 2005].

Given a set of distributions fitted to a data set, the best fitting distribution amongst the set of distributions

investigated is the one with the lowest Akaike Information Criterion (AIC) [Akaike, 1974] or Schwarz Bayesian

Criterion (SBC) [Schwarz, 1978]. The AIC and SBC values are derived from the generalized Akaike information

criterion (GAIC) for each tested distribution:

GAIC = −2𝓁 + p ⋅ df (2)

where 𝓁 is the maximized value of the log-likelihood function, p is a penalty factor (p = 2 for AIC and

p = ln(n) for SBC, where n is the number of observations), and df is the number of degrees of freedom

(number of free parameters of the studied distribution). The AIC and SBC are thus measures of the trade-off

between closeness of fitting (higher 𝓁) and complexity (larger number of parameters). Distribution selection

with the SBC, which has a more severe penalty for increasing the degrees of freedom, results in a simpler

model (i.e., fewer parameters) than that selected by AIC. The use of the SBC for selecting models prevents

model overfitting, i.e., when the number of parameters is too large relative to the number of observation. At

equal maximized log-likelihood 𝓁 amongst the five tested distributions, the exponential distribution is thus

favored by the AIC (and even more by the SBC) criterion as it has only one parameter, and the power exponen-

tial which has three parameters is the most penalized (also even more penalized by the SBC). The difference

(Δ(AICk) = AICk −AICmin) between the lowest AIC (AICmin) and the AICk values of an alternative distribution k

increases as the goodness of fit of the distribution k decreases. We considered that models with Δ(AICk) < 5

have substantial support based on the full theoretical analysis of Burnham and Anderson [2002].

MASSIOT ET AL. BHTV FRACTURE DATA ANALYSIS 6844



Journal of Geophysical Research: Solid Earth 10.1002/2017JB014115

Figure 6. Estimations of the probability distribution of fracture attributes. (a) Complementary CDF (CCDF) of the spacing data of fracture set 1 in all three
boreholes combined and fitted distributions. (b) CCDF of fracture thickness data for all fractures and fitted distributions. n is the total number of fractures in the
data set, truncated number within brackets. Δ(AIC) and Δ(SBC) are indicated for all distributions, with those distributions satisfying Δ(AIC) or Δ(SBC)<5 are in
bold. (c) Histogram of all measured fracture thickness in log-linear scale, with the probability density functions of distributions fitted over the 9–30 mm scale
range, extended over the entire range of observation. In this coordinate system, the exponential distribution plots as a straight line.

The histogram hn(x|Θ) of n values having a probability distribution f (x|Θ) is hn(x|Θ) = n ⋅ f (x|Θ). For distri-
butions evaluated within a truncated range, the extrapolation of the histogram out of truncation bounds is
calculated with

hNtot(x|Θ̂) = Ntr

F(x2|Θ̂) − F(x1|Θ̂) ⋅ ftr(x|Θ̂) = Ntot ⋅ ftr(x|Θ̂) (3)

where ftr(x|Θ̂) is the probability density function estimated within truncated range with a series of estimated
parameters Θ̂; Ntot is the total number of fractures assuming there were no truncations, calculated from the
number of samples occurring within the truncated range (Ntr) and the cumulative density function (CDF)
of the non truncated distribution F(x|Θ̂) evaluated on the lower (x1) and upper (x2) truncation limits. The
functions f and ftr have the same form and parameters.

4.4. Distribution Fitting Example
Figure 6a shows an example of fitting of the five distributions considered for the spacing of the dominant
fracture set (“1”) in all three boreholes combined. In this case, the lognormal distribution fits the data best,
and there are no other close contenders (i.e., Δ(AICi) and Δ(SBCi)>5 for all other distributions). Visually, the
exponential and gamma distributions do not fit the data well, but it would not be possible to rule out the
Pareto and power-exponential distributions. None of the power law-type distributions fit the data well, with
coefficients of 1.3 (MLE estimation of power law coefficient), 1.8 (least squares regression in log-log plot), and
2.6 (derived from the Pareto distribution), a wide range which encompasses most values found in geological
systems (1 to ∼3 [Bonnet et al., 2001]).

In some cases, several distributions yield similarly good fits to the data. For example, the exponential distri-
bution has the best fit for fracture thickness (AIC = AICmin), but all other distributions with the exception of
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Figure 7. Number of distributions satisfying the AIC and SBC conditions as a function of the input number of data
points, for the fracture thickness (fitted between 9 and 30 mm) and the fracture spacing (fitted between 0.03 and 30 m).
(a) AIC condition. (b) SBC condition.

Pareto are just as good according to the AIC criterion withΔ(AICi) ranging from 1.6 to 2.7 (Figure 6b). The thick-

ness data set spans only half an order of magnitude and is therefore not as well constrained as the spacing

data set which spans 3 orders of magnitude. Because of the limited scale range, a conservative interpretation

with the SBC, which in the case of thickness evaluation selects only the distribution with a single parameter

(exponential), is preferred to the results suggested by the AIC to limit overfitting.

As an example of distributions fitted over a truncated range and extrapolated beyond the truncation bounds,

a histogram of fracture thickness has been plotted in Figure 6c. All distributions fitted with GAMLSS exhibit a

good visual fit to the histogram between the truncation bounds but have different trends outside the bounds.

The power law distributions estimated by MLE (via Pareto and from MLE estimation of the power law coeffi-

cient) have a good visual fit to the histogram, but the power law with the exponent estimated by least squares

on a log-log plot does not.

4.5. How Many Fractures Are Enough?

The number of distributions satisfying the AIC and SBC conditions (Δ(AIC)orΔ(AIC)< 5) depends on both the

scale range (interval within truncation limits) and size (number of input data points) of the input data set. To

quantify this dependency, the statistical analysis is made on a series of subsets of different sizes (for different

fracture sets) and scale ranges of attribute values (thickness and spacing), resulting in a varying number of

distributions with Δ(AIC) < 5 (Figure 7a) or Δ(SBC) < 5 (Figure 7b). The number of distributions satisfying

the AIC condition varies from 1 to 4 for 80 to 300 fractures, which relates to how well the measurements

follow a theoretical probability distribution. For the spacing analysis evaluated over 3 orders of magnitude

(0.03–30 m), models with fewer than 80 fractures have either four or five models satisfyingΔ(AIC) <5 and are

underconstrained, whereas data sets with >300 fractures are better constrained with only one distribution

with Δ(AIC) < 5 (Figure 7a).

The spacing data set spanning a large-scale range (3 orders of magnitude) has fewer models satisfying the

AIC and SBC conditions than the thickness data set which spans only half on order of magnitude. The AIC

condition is satisfied for three or four distributions even for thickness data sets containing more than 300

fractures. The SBC condition is satisfied by fewer distributions than the AIC because the SBC further penalizes

distributions with several parameters.

The location of the range of observations considered to be fully sampled also affects the number of distribu-

tions satisfying the AIC or SBC conditions. Tests were performed on a series of fracture spacing data sets for

a single fracture set spanning 2 orders of magnitude, with different truncation limits (0.01–1 m, 0.05–5 m,

0.1–10 m, 0.5–50 m, and 1–100 m). While the best fitting distribution amongst the five tested is always log-

normal, other distributions (power-exponential, gamma, and Pareto) satisfy the AIC condition for some of the

subsets (Figure 8a). In addition, although the data are truncated in reality, we fit a distribution to the whole

data set without limitations on the model or the data. In this case, only the lognormal distribution satisfies

the AIC condition (Figure 8b), which reflects the higher number of input data. In addition, the lognormal
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Figure 8. Effect of the location of truncating limits on the number and form of best distributions (Δ(AIC)<5) fitting the
fracture spacing of fracture set 1 in all boreholes. (a) CDF of fracture spacing for different truncation intervals each
covering 2 orders of magnitude. In several cases, fitted distributions are naturally superposed. (b) CDF of fracture
spacing for the whole range of measured values. The distributions with Δ(AIC)<5 are displayed on each corresponding
CDF of the data and as bars at the top of each plot.

distribution approximates well the undersampled lower tail of the measurements. Defining the truncation
limits of a data set prior to fitting is thus particularly important, as a lognormal (or gamma) distribution may
reflect not simply the distribution of the geological data but also sampling effects and truncations.

5. Discussion
5.1. Statistical Analysis of Fractures Interpreted in BHTV Logs
BHTV logs are similar to a scanline sampling in that they measure the orientation and morphological char-
acteristics of fractures intersecting a line, and standard analysis methods are applicable [e.g., Priest, 1993].
However, a number of precautions must be taken to accommodate particular artifacts and resolution issues,
and to enable reliable fracture data set interpretations.

The BHTV log quality is affected by a number of logging and drilling artifacts, which can affect the statistical
analysis of fracture attributes. The log quality is affected by the type of logging tool used. At Rotokawa, the
high-temperature ABI-85 tool had a lower resolution (5×5 mm) than other standard tools, at the times the
logs were acquired. In addition, some signal was commonly lost in parts of the borehole due to spalling from
the borehole wall on the high side of the deviated boreholes and in possible intensely fractured areas (where
fracture spacing would have been lower than the truncation limit). Finally, the andesitic rocks imaged by the
BHTV logs at Rotokawa are likely to have a high roughness at the borehole wall, which decreases the amplitude
of the returned signal and thus the ability to detect signal related to fractures within the noise. As the statistical
analysis of fracture thickness and spacing is highly dependent on the scale range of observations, where the
data are fully observed (within truncation limits), it is important to evaluate image quality effects in each
BHTV log.

The estimated fracture thickness, although corrected for the intersection angle with the borehole, is overes-
timated due to erosion of the fracture at the borehole wall. Some types of fractures may also be particularly
subject to increased erosion, such as those infilled with clay or other weak material.
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Figure 9. Examples of Q-Q plots of fitted distributions; a good alignment between the sample and theoretical quantiles
on the line y = x (red line) indicates a good fit. (a) Lognormal distribution of spacing in fracture set 1 in all wells
(Figure 6a). (b) Exponential distribution of thickness in all wells (Figure 6b).

Some types of fractures may exhibit a similar acoustic amplitude response to that of the host formation,

depending on their mineralization, and are thus difficult to detect on BHTV logs. In addition, planar features

may consist of lithological features (e.g., bedding and foliation) rather than fractures. While such detection

issues were not deemed to be serious in the Rotokawa BHTV logs, they could have an effect on the fracture

detection and subsequent statistical analysis in other situations. Comparison of BHTV log with cores or other

geophysical logs [Genter et al., 1997], unavailable in the Rotokawa BHTV logs, would help resolving this issue.

The Terzaghi correction for orientation sampling bias improves the delineation of fracture sets but does not

rectify the lack of fractures subparallel to the borehole (< 10∘; Figure 3). As with measurements of fractures

along scanlines of different orientations spanning the same outcrop, a combination of boreholes drilled in

different directions permits the sampling of all fracture sets. For example, the clustering analysis conducted

here highlighted the possible presence of a fourth fracture set that had not been identified previously. This

fracture set “4,” which appears to be linked to an orientation sampling bias in boreholes RK18L2 and RK32,

forms a separate cluster in RK30L1 in a direction not affected by the orientation bias and produces clustering

configurations with high K-means silhouette width (Figure A1). The orientation of fracture set 4 is consistent

with the presence of normal faults of Andersonian orientations (dipping 60∘ and striking parallel to SHmax),

which are to be expected in the Rotokawa geological setting. However, the assumption that fracture ori-

entations are similar in each borehole is not always applicable, due, for example, to the presence of active

faults that may locally change the in situ stress and the resulting fracture orientations [McNamara et al., 2015],

or to different structural compartments within which fracture orientations vary laterally or with depth. For

example fracture set “3” is observed in one borehole (RK30L1) but very rarely in the two others available

in this study, which suggests that fractures of this orientation are not present homogeneously throughout

the reservoir.

5.2. Uncertainties and Multiple “Best” Solutions
The clustering of fracture orientation and the statistical analyses of fracture thickness and spacing both reveal

that several “best fits” often occur. There are at least two good clustering configurations of fracture orienta-

tions for each borehole and the combined data set (Appendix A). Comparisons between several fracture set

delineation techniques (Fisher contours, K-means, fuzzy K-means, and agglomerative clustering) highlight

different possible solutions for a single data set. The agreement between different techniques, in the context

of relevant geological setting, provides the best delineation of fracture sets.

The maximum likelihood estimation method, combined with the AIC and SBC, is able to identify the distribu-

tion best approximating a data set amongst a given set of distributions, as well as other distributions that also

have similarly good fits to the data. The restricted range of observations for fracture thickness limits the ability
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to identify a single best fit distribution. Even for the spacing analysis which has a wider range of observations
(3 orders of magnitude), a minimum of 100 data points is necessary to identify the distribution that fits the
data set significantly better than all other tested distributions. At Rotokawa, 1218 fractures were identified in
the BHTV logs, but the sampling biases and variable BHTV log quality reduce the number of fractures usable
for statistical analysis. In addition, the requirements of studying each fracture set individually divides the data
set into subsets, sometimes too small to identify the type of distribution they follow.

The ranking of the likelihood of a distribution using the AIC and SBC is relative and does not guarantee that
the data follow one of the models, so it is important to test different distributions relevant to the type of
studied data. Goodness-of-fit tests such as Chi-squared or Kolmogorov-Smirnov tests may be used [James

et al., 2013], particularly if fitting only one or two distributions. In this study, however, the objective of the
statistical analysis is to evaluate which of the probability distributions commonly found in geological settings
best fit the data for further geological interpretation and fracture modeling. As such, a relative ranking of
these distributions most commonly encountered in geological settings is sufficient. However, we have also
ensured that the distributions with Δ(AIC) < 5 have good fits to the data (i.e., absolute rather than relative
best fit) by inspecting Q-Q plots (Figure 9). When several distributions satisfy the AIC and SBC conditions,
additional data sets covering different scales are required to decide which distribution best approximates
the attribute [McCaffrey et al., 2003; Torabi and Berg, 2011]. For example, combining BHTV log thickness data
with measurements of millimeter thick (or smaller) fractures in drill cores would help constrain which of the
exponential, lognormal, or even power law distributions best represent the fracture thickness population over
its entire range (see companion paper Massiot et al. [2017]).

Given the uncertainties associated with the statistical analysis of fracture thickness and spacing, it is desirable
to consider several scenarios which each fit the data in order to describe the fracture system, rather than a
single configuration.

5.3. Multivariate Analysis
Maximum likelihood estimation of the distribution of fracture attributes using truncated distributions, pre-
sented here for thickness and spacing, is applicable to other fracture attributes such as length. In this paper,
the analyses of orientation, thickness, and spacing are made independently. However, the delineation of frac-
ture sets using a combination of fracture attributes measured on scanlines (e.g., orientation, length, spacing,
and roughness) can better characterize the fracture system than when using orientation alone as shown by,
for example, Tokhmechi et al. [2011] and Hofrichter and Winkler [2006] in engineering and fractured reservoirs
applications, respectively. Such multivariate classifications may be applicable to BHTV log measurements in
high-temperature geothermal reservoirs, as correlations were found between permeability and cross-cutting
fractures interpreted from BHTV logs at the Kawerau geothermal field, Taupo Volcanic Zone [Wallis et al.,
2012]. Classifications of fracture attributes measured on scanlines have previously been made using K-means
[Tokhmechi et al., 2011] and fuzzy K-means clusterings [Hammah and Curran, 1998], neural networks [Sirat and

Talbot, 2001], and Parzen classifiers [Tokhmechi et al., 2011], the latter two using training and testing subsets
of the whole data sets. BHTV logs do not provide as detailed information of fracture attributes as scanlines
(e.g., length, roughness, and infilling). However, other types of wireline logs can be jointly interpreted with
fracture data set interpreted in BHTV logs, using principal component analysis to identify lithologies [Townend

et al., 2013] or fuzzy logic to identify permeable zones in oil boreholes [Masoudi et al., 2012]. In these cases,
the distance measure (“dissimilarity”) has to be compatible between orientation data, continuous data (e.g.,
position along boreholes and thickness [Hammah and Curran, 1999]), categorical data (e.g., cross-cutting rela-
tionships and rock type), and other wireline log data sampled at different resolutions, with relative weightings
appropriate to the studied parameters.

6. Conclusion

BHTV logs provide near-continuous records of fracture geometrical characteristics at depth. The application of
clustering algorithms extends the fracture orientation analysis made by analysts using stereonets, by provid-
ing transparent classifications of fracture orientations into distinct groups, and metrics with which to choose
the most appropriate number of clusters. Maximum likelihood estimation (MLE) methods applied to truncated
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distributions are suitable for evaluating the distribution of fracture attributes (presented here for spacing and

thickness) affected by sampling biases. The AIC and SBC are simple tools with which to select distributions

best representing the data over the truncated range, amongst a set of distribution forms. Distributions evalu-

ated within truncation ranges where they are deemed fully sampled can then be extrapolated over the whole

range of values of the studied attribute. A suitable level of BHTV log quality also needs to be assessed to

limit the effects of sampling bias on fracture attribute analysis. Depending on the number of input fracture

data and the range of values they cover (in both size and location), AIC and SBC may rank more than one

distribution as similarly good approximations of the data. This statistical approach to fracture attribute anal-

ysis, presented here for orientation, thickness, and spacing, and also applicable to other attributes, provides

a series of realistic approximations which can be used to constrain reservoir-scale fracture models.

Appendix A: Evaluation of the Cluster Number for Each Borehole

Figure A1 presents the metrics used to choose the best clustering of fracture orientation interpreted in the

three boreholes and the combined data set comprising data from all three boreholes.

Appendix B: Probability Distribution Formulas

Table B1 details the formulas of the probability distributions used in this paper.

Figure A1. Evaluation of the optimal number of cluster for each of the three boreholes and combined. (a) Fisher contouring (percentages) of poles to fracture
planes with resulting fracture sets (FS), SHmax orientation (mean value and one standard deviation [McNamara et al., 2015]), and great circle with the orientation
of poles to planes of fractures not sampled because they are parallel to the borehole (the pole of this great circle is the borehole trajectory). Stereonets are
displayed as lower hemisphere Schmidt projection. (b) K-means: average silhouette width for each cluster (dots) and average of the average silhouette widths
(line) for each number of clusters; clusterings are made with random initial centroids and initial centroids located at the mean orientation of the fracture set.
(c) Fuzzy K-means: median membership level for each cluster (triangle) and median membership level (line) for each number of clusters. (d) Dendogram
representing the agglomerative clustering, with the level at which each of the four main fracture sets emerge. The best clusterings are indicated by the
underlying arrows in Figures A1b and A1c; best clusterings with either three (combined borehole and borehole RK32) or four (boreholes RK18L2 and RK30L1)
clusters separate fracture set “4” from fracture set “1,” striking NE-SW and dipping ∼ 60∘ and ∼ 80∘ , respectively.
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Table B1. Probability Density Function Formulas of Distributions Used in This Paper and Conversions From
GAMLSS Formulations to Other Common Formulationsa

Distribution Probability Density Function Formulations Conversion

Exponential fy( y|𝜇)b = 1
𝜇

exp
(
− 1

𝜇
y
)

𝜆 = 1
𝜇

fy( y|𝜆) = 𝜆 exp (−𝜆y)

Gamma fy( y|𝜇, 𝜎)b =
y

(
1
𝜎2 −1

)
exp

[
− y

𝜎2𝜇

]
(𝜎2𝜇)

1
𝜎2 Γ

(
1
𝜎2

) a = 1
𝜎2 ; s = 𝜎2𝜇

fy( y|a, s) = 1
saΓ(a) y(a−1) exp [−(y∕s)]

Lognormal fy( y|𝜇, 𝜎) = 1

y
√

2𝜋𝜎
exp

[
− 1

2
( log y−𝜇

𝜎
)2
]

Paretob fy( y|𝜇, 𝜎)b = 1
𝜎
𝜇

1
𝜎 (y + 𝜇)−

(
1
𝜎
+1

)
𝛼 =

(
1
𝜎
+ 1

)
for

𝜇 << y

Power law fy( y|𝛼) = C ∗ y−𝛼 for 𝛼 >1

𝛼 estimated by least squares regressions in log-log plots,

and by MLE following Clauset et al. [2009]:

𝛼 = 1 + n
[∑n

i=1
yi

ymin

]−1
, yi > ymin

Power-exponential fy( y|𝜇, 𝜎, 𝜈)∗ =
1
𝜎
(𝜈 exp [−0.5|z∕c|𝜈 ])

c.21+ 1
𝜈 Γ

(
1
𝜈

) where c =
⎡⎢⎢⎣

2−
2
𝜈 Γ

(
1
𝜈

)
Γ
(

3
𝜈

) ⎤⎥⎥⎦
0.5

fy( y|𝛽, 𝜆, ymin) = 𝛽𝜆 exp [𝜆y𝛽min]y
𝛽−1 exp [−𝜆y𝛽 ]

aThe GAMLSS lognormal distribution formulation is the common formulation. All variable (y) and parameters
(𝜇, 𝜎, and 𝜈) are strictly positive, except for 𝜇 of the lognormal and power-exponential distributions.

bGAMLSS formulations.
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