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A B S T R A C T

Mosquitoes are vectors of many human diseases. In particular, Aedes ægypti (Linnaeus) is the main vector for
Chikungunya, Dengue, and Zika viruses in Latin America and it represents a global threat. Public health policies
that aim at combating this vector require dependable and timely information, which is usually expensive to
obtain with field campaigns. For this reason, several efforts have been done to use remote sensing due to its
reduced cost. The present work includes the temporal modeling of the oviposition activity (measured weekly on
50 ovitraps in a north Argentinean city) of Aedes ægypti (Linnaeus), based on time series of data extracted from
operational earth observation satellite images. We use are NDVI, NDWI, LST night, LST day and TRMM-GPM rain
from 2012 to 2016 as predictive variables. In contrast to previous works which use linear models, we employ
Machine Learning techniques using completely accessible open source toolkits. These models have the ad-
vantages of being non-parametric and capable of describing nonlinear relationships between variables.
Specifically, in addition to two linear approaches, we assess a support vector machine, an artificial neural
networks, a K-nearest neighbors and a decision tree regressor. Considerations are made on parameter tuning and
the validation and training approach. The results are compared to linear models used in previous works with
similar data sets for generating temporal predictive models. These new tools perform better than linear ap-
proaches, in particular nearest neighbor regression (KNNR) performs the best. These results provide better al-
ternatives to be implemented operatively on the Argentine geospatial risk system that is running since 2012.

1. Introduction

Machine learning (ML) is an effective empirical approach for re-
gressions and/or classification of nonlinear systems which may involve
from a few to thousands of variables. The ML approach requires
training data covering most of the system's parameter space. More often
than not, a subset of these data is kept for validation. ML is ideal to
address those problems in which our theoretical knowledge is still in-
complete but for which we have a large number of observations. ML has
been shown to be useful for a large number of applications in
Geosciences for land, oceans and atmosphere, and in bio-geophysical
information extraction algorithms (Lary et al., 2009; Brown et al., 2008;
Azamathulla et al., 2012; Zahabiyoun et al., 2013; Madadi et al., 2015;
Yi and Prybutok, 1996).

Some of the most used ML algorithms in Geosciences and Remote
Sensing (GRS) applications are Artificial Neural Networks (ANN),

Support Vector Machines (SVM), Self-Organizing Maps (SOM), Decision
Trees (DT), Random Forests, and Genetic Algorithms (Lary et al., 2016).
Their application in GRS problems is relatively new and extremely
promising (Lary et al., 2016; Peña-Barragán et al., 2014). In particular,
ANNs are widely used for classification but also for time series forecast
(Atkinson and Tatnall, 1997; Zhang and Qi, 2005; Foody, 2004). In fact,
an exploration in the bibliographic base Scopus returns more than 4000
publications that include “remote sensing” and “neural network”, 311
of them in 2016. Of this total 45% correspond to the area of “Sciences of
the Earth”, 44% to “Computer Science” and 35% to “Engineering”, with
China, the United States, Italy and India the countries with the highest
scientific production in the area (Bose et al., 2016; Wang et al., 2016;
Jafari Goldarag et al., 2016). None, to the best of the authors’ knowl-
edge, deals with Epidemiology, Remote Sensing and ML.

Mosquitoes are the most important vectors of human diseases. In
particular, Aedes ægypti (Linnaeus) is the main vector for Chikungunya,
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Dengue, and Zika viruses. This is a peridomestic mosquito that is bred
preferably in artificial containers (Powell and Tabachnick, 2013;
Moncayo et al., 2004). The incidence of Dengue has increased drama-
tically in the last decades, with a rising trend of outbreaks in South
America in recent years, and Chikungunya and Zika are new threats
spread by the same species of mosquito (WHO, 2015a,b; WHO, 2016).
The deployment of ovitraps is generally accepted as a valid method to
provide useful data on the spatial and temporal distribution of Aedes
ægypti (Linnaeus), allowing a reasonable estimation of vector activity
(Ritchie, 1984).

Landscape Epidemiology (Ostfeld et al., 2005; Pavlovky, 1966)
promotes the notion that satellite data from earth observation and
geospatial technologies are essential tools (Hay, 2000) to address vector
borne epidemiological problems. Using these ideas, several inter-
disciplinary studies were produced in latinoamerica focused in gen-
erating spatial and temporal predictive risk models based on satellite
derived environmental conditions (Parra-Enao, 2010; Fuller et al.,
2010; Moreno-Madrinán and Crosson, 2014; Arboleda et al., 2012). In
particular in Argentina there are interesting experiences on this issue,
for example Rotela et al. (2007); Estallo et al. (2011); Espinosa et al.
(2016) deal with Dengue epidemics from the dynamic point of view,
while Porcasi et al. (2012) are concerned with the deployment of op-
erational tools for its management. At a global scope we can find in-
teresting contributions (Herbreteau et al., 2007; Kalluri et al., 2007;
Buczak et al., 2012) with also some operatives experiences (Bowman
et al., 2016).

Specifically, in a interinstitutional framework between the
Argentinean National Space Agency (CONAE) and the Health Ministry
of Argentina, there have been initiatives to model the temporal evolu-
tion of mosquito populations using environmental variables obtained
from remote sensors. These works used series of a few years and are
based on a small number of satellite variables (Estallo et al., 2012,
2016). In an effort to improve this, Espinosa et al. (2018) constructed
models based on a large number of variables from various sensors for
four years. All these works assumed multivariate linear models.

This work represent an improvement of that scenario. We compare
Support Vector Machines, Artificial Neural Networks, K-nearest neigh-
bors and Decision Tree Regressor in addition to two linear approaches.
With this, we obtain an operational methodology which contributes to
the Argentinean Dengue risk system currently in operation (Porcasi
et al., 2012; Rotela et al., 2017).

We explore, in contrast to previous ones, the ability of modeling and
predicting oviposition without of the shelf ML algorithms, i.e., with
minimum parameter tuning, as provided by FLOSS – Free/Libre Open
Source Software. This promotes the assimilation of these techniques for
the whole community that deals with similar problems.

2. Materials

2.1. Study area and field data

The study here presented was developed on Tartagal city (79,900
inhabitants) on the Northwest of Argentina (22°32′ S, 63°49′W, 450m
above the sea level), in Salta Province. The site is between 50 and
100 km from the Argentinean-Bolivian border (Fig. 1). Tartagal is in a
subtropical native forest environment surrounded by crops.

The site has an average annual temperature of about 23 °C (summer
average maximum of 39 °C and winter average minimum of 9 °C). It has
an annual precipitation of 1100mm, with a dry season (June to
October). Tartagal, like several north-west Argentinean cities, has a
cultural diversity based on the presence of autochthonous ethnic groups
and immigrant population in addition to a migration movement from
the bordering country Bolivia. These characteristics lead to peculiar
cultural, social and economic profile behavior.

The vector population is measured using the monitoring of ovipo-
sition activity. It is measured using ovitraps placed at randomly selected

houses in the urban area of the City. The period of monitoring used in
this study was from August 2012 until July 2016 over 50 houses. Two
ovitraps were placed in each house: one inside and other outside in a
shaded site at ground level in the backyard, following the WHO
guidelines (WHO, 2015a). The ovitraps are 1000 cm3 of black plastic
cups containing 250mL of water without attracting infusion. We used
only the external ovitraps data in this study because they correlate more
with the satellite-derived environmental variables. The ovitraps are
replaced weekly and eggs are counted on a laboratory according to the
Egg Density Index (Gomes, 1998). Then the weekly Aedes ægypti (Lin-
naeus) oviposition activity is estimated by the sum of egg-catches on
the external traps of the city.

2.2. Environmental variables

Following the idea to build predictive models of vector population
based on environmental variables derived from satellite, but with an
operational perspective and based on previous studies, we obtain
proxies of the vegetation, moisture, temperature and rain operationally
available from MODIS and TRMM/GPM products.

Global vegetation indexes provide consistent spatial and temporal
products of vegetation canopy greenness, property of leaf area, chlor-
ophyll and canopy structure. These indexes are derived from atmo-
spherically-corrected reflectance in the red and near-infrared bands. In
our case, we use the NDVI from the MODIS MOD13Q1 satellite product
(composed of 16 days) with a 250m spatial resolution. The vegetation
conditions are included because it is related also with the temperature,
humidity and precipitation (Estallo et al., 2012; Hay et al., 1997), re-
levant variables for the mosquito population evolution.

In addition, we include the Normalized Difference Water Index
(NDWI), which is related to the liquid water and humidity content in
both soil and vegetation. It is calculated from the same MODIS product
using Gao's definition (Gao, 1996) of NDWI from the bands provided by
the MOD13Q1 product, corresponding to MIR and NIR reflectance
NDWI=(ρNIR− ρMIR)/(ρNIR+ ρMIR)104. MODIS products require the
104 factor since they are stored, for computational economy, as integer
numbers.

We also used Land Surface Temperature (LST) from MODIS because
it is an approximation of the environmental temperature (Kalluri et al.,
2007; Peres and DaCamara, 2004; Wan, 1999). For this, the MOD11A2
satellite product was chosen. It has 1 km spatial resolution and is an
average of clear-sky LST's values during an 8-day period. This product
includes daytime and nighttime LST's representing, in some sense, the
maximum and minimum temperatures (Wan et al., 2004).

Local precipitation is obtained from the Tropical Rainfall Measuring
Mission (TRMM) (Kummerow et al., 1998). This is a joint mission of
NASA and the Japan Aerospace Exploration Agency launched in 1997
to study rainfall for weather and climate research. The satellite uses
several instruments including radar, microwave imaging, and lightning
sensors, to detect rainfall. TRMM was out of fuel on 2014, even though
it continued providing data until June 2015. After that, other products
were published to assure continuity in the information based in a new
space mission called GPM (https://earthdata.nasa.gov/trmm-to-gpm).

Two areas of 85 ha were defined around the city and then the mean
values, for all the satellite derived variables, were calculated. The first
area is located within the city (Urban Area) and the second one en-
compasses the native vegetation surrounding the city (Rural Area)
following the approach presented by Estallo et al. (2008, 2014. The
choice was made under the hypothesis that selecting a zone outside the
city would represent well the environmental conditions (NDWI, NDVI,
and LST). In this specific case this rural region is selected in the north-
east of the city. It has a similar altitude to the city and mostly native
forest. It can be see in Fig. 2.

The procedure to build the temporal series of remote sensed vari-
ables is outlined in Fig. 3. The images were downloaded from NASA
(http://e4ftl01.cr.usgs.gov) and imported into GRASS 7.1. The mean
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for each of the previously defined two areas was calculated for every
date. All these average values and their dates were exported to a table
in the R software, which is used to build the complete temporal series.
The data were interpolated in order to obtain values for all the sampling
dates (a value for every epidemiological week).

All the variables are considered with three weeks lags from the
original time series, to represent non synchronous influences, corre-
sponding to one, two and three time lapses.

The first step consisted in analyzing the 40 environmental variables
and eggs collected in each week by means of a correlation matrix and
the p-values that measure their significance. This led to discarding 35
variables. Lagged variables were preferred because of their potential
ability to forecast. The following variables were chosen: NDVI rural lag
1, NDWI rural lag 1, LST day rural lag 3, LST night rural lag 1, and
TRMM lag 3. All the variables are then normalised using z-scores.

Fig. 4 presents the environmental variables along with the

oviposition data as a heatmap. This format promotes the visualization
of the temporal evolution, the correlation pattern between variables,
and the lags effect.

3. Modeling

In order to model the oviposition as a function of time (weeks), we
implemented two linear models (Simple and Ridge) and four non-linear
models (Support Vector Machine, ANN multi-layer Perceptron, Decision
Tree, and K-Nearest Neighbor). We used the same set of five environ-
mental variables, which were described in previous section, for all those
models.

In all the cases we generated the models with 80% of the dataset and
retained the remaining 20% of the temporal series (almost one year) as
an independent set to corroborate the temporal prediction capacity of
the tools (we use the last 20% from our dataset). This splitting selection

Fig. 1. Study area.

Fig. 2. Urban and rural selected areas to extract the environmentals variables.
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is the most used in the ML literature (Cramer et al., 2017).
Cross validation Picard and Cook (1984); Cramer et al. (2017) was

used in order to decrease the dependency of the evaluation results on a
particular selection of training set and validation set pair. In particular,
a time series split cross validation procedure was used to evaluate the
models http://scikit-learn.org/stable/modules/cross_validation.html.
Other cross validation techniques like K-folds are not suitable for time
series data, i.e., when the ordering of the data is relevant.

In the following we describe the techniques used to model the
oviposition z-score as a function of the remotely sensed environmental
variables. All the models were implemented using functions from the
sklearn library, freely available in Python.

3.1. Linear regressions

Previous experiences on the modeling of epidemiological applica-
tions using remotely sensed environmental variables report good results
with this approach (Andreo et al., 2009; Estallo et al., 2016; Ra et al.,
2012). We used simple linear and ridge regressions, the latter with
Tikhonov regularization with cross-validation. Note that Ridge regres-
sion is often referred to as “weight decay” in the ML literature.

3.2. Nonlinear models

Nonlinear models are able to capture more complex functional re-
lations among the data, at the expense of computational complexity and
some burden on the user that has to fine tune more parameters than in
linear models.

Typically, machine learning regression includes three steps: archi-
tecture, e.g. the number of layers and neurons in an artificial neural
network or the number of neighbours in the K-Nearest Neighbor algo-
rithm, the training-validation (where the coefficients are adjusted and
the performance is evaluated), and then the use of the model with new
data. These steps were implemented with functions available in the
sklearn package already mentioned.

The configuration or selection of the optimal set of parameters in
this kind of nonlinear models is a complex issue and could be hand-
crafted or obtained using semi automatic tools.

We used the iRace (Iterated Racing for Automatic Algorithm
Configuration) package (López-Ibáñez et al., 2016) for automatic
parameter tuning. This tool is an iterative procedure capable of auto-
matically finding the most appropriate parameter configurations given
the input data instances of the optimization problem. It is implemented
in R and is freely available at http://iridia.ulb.ac.be/irace/.

In order to avoid overfitting, a problem when dealing small data
sets, the tuning was performed automatically with data from a different
city: Clorinda.

3.2.1. Support vector regressor (SVR)
Support vector machines are a class of supervised techniques that

build either linear or nonlinear decision rules and regression models.
We used the SVR from SVM module. This method implements Epsilon-
Support Vector Regression, with penalty C=0.887453, and RBF kernel
coefficient gamma=0.015561 as tuning parameters.

3.2.2. Multilayer perceptron (MLP)
Neural networks are built by a massive number of simple processing

units highly interconnected. They can be trained to provide universal
function approximators. We used the MLPRegressor method from the
neural_network module. This method implements the Multilayer
Perceptron regressor by optimizing the squared loss by either LBFGS or
stochastic gradient descent. We tuned the following parameters: alpha
(the regularization quadratic term, set to 0.070921), three layers with
three neurons each proved being a suitable and parsimonious archi-
tecture for our problem. The activation is done by the rectified linear
unit function f(x)=max{0, x}.

Fig. 3. Satellite products processing.

Fig. 4. Heatmap of temporal series of normalised z-score oviposition and environmental variables. Time is in weeks.
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3.2.3. k-Nearest neighbour regression (KNNR)
We used the K-NeighborsRegressor module. This method infers

a regression based on k-nearest neighbors. The target is predicted by
local interpolation of the targets in the neighborhood in the training set.
The original data are decomposed with principal components, and only
the first five are used. The tuning parameters choices were four
neighbors, uniform weight, Chebyshev metric and brute force.

3.2.4. Decision trees regression (DTR)
Decision trees are classification rules built incrementally, from

which a regression model can be learned. We used the
DecisionTreeRegressor method from the tree module. Again, we
used PCA but retained only the two first components. The other para-
meters were the splitting rule (“best”), the maximum depth of the tree
(three levels), and the minimum number of samples required to split an
internal node (five).

The choice of numbers of PCA components for the two last methods
was based on trial-and-error, seeking for the smallest subset that pro-
duced good results.

Fig. 5. Observed z-score, linear and ridge regressions.

Fig. 6. Observed z-score and SVR regressions.

Fig. 7. Observed z-score MLP regression.

Fig. 8. Observed z-score and KNN regression.
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4. Results

Fig. 5 shows the results of the classical multivariate linear and Ridge
models. These results are in conformity with previous studies. Both
linear regressors produce very close results preventing, thus, the use of
the latter due to its higher computational cost.

Linear regressors do not follow the peaks of the observed data, and

tend to underestimate the smallest values.
Fig. 6 shows the observed data and the result of the Support Vector

Regression (SVR) procedure. The latter fails to model the peaks of the
former, but produces a relatively good fit in the bulk of the data.

Fig. 7 shows the results of fitting the observed data with the Mul-
tilayer Perceptron (MLP) technique. The fit is very good, although the
model overestimates the data around the 25th week of the study, and
underestimates them around the last peak.

Fig. 8 shows the results produced by the KNN procedure. Also, this
is a very good model although it fails to follow the two largest peaks.
The first, around the 125th week is underestimated, and the second,
which is close to the 180th week, is overestimated.

Fig. 9 shows the result of applying the Decision Tree Regressor. The
structure of this technique produces flat outputs which, nevertheless,
follow closely the observed data. It is important to remember that in all
previous figures the last 40 weeks are not used to build the models,
therefore they are completely predicted.

Table 1 presents a summary of the observed and fitted data: the

Fig. 9. Observed z-score and decision tree regression.

Table 1
Summary of the observed and fitted data.

Min q1/4 q1/2 Mean q3/4 Max

Observed −0.863 −0.742 −0.487 0.000 0.704 3.652
Linear −1.641 −0.716 0.027 −0.087 0.462 1.387
Ridge −1.638 −0.680 0.028 −0.084 0.459 1.370
MLP −0.894 −0.677 −0.323 0.093 0.716 4.084
DTR −0.752 −0.752 −0.128 0.138 0.998 2.312
KNNR −0.863 −0.699 −0.501 0.099 1.033 2.679
SVR −1.021 −0.601 −0.232 −0.147 0.309 1.023

Fig. 10. Scatterplot of observed and predicted values.
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minimum (Min) and maximum (Max) values, the first (q1/4) and third
(q3/4) quartiles, the median (q1/2) and the mean.

Table 1 reveals the following facts:

• Linear and Ridge regressions exaggerate the minima, as they pro-
duce values which are approximately the double of the observed
ones.

• The Multilayer Perceptron exaggerates the maximum by about 10%,
while the other models underestimate it. Notice that the Support

Vector Regression flattens the maximum by a factor of about 3.6.

• The mean and median of the observed data differ noticeably, sug-
gesting that they are significantly skewed to the left.

• The closest median value to the observed one is produced by K-
Nearest Neighbors, which also leads to a very close mean value.

Fig. 10 shows the observed and predicted data as a scatterplot. This
figure reveals that none of the models is able to follow the largest ob-
served values, and that the Linear, Ridge and Support Vector Regres-
sions are the least apt for this task, while the Multilayer Perceptron is
the closest one. We also notice that this last model is the most prone to
overestimating the data. Notice that underestimation is, from the ap-
plication viewpoint, more dangerous than overestimation, as the former
leads to a false negative indicator that may lead to not firing preventive
measures in cases when they are needed.

In the following we analyze the residuals. Fig. 11(a) and (b) show,
respectively, the histograms and boxplots of the errors produced by
each model. The errors produced by KNN are the most concentrated
around zero, followed by MLP. The two errors most spread are due to
the linear regressions. This is an indication that the models obtained

Fig. 11. Residuals.

Table 2
Measures of quality of the models.

Corr11 MSE Mean score SD of score CorrL20 MSEL20

Linear 0.774 0.624 1.108 0.278 0.890 0.580
Ridge 0.775 0.621 1.072 0.277 0.896 0.566
SVR 0.837 0.613 0.834 0.490 0.967 0.464
MLP 0.875 0.528 1.086 0.288 0.727 1.023
KNN 0.888 0.494 0.981 0.362 0.797 0.936
DTR 0.679 0.768 1.148 0.544 0.532 1.131
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using simple linear techniques are the worst among the ones considered
here.

Table 2 presents quality measures of the models here considered:
Pearson correlation coefficients between the observed and fitted values,
using the complete data set (Corr11) and the 20% (CorrL20) left for
validation; and the Mean Square Error of the complete data set (MSE)
and of the validation data (MSEL20). Following Cramer et al. (2017),
we also include the mean Score obtained from the cross validation and
its standard deviation.

5. Discussion

Taking into account all the goodness-of-fit parameters included in
Tables 1 and 2, Fig. 11(b) and 11 and the analysis of errors, we may
consider that KNN stems as the best method for this problem. It has a
correlation near to 90%, considerably greater than 75%, the typical
values obtained with linear approaches.

The Mean Score value would lead to choose Support Vector
Regressor as the best technique (Cramer et al., 2017). It is noteworthy
that the standard deviation of this measure of quality is so high that is it
unlikely that it is able to render a good choice by itself. For this reason,
we follow a holistic approach in the forthcoming Conclusions.

An interesting point that appears in the results of all the models here
presented, is that that models fit well the main pattern but not ne-
cessarily the large peaks. One hypothesis is that the vector population
may disengage the macro-environmental/climatic variables when
conditions are optimal and, again, be restricted when the environ-
mental conditions get poorer. In fact, it would be clear that, we can not
hope to fit exactly this urban vector population only based in large scale
macro-environmental variables.

6. Conclusions

Dengue, Chikungunya and Zika are viral diseases for which there is
no vaccine. Therefore, the most effective control comes from preventing
the spread of Ae. ægypti (Linnaeus) and, thus, knowing about its po-
pulation dynamics is of paramount importance. This work provides a
framework for forecasting oviposition using remotely sensed variables
solely, and freely available Machine Learning tools. Such tools are
improving the Argentinean operational risk system (Porcasi et al.,
2012).

We used operationally available satellite derived environmental
variables (temperature, humidity and precipitation) to build temporal
models able to predict the oviposition activity outside the houses. In
this way, our perspective completely operative, means generate a pro-
cedure to estimate the vector activity and then eventually become in-
dependent of field measurements,(not predict the future), considering
that to measure oviposition in 50 houses all the weeks all the time (as
we use to generate the model) have a very large cost.

This study improved previous epidemiology studies, which consider
statistical models with linear relationships (Estallo et al., 2008, 2012,
2016). Such improvement is obtained by the use of Machine Learning
tools that impose the user no significant additional effort.

The proposal showed that out-of-the-shelf FLOSS tools are capable
of dealing with the complex relationships among variables providing,
thus, an almost effortless and free way of handling with this relevant
problem. This interdisciplinary approach provides new tools for prac-
titioners.

This work is an example of how the use of automatic algorithm
configuration tools like iRace can reduce the complexity of parameter
tuning and provide a frame of reference for model selection.
Additionally, we show the importance of training with Cross Validation,
a commodity in image classification but seldom used by Remote
Sensing operative users. Cross validation was used in order to decrease
the dependency of the evaluation results on a particular selection of
training set and validation set pair. In particular, a time series split cross

validation procedure was used to evaluate the model. All the models
here discussed can be run with a Python script freely available at
https://github.com/JuanScaFranTru/mosquitomodels.

We found that K-Nearest Neighbour Regression (KNNR), MLP and
SVM improve predictive models of vector population based on satellite
derived environmental variables. The performance of these algorithms
could be improved substantially using a larger dataset. Although the
used period is large in comparison with similar works on vector po-
pulation, at the same time the used dataset is very small from the
machine learning point of view.

Finally this work presents several improvements regarding previous
works (Estallo et al., 2012, 2014, 2016; Espinosa et al., 2018), in terms
of temporal data length, the use a more complete accessible operatively
set of remotely sensed variables, and mostly with respect to the use of
ML learning modeling.

As the control of vector populations is a very important task in
prevention of diseases, the knowledge of temporal dynamics of Aedes
aegypti (Linnaeus) plays a fundamental role in planning strategies and
resources management. The result presented in this work, with models
producing a correlation about 90% with the actual oviposition temporal
series, show the usefulness of a procedure based on satellite derived
environmental variables and easily accessible modern machine learning
techniques. Applying the same procedure to other cities is likely to lead
to an improved national operational risk system (Porcasi et al., 2012).
In addition, the kind of data and tools presented (all freely accessible)
allow the replication of the methodology, if not the same model, in
other regions.
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