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Following on the first part of our review of synthetic ap-
erture radar (SAR) image statistical modeling [1], which 

concerns single-pixel statistical models, this article extends 
our discussion to spatial correlation analysis, focusing on 
SAR spatial correlation models and SAR clutter simula-
tion methods. Two types of spatial correlation models, the 
product model and the coherent scatterer model, are sum-
marized: the first considers correlation characteristics from 
the image itself while the second analyzes spatial correlation 
stemming from the underlying scatterer and the physical 
imaging process. In addition, we review four spatially corre-
lated clutter simulation methods based on two classical dis-
tributions (K and G0): a product model-based method, an 
inverse transform method (ITM)-based approach, a coherent 
scatterer model-based technique, and the generalized Gauss-
ian coherent scatterer (GGCS) approach. We discuss the ad-
vantages and disadvantages of these models and methods 
and provide references for further research into the statistical 
modeling of SAR images. 

BACKGROUND
The statistical modeling of SAR images has formed one of 
the essential research subjects focused on SAR image inter-
pretation. An in-depth study of the statistical characteristics 
of SAR images can provide strong support for SAR image in-
formation extraction and interpretation algorithm verifica-
tion, and it is the theoretical basis for applications such as 
target detection and recognition. At present, most statistical 

modeling of SAR images considers the single-pixel statisti-
cal model, which was summarized from different perspec-
tives in [1]. However, single-pixel models cannot solely rep-
resent the texture characteristics of an image, leaving them 
far from sufficient for mining SAR image information [2]. 
Two-pixel statistical models, such as the power spectrum 
and the autocorrelation function, can further characterize 
the texture information of the spatial variation in SAR im-
agery, which we call spatially correlated statistical modeling. As 
the second part of a treatment of SAR image statistical mod-
eling, this article continues to review the spatial correlation 
analysis of SAR images built on the single-pixel statistical 
model [1].

The spatial correlation models of SAR images also have 
different analysis methods through the development of 
single-pixel probability distribution models. The correla-
tion analysis of SAR images was first discussed by Jakeman 
and Pusey [3] when they proposed K-distributed sea clut-
ter. They gave the expressions of the high-order moment 
and the autocorrelation function of the radar cross-section 
(RCS). They also provided the relationship between the au-
tocorrelation function of the RCS and the number of scat-
terers, with which they defined the concept of the number 
of equivalent scatterers. Subsequently, [4] and [5] derived 
the influence of the number of scatterers that obey the neg-
ative binomial distribution on the spatial correlation.

A large number of previous models of non-Gaussian 
clutter focus on the statistical analysis of the correlated K-
distributed clutter, and the correlation analysis is mainly 
based on the development of a coherent scatterer model de-
scribed by a random walk process. Oliver et al. considered 
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the influence of the imaging system and proposed multiple 
surface cross-section models for describing the K-distrib-
uted correlated clutter [6]–[9]. The K-distributed correlated 
clutter is modeled as the output of the correlated gamma-
distributed RCS after the imaging system. It mainly in-
cludes two models for simulating the RCS. 

One is an accurate representation based on gamma–
Lorentzian intensity fluctuations [6], [7], which describe 
the gamma-distributed RCS as the solution of the Fokker–
Planck equation (a continuous form of the birth–death-mi-
gration ratio equation [10], [11]) that can be obtained by nu-
merical simulation using stochastic differential equations. 
This model can accurately express the higher-order statis-
tical characteristics of the correlated K-distributed clutter. 
Its limitation is that it can represent only the exponential 
correlation function and is suitable for 1D situations alone.

The other representation is an approximate model based 
on a linear filter [8]. It uses an uncorrelated gamma-distrib-
uted RCS to obtain a correlated gamma-distributed RCS 
through a linear filter. The uncorrelated gamma distribu-
tion can be regarded as a Gaussian random walk process. 
This model is widely employed since it can describe arbi-
trary correlation functions and represent 2D clutter images. 
The disadvantage of this method is that it can accurately 
represent only second-order correlation moments, with 
possible deviations for higher-order moments. Also, it is 
applicable only to the case where the order of the gamma 
distribution is a semi-integer. The author of [12] discussed 
a method for simulating correlated clutter images with an 
arbitrary power spectrum based on an approximate model. 
To overcome the shortcoming that the approximate model 
can describe only the semi-integer-order gamma distribu-
tion, more theoretical models and simulation methods of 
correlated gamma distribution have gradually been pro-
posed [13], [14], such as the memoryless nonlinear trans-
form (MNLT) technique [13].

To characterize non-Gaussian clutter with more general 
models, Conte et al. [15]–[18] proposed a complex spheri-
cal invariant random process (SIRP) to model SAR com-
plex clutter images. The advantage of the SIRP process is 
that, as with the Gaussian distribution, it is completely 
determined by the mean and the covariance function. 
This process has linear transformation properties that are 
similar to Gaussian variables, which facilitates the selec-
tion of correlated structures. This model ensures that the 
joint probability density function (PDF) of the real and 
imaginary components of complex clutter is circularly 
symmetric; that is, the phase obeys a uniform distribu-
tion. The autocorrelation structure and cross-correlation 
structure of the real and imaginary components are flex-
ible and can be stipulated according to a specific physical 
scene. The closed-form, higher-order probability distri-
bution expression of this model is available, and it can 
reduce to the simplest case, where the amplitude obeys 
the Rayleigh distribution. The SIRP is able to represent 
the K distribution, which is expressed as the product of 

a Rayleigh-distributed variable and a gamma-distributed 
variable, and the Weibull distribution by constraining 
specific parameters. The disadvantage of this model is that 
it can represent only amplitude images that obey the dis-
tribution of mixed Rayleigh laws. As an example, it cannot 
express the lognormal distribution.

Based on the preceding research, Conte et al. [17] further 
proposed a composite process to model radar clutter as a 
product of the complex SIRP process and independent non-
negative random variables. The approach can be considered 
as the modulation of the SIRP process, and its correlation 
characteristics are introduced by the complex SIRP pro-
cess. Correlation functions of clutter can also be expressed 
as the product of the correlation functions of the complex 
Gaussian process and a nonnegative random process. The 
nature of the model is consistent with the product model 
proposed by Ward [19] and the correlation analysis by Ulaby 
et al. [20], both of whom model the speckle as multiplica-
tive noise. The product model has also been one of the most 
popular ones in the statistical representation of SAR images. 
The authors of [17] provided simulation methods for corre-
lated K-distributed clutter and correlated Weibull-distribut-
ed clutter based on the exogenous model [15].

This article analyzes the existing spatial correlation 
models from two perspectives: the product model [19] and 
the coherent scatterer model [6]. The product model de-
scribes the SAR image observations as the product of the 
RCS component and the speckle component. The correla-
tion is the product of the correlation function of the RCS 
and the speckle. The product model is simple and easy to 
implement and analyze, but it is difficult to establish a 
corresponding relationship with the physical scattering 
process. The coherent scatterer model, also known as the 
discrete scatterer model, is a relatively complex statistical rep-
resentation based on physical scattering processes. It ana-
lyzes the relevant characteristics of an SAR image based on 
factors such as the number of scatterers, the RCS, and the 
imaging impulse response. This method has strong physi-
cal interpretability, which is valuable for the interpretation 
of high-resolution SAR images.

In addition, as an important application of SAR image 
statistical modeling, this article reviews the main correlated 
clutter simulation methods based on the single-pixel statis-
tical models along with their correlation analysis. Clutter 
simulation is a forward process for modeling SAR images. It 
is an important tool for validating whether the properties of 
SAR images have been well understood. It has significant ap-
plications for despeckling [21], [22], target detection and rec-
ognition [23], [24], interpretation algorithm verification [25], 
[26], system design verification, and accuracy evaluation [27], 
[28]. It is a vital way to describe SAR clutter based on the sta-
tistical characteristics of observed data at a single-pixel and 
observed data at a single-pixel and the correlation structures 
of these data [29], [30].

The K distribution [4] has been the most widely used 
statistical distribution in the study of non-Gaussian clutter 
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models. It can be used to describe sea, forest, and other 
scenarios, but it cannot define extremely inhomogeneous 
regions. The G0  distribution [31] is able to depict homo-
geneous, inhomogeneous, and extremely inhomogeneous 
scenes. Therefore, this article reviews four main correlated 
clutter simulation methods based on these two classical dis-
tribution models: the simulation of correlated K-distributed 
clutter based on the product model [2], the simulation of 
the correlated G0 -distributed clutter [30] based on the ITM, 
the simulation of the correlated K-distributed clutter based 
on the coherent scatterer model [32], and the simulation of 
correlated clutter based on the GGCS model. 

SPATIAL CORRELATION MODELS
In [1], we investigate the development of more than 20 single-
pixel statistical distributions based on the Rayleigh speckle 
model, the product model, the non-Rayleigh speckle model, 
the generalized central limit theorem model, the incoherent 
scatterer sum model, the single empirical distribution mod-
el, and the finite mixture statistical model. The single-pixel 
statistical model is not sufficient to completely describe SAR 
clutter, as it does not convey the spatial information of the 
image. Therefore, the two-pixel statistical characteristics (the 
power spectrum and the correlation function) of the SAR im-
age need further study. This section summarizes the com-
monly used spatial correlation models of SAR images.

As shown in Figure 1, the correlation analysis of SAR im-
ages is mainly divided into two approaches, which include 
the following:
1) Correlation analysis based on the product model [20]: The 

main idea is to consider the scattered echo as the prod-
uct of the speckle component and the RCS component. 
The correlation function of the scattered echo can also 
be  regarded as the product of the correlation functions of 
the speckle and the RCS components. In this way, first, 
the correlation functions of these two components are 
separately modeled, and then the product model is used 
to derive the correlation information of an SAR image.

2) Correlation analysis based on the coherent scatterer model [4], 
[7]: The purpose here is to model the scattered field of an 
SAR image as a random walk and to analyze the corre-
lation information introduced in the scattering process. 
Research shows that the number of scatterers, the fluc-
tuation of the scattered field of a single scatterer, and the 
imaging impulse response function are the main factors 
affecting the correlation of the observed intensity.

This section will introduce these methods one by one. Fig-
ure 2 outlines the main context of the spatial correlation 
analysis introduced in this section, which is detailed in the 
following.

CORRELATION ANALYSIS BASED  
ON THE PRODUCT MODEL
The product model was proposed by Ward in 1981 [19]. It 
represents the image data as the product of the RCS and the 
uncorrelated speckle noise. The speckle is caused by the co-
herent imaging process, and the RCS is characterized by the 
deterministic information of the scene, such as the texture 
data. The product model is simple but able to describe the 
characteristics of nonuniform regions that have texture. It 
has been the most popular model in the field of statistical 
modeling of SAR images [2].

Ulaby et al. [20] analyzed the correlation property of 
observed SAR images based on the product model, which 
represented the SAR image observations as the product of 
the average intensity, the normalized texture, and an un-
correlated speckle component, as documented in Figure 2. 
To be consistent with the traditional product model, the 
product of the average intensity and the normalized texture 
component is regarded as the RCS. For the 2D SAR intensity 
image ,I  the product model [19], [20] at a certain pixel ,x y^ h 
can be expressed as

 , , , ,I x y x y n x y v=^ ^ ^h h h  (1)

where ,I x y^ h is a random variable with average intensity 
In  and variance ,sI

2  ,x yv^ h is the RCS with mean nv  and 
variance ,s2

v  and ,n x y^ h is the normalized speckle random 
variable with mean 1nn =  and variance / ,s N1n

2=  where N  
is the number of looks.

The autocorrelation function and autocorrelation coef-
ficient of SAR intensity image I  are, respectively,

 , ; , , ,R x y N I x y I x x y y< >I T T T T= + +^ ^ ^h h h  (2)

 ,
,

,x y
s

R x y
I

I

I I
2

2

T T
T T

t
n

=
-^ ^h h

 (3)

where $  denotes taking the expectation, xT  and yT  in-
dicate, respectively, the distances in the azimuth and range 
directions. Assuming that ,x yv^ h and ,n x y^ h are indepen-
dent random variables, the autocorrelation function of I  is, 
according to this model [20],

 , ; , , ; ,R x y N R x y R x y NI nT T T T T T= v^ ^ ^h h h  (4)
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FIGURE 1. A spatial correlation analysis of SAR images.
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where ,R x yT Tv ^ h is the autocorrelation function of the 
RCS , ,x yv^ h  and , ;R x y Nn T T^ h represents the autocorrela-
tion function of the speckle , .n x y^ h  It can be seen that the 
correlation functions also satisfy the product relationship, 
and RI  is determined by the autocorrelation functions of 
the speckle Rn  and the RCS .Rv

The speckle is white noise, and there is no correlation in 
itself. The correlation shown in the SAR image is introduced 
during the imaging focus process. The authors of [20] gave the 
autocorrelation function of the speckle of the intensity image

 , ; ,R x y N N r
x

r
y1 1sinc sincn

x y

2 2T T T T
= +^ a ch k m  (5)

where rx  and ry  are the corresponding spatial resolution in 
the azimuth and range directions of the sensor. The corre-
sponding autocovariance is

 
, ; , ;

.

C x y N R x y N

N r
x

r
y1 sinc sinc

n n n

x y

2

2 2

T T T T

T T
n= -

=

^ ^
a c

h
k
h

m  
(6)

In [20], the authors pointed out that, if the pixel interval (or 
the sampling interval) is greater than the spatial resolution, 
the correlation of neighboring pixels can be ignored. Gen-
erally, if the pixel distance is 0.5–1 spatial-resolution cell 
(that is, oversampling), two adjacent pixels are correlated, 
and two pixels with an interval greater than one pixel are 
uncorrelated.

Similar to (3), the autocorrelation function of the RCS 
can be written as

 , , ,R x y s x y2 2T T T Tt n= +v v v v^ ^h h  (7)

where ,x yT Ttv ^ h is the autocorrelation coefficient of the 
RCS. Substituting (3), (7), and I

2 2n n=v  into (4) obtains

 , ,
,

.x y
s R x y

x y s1
n

I I I
I2

2 2
2T T T T

T T
t

t n
n=

+
-v

v
^ ^

^h h
h< F  (8)

Usually, the negative exponential correlation function is 
adopted [2], [32]:

 , ,expx y
x y2 2

x y, ,T T
T T

t = - -v ^ h < F  (9)

where x  and y  are the azimuth and the range, respectively, 
and x,  and y,  are the corresponding /e1  correlation lengths.

CORRELATION ANALYSIS BASED ON  
THE COHERENT SCATTERER MODEL
This section introduces correlation analysis based on the 
coherent scatterer model, as given in Figure 2. The physi-
cally coherent scatterer model is discussed, followed by 
the influence of the number of scatterers, the amplitude 
fluctuation of a single scatterer, and the imaging impulse 
response function on the correlation structure of an 
SAR image.
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FIGURE 2. The context of spatial correlation analysis.
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COHERENT SCATTERER MODEL
The coherent scatterer model describes the speckle phenom-
enon that results from the summation of a large number of 
complex components with independent phases [2], [10]. Fig-
ure 3 presents a sketch of the 2D coherent scatterer model. As 
shown in Figure 3, the scattering process is divided into two 
steps: the coherent scatterer model and the scattering imag-
ing process. The coherent scatterer model characterizes the 
process of the coherent summation of multiple scatterers to 
obtain a scattered field. The first layer, at the left in Figure 3, il-
lustrates the random distributed scatterers (indicated by black 
dots) in a 2D plane (the xy -plane), where each square denotes 
a resolution cell. The scattered field of the second layer (des-
ignated by red asterisks) is obtained by the coherent summa-
tion of the scatterers of the first layer in each resolution cell. 
The third layer denotes the observations (specified by blue 
diamonds), i.e., the pixel values of the image, which are ob-
tained by the scattered field through the imaging system.

The mathematical model of the scattering process is 
described on the right side of Figure 3. The scattered field 

,E x y^ h at ,x y^ h can be regarded as the summation of N  
scatterers in a resolution cell [2], [4]:

 , , ,E x y A x y e a e a,
, ,

j x y

i

N

i
j

i

N

x y i
1 1

i= = =i z

= =

/ /^ ^ ^h h h  (10)

where ,A x y^ h and ,x yi^ h are the amplitude and the phase 
of the scattered field at position , ,x y^ h  respectively, and 

,a a, ,x y i i  and iz  are the complex scattered value and the scat-
tered amplitude and phase of the ith i N1 # #^ h scatterer 
at , ,x y^ h  respectively.

The RCS ,x yv^ h at ,x y^ h is defined as

 , , , , .x y E x y E x y A x y2$v = =)^ ^ ^ ^h h h h  (11)

The correlation functions of the 2D scattered field E  and 
the RCS v at two points ,x y^ h and ,x x y yT T+ +^ h are

 ,
, ,

,x y
E x y E x x y y1 T T

T T
t
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+ +)

^ ^ ^^ h h hh  (12)
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where , ,A x y A x yv = )^ ^h h  and the brackets denote the 
expected value. If the number of scatterers is a constant ,N  
(12) and (13) can be written as [5]
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If N  is large, (15) can be simplified and becomes

 , , .x y N x y1 1 1 2 1 2
T T T Tt t= - +^ ` _ ^^ ^h j h ih h  (16)

Considering the impulse response of the imaging sys-
tem, the single-look complex image at position ,x y^ h can be 
modeled as [6]–[9]

 , , , ,x y B x y A x y e h x yd d ,

∞

∞

∞

∞ j x y
1 1 1 1 1 1

1 1f = i

--
^ ^ ^^h h hh# #  (17)
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FIGURE 3. A spatial correlation analysis based on the coherent scatterer model.
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where B  is a constant that denotes the gain of the radar 
equation and ,h x y1 1^ h is the impulse response of im-
aging system. The intensity I  of the observed image is 
[6]–[9]

 , , .I x y x y 2f=^ ^h h  (18)

The 2D correlation function of the single-look complex im-
age f  and the image intensity I  are defined as

 ,
, ,

,  g x y I
x y x x y y1 T T

T Tf f
=

+ +)

^ ^ ^^ h h hh  (19)

 ,
, ∆ ,

,g x y
I

I x y I x x y y2
2T T

T
=

+ +^ ^ ^^ h h hh  (20)

where the average intensity I  is

 , .I B x y h x yd d
∞

∞

∞

∞2
1 1 1 1

2v=
--

^ h##  (21)

We are interested in the spatial correlation characteristics of 
the image, namely, ,g x y( )1 T T^ h and ( , ).g x y( )2 T T

The model in (10)–(21) implies that the spatial cor-
relation of the 2D image is mainly determined by the 
spatial fluctuation of the number of scatterers N  in a 
single resolution cell, the fluctuations of the scattered 
field ,a , ,x y i  and the impulse response function ,h x y^ h of 
the imaging system in Figure 3. The spatial correlation 
coefficients ,x y( )1 T Tt ^ h and ,x y( )2 T Tt ^ h of RCS ,x yv^ h 
are determined by the spatial fluctuation of N  and the 
disturbance of .a , ,x y i  The next section summarizes the im-
pact of these three factors on the spatial correlation of 
SAR images.

FLUCTUATION OF THE NUMBER OF SCATTERERS
This section explores the effect of the f luctuation of the 
number of scatterers on the correlation of the scattered 
field. According to the birth–death-migration model, 
the number of scatterers N  can be described by a ran-
dom variable with a negative binomial distribution. 
It was pointed out in [1] that, if the expectation of the 
negative binomial distribution was assumed to be an 
infinite constant, the K-distributed scattered field was 
obtained [4]; if the effect of the scattered phase was 
ignored, the coherent scatterer model would degener-
ate into a simpler incoherent scatterer sum model. The 
article approximated the scattered field as a noncoher-
ent summation of multiple point scatterers. Under the 
assumption that N  obeyed the negative binomial dis-
tribution with an infinite constant, the scattered field 
would obey a gamma distribution. This section first 
derives the distribution of the number of scatterers 
based on the birth–death-migration model, which is a 
negative binomial, and then introduces the inf luence 
of the number of scatterers on the spatial correlation 
property of the K- and gamma-distributed scattered 
fields.

DERIVATION OF NEGATIVE BINOMIAL DISTRIBUTION 
BASED ON THE BIRTH–DEATH-MIGRATION PROBLEM 
[4], [33]
The birth–death-migration problem can be described by 
the following rate equation [4], [33]:
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(22)

where P tN ^ h denotes the probability that the number of 
scatterers is N at time t, m is the birth rate, n is the death 
rate, and o is the immigration rate. The generating function 
of P tN ^ h is [4], [33]

 , .Q z t z z P t1 1N

N

N
N

0

∞
= - = -

=

/^ ^ ^ ^h h h h  (23)

Then, the partial differential equation of the generating 
function ,Q z t^ h is

 .t
Q

z z z
Q

zQ1 2
2

2
2

n m o= - + - -^ h6 @  (24)

Assume that the number of scatterers at the initial time 
t 0=^ h is ;M  that is, .P N M0N d= -^ ^h h  Replacing this con-

dition in (23) obtains

 ; .Q z z0 1 M= -^ ^h h  (25)

Since the sum of the probabilities is one, the second bound-
ary condition can be written as

 ; .Q t0 1 =^ h  (26)

According to the two preceding boundary conditions, the 
instantaneous solution of the partial differential equation 
(24) is

 , ,Q z t z z
z

1 1

M

m n m i
m n

m n m i
m n ni m

=
- + -

-
- + -
- + -m

o

^ d ^ d ^
^h h n h

h n  (27)

where

 .expt ti m n= -^ ^h h6 @  (28)

If 2n m and ,t " 3  ,03i =^ h  the equilibrium distribu-
tion is obtained: 

 ,∞ / ,Q z Nz1 a= + a-r^ ^h h  (29)

where / / .N ando n m a o m= - =r ^ h  Then, according to 
,∞ ,Q z^ h  the number of scatterers N  obeys the negative bi-

nomial distribution:
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1
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+
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r
r

r

^ c
a
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 (30)

The author of [4] derived the correlation coefficient of 
the number of scatterers based on the joint generation 
function as

Authorized licensed use limited to: Technical Activities Board. Downloaded on November 20,2020 at 07:44:40 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

                                           IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE    MONTH 20208 

 .
N

N N t N
N

t
0 1 1

2

2

a i
-

= +r

r

r
^ ^ a ^h h k h  (31)

EFFECT OF THE NUMBER OF SCATTERERS  
THAT OBEY THE NEGATIVE BINOMIAL  
DISTRIBUTION ON THE CORRELATION  
FUNCTION OF THE SCATTERED FIELD [4], [33]
For the birth–death-migration model, assume that the 
number of random walks at the initial time t  is N  and 
that the number of random walks at time tl is .Nl  During 
the process from t  to time ,tl  a total of Ns  steps survived, 
with an amplitude of as" , and a phase of ;sz" ,  N Ns-^ h 
steps disappeared, with an amplitude of ad" , and a phase 
of ;dz" ,  and N Ns-l^ h steps were new, with an amplitude 
of an" , and a phase of .nz" ,  The correlation function of the 
complex scattered field can be written as [4], [33]
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(32)

Assume that ,sz" ,  ,dz" ,  and nz" , are collectively in-
dependent, identically distributed random variables with 
a uniform distribution. Equation (32) can be simplified as
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(33)

If the initial number of scatterers decays with death rate ,n  
then the normalized first-order correlation function of the 
complex scattered field is

 ,
exp exp

a
a a i0 01

2t x
nx x z z x

=
- -^ ^ ^ ^ ^ ^^ h h h h h hh 6 @

 (34)

where a a0 x^ ^h h  represents the spatial correlation of the 
amplitude a  of a single scatterer and exp i 0z z x-^ ^h h6 @  
characterizes the spatial correlation of the phase of a single 
scatterer. The normalized form of RCS correlation function 

tt *v v l^ ^h h  is [4]
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(35)

where ti^ h is defined in (28).
The correlation functions 1t x^^ hh  and 2t x^^ hh  in the pre-

ceding are the results obtained based on the hypothesis of 
the negative binomial distribution, and these expressions 
characterize the relationship among the correlation func-
tion of scattered field, the number N  of the scatterers that 
obey the negative binomial distribution, and the spatial 
correlation of a single scatterer. The correlation functions 

1t x^^ hh  and 2t x^^ hh  can be extended to 2D cases, which are 
,x y1 T Tt ^^ hh  and , .x y2 T Tt ^^ hh  The correlation information 

of the observed image ,g x y1 T T^^ hh  and ,g x y2 T T^^ hh  can be 

obtained by combining with the correlation effect intro-
duced by the imaging impulse response, as presented in the 
next section. 

THE CORRELATION FUNCTION  
OF THE K DISTRIBUTION
The K-distributed scattered field can be generated when 
the expectation of the negative binomial distribution satis-
fies .N " 3r  Thus, the correlation function of K-distributed 
noise is obtained by letting N " 3r  in the correlation func-
tions 1t x^^ hh  and .2t x^^ hh  Notice that 1t x^^ hh  remains the 
same as in (34) and 2t x^^ hh  can be further simplified as [4]

 ,1 1 1 12 1 2
t x a t x a i x= + + +^ ` ^ ^^ ^h j h hh h  (36)

where 2t x^^ hh  consists of two parts: the perturbation term 
i x^ h of the number of scatterers and the interference term 
proportional to .( )1 2

t x^ h

THE CORRELATION FUNCTION  
OF THE GAMMA DISTRIBUTION
If the influence of the phase of a single scatterer is ignored, 
the coherent scatterer model will degrade to the incoherent 
scatterer sum model [1], and RCS v is modeled as a nonco-
herent sum of multiple point scatterers:

 .a
i

N

i
1

2v =
=

/  (37)

There is no spatial correlation of complex scattered fields in 
the incoherent scatterer sum model; that is,

 .01t x =^^ hh  (38)

If it is assumed that the number of scatterers obeys the 
negative binomial distribution and its expectation value 

,N " 3r  the RCS obeys a gamma distribution. The joint PDF 
,p v vl^ h of the gamma distribution is
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(39)

where I 1a-  is the first modified Bessel function of order 
.1a-  According to the PDF in (39), the normalized cor-

relation function of the RCS can be derived as [4]

  .12t x a
i x

= +^ ^^ h hh  (40)

It can be seen that the correlation function in (40) can 
also be obtained by the K-distributed correlation function 

2t x^^ hh  in (36) by ignoring the term with .( )1 2
t x^ h

FLUCTUATION OF A SINGLE SCATTERER
This section explores the correlation modeling of the 
scattered field a , ,x y i  of a single scatterer and its influence 
on the correlation characteristics of RCS .v  There are 
currently two methods for modeling :a , ,x y i  physical and 
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statistical. The author of [7] proposed four physical mod-
els for ,a , ,x y i  while [32] modeled a , ,x y i  from a statistical per-
spective by assuming that it followed a correlated gamma 
law. Both approaches provide analytical expressions of 
the correlation function of the RCS, which are expressed 
in 1D form.

PHYSICAL MODELING OF A SINGLE SCATTERER
The four physical models for the scattered field a , ,x y i  of a 
single scatterer in [7] are as follows:

 ◗ narrowband thermal noise with a single coherence 
length c,

 ◗ the mixture of two narrowband noise processes that 
have the same center frequency but different correlation 
lengths, a,  and ,b,  and cross sections av  and bv

 ◗ narrowband thermal noise of intensity sv  and a single co-
herence length c, , mixed with a local oscillator of strength 

0v  shifted by a frequency ~
 ◗ the mixture of two narrowband noise sources with the 

same correlation length c,  and the same cross section 
but with their center frequencies offset by .~

In [7], the author provided the correlation function 
,x y2 T Tt ^^ hh  of the RCS based on the four preceding physi-

cal models. The author also presented the correlation func-
tion ,g x y2 T T^^ hh  of the observed image through a rectangu-
lar imaging impulse function.

STATISTICAL MODELING OF A SINGLE SCATTERER
The statistical modeling of a single scatterer assumes that the 
scattered field of each scatterer obeys a correlated gamma dis-
tribution and the correlation information of the RCS can be 
derived using an incoherent scatterer sum model [32]. For con-
venience, rewrite the incoherent scatterer sum model in (37) as

 ,z a
i

N

i
i

N

i
1 1

2v = =
= =

/ /  (41)

where zi  is the scattered field of the ith scatterer in a reso-
lution cell. It is assumed that zi  obeys a gamma distribu-
tion with a mean of ,zn  a variance of ,sz

2  and a correlation 
coefficient of .zt  Here, N  is a random variable that obeys 
a negative binomial distribution with a mean of Nn  and a 
variance of ,sN

2  which is independent from .zi  The preced-
ing equation can be regarded as a local sum process (LSP) 
in a window with N  scatterers.

The sum of independent gamma variables still obeys a 
gamma distribution; however, the sum of correlated gamma 
variables is no longer granted this property. The probability 
distribution after summing is usually difficult to obtain [34], 
[35]. The authors of [32] used the approximation that the sum 
of the correlated gamma variables is still gamma distributed 
and derived the correlation function of the RCS v as [32], [36]
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where r  is the spatial distance between two pixels, N2  
is the second-order moment of ,N  and , ,i j rzt ^ h is the 

correlation coefficient between the ith scatterer in one reso-
lution cell and the jth scatterer in another resolution cell at 
distance r.

The corresponding correlation coefficient of the RCS 
is [32], [36]
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where w is the window size of the LSP, and it is valid when
.r w$  Notice that ,N rc^ h is the variance function and 

, ,i j r 0zt =^ h is the correlation coefficient between the ith 
and the jth scatterer in a resolution cell.

Passing the RCS v that obeys a gamma distribution 
through the imaging impulse response ,h x^ h  the correla-
tion function of the observed image intensity is [2], [32]
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(44)

where v obeys a gamma distribution with order parameter 
o and tv  is the autocorrelation function of v in (43). The 
first two terms of (44) describe the results of the coherent 
imaging of constant background and independent point 
scatterers; the third term defines the effect of the imaging 
process on the RCS, and the fourth term defines the coher-
ent imaging. What needs to be determined in (44) are the 
autocorrelation function tv  of v and the impulse response 
function h x^ h of the imaging system.

IMAGING IMPULSE RESPONSE
The expression of the correlation coefficient of the 2D com-
plex image f  is [9]

 

,

, ,

, ,

, ,

d d d dg x y x x y y

A x y A x y e

h x y h x y

dx dy h x y

, ,j x y x y

1
1 2 1 2

1 1 2 2

1 1 2 2

1 1 1 1
2

1

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

1 1 2 2#

#

T T

v

=

)

)

i i

----

-

--

-

^

a
^
^

^
^

^

^

^ ^

h

h
h

h
h

h k

h

h h6 @

####

##

 

(45)

where , , .A x y A x y1 1 2 2 v=)^ ^h h  Assuming that the scat-
terers in a single resolution cell are randomly distributed 
and ignoring the effect of the phase, the preceding formula 
can be simplified as [9]
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It can be seen that the correlation function ,g x y1 T T^^ hh  is 
independent of the RCS and that it is only a function of the 
imaging impulse response.

The correlation coefficient of the intensity image I  is [9]
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(47)

The first term of (47) describes the correlation caused by the 
constant intensity due to coherent speckle noise, which is in-
dependent of the RCS. The second term is also independent of 
the RCS and is determined by the imaging impulse response 
function. The third and fourth terms combine the influence 
of both the RCS and the imaging impulse response. The sec-
ond and third terms decay rapidly under the influence of the 
imaging impulse response function. The fourth term can be 
regarded as the convolution of the variation of RCS and the 
imaging impulse response [12]. Equation (47) shows that the 
correlation of the observed image intensity is determined by 
the correlation of the RCS and the imaging impulse response 
function. If the spatial variation of the RCS is ignored, the RCS 
retains only the first two terms, which can be simplified as

 , , .g x y g x y1 2 1 2
T T T T= +^ ^^ ^h hh h  (48)

The most common 2D imaging impulse response func-
tions ,h x y^ h are the sinc, the Gaussian, and the rectangular 
functions introduced in the following:
1) The 2D sinc point spread function (PSF) ,h x ysinc ^ h can 

be separated into slant range PSF h yr ^ h and azimuth PSF 
h xa ^ h as [2]

 , ,h x y h x h ysinc a r=^ ^ ^h h h  (49)

where

 
  

 

sin

sin

c

c

h t t t t t

Bt

rect   r p p
p

p,

x r
b
x x

x

= - -^ ^
^

a ah h
h

k k6 @
 

(50)

and

 ,exp exph x i x a R
y

W R
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 (51)

where px  is the pulse length, b is the focusing param-
eter, B is the bandwidth, R0  is the slant range,  a z^ h 
is the two-way amplitude azimuth antenna pattern, 

/ ,W rect az z }=^ ^h h  and a}  is the azimuth beamwidth.
2) The 2D Gaussian PSF ,h x yG ^ h can be expressed as [8]

 , ,exph x y
w
x

w
y

G
x y
2

2

2

2

= - -^ h < F  (52)

where wx  and wy  are the azimuth and range widths, re-
spectively.

3) The rectangular PSF ,h x yrect ^ h is

 , ,  
,  .

h x y y1 2 2
0 else

rect

, ,1 1= -^ h *  (53)

CORRELATED SAR CLUTTER SIMULATION
This section introduces the main methods of correlated 
clutter simulation based on single-pixel and correlated sta-
tistical modeling. SAR image simulation is a forward pro-
cess for modeling the imaging procedure, and it is an im-
portant method for analyzing the validity and accuracy of 
the proposed statistical modeling [21]–[27]. Combining the 
two spatial correlation models introduced in the previous 
section, this section describes the corresponding correlated 
clutter simulation methods, namely, the correlated clutter 
simulation method based on the product model [37] and 
the correlated clutter simulation method based on the co-
herent scatterer model [32]. We also put in perspective the 
correlated clutter simulation method recently proposed by 
Yue et al. [38] based on a GGCS. This approach provides a 
more general modeling technique for correlated clutter. In 
addition, the correlated clutter simulation method based on 
the ITM [30] is an approach that can be used to simulate ar-
bitrary probability distributions and correlation structures. 
Its theory and main steps are introduced in this section.

The correlated clutter simulation methods introduced in 
this section are mainly based on two widely used distribu-
tions: K and G0  [2], [13], [31]. The K distribution is often used 
to describe data that have strong contrast, such as forests and 
sea surfaces, but it can seldom be used to detail areas with ex-
tremely strong contrast, including urban locations [2], [13]. 
The G0  distribution can be employed to describe extremely 
strong contrast and inhomogeneous regions, such as urban 
areas, primary forests, and deforested locations [31]. Both 
the K and G0  distributions are based on the product model, 
which is a common framework adopted in coherent illumi-
nation. Sampling from these distributions is straightforward 
using the product model, as the distributions are the product 
and the quotient, respectively, of two independent gamma 
deviates. This leads to the ability to build fields that obey 
independent K and G0  distributions. In particular, the G0  
distribution admits several sampling strategies [39].

A common feature in SAR data is the lack of independence 
among neighboring observations. This spatial correlation is 
one of the ways the elusive notion of texture manifests [9]. 
Since simulating plausible outcomes from a variety of targets 
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is usually necessary, it is mandatory to develop techniques 
for sampling correlated K and G0  fields. The easiest way of 
introducing correlation in a field of independent deviates is 
to apply a convolution mask. This approach is not feasible 
for our problem because neither the K nor the G0  distribu-
tions are preserved by the convolution operation. Therefore, 
indirect methods are necessary for introducing correlation 
between K and G0  deviates, which is the topic of this section.

SIMULATION BASED ON THE PRODUCT MODEL
This section introduces correlated clutter simulation methods 
based on the product model. Such observations can be easily 
obtained by separately simulating the correlated RCS compo-
nent and the speckle component and then multiplying them. 
There is a variety of distributions to model the RCS [1], and 
the most widely used is the gamma law. The N-look speckle 
is generally modeled as a gamma distribution with a unitary 
mean and the shape parameter N. An RCS that obeys the cor-
related gamma distribution multiplied by the uncorrelated 
gamma-distributed speckle generates correlated K-distrib-
uted SAR clutter. These components comprise the two steps 
of the main methods for sampling from correlated K clutter. 
Figure 4 conveys a correlated clutter simulation flowchart 
based on the product model discussed in this section. The 
generation of correlated gamma-distributed samples is a basic 
problem in SAR image simulation. The authors of [2] summa-
rize four methods for generating correlated gamma deviates: 
filtering uncorrelated gamma-distributed noise [40], apply-
ing the random walk model [7], resampling from correlated 
exponential-distributed variables [41], and resampling from 
correlated Gaussian-distributed variables [2], [42].

FILTERING UNCORRELATED  
GAMMA-DISTRIBUTED NOISE
The method based on filtering uncorrelated gamma-
distributed noise [40] obtains the correlated gamma 

samples by convolving uncorrelated gamma deviates us-
ing a specific filter. Passing independent, identically dis-
tributed random variables through a moving-average fil-
ter of size L  produces correlated random variables with 
a triangular autocorrelation function. However, arbi-
trary filters do not grant the preservation of the original 
distribution. To preserve the statistical characteristics 
of the gamma distribution, the convolution filter has 
to have equal weights, that is, a simple moving-average 
filter. This restricts the ability to produce complex corre-
lated structures. Also, it is difficult to determine the fil-
ter to be applied. The main idea of filtering uncorrelated 
gamma-distributed noise is described in the following 
by taking two identically distributed gamma random 
variables with mean ,n  order ,v  and correlation coef-
ficient ,t  as in [40].

The moment-generating function of gamma distribu-
tion can be written as [43]

 .s v s1
vn

U = -
-^ `h j  (54)

The moment-generating function of two gamma distribu-
tions with correlation coefficient t is [40]
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(55)

The first two terms of the moment-generating function 
of the preceding formula can be regarded as the joint 
moments of two identically distributed gamma random 
variables with mean  1n t-^ h and order .v 1 t-^ h  The 
third term is the joint moment of two independent gam-
ma random variables with mean nt  and order .vt  The 
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FIGURE 4. A correlated K-distributed clutter simulation based on the product model.

Authorized licensed use limited to: Technical Activities Board. Downloaded on November 20,2020 at 07:44:40 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

                                           IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE    MONTH 202012 

product of the joint moments represents the sum of the 
random variables. Therefore, the steps for sampling two 
identically distributed gamma random variables with 
mean ,n  order ,v  and correlation coefficient t  are [40] 
as follows:
1) sampling from ,X1  which follows a gamma distribution 

with mean 1n t-^ h and order v 1 t-^ h
2) sampling from ,X2  which follows a gamma distribution 

with mean 1n t-^ h and order v 1 t-^ h
3) sampling from ,Y  which follows a gamma distribution 

with mean nt and order vt
4) samples that obey the desired bivariate gamma distribu-

tion with correlation t are , .X Y X Y1 2+ +^ h

APPLYING THE RANDOM WALK MODEL
This method [7] generates correlated gamma deviates by 
summing squared correlated Gaussian random variables. 
It is based on the fact that the sum of n squared standard 
Gaussian random variables , /  ( )0 1 2Nj +p  with same cor-
relation coefficient / ,2t

  ,i
j

n

j
1

2h p=
=

/  (56)

obeys a gamma distribution with shape parameter /n 2 
and correlation ,2t  denoted as / ,n 2 1i +h C^ h [43]. Then, 
X i i

1b h= -  obeys a correlated gamma distribution with 
marginal probability distribution / ,n 2 ibC^ h and corre-
lation coefficient .,i j

2t  The disadvantage of this method 
is that it is applicable only to the case where the order 
parameter is a semi-integer, and thus it cannot simulate 
arbitrary textures.

RESAMPLING FROM CORRELATED  
EXPONENTIAL-DISTRIBUTED VARIABLES
Denoting G  and y  as a Gaussian-distributed variable and 
an exponential-distributed variable, respectively, this 
method first obtains exponential deviates with correlation 
coefficient y G

2t t=  from the sum of the squares of two 
Gaussian observations with correlation coefficient Gt  and 
then resamples the gamma-distributed variable v with cor-
relation coefficient tv  by the inverting the following ex-
pression [2], [41]:

 , ,exp
y

1c o v o n
o

C= - -^ ^ ch h m: D  (57)

where $C^ h is gamma function and n and o are the mean 
and the order of the gamma distribution, respectively. Here, 
$c^ h is an incomplete gamma function [44]:

 , .e t dt t 1

0
c o v = ov - -^ h #  (58)

The relationship between the correlation coefficient 
tv  of the gamma-distributed variable and the correlation 
coefficient yt  of the negative exponential input is as fol-
lows [2], [41]:

;  
, ; ; ;
;  

,
0 0

1 1 1 1 0 1
1 1
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y y y
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2 2
1 2

2

2
2 1 1 1
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v v

v v v

t

o t o o o t t

t

=
-

-

=

=

- + + -

=

v

o+^ ^h h* " , 

(59)

where F12 $6 @ is the hypergeometric function [2], [45]. It 
should be noted that a typo in [2, eq. (5.27)] is corrected in 
(59). The disadvantage of this resampling method is that it 
is difficult to invert (59). Since the square root of any cor-
relation function is not necessarily valid itself, it is not suit-
able for arbitrary correlation functions.

RESAMPLING FROM CORRELATED  
GAUSSIAN-DISTRIBUTED VARIABLES
The three methods described previously can be used 
only for positive correlation coefficients, not for nega-
tive correlation characteristics, such as shaded areas. 
The Gaussian resampling method can generate negative 
correlation structures [2], [42], [46]. This approach [2] 
first generates an uncorrelated Gaussian random sam-
ple image, then convolves a specific convolution kernel 
to obtain the correlated Gaussian sample y . Finally, it 
applies a composition of functions: the cumulative dis-
tribution function (CDF) of the Gaussian distribution 
(which produces uniform deviates) and the inverse of 
the CDF of the desired marginal gamma distribution 
function, thus obtaining the desired correlated gamma 
field. The desired correlation structure stipulates the 
convolution kernel through a relationship that involves 
inverting integral equations. After generating the corre-
lated RCS component of the gamma distribution, uncor-
related gamma-distributed speckle with a unitary mean 
and a shape parameter n  is straightforward to simulate. 
And it is then multiplied with the correlated RCS com-
ponents to obtain a correlated clutter image based on 
the product model.

SIMULATION BASED ON THE ITM
Differing from the approach of separately simulating the 
RCS and the speckle components in the product model, 
simulation based on the ITM directly generates correlated 
clutter based on the known single-pixel probability distri-
bution and the correlation coefficient. The simplest part is 
sampling from the single-pixel distribution. The difficulty 
lies in how to stipulate the desired correlation structure. 
The easiest way to introduce correlation is to pass indepen-
dent random deviates through a convolution operation. 
However, since K  and G0  distributions are not convolution 
invariant, this method cannot be used. In this case, it is nec-
essary to rely on an indirect method, the ITM, to introduce 
correlation. The advantage of the ITM is that it can generate 
random fields of arbitrary correlation structure. Bustos et 
al. [30] proposed a correlated GA

0  (the subscript A  denotes 
amplitude) distributed clutter simulation approach based 
on the ITM.
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Since the easiest way to control correlation is by using 
Gaussian random variables, the main point of the ITM 
can be summarized in two steps: first, produce correlated 
Gaussian observations by building a convolution mask 
that is applied to a field of independent, identically dis-
tributed, zero-mean Gaussian variables with unitary vari-
ance, then transform these correlated Gaussian variables 
into a field of correlated K  or  GA

0 samples by inversion. 
The core of this indirect method is how to calculate the 
correlation of the Gaussian random field according to 
the desired final correlation. This section introduces the 
mathematical model of the ITM, followed by the main 
steps of simulating correlated G0-distributed clutter based 
on the ITM.

ITM THEORY
The ITM mainly uses the following two theorems. The first 
[43] provides a method for obtaining a uniformly distribut-
ed random variable from an arbitrarily distributed continu-
ous random variable. The second is a way of transforming 
a uniformly distributed random variable in ,0 1^ h into an 
arbitrarily distributed random variable.

THEOREM 1: ARBITRARY CONTINUOUS  
DISTRIBUITON TO UNIFORM DISTRIBUTION
As shown in Figure 5(a), let V  be any continuous random 
variable, with CDF .F v P V vV #=^ h " ,  Define the random 
variable .U F vV= ^ h  Then, U  follows a uniform distribution 
in (0,1).

THEOREM 2: UNIFORM TO ARBITRARY DISTRIBUTION
In Figure 5(a), denote A  as a random variable with CDF 

.F a P A aA #=^ h " ,  The inverse function of the CDF is ex-
pressed as .FA

1-  Designate U  as a random variable that 
obeys a uniform distribution, namely, , .U 0 1U+ ^ h  If 

,W F UA
1= - ^ h  W  obeys the distribution characterized by 

.FA

The relationship of the random variables in the preced-
ing theorems, which is described in Figure 5(a), leads to the 
ITM. It gives an indirect method for sampling from the ran-
dom variable W  with CDF FA  based on an arbitrary vari-
able .V  For the clutter simulation problem, a random pro-
cess , ,G n0 a cv ^ h is used to describe the intensity field Zv  of 
the SAR image, which is labeled as , , , ,Z G n Z

0+ a c tv v v^ ^ h h  
where Zt v  is the correlation function of the G0

v-distrib-
uted random variables. Since it is not possible to generate  
G0
v-distributed correlated random variables by convolu-

tion, using the ITM described previously is a good choice. 
Since the Gaussian distribution is the simplest distribution 
invariant with respect to the convolution operation, V  in 
Figure 5(a) is selected to be a Gaussian random variable de-
noted by g  in Figure 5(b). As shown in Figure 5(b), denote 
the CDF of g  as ;U  then, U VU= ^ h obeys the uniform dis-
tribution, according to Theorem 1. Denote the CDF of G0

v  
as FG0

v  and its inverse function as ;FG
1
0
-
v

 F UG
1
0
-
v
^ h obeys the G0

v  
distribution, according to Theorem 2.

The process of simulating an image of size C C#  in 
which each sample ,Z i jv ^ h obeys the G0

v  distribution can 
be expressed as [30]

 , , ,Z i j F i j G
1
0 gU=v
-
v

^ ^ ^ ^h hhh  (60)

where ,i j ,i C j C0 1 0 1g g= # # # #- -^ ^ hh  is a stochastic process 
and ,i jg^ h is a standard Gaussian random variable with cor-
relation function xg. The CDF , , ,F nG0 $ a cv ^ ^ hh and its inverse 
FG

1
0
-
v
 of , ,G n0 a cv ^ h are, respectively, expressed as [30]

 , , , ,  F z n z
,G n2 20 a c c

a
Y= -a-v ^ ^ `hh j  (61)

 , , , ,F t n t ,G n
1

2 2
1

0 a c a
c
Y=- a

-
-

-
v
^ ^ ^hh h  (62)

where ,v v1 2Y  is the CDF of a Fisher–Snedecor F ,v v1 2  distribu-
tion; i.e.,
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(63)

Another important problem is the correspondence be-
tween the correlation coefficients Zt v  of Zv  and xg  of the 
Gaussian random variable g . Analogous to the derivation 
in [30], we obtain

  , , , , , , ,ui j k l i j k l,Z nt x= a gv ^^ ^ ^ ^^ ^^h hh h hhhh  (64)

  , , ,u

n
n

R

1 2
1

1
1

1 1,

,

n

n

2

2

!x

a a
a

x a x=

+ +
+ +

- - - -a

a^
^

^ `

^
^^

^h
h

h h

j
hh

h
 (65)

where
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R F u n F v n
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1 1
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1 1
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(66)

, , .expu v u u v v
2 1

1
2 1
2

2 2 2

2 2$ $
z x

r x x
x

=
-

-
-

- +^ ^ c ^h h h m  (67)

V
FV

U ∼ U(0,1)

W ∼ FA

U ∼ U (0,1)

F –1
A

Zσ ∼ G0
σ

F –1
G0
σ

Φζ

(a) (b)

FIGURE 5. The relationship in the ITM. (a) ITM theory. (b) ITM 
theory based on Gaussian random variable.
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CORRELATED G0-DISTRIBUTED CLUTTER
The detailed steps for generating a random field with a cor-
related G0

v  distribution based on the ITM are documented 
in the following. As presented in Figure 6, the main idea 
[30], [31] is to first generate a correlated Gaussian random 
field, then convert it to the correlated G0

v  distribution using 
the ITM. The correlated Gaussian random field is produced 
using the Fourier transform (the Fourier transform of 
the correlation function is the square of the power spectral 
density).
1) Propose the desired correlation structure Zt v  for G0

v . De-
note the simulated SAR image as

 , ,Z Z k ,k N N0 1 0 1,= ,# # # #v v - -^ ^ hh

which is controlled by a random process , ,n0p a cv ^ h with 
correlation function Zt v:

 , , , , ,k k k kZ 1 1 2 2 2 1 2 1, , , ,t t= - -v ^^ ^ ^h hh h
 , .N k k N1 1for every 2 1 2 1, ,# #- - - - -^ h  (68)

Given the sets

, : , ,R k k N0 21 , ,# #= ^ h$ .

, : , ,R k N k N N
2 1 1 0 22 , ,# # # #= + -^ h$ .

, : , ,R k k N N N0 2 2 1 13 , ,# # # #= + -^ h$ .

, : , ,R k N k N N N2 1 1 2 1 14 , ,# # # #= + - + -^ h$ .

, : , ,R R R R R k l k N0 1N 1 2 3 4 ,# #= = -, , , ^ h" ,
 , : , ,R k N k l N1 1N , # #= - - -^ ^h h" ,  (69)

let ,: R 1 11 "t -^ h be a function with domain R1  and a 
range ,1 1-^ h, which can be extended to RN  according to 
the following expression:
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 (70)

2) Calculate the correlation structure ,k ,xg ^ h for the Gauss-
ian random field by inverting (64):

 , , .k k,n Za, ,x t=g a v^ ^ ^^h hhh  (71)
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FIGURE 6. A correlated G A
0  clutter simulation based on the ITM. 
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3) Calculate the mask ,k ,}^ h in the frequency domain of 
the correlation structure xg  as

 , ,,k v kF ,} x= g^ ^ ^h h h  (72)

where :R CF N "xg^ h  is the normalized Fourier transform 
for xg :
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(73)

4) Generate Gaussian white noise with zero mean and unit 
variance:

 , .k ,k RN
,p p= , !^ ^ ^hh h  (74)

5) Generate a Gaussian random field with correlation 
structure xg . Take the Fourier transform of the Gauss-
ian white noise p  and introduce the correlation in the 
frequency domain using the mask ,k ,}^ h, and, finally, 
obtain the correlated Gaussian random field by the in-
verse Fourier transform. The Gaussian stochastic process 
with correlation structure ,k ,xg ^ h is

 , , ,k N kF F1, ,g } p= -^ ^^ ^ ^h hhh h  (75)

where F  is Fourier transformation operator and F 1-  is 
the inverse Fourier transformation operator.
6) Generate the ,Z k1 ,v ^ h field with the correlation structure 

,kZ ,t v ^ h that obeys the , ,G n10 av ^ h distribution using 
the ITM, which is

 , , , , , .Z k F k n1 G
1 1

0, ,g aU=v
-
v

^^ ^ ^ ^^ ^hh hhh hh  (76)

7) Generate the ,Z k ,v ^ h field with the correlation struc-
ture ,kZ ,t v ^ h that obeys the , ,G n0 a cv ^ h distribution by 

, , .Z k Z k1, ,c=v v^ ^h h
There are two shortcomings of the clutter simulation 

method based on the ITM proposed by Bustos et al. [30] 
in practical applications: 1) for new types of scenes, the rel-
evant formula needs to be derived, and 2) there are many 
statistical distributions and textures in real scenes, and de-
riving the analytical expressions for every distribution may 
be too demanding. To solve this problem, [47] presented 
a semantic–statistical convolution scheme to generate an 
SAR image based on a semantic map, which avoids com-
plex derivations and is suitable for areas with various kinds 
of terrain. The main goal of this method is to generate a 
new SAR clutter sample with the same single-pixel prob-
ability distribution and correlated structure as the given 
sample.
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FIGURE 7. A correlated clutter simulation based on semantic–statistical convolution. 
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The entire process is realized through numerical simula-
tion. The main steps are shown in Figure 7 and are as fol-
lows:
1) Estimate CDF FZ  and correlation structure t of the SAR 

image S. The CDF is estimated by the empirical CDF of 
the sample; correlation structure t is obtained from the 
inverse Fourier transform of the power spectral density 
of the sample [43]:

 .SF F1 2t = - ^ ^ h h  (77)

2) Determine correlation structure x to be imposed to the 
Gaussian field to observe the desired correlation struc-
ture t in the field Z . Experiments show that the rela-
tionship between x and t lies in approximately linear 
areas with low to moderate contrast; in such cases, take 
as x the same t. Areas with extreme contrast, such as 
urban locations, depart from this linear relationship; in 
those instances, look up the inversion tables in [30] and 
[37]. The correlation structure x and the convolution 
kernel h  satisfy the following relationship [43]:

 , , , ,k h k h kU, , ,x = - -)^ ^ ^h h h  (78)

 where U denotes convolution.
3) Generate a Gaussian white noise field G .
4) Generate the correlated Gaussian field X with correla-

tion structure x by applying the convolutional kernel h 
on the Gaussian white noise:

 .X G hU=  (79)

5) Generate the correlated uniform distribution field Y  ac-
cording to the ITM:

 ,Y F XX= ^ h  (80)

 where FX  is the CDF of X .
6) Generate the correlated SAR image Z  according to the 

ITM:

 ,  Z F YZ
1= - ^ h  (81)

 where FZ
1-  is the estimated inverse CDF in the first step.

Figures 8–10 give simulation results for urban, forest, and 
wheat-growing areas, respectively. Figures 8(a)–10(a) pres-
ent the generated SAR images for urban, forest, and wheat 
areas, respectively (left), and the corresponding original 
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FIGURE 8. Simulation results for experimental SAR (E-SAR) data for urban areas. The (a) simulation results, (b) correlation structure, (c) 
CDF, and (d) correlation deviation. 

Authorized licensed use limited to: Technical Activities Board. Downloaded on November 20,2020 at 07:44:40 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MONTH 2020    IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE                                                        17 

input sample images (right). Figures 8(b)–10(b) illustrate 
the correlation structure t of the input sample (right) and 
the generated image (left). Figures 8(c)–10(c) show the mar-
ginal distributions of the input sample and the generated 
(output) images, respectively; black lines denote the CDF 
of the input sample, while the red line indicates the gener-
ated images. As expected, the CDFs are exactly matched. 
Figures 8(d)–10(d) convey the correlation deviation of the 
input sample image and the generated images. The hori-
zontal axis is the correlation of the input sample, while the 
vertical axis is the correlation of the generated images; the 
closer the blue scatters are to the red 45º line, the smaller 
the deviation between the input correlation and generated 
correlation is. This approach produces slightly less-correlat-
ed samples.

Figure 11 presents the performance of the method for 
complex scenes using Flevoland AirSAR data with 15 iden-
tified terrain types [shown in Figure 11(e)]. Figure 11(a) 
indicates the original Flevoland AirSAR data, and Figure 
11(d) depicts the ground truth of Flevoland, with the leg-
end shown in Figure 11(e). The black frame in Figure 11(d) 
denotes the selected samples of each terrain type, which are 
used to generate SAR images. Figure 11(c) gives the gener-
ated results for Flevoland, which are based on the semantic 
map in Figure 11(b). Figure 11(b) contains the classification 

result from a convolutional neural network (CNN), which 
had an accuracy of 91% for 15 identified terrain types.

SIMULATION BASED ON THE COHERENT  
SCATTERER MODEL
The correlated clutter simulation methods introduced in 
the two previous sections replicate only the correlated 
clutter that satisfies the specific statistical distribution 
of SAR images, without considering the physical process 
of scattering. The computational SAR (cSAR) simulation 
system proposed by Allan et al. [27], [32], [36] starts from 
the statistical modeling of the underlying scatterers and 
simulates correlated K-distributed clutter based on the 
incoherent scatterer sum model. The incoherent scatterer 
sum model is degraded from the coherent scatterer model 
when neglecting the phase [1]. The cSAR system models 
the underlying scatterer as a correlated, gamma-distrib-
uted random field, and the position of the underlying 
scatterer is randomly distributed to obtain fully devel-
oped speckle. Then, correlated gamma-distributed RCS 
and correlated K-distributed SAR images are obtained. 
This system begins with the statistical characteristics of a 
single scatterer, instead of directly modeling the RCS v. It 
aims to help explore the relationship between SAR image 
features and the underlying scatterer.
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FIGURE 9. Simulation results for E-SAR data for forested areas. The (a) simulation results, (b) correlation structure, (c) CDF, and (d) correla-
tion deviation.
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Figure 12 illustrates the main simulation steps [27], [32], 
[36], which include the following:
1) Set randomly positioned scatterers. To produce fully 

developed speckle, there should be a large number of 
randomly distributed scatterers in each resolution cell. 
This is because the distance from the sensor to the target 
completely determines the phase of each scatterer and, 
if the range of the sensor covers many wavelengths, the 
scatterers with random locations will generate arbitrary 
phases. Therefore, during the simulation process, the 
ground coordinates ,x y^ h of the scatterer are uniformly 
distributed in the respective axial directions. This set-
ting makes the number of scatterers N  in each resolu-
tion cell obey a negative binomial distribution,

 ; , ,p N k p
k
N

p p1N k N= - -^ c ^h m h  (82)

 where k  is the total number of Bernoulli trials and p  
is the probability of success in each trial. Here, k  repre-
sents the total number of scatterers in the entire scene, 
and p  is the ratio of the area of a resolution cell to the 
entire scene area. Usually, p  is small.

2) Generate the correlated Gaussian random field G using 
the turning-bands method (TBM) [48]. Because the posi-
tion of the underlying scatterer is random and cannot be 

represented by a regular grid, the correlated random field 
cannot be generated based on Fourier synthesis. Here, the 
TBM is used to generate irregularly distributed samples. It 
does not directly simulate the 2D random field but sums 
many 1D line processes that cross the field in random di-
rections. As shown in Figure 13, the main process of simu-
lating the scattered value ,G x yk k^ h of the scatterer ,P x yk k^ h 
at position ,x yk k^ h includes the following [36], [48]:

 • Starting from an arbitrary origin O, M straight lines 
in random directions uit  are generated, and the angle 
between the ith line and the x-axis is denoted as ii .

 • For the ith line, a random sample of the 1D random 
process Yi  with a zero mean and a correlation func-
tion R i1 p^ h is generated, where ip  is the coordinate 
of the ith line.

 • For each scatterer ,P x yk k^ h, rkv  denotes the position 
vector at ,x yk k^ h, and the coordinates of the pro-
jection of rkv  onto the ith line with direction uit  is 

r uik k i$p = v t . The corresponding value is Yi ikp^ h.
 • Repeat steps 2 and 3 for all M lines to obtain the 
values , , , , .Y i 1 2 Mi ik fp =^ h" ,

 • The scattered field ,G x yk k^ h at position ,P x yk k^ h can 
be obtained by addition and normalization:

 , .G x y
M

Y r u1 M

k k
i

i k i
1

$=
=

/ v t^ ^h h  (83)
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 The difficulty of the TBM is to establish a relationship 
between the correlation function R i1 p^ h of the 1D lin-
ear process and the correlation function ,R x x1 2^ h of the 
desired 2D random field. Assuming that the implemen-
tation of Yi  in each line is independent of the others, the 
correlation function of the 2D field can be expressed as

 
, , , , ,

.

R x y x y G x y G x y

M Y r u Y r u1 M

i
i i i i

1 1 2 2 1 1 2 2

1
1 2$ $

=

=
=

/ v t v t

^^ ^ ^
^
^

^
h hh h

h
h

h  (84)

 If M is assumed to be large, e.g., of the order of 500, and 
uit  is uniformly distributed in the unit circle, ,G x yk k^ h 
is a generalized stationary random field with the same 
correlation in all directions, and the preceding formula 
can be simplified as [36], [48]

 ,R r R h u u2
1 d1

unit circle
$r= v t t^ ^h h#  (85)

 where h r r2 1= -v v v . Therefore, it is necessary to obtain 
R h u1 $v t^ h based on the known R r^ h by inverting (85), 
which can be solved by the spectral representation 

method. If it is assumed that the 2D random field Z  is 
isotropic, the radial spectral density function of the 2D 
random field is [48]

 ,rf
s

R r J r rd2 0
0

∞
~

~
~=^ ^ ^h h h#  (86)

 where s2  is the variance of the 2D random field and 
J0 $^ h is the zero-order Bessel function of the first kind. 
The relationship between the radial spectral density 
function f ~^ h of the 2D random field and the spectral 
density function S1 ~^ h of the 1D line process is pro-
vided in [48]:

 .S s f21

2

~ ~=^ ^h h  (87)

 For any given correlation function R r^ h, S1 ~^ h can be 
obtained by substituting the radial spectral density func-
tion f ~^ h of the random field into (87). The method for 
generating 1D line processes is given in [49]:
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 where iU  obeys a uniform distribution ~ ,0Ui rU 6 @ and 
Ai  is a random frequency following the probability den-
sity distribution f ~^ h. Finally, a 2D Gaussian random 
field with a correlation function of R r^ h can be obtained 
using (83). In addition, [50] points out that anisotropic 
2D random fields can be approximated by the product 
of two mutually independent isotropic random fields.

3) Transform the correlated Gaussian random field into 
a correlated gamma-distributed random field Z  using 
the MNLT method. The MNLT method [2], [13], [51] is 
employed to transform the correlated Gaussian random 
field into a gamma-distributed random field. It essen-
tially equates variates of the Gaussian and gamma dis-
tributions at equivalent cumulative values, which brings

 .exp expd
y

y z z z
2
1

2 d
y z0

2

0
0

1

0 0
0∞

/
r

o
o

o
C

- -o
o

-

-

^ h; 6E @# #  (89)

 The preceding equation defines the forward mapping 
function y F z= ^ h for y z"  and the inverse mapping 
function z F y1= - ^ h for y z0 ! . Tough and Ward [52] gave 
the relationship between the autocorrelation coefficient 

ryt ^ h of the Gaussian random field and the autocorrela-
tion coefficient rzt ^ h of the gamma distribution as
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 where Hn $^ h is the Hermite polynomial defined by

 ,exp expH z z dz
d z1n

n
n

n
2 2= - -^ ^ ^ ^h h h h  (91)

 xerfc^ h is the error function defined by

 ,x e d2erfc
x

0

2

r
h= h-^ h #  (92)

 and Qz w^ h is the complementary quantile function of 
the gamma distribution, which is defined as

 ,p z zd
∞

Qz
w=

w
^

^
h

h
#  (93)

 where p z^ h is the PDF of the gamma distribution. This 
is, essentially, the inversion method instantiated for the 
gamma distribution.

4) Generate RCS v based on an LSP [53]. The scattered field 
of the underlying scatterer that obeys a correlated gam-
ma distribution in the previous steps has been obtained. 
Now, RCS v can be determined according to the inco-
herent scatterer sum model (41) (see the “Fluctuation of 
a Single Scatterer” section), which can be regarded as an 
LSP, an incoherent summation of the underlying scat-
terers in a resolution cell. The size of the LSP windows 
is chosen to match the –3-dB resolution, which is an 
approximation to the real RCS. The RCS is regarded as 
a correlated gamma-distributed random field by adopt-
ing the approximation validated by Kotz and Neumann 
[34], which assumes that the sum of correlated gamma 
variables can be approximately described by a gamma 
distribution. The parameters of the RCS can be estimat-
ed by the maximum likelihood [32]. The correlation co-
efficient relationship caused by an LSP has been shown 
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in (43) in the “Fluctuation of a Single Scatterer” section.
5) Obtain the correlated K-distributed clutter image 

through the imaging system. As introduced earlier, 
given the parameters of the density of the scatterer, the 
order of the gamma distribution, and the desired corre-
lation information, the TBM is first used to simulate the 
correlated Gaussian random field, and the MNLT tech-
nique is employed to convert to the correlated gamma-
distributed random field. Thereafter, the RCS that obeys 
the correlated gamma distribution is obtained through 
the LSP. Finally, the single-look complex image can be 
generated by inputting the RCS into the imaging system 
through a simple range Doppler algorithm. The corre-
lated intensity image that obeys the K distribution is the 
squared envelope of the single-look complex image [32]. 
The entire process is implemented based on the Monte 
Carlo method.
The simulation results following the preceding steps can 

be found in [27], [32], and [36]. This simulation method 
can be used to explore the relationship between SAR image 
characteristics and the physical scattering process, which is 
a better representation for SAR imagery. Its extension and 
application will be more in line with real-world modeling.

SIMULATION BASED ON THE GGCS
Yue et al. [38] recently proposed a GGCS model for corre-
lated SAR clutter simulation. The GGCS model can be seen 
as a simplification of the coherent scatterer model, which as-
sumes that the scattered field of a single scatterer in a resolu-
tion cell is complex Gaussian distributed. It is physics plau-
sible and can be used to simulate the correlated SAR clutter 
of various scenarios. The authors proved that this approach 
was able to represent a large variety of single-point probabil-
ity distribution models commonly used in the literature. 
The correlation information of SAR images is introduced by 
the spatial correlation structures in the complex Gaussian 
field of a single scatterer in a resolution cell and in the num-
ber of scatterers. The theoretical relationship of the distribu-
tion parameters and the correlation coefficient between the 
SAR image and the complex Gaussian field was derived in 
[38], which guided the correlated clutter simulation.

The main simulation process is described in Figure. 14. 
The input is an image sample, from which one selects the 
single-pixel distribution model and estimates the model’s 
parameters as well as the correlation structure. With this 
information, and using the theoretical relationships pre-
sented in [38], one obtains the distribution parameters of 
the complex Gaussian field scattered by a single scatterer 
and of the number of scatterers for the generalized model. 
The correlation coefficients of the Gaussian field and the 
number of scatterers are also determined by the correlation 
coefficient of the real component and the intensity SAR 
data, according to the relationships
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where ,ixxt x^ h, NNt x^ h, RRt x^ h, and IIt x^ h are correla-
tion coefficients of the complex Gaussian field, the num-
ber of scatterers, the real component, and the intensity 
SAR data, respectively; Nn  and N

2v  are the mean and the 
variance of the number of scatterers N , respectively; 
N 0^ h denotes the number of scatterers at the current posi-
tion; N x^ h is the number of scatterers at distance x; and 

, .minN N N0m x= ^ ^h h6 @
The corresponding convolution kernels are obtained 

according to (78), which can be implemented by a Fourier 
transform. Finally, given 1) the distribution parameters of 
the complex Gaussian field, 2) the distribution parameters 
of the number of scatterers, and 3) the convolution kernels, 
the generalized model can be used to obtain data with the 
same marginal distribution and correlation structure as 
the input sample. Figures 15 and 16 show simulation re-
sults based on the GGCS model. The model performs well 
on most sea and vegetated clutters (farmland and forests). 
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However, it fails to capture the deterministic patterns, such 
as urban locales and mountainous areas, which is expect-
ed, as the GGCS model itself is only for stationary stochas-
tic fields. The authors of [38] discuss this issue in detail.

CONCLUSIONS
This article reviewed spatial correlation analysis and cor-
related clutter simulation for SAR images, based on [1]. It 
summarized the two main approaches for simulating spa-
tial correlation: one based on the product model and an-
other founded on the coherent scatterer model. The former 
is relatively simple and easy to analyze, but it characterizes 
only the correlation characteristics of the image itself since 
it does not involve physical processes, and it does not sup-
port a systematic understanding of SAR images. The latter 
starts from the physical modeling of the underlying scatter-
ers and considers the effect of the number of scatterers, the 
bottom scatterer, and the imaging function on the spatial 
correlation of the observed image based on the imaging 
process. The analysis of the latter is more sophisticated, as it 
involves complicated derivations, but it can explain the cor-
relation characteristics of the images from the fundamental 
scattering process, which is helpful for a deep understand-
ing of SAR images. With the acquisition of high-resolution 
and ultrahigh-resolution images, more and more physical 
information is contained, and it is important to analyze the 
main factors that lead to the correlation data in SAR images, 
such as the spatial resolution, sampling interval, and size of 
features. In this case, a more refined correlation model is 

necessary, and the advantage of correlation analysis based 
on the coherent scatterer models becomes apparent.

For the correlated clutter simulation problem, four cor-
related clutter simulation methods based on two classical 
distributions, namely, K and G0 , have been summarized: 
a product model-based method, an ITM-based approach, 
a coherent scatterer model-based technique, and the GGCS 
approach. The first two techniques are directly based on the 
statistical characteristics of an image. The latter two start 
from the modeling of the underlying scatterers and build 
the statistical relationship between the underlying scatter-
ers and the received correlated clutter image. This kind of 
physics-based model shows better development prospects 
in today’s high-resolution SAR image applications. In addi-
tion, the existing statistical modeling of SAR images mainly 
describes clutter textures, disregarding the boundary and 
contour information, which is far from sufficient for SAR 
image analysis of complex scenes. Therefore, it is an impor-
tant direction to enhance the semantic information of the 
scene and explore SAR image simulation under the compre-
hensive influence of high-level semantics and the underly-
ing coherent scattering process.
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FIGURE 15. A comparison of (a) an actual SAR clutter and (b) a simulated SAR clutter of various scenarios based on the GGCS model. From 
left to right: sea 1, sea 2, sea 3, and sea 4. 
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FIGURE 16. A comparison of (a) an actual SAR clutter and (b) a simulated SAR clutter of various scenarios based on the GGCS model. From 
left to right: urban, farmland, forest 2, and road images.
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