
Opportunities and Challenges for Deep
Constraint Languages

Colin Atkinson1, Ralph Gerbig1 and Thomas Kühne2

1 University of Mannheim
{atkinson, gerbig}@informatik.uni-mannheim.de

2 Victoria University of Wellington
thomas.kühne@ecs.vuw.ac.nz

Abstract. Structural models are often augmented with additional well-
formedness constraints to rule out unwanted configurations of instances.
These constraints are usually written in dedicated constraint languages
specifically tailored to the conceptual framework of the host modeling
language, the most well-known example being the OCL constraint lan-
guage for the UML. Many multi-level modeling languages, however, have
no such associated constraint language. Simply adopting the OCL for
such multi-level languages is not a complete strategy, though, as the
OCL was designed to support the UML’s two-level class/instance di-
chotomy, i.e., it can only define constraints which restrict the properties
of the immediate instances of classes, but not beyond. The OCL would
consequently not be able to support the definition of deep constraints
that target remote or even multiple classification levels. In fact, no exist-
ing constraint language can address the full range of concerns that may
occur in deep modeling using the Orthogonal Classification Architecture
(OCA) as an infrastructure. In this paper we consider what these con-
cerns might be and discuss the syntactical and pragmatic issues involved
in providing full support for them in deep modeling environments.

Keywords: OCL; well-formedness; deep modeling; OCA

1 Introduction

Although structural modeling languages such as UML class diagrams can some-
times be used on their own for simple tasks, for more precise modeling they
usually need to be supported by accompanying constraint languages. The most
well-known language for this purpose is OCL, but today quite a number of other
constraint languages are available for use with the UML and other structural
modeling languages. Examples include AspectOCL [1], CdmCL [2], EVL [12]
and MOCQL [16].

The OCL is commonly used to augment class diagrams with further well-
formedness constraints. Constraints can be applied to other UML diagram types
but these are not addressed in this paper. The basic role of constraints is to add
additional requirements that (token-)models at the instance level must obey in

order to be considered instances of their (type-)model at the class level. Since
the sets of valid token models are sometimes referred to as the semantics of the
(structural) type model, constraints can be regarded as improving the precision
of the semantics of the type model.

Since mainstream constraint languages in use today were designed to support
today’s mainstream structural modeling languages and tools, they are based on
the same underlying “two-level” modeling paradigm. In particular, this means
that the domain entities considered by the users are regarded as occupying one
of two levels – a type level or an instance level. This goes back to the idea that
all concepts are either universals or individuals but not both at the same time.
As a result, today’s constraint languages are often designed in the context of a
number of assumptions:

1. constraints are attached to types and are evaluated for instances of these
types.

2. constraints are implicitly universally-quantified, i.e., use a “forAll”-semantics
that applies them all instances of the type they are associated with.

3. there is only one instance level to control, i.e., deep control beyond more
than one metalevel boundary is not considered.

These assumptions are not an optimal fit for deep modeling. Constraint lan-
guages that are designed to complement deep models, i.e., models with an in-
stantiation depth higher than one, therefore have to be based on a different set of
assumptions with implications on what information is necessary to fully describe
a constraint in a multi-level context. Designing an approach for constraints that
incorporates the extended challenges of deep modeling in an optimal way is a
non-trivial task, and requires notational and pragmatic trade-offs that are influ-
enced by many factors. The goal of this paper is not to resolve these trade-offs,
but to identify the opportunities and challenges present in the expression of deep
constraints and therefore the design of Deep Constraint Languages (DCLs).

As well as supporting well-formedness constraints on structural models, there
are a variety of other applications for constraint languages or extensions thereof.
These range from queries to transformations, however, for space reasons, in this
paper we focus on well-formedness constraints. Most of the ideas apply to similar
languages as well, though, for example for deep transformations [5].

Summarising, the goal of this paper is to reevaluate the role of constraints for
deep modeling, identify different kinds of constraints, and establish terminology
for referring to them. The rest of the paper is structured as follows: In the
next section we give a brief overview of deep modeling and the principles it
is based on as well as discuss the main implementation choices that can be
used to implement deep models. Then, in Section 3 we introduce the different
kinds of constraints that can be defined given the two orthogonal classification
dimensions that underpin deep modeling. Section 4 then does the same given the
multiple ontological levels that can be defined in a deep model. Finally, section
5 concludes with some closing remarks.

2 Deep Modeling

Deep modeling is built around the Orthogonal Classification Architecture (OCA)
which provides an alternative way of organizing models compared to the tradi-
tional linear modeling stack that underpins mainstream modeling technologies
such as UML and EMF. Figure 1 below shows the most widely used variant of
the OCA which has the linguistic dimension occupied by two linguistic levels –
the modeling language definition in L1, the ontological model content in L0 and
the real world (W). Although variants with more linguistic levels are conceivable,
in this paper we assume the OCA only considers these levels. It can be observed
that the ontological (O-levels) and linguistic (L-levels) classification dimensions
are orthogonal to each other. This alignment of levels gives the name to the
orthogonal classification architecture.

L 1

L 0

W

CarType2

price 2

Feature

Element
name

Clabject
potency durability

Method

Attribute
mutability

* feature

O 2 O 1 O 0

price =1759991

#3345 :Dragster0

price =1703320

Level

*
content

Dragster1

??? ?

Car0

Fig. 1. Three level OCA.

In Figure 1 the linguisistic dimension contains Level L1, which is often re-
ferred to as the “linguistic type model” or (less precisely) “metamodel”. This
linguistic level defines the basic concepts of Level , Clabject and potency etc. Level
L0 contains the ontological content defined by the end user. In this level the
clabjects are organized into multiple ontological classification relationships de-
pending on whether they model objects, types, types of types, etc. in the do-
main of interest. Liniguistic classification is indicated through dotted vertical
classification arrows while ontological classification is indicated through dashed
horizontal classification arrows. O0 contains pure objects (i.e. clabjects with no
type facet), O1 contains normal types (i.e. clabjects that have both a type and
an instance facet) and O2, in this example, contains types (of types) at the top
ontological level (i.e. clabjects which have no instance facet).

A second core idea underpinning deep modeling is that classes and objects,
which are modeled separately in traditional modeling approaches, are integrated

into a single, unified concept known as “clabject”. In general, clabjects are classes
and objects at the same time, and thus simultaneously possess both type and
instance facets, e.g., consider Dragster at the middle level, O1, which is an instance
of CarType and type for #3345 at the same time. The third core idea underpinning
deep modeling is the notion of deep instantiation which uses the concept of
potency, attached as a superscript to the name of each clabject and their features
as seen in Figure 1. This concept limits the depth of the instantiation tree of a
clabject thus defining the degree to which a clabject can be regarded as a type. In
the example, CarType with potency two can be instantiated on the following two
levels. It is then instantiated with Dragster which can be instantiated one level
further below and #3345 , an instance of Dragster which cannot be instantiated
further as indicated by its potency zero value.

The features of deep modeling that present the biggest opportunities and
challenges from the perspective of defining constraints on deep models beyond
what is required for traditional “two-level” modeling are:

1. the two distinct, orthogonal classification dimensions,
2. dual facets of model elements (i.e. the existence of linguistic and ontological

attributes), and
3. an unbounded number of ontological classification levels.

2.1 Realization Strategies

Modeling environments, including deep modeling environments, are typically
built using traditional “two level” technology. It is possible to support multiple,
logical modeling levels on top of such two-level physical architectures in two ways.
The first is by supporting transformations between chains of two-level models,
each capturing a different window on the underlying multi-level model (referred
to as the “cascading” style in [6]). The second is by mapping the linguistic
metamodel(L2) to the type level of the implementation platform, and the domain
content (L1) to the instance level of the implementation platform, with some of
the relationships in the latter level being regarded as classification relationships.
For example, to support the second approach on a Java platform, the elements
of the linguistic metamodel (e.g. level, clabject etc.) would be mapped to Java
classes, and the L1 level content would be represented as instances in the JVM.
While many commercial tools use the first approach, the second approach is used
in the majority of academic tools and ultimately provides the simplest and most
flexible way of implementing deep modeling environments. We assume the latter
approach in the remainder of this paper, therefore.

In general, approach (b) can be applied in one of two ways. The simplest way
is for a modeler to simply model the linguistic metamodel as a class diagram
in some existing, “host” modeling environment and then to apply the tenets of
deep modeling itself at the instance level using certain well-known patterns [8].
If the host environment has a constraint language (e.g. OCL) this can be used
to express limited kinds of constraints over the deep model at the instance level.
This approach is taken by Gogolla et al. [8], for example, who represents various

deep modeling scenarios within the two-level USE tool (i.e. by modeling L1 as a
class diagram and L0 as an object diagram) and uses standard OCL to express
constraints over the L0 content. We refer to a constraint language used in such
a way as a Standard Constraint Language (SCL).

In contrast, a DCL is a constraint language which includes extra support
(explicitly implemented as an extension to the host environment) for the concepts
embodied by deep modeling. In other words, a DCL provides additional features
for expressing constraints on deep modeling content which are not available in
an SCL. As with all DSLs, this support can take the form of additional library
functionality (cf. [8]), in which case it is an internal DSL, or it can be provided
along with additional syntax, in which case it is an external DSL) [7].

In the following sections we investigate, in turn, the consequences and oppor-
tunities resulting from the key features of deep modeling identified previously.
In each case we will identify different kinds of constraints that may occur in
deep models, show examples of these constraint kinds on a small running ex-
ample and discuss possible syntactic alternatives for expressing the constraints.
We show examples in a suggested syntax which includes notational ideas from
three existing constraint languages — the OCL, which plays the role of an SCL
in this context, MetaDepth [13] which is an external DSL built on top of the
Epsilon Object Language [11], and Deep OCL [10] from Melanee [3], which is an
external DSL built on top of the Eclipse MDT OCL.

3 Linguistic, Ontological and Hybrid Constraints

The first important characteristic of deep modeling is that there are two dis-
tinct dimensions across which constraints can operate – the linguistic and the
ontological dimensions. In principle, modelers may wish to reference the on-
tological and/or the linguistic dimension when defining constraints. This gives
rise to three kinds of constraints – constraints only referencing the ontologi-
cal dimension, constraints only referencing the linguistic dimension, and hybrid
constraints.

3.1 Linguistic Constraints

Linguistic constraints reference concepts in terms of linguistic types and are
therefore independent of any ontological types. An example application for them
is the definition of the classification semantics of deep modeling. Constraint 1
shows how a linguistic constraint on Figure 2 can be used to define the basic
rules of deep instantiation – namely that the potency of an instance of a clabject
must be one lower than the potency of that clabject. Constraint 1 is a standard
OCL constraint, just applied within the linguistic dimension.

Constraint 1 The value of the potency of every clabject must be one lower
than that of its direct type

context Clabject
getDirectTypes() implies forAll(t | t.potency = potency+1)

L 1

L 0

Element
name

Clabject
potency

O 2 O 1 O 0

Car0

Level

*

content

CarType2 Dragster1 #3345 :Dragster0

getDirectTypes():Set(Clabject)
getDirectInstances():Set(Clabject)

DeepModel
*
levels

Fig. 2. Linguistic constraints example.

Constraints which enforce certain modeling styles are also possible. For ex-
ample it is possible to require that clabject potency values must always match
level values (as in [13]) or to limit the number of levels available in a deep model
(Constraint 3).

Constraint 2 The value of the potency and level of every clabject must be equal

context Clabject
self.potency = self.level

Constraint 3 The number of levels in a deep model must be 3

context DeepModel
self.levels implies size = 3

These constraints are useful in scenarios where the number of ontological lev-
els has to be fixed, e.g. when model execution software is written against a certain
level of a deep-model. Like Constraint 1, both Constraint 2 and Constraint 3 are
standard OCL constraints whose context is the linguistic meta-model.

3.2 Ontological Constraints

Ontological constraints operate within level L0 to express well-formedness con-
ditions on the content of ontological levels. These well-formedness conditions
include the kind of constraints that end users (i.e. modellers) typically write
in conventional modeling environments to constrain the properties of domain
instances based on their domain types.

An example of a traditional constraint in the context of Figure 3 is the
constraint for a second-hand dealer that the default used price of a ProductType

(e.g., Lorry) has to be lower than the respective recommended retail price (RRP).
Using an OCL-like syntax, a DCL should allow this constraint to be expressed in
a way similar to Constraint 4. This constraint is defined “on” ProductType and
ensures that all ontological instances of ProductType, here Lorry and Dragster ,
have an RRP that is higher than their price.

O 2 O 1

WheelType2

tyreWidth 2

ProductType2

price 2

RRP 2

3..*
wheels

CarType2

maxWheels 2

Dragster :CarType1

RRP =2000001

maxWheels =41

Lorry :CarType1

RRP =3000001

maxWheels =81

price =2225501

price =1759991

Fig. 3. Ontological constraints example.

Constraint 4 The value of a ProductType’s price attribute has to be smaller
than or equal to its RRP attribute

origin(1) ProductType
self.price <= self.RRP

An important notational difference in Constraint 4 is that we use the term
“origin” rather than “context” to specify to which element the constraint is
attached in order to avoid the traditional meaning associated with the term
“context” in OCL. In OCL, the class to which a constraint is attached does
not coincide with the evaluation context for the constraint, as OCL implicitly
assumes universal quantification of the constraint over all instances of the class.
We believe, in order to support more flexibility, it is worthwhile not always
making this assumption of implicit universal quantification over instances at the
level below. Therefore, in the remainder of the paper we express constraints in
the following form —

origin (1) ProductType
price < RRP

keyword scope origin

predicate
}constraint

Fig. 4. General structure of a constraint.

where the clabject appearing in the top line after the keyword “origin” is re-
garded as the definitional anchor for the constraint, whereas the “scope” of the
constraint (i.e., to what levels it applies to) is specified by the given range (e.g.
(1)) as further explained below. The constraint body, defined underneath the
header, specifies the predicate that must evaluate to true for all elements of type
“origin” within the scope.

3.3 Hybrid Constraints

The constraints discussed in the previous section either operated purely across
the linguistic dimension or purely across the ontological dimension. In some situ-
ations, however, there is a need to mix the linguistic and ontological dimensions.
Such a scenario is shown in Constraint 5 on Figure 5 which ensures that each
concrete car must have a price greater than zero and that each car type must
have a default price greater than zero. This is achieved using a hybrid constraint
whose origin is CarType. This constraint uses the linguistic dimension to apply
the constraint to all CarType instances at levels 1 and 0, and the ontological di-
mension to ensure that the price of these model elements is greater than zero.
Note that Constraint 5 could be expressed more concisely using our proposed
scoping mechanism (cf. Section 4.2) and hence demonstrates the latter’s utility;
Constraints 8 and 9 are more natural examples of hybrid constraints.

L 1

L 0

Element
name

Clabject
potency

O 2 O 1 O 0

Level

*

content

Dragster1

price =1759991

CarType2

price 2
#3345 :Dragster0

price =1703320

Fig. 5. Hybrid constraints example.

Constraint 5 The (default) prices for instances of CarType and their instances
must be greater than zero

origin(1..2) CarType
(a) self.level < 2 implies self.price > 0
(b) self. l .level < 2 implies self. o .price > 0
(c) self. l .level < 2 implies self.price > 0
(d) self.ˆlevel < 2 implies self.price > 0

The example suggests four different possible notations to define the hybrid
constraint. The first notation (a) does not make a syntactic distinction between
the dimension in which a called attribute, method, etc. is located. For this ap-
proach to work in general, however, it is necessary to ensure that all names used
in the L1 (meta)-model do not appear in L0 (i.e. in any ontological levels). How-
ever, this could be difficult in practice because the L1 model naturally contains
names that could appear in many domains. For example, “level” may very well
not just occur in the linguistic dimension to represent the level a model-element

resides in, but may also be used to express the location of an elevator in the
ontological dimension. To avoid such naming clashes, either names used in the
L1 model must be changed to highly unnatural ones (e.g. “linguistic-residence-
level”) etc. or the use of the most natural names (e.g. level) has to be prohibited
in domain models. Neither of these would be particularly desirable.

An alternative approach shown in (b) is to introduce a special syntax for
selecting between linguistic and ontological features, so that no ambiguity exists
even when names from the L1 (meta)-model are used in an ontological model.
For every attribute, method, etc. this approach requires the origin of each refer-
enced element to be identified (i.e. “ l ” for linguistic and “ o ” for ontological),
which creates a big overhead when creating hybrid constraints. To minimize this
overhead, the notation can be further refined as suggested in (c). This notation
assumes the dimension in which the origin of the constraint resides as the default.
A dimension must then only be explicitly specified if a user intends to reference
the other dimension. In the example the default dimension is the ontological
dimension as CarType is an O2-level element.

The notation shown in (d), presented in [14], is used by MetaDepth to resolve
linguistic and ontological name disambiguities. MetaDepth allows constraints
accessing the ontological and linguistic dimension to be defined in the style of
(a). If an ambiguity occurs, the linguistic dimension is marked by prefixing it
with a ˆ symbol as shown in (d).

4 Deep Constraints

The aspect of deep modeling which creates the most interesting opportunities is
also the most challenging for DCLs: It is the unbounded number of ontological
levels that may appear in a deep model. Deep constraints are constraints that
may target levels more than one level below and may even have multiple levels
in their scope. In the OCA implementation assumed in this paper, linguistic
constraints cannot be deep because there are only two linguistic levels. In gen-
eral, however, deep linguistic constraints may be useful to constrain instances of
languages in a language family or ensure consistency across multiple language
levels.

Deep Constraints can be classified as either level-specific or level-spanning
constraints. In order to clarify the difference it is necessary to introduce some
further terminology. More specifically, it is necessary to distinguish between the
“instances” of a clabject and the “offspring” of a clabject. The instances of a
clabject exist at the level immediately below that clabject, and can be direct
or indirect instances. The offspring of a clabject, on the other hand, are all
clabjects in the transitive closure over the “classifies” relationship starting with
the subject. In other words, the set of offspring of a clabject includes all the
instances of the clabject plus all the instances of those instances, and so on. The
set of “direct offspring” is the set of all direct instances, plus all direct instances
of those direct instances and so on recursively. In contrast to regular offspring,
all indirect instances (at any depth) are excluded.

4.1 Level-Specific Constraints

Level-specific constraints are constraints that restrict the properties of clabjects
at one specific level in the deep model relative to the origin clabject. The “scope”
of the constraint then just comprises this single level. As explained above, we
avoid the term “context” since it may lead to confusion because of the implicit
universal quantification semantics of OCL constraints. In general, three cases
can be identified – (a) some arbitrary specified level below the starting element,
(b) the lowest level containing offspring of the origin and (c) the level containing
the starting element itself.

O 2 O 1

Dragster :CarType1WheelType2

tyreWidth 2

ProductType2

price 2

RRP 2

3..*
wheels RRP =2000001

CarType2

maxWheels 2

maxWheels =41

Lorry :CarType1

RRP =3000001

maxWheels =81

price =2225501

price =1759991

O 0

#3446 :Lorry0

RRP =3000000

maxWheels =80

price =2213560

Fig. 6. Level specific constraint example.

When the specified level is defined to be the level immediately below the
origin, the scope of the constraint coincides with that implied by an OCL “con-
text”. An example using the model elements of Figure 6 is shown in Constraint 6.
The constraint ensures that all instances of CarType have an RRP between 10k
and 400k, but specifically does not target the RRP values of cars. The scope of
the level is specified in brackets after the origin keyword. Here, the “1” specifies
that the relative distance of the scope to the level on which the constraint has
been defined is one. Obviously, this kind of single level scoping also provides the
option to evaluate the constraint on any arbitrary level below the origin.

Constraint 6 The recommended retail price must be between 10k and 400k

origin(1) CarType
self.RRP > 10000 and self.RRP < 400000

The second scoping category defines constraints that apply to the lowest-level
containing offspring of the origin clabject without making an explicit reference to
the respective instantiation depth. The constraint given in Constraint 7 requires
that all instances of CarType, at the bottom level have a price attribute which is
no more than 80% of the RRP. This is specified using the symbol “ ” for the
scope of the constraint.

Constraint 7 The price actually paid for a car shall be no more than 80% of
the recommended retail price

origin() CarType
self.price <= self.RRP * 0.8

The last category represents constraints which cannot be supported in exist-
ing constraint languages even though the level they operate on (i.e. the scope)
“exists” in traditional modeling approaches. This is the level of the origin ele-
ment itself. For this reason we refer to this category of constraint as “intra-level”
constraints. Such constraints cannot be expressed in traditional environments be-
cause in OCL the constrained elements always occupy the instance level while
the starting element (referred to as the context in OCL) always occupies the
type level.

O 2 O 1

Dragster :CarType1WheelType2

tyreWidth 2

ProductType2

price 2

RRP 2

3..*
wheels RRP =2000001

CarType2

maxWheels 2

maxWheels =41

Lorry :CarType1

RRP =3000001

maxWheels =81

price =2225501

price =1759991

Car0

L 1

Element
name

Clabject
potency

Level

*
content

L 0

Fig. 7. Intra-level constraint example.

Intra-level Constraints This kind of constraint expresses restrictions on model
content that resides on the same level as the origin clabject. An example of such
a constraint is Constraint 8 which can be considered to enforce one aspect of the
power type pattern [9] on the example displayed in Figure 7.

Constraint 8 Subtypes of Car with potency higher than 0 must be instances of
CarType (cf. PowerType Pattern)

origin(0) Car
self.getSubclasses() implies forAll(c |
???c. l potency > 0 implies c.isTypeOf(CarType))

Here, all subtypes of Car are required to also be instances of CarType. Such a
constraint cannot be reasonably expressed at the level of CarType since it would
be attached to CarType but would have to explicitly restrict its applicability to

subtypes of Car . If the same or a similar constraint is applied to all subtypes
of another superclass, e.g., CarPrototype then, in the absence of intra-level con-
straints, it would have to be attached to CarType as well with the respective
applicability restriction in place. Such an approach would become unwieldy over
time and its complexity is simply an expression of mis-locating the constraint(s).

Constraint 9 is another example of an intra-level constraint. It requires all
non-concrete subclasses of a specific class (here Car in Figure 7) to have more
attributes than Car , i.e., to exclude “hollow” subclasses. Again, it may not make
sense to exclude hollow subclasses for all instances of Car’s type and it seems to
be unwarranted to force users to define a dedicated “�non-hollow�”-stereotype
that is then applied only to CarType. In other words, we believe there are applica-
tions for “one-off” constraints that only apply to a particular instance, without
having relevance to other instances of the same type.

Constraint 9 Subtypes of Car with potency higher than 0 must add attributes

origin(0) Car
self.getSubclasses() implies forAll(c |
???c. l potency > 0 implies
?ii c.attributes→size() > self.attributes→size())

To fully support deep constraints, further capabilities are needed. First, ver-
tical access to offspring and types at any level may be necessary to ensure certain
kinds of consistency constraints. The functions isDirectOffspringOf() and isIndi-
rectOffspringOf() could be used like their corresponding OCL statements but
based on the notion of offspring rather than instances. Second, it is necessary to
support horizontal, intra-level navigation to other elements by using navigation
paths that are defined anywhere at levels above. A respective approach has been
explored in [4].

4.2 Level-Spanning Constraints

The common property of the previous category of scopes is that the constrained
clabjects all occupy one specific ontological level. It is also possible, depending
on the flavour of deep modeling in use, to also define constraints that span more
than one ontological level. Such constraints would therefore have a scope greater
than one in our terminology. This makes sense if the underlying deep modeling
language supports uniform (ontological) attributes which, at all levels, possess a
name, a type and a value. When an attribute has potency 1 or higher, the value of
the attribute is interpreted as a default value for the corresponding attributes of
the clabject’s instances. In those cases where the constraint for the default values
is the same as for the ultimate values, it is beneficial to interpret a constraint
as being applicable over more than one level. In this case two situations seem to
be useful in practice: (a) a specified arbitrary range of levels or (b) the level of
the starting clabject and all its offspring.

In the first kind of level-spanning constraint, the range of levels over which
the constraint should apply is explicitly specified relative to the origin clabject.

frontWheels
:wheels

CarType2

O 2 O1

WheelType2

tyreWidth 2

ProductType2

price 2

RRP 2

Normal :WheelType1

broadness =1001

price 1

RRP =501

Broad :WheelType1

broadness =1601

price 1

RRP =1251

3..*wheels

2

2

rearWheels
:wheels

maxWheels 2

6..8
wheels

InformationType 2

manufactured 2

quality 21

info

Wheel1

Information 1

manufactured 1

quality 1

1 info

age 2

age 1

Lorry :CarType1

RRP =3000001

maxWheels =81

price =2225501

Dragster :CarType1

RRP =2000001

maxWheels =41

price =1759991

2

(a) Level O2 and O1

O 0

#3345 :Dragster0

#220 :Normal0

broadness =1000

price =450

RRP =500

#221 :Normal0

broadness =1000

price =450

RRP =500

#331 :Broad0

broadness =1600

price =1000

RRP =1250

#330 :Broad0

broadness =1600

price =1000

RRP =1250

11

rightFrontWheel
:frontWheels

leftFrontWheel
:frontWheels

1

rightRearWheel
:rearWheels

1

leftRearWheel
:rearWheels

RRP =65k0

price =58k0

manufactured =2011-06-010

typeName =Speedy0

~ :Information0

manufactured =1-150

quality 0

1

info

~ :Information0

manufactured =3-150

quality 0
1

info

~ :Information0

manufactured =3-150

quality 0
1

info

~ :Information0

manufactured =1-150 0

quality =0 0

1

info

age =20 0

age =50
age =50

age =20

(b) Level O0

Fig. 8. Level-spanning constraint example. Gray elements are extensions to the deep
modeling approach as described in [4].

The constraint shown in Constraint 10 constrains all WheelType instances in
Figure 8 occupying the following two levels (O1 and O0) to be not older than 24
months.

Constraint 10 All offspring of wheelTypes, over two levels, are not allowed to
be older than 24 months

origin(1..2) WheelType
self.info.age ≤ 24

The second kind of level-spanning constraint is a special case of the first kind.
It simply uses the maximum scope possible, i.e., the level of the origin itself up
to the lowest level containing offspring. Constraint 11 constrains all offspring of
CarType, and CarType itself, to have a (default-) price of at least 10000.

Constraint 11 A (default-) price for a car must exceed 10000

origin(0..) CarType
self.price ≥ 10000

An example of a level-spanning constraint that includes intra-level navigation
is shown in Constraint 12. The constraint specifies that, for security reasons,
a Dragster must have wheels which are not older than seven months. As can

be seen in Figure 8, a Dragster is connected to its wheels using two different
types of connections. There is one type for the front wheels and one type for
the rear wheels, as dragsters require different wheel types depending on their
location. For the purposes of Constraint 12, however, it would be desirable to
navigate to all wheels in a convenient way, i.e., abstract away from the fact that
there are front wheels and rear wheels. Thus, in version (a) using the DeepOCL
syntax [10], the statement $CarType$ makes all navigations of its type available,
here wheels. The MetaDepth version presented in [15] is shown in (b) which uses
the “references” linguistic method to get the instances of the wheel references
and access their value using the value method. The version in (c) displays the
navigation semantics presented in [4]. The latter relies on the fact that the
“wheels” role was introduced with potency two and hence makes the connection
available at level O0, plus the fact that “frontWheels” and “rearWheels” are
declared to be instances of “wheels” (cf. Figure 8 (a)).

Constraint 12 The wheels of Dragsters are not allowed to be older than 7 months

origin(1) Dragster
(a) self.$CarType$.wheels.info implies forAll(age <= 7)
(b) self.references(“wheels”) implies
?????? forAll(r | self.value(r).info.age <= 7)
(c) self.wheels.info→forAll(age <= 7)

Default Scope for Constraints As constraints in a deep constraint language
may have a variety of scopes, the question arises as to which default scope
should be assumed in case the modeler does not provide one. Default values in
general, can reduce the complexity of a specification and relieve the modeler
from explicitly providing a value that they would typically use in most cases.
Requirements for a good default choice include

– frequency of occurrence. Making the value that occurs the most implicit,
has the largest effect on specification reduction and will also most frequently
relieve the modeler from providing it.

– robustness against change. Typical modifications to models should ideally
not require the replacement of a default value with a different, specific one.

– generality across different host languages. One and the same deep constraint
language may be applicable to a variety of different multi-level host lan-
guages. It would be desirable to be able to interpret constraints indepen-
dently of the host language (e.g., MOF vs UML) and hence the default
scope should ideally be always the same.

– validity of existing assumptions. It is desirable to make any extension –
such as introducing depth to constraints – conservatively, i.e., not invalidate
existing specifications if they do not need more than two levels. Changing the
default value from a two-level technology (such as standard OCL) to another
value in a multi-level context should only be done with a good justification
in order to avoid gratuitously breaking the conservative extension property.

Currently there is no significant body of multi-level constraints from which solid
frequency figures could be derived. Anecdotal evidence suggests, however, that
most attributes follow a traditional pattern, i.e., are defined at a certain level
and receive a value at a lower level. In other words, the default scope should
probably not include “0”, i.e., the current level.

The robustness argument suggests that it is probably not advisable to have
the default scope include the lowest-level offspring (i.e., “ ”). Consider the ad-
dition of a new lower level of used book copies to an existing model of (new)
books. An existing constraint on prices for new books, should not be automati-
cally re-targeted to used book copy prices, as the latter prices will obey different
rules than new book prices.

Not all multi-level languages support the assignment to attributes at all lev-
els at which they (implicitly) occur. This suggests that a default scope should
probably not address multiple levels at once.

Finally, current OCL constraints assume an origin of “(1)” implying that
OCL experts would have the least effort to adapt to it as a default scope. In
combination, all prior observations suggest that the scope “(1)” has the highest
appeal. However, further research is necessary to make a more informed choice.
For example, there is a need to ascertain actual frequency of use figures, a need to
observe and record typical model changes, and track the development of future
multi-level languages to re-assess commonalities and differences.

5 Conclusion

In this paper we have identified the additional opportunities and challenges that
arise when expressing constraints in the context of deep modeling. It is pos-
sible to write types of constraints on deep models that cannot be specified in
traditional, two-level modeling environments (e.g. UML/OCL), such as hybrid
constraints, deep constraints (targeting remote levels and/or spanning two or
more levels) and intra-level constraints (supporting “one-off” constraints). These
constraints do not increase the expressiveness compared to a regular two-level
constraint language, as we do not introduce constraints over constraints and our
proposed mechanisms could be translated into a two-level scheme. However, we
believe that our proposed mechanisms are important for allowing modelers to ad-
equately express constraints in a multi-level context. Expressing such constraints
in a concise yet unambiguous way requires new concrete syntax and default con-
ventions that do not yet exist. Some initial ideas for these have been presented
in this paper, but it was not the goal to define or propose a definitive DCL. Nor
was it the goal of this paper to describe precisely what kinds of requirements
a DCL should aim to support, since the optimal language from a pragmatic
perspective may not need to support every conceivable kind of constraint that
can be imagined if no practical use case exists for them. The main goal of the
paper was to characterize the kind of constraints that may make sense in the
context of deep modeling and to provide a conceptual framework / terminology
for discussing them.

References

1. Aspectocl: Extending ocl for crosscutting constraints. In: Taentzer, G., Bordeleau,
F. (eds.) Modelling Foundations and Applications, Lecture Notes in Computer
Science, vol. 9153, pp. 92–107. Springer International Publishing (2015), http:

//dx.doi.org/10.1007/978-3-319-21151-0_7
2. Ahmed, A., Vallejo, P., Kerboeuf, M., Babau, J.P.: Cdmcl, a specific textual con-

straint language for common data model. In: OCL 2014 – OCL and Textual Mod-
eling: Applications and Case Studies (2014)

3. Atkinson, C., Gerbig, R.: Melanie: Multi-level modeling and ontology engineering
environment. In: Proceedings of the 2nd International Master Class on Model-
Driven Engineering: Modeling Wizards. pp. 7:1–7:2. MW ’12, ACM, New York,
NY, USA (2012)

4. Atkinson, C., Gerbig, R., Kühne, T.: A unifying approach to connections for multi-
level modeling. Models’15, Ottawa, Canada (2015)

5. Atkinson, C., Gerbig, R., Tunjic, C.: Enhancing classic transformation languages to
support multi-level modeling. Software & Systems Modeling 14(2), 645–666 (2015)

6. Atkinson, C., Kühne, T.: Concepts for comparing modeling tool architectures. In:
Briand, L., Williams, C. (eds.) Model Driven Engineering Languages and Systems,
Lecture Notes in Computer Science, vol. 3713, pp. 398–413. Springer Berlin Hei-
delberg (2005), http://dx.doi.org/10.1007/11557432_30

7. Fowler, M.: Domain-specific languages. Pearson Education (2010)
8. Gogolla, M., Sedlmeier, M., Hamann, L., Hilken, F.: On metamodel superstructures

employing uml generalization features. In: MULTI 2014–Multi-Level Modelling
Workshop Proceedings. p. 13 (2014)

9. Gonzalez-Perez, C., Henderson-Sellers, B.: A Powertype-based Metamodelling
Framework. Software & Systems Modeling 5(1), 72–90 (2006)

10. Kantner, D.: Specification and Implementation of a Deep OCL Dialect. Master’s
thesis, University of Mannheim (2014), https://ub-madoc.bib.uni-mannheim.

de/37143/
11. Kolovos, D., Paige, R., Polack, F.: The epsilon object language (eol). In: Rensink,

A., Warmer, J. (eds.) Model Driven Architecture Foundations and Applications,
Lecture Notes in Computer Science, vol. 4066. Springer Berlin Heidelberg (2006)

12. Kolovos, D., Paige, R., Polack, F.: On the evolution of ocl for capturing struc-
tural constraints in modelling languages. In: Abrial, J.R., Glsser, U. (eds.) Rig-
orous Methods for Software Construction and Analysis, Lecture Notes in Com-
puter Science, vol. 5115, pp. 204–218. Springer Berlin Heidelberg (2009), http:

//dx.doi.org/10.1007/978-3-642-11447-2_13
13. de Lara, J., Guerra, E.: Deep meta-modelling with metadepth. In: Proceedings of

the 48th international conference on Objects, models, components, patterns. pp.
1–20. TOOLS’10, Springer-Verlag, Berlin, Heidelberg (2010)

14. de Lara, J., Guerra, E., Cuadrado, J.: Model-driven engineering with domain-
specific meta-modelling languages. Software & Systems Modeling 14(1) (2015),
http://dx.doi.org/10.1007/s10270-013-0367-z

15. Lara, J.D., Guerra, E., Cuadrado, J.S.: When and how to use multilevel modelling.
ACM Trans. Softw. Eng. Methodol. 24(2), 12:1–12:46 (Dec 2014), http://doi.

acm.org/10.1145/2685615
16. Störrle, H.: Mocql: A declarative language for ad-hoc model querying. In:

Van Gorp, P., Ritter, T., Rose, L. (eds.) Modelling Foundations and Applications,
Lecture Notes in Computer Science, vol. 7949. Springer Berlin Heidelberg (2013),
http://dx.doi.org/10.1007/978-3-642-39013-5_2

