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ABSTRACT
The universal agreement regarding modeling as a useful en-
deavor can hide the large divide that runs through the mod-
eling community. The differences between explanatory and
constructive modeling give rise to two almost disjoint mod-
eling universes, each based on different, mutually incompat-
ible assumptions, rules, and tools. This division is unde-
sirable as it prevents modelers from fluently transitioning
between these worlds and denies them the benefits afforded
by the underpinnings of the opposite camp. In this paper I
characterize the typing disciplines underlying these different
schools of thought, identify their respective trade-offs, and
propose a unified approach which treats the different world
views as modes of modeling that one may transition into
in either direction. I present a unifying typing framework
that can form the basis for a mutual fertilization between
the hitherto rather separated worlds of explanatory versus
constructive modeling.
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•Software and its engineering → System modeling
languages;
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1. INTRODUCTION
Models in software engineering are predominantly used as

a means for planning. They are hence used prescriptively,
i.e., as blueprints for solutions. I refer to the respective
modeling mode as constructive because it aims at building a
product. However, there are also many examples of descrip-
tive models, typically used during requirements elicitation
and the analysis phase. Such models do not target solutions
but rather attempt to describe a problem domain. I refer
to the respective modeling mode as explanatory because it
aims at understanding a subject matter.
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I follow Atkinson et al. in referring to“modeling modes”as
opposed to ascribing characteristics such as “descriptive” vs
“prescriptive” to models themselves [8]. One and the same
model may be used in different modes, e.g., as an analy-
sis model and then as a preliminary design model. More-
over, the terms “explanatory” and “constructive” are meant
to have deeper implications compared to “descriptive” and
“prescriptive” respectively (cf. Tab. 1). The latter terms are
already in use in software engineering and refer more to the
function of a model, rather than to the features of the sup-
porting technology. The ability of a model to allow many
useful interpretations strongly suggests that there is room
for incorporating some of the features found in explanatory
technologies, such as ontologies [11], into technology that
supports software engineering models.

Indeed, prior research has observed that descriptive and
prescriptive techniques complement each other [2], attempted
to explain similarities and differences [9], showed that onto-
logical principles can inform conceptual modeling [13], aimed
at creating synergy between the technologies [15], and sug-
gested ways of reducing the gulf between explanatory and
constructive technologies [1, 3, 16].

However, to the best of my knowledge no prior research
exists that aims at supporting a fluid transition between
explanatory and constructive modeling modes by identify-
ing and addressing a fundamental difference in the typing
disciplines traditionally associated with the respective tech-
nologies. In Section 2 I elaborate on this difference and
perform a trade-off analysis that results in a list of require-
ments for a unified framework. I then present my unifying
approach (Sect. 3) before concluding with ideas for future
work (Sect. 4 & Sect. 5).

2. BACKGROUND
Table 1 lists a number of differences between the explana-

tory and constructive modes of modeling in terms of proper-
ties (top half of Tab. 1) and supporting technologies (bottom
half of Tab. 1). Table 1 aims at an extreme characteriza-
tion and there indeed are situations, approaches, and tools
that alleviate many of the dichotomies to the point where a
transition between the modes sometimes becomes feasible.
No complete general solution exists, however, that bridges
the gap between the typing disciplines typically used in the
underlying technologies that support the modeling modes.
In the following trade-off analysis between explanatory and
constructive modeling I therefore focus on these hitherto un-
addressed different typing disciplines.
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Explanatory Constructive

Function descriptive prescriptive

Goal understanding building

World View open world closed world

Growth
organic,

bottom-up
(instances first)

normative,
top-down

(types first)

Typing structural nominal

Levels two-level multi-level

Models
ontologies
(e.g. using

OWL)

conceptual models
(e.g., using

UML)

Logic description logic first-order logic

Table 1: Two Schools of Thought

For each school of thought I address the questions of when

• an object is an instance of a concept, and

• a type is a subtype of a supertype.

I regard a type as a concept T with an intension and an
extension [7]. In the interest of a more compact notation
and better readability, I use T.ε, rather than ε(T ) (cf. [17])
to denote the extension of T (i.e., all elements falling under
the concept T ). Likewise, I use T.ι to denote T ’s intension (a
conjunction of predicates characterizing whether an element
falls under the concept or not).

2.1 Explanatory Modeling
Technologies supporting explanatory modeling, such as

ontologies, typically assume “structural typing”, i.e., make
the membership of an instance only dependent on whether
or not it has the required properties:

T.εd = {x | T.ι(x)} (1)

I use the subscript“d”to indicate“descriptive typing”. While
“structural typing” is the standard technical term, I am re-
placing “structural” with “descriptive” in order to avoid the
impression of an exclusive reliance on an object’s structure.
The intension T.ι is free to require any properties, including
behavioral traits.

Definition (1) gives rise to subsumption “<d” –

T2 <d T1 
 (T2.ι→ T1.ι), or


 T2.εd ⊆ T1.εd
(2)

– aka the “is-a” relationship between types [6]. For so-called
rigid types [12], “<d” will hold for every instance at every
possible time in each possible world.

2.1.1 Advantages
Descriptive typing establishes a simple relationship be-

tween intensions and extensions. For instance, from (1) we
immediately get

(T1.ι ∼ T2.ι) → (T1.εd = T2.εd) (3)

Wasp

stripy pattern

buzzing sound 

…

… a wasp
…

Figure 1: Mimicry

i.e., equivalent intensions result
in identical extensions. Equa-
tion (3) is formulated as an im-
plication rather than an equiv-
alence since explanatory mod-
eling typically implies an open
world assumption. The latter
means that even though two
different intensions T1.ι & T2.ι
may result in identical exten-
sions with respect to a known
universe at a particular point in
time t, they may result in differ-
ent extensions at t′. However,
we only regard intensions as be-
ing equivalent, if they imply the
same extensions in all possible worlds.

The straightforwardness of descriptive typing entails a de-
sirable quality of a typing discipline, leading us to

Requirement R1. Objects that fit a concept, should be
classified accordingly without requiring manual effort.

2.1.2 Disadvantages
The “automatic capture” quality of descriptive typing is a

blessing (cf. R1) but also a curse: Consider Fig. 1 depicting
the extension of type Wasp. According to the principle “if
it walks like a duck and quacks like a duck, it is a duck”, a
wasp beetle instance is classified as a proper Wasp due to its
mimicry, which in this case extends to outer appearance and
sound effects.

Lucky Luke

position = 

<31.9, -99.9>

Cowboy

name : String

Thing

position : Position

Shape

draw()

s

s

Figure 2: Pre-
Refactoring

For some modelers such casual clas-
sification may not present a problem,
but it is easy to imagine that some
modeling applications require much
more stringent membership approval.
While the scenario of Fig. 1 may seem
easy to fix, e.g., by requiring the pres-
ence of a sting, notice that unless it
is possible to identify mutually exclu-
sive properties – e.g., for wasps ver-
sus bees – due to (2), type Bee will
always be considered to be a subtype
of Wasp, or vice versa. If a respec-
tive taxonomy is regarded as inade-
quate for whatever reason then de-
scriptive typing implies considerable
effort in maintaining adequate inten-
sions. I chose the term “maintaining”
because even perfectly discriminating
intensions at time t, may not be ad-
equate at time t′ anymore. Just con-
sider a known universe without wasp
beetles for which type Wasp would be perfectly suited, only
to be spoiled by the discovery of the first wasp beetle in-
stance. Therefore, we should request

Requirement R2. Taxonomy maintenance should be cost-
effective.

Figure 2 depicts a scenario – the arrival of Lucky Luke –
which incurs even higher cost in the form of required refac-
toring. Note that Fig. 2 does not repeatedly show features
for subtypes so for example Cowboy also has a draw method.
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Figure 3: Post-Refactoring

In this scenario Lucky

Luke is therefore clas-
sified as a Shape and
fixing this undesir-
able capturing of an
instance to a type
requires considerable
refactoring of the types
involved (cf. shaded
types in Fig. 3). Again,
avoiding such inad-
vertent instance cap-
tures through very
discriminative inten-
sions comes at a cost
and, in general, can-
not be achieved for all
time.

As a result, I postulate

Requirement R3. Undesired classification should be ad-
dressable with adequate cost.

2.2 Constructive Modeling
Constructive modeling technologies predominantly use no-

minal typing, i.e., employ explicit typing relationships be-
tween objects and their types. Types still have (implicit) in-
tensions but these are satisfied “by construction”, i.e., when-
ever an object is incarnated from a type it automatically
complies to it.

∀x : (x.type = T ) → T.ι(x) (4)

We could consider explicit incarnation histories in order to
formally model object instantiation but for the sake of sim-
plicity we will just assume a “type” property for an object o
to hold the value of a nominal type in case the latter classi-
fies o.

Unlike in descriptive typing (cf. (1)), extensions of nomi-
nal types are not implied by type intensions but are formed
by explicit type membership relationships. One may thus
view extensions as explicit enumerations of type incarna-
tions.

T.εn = {o | o ∈ Υ ∧ o.type ≤n T} (5)

Note that both universe Υ and nominal extension εn should
be parameterized with respect to time to capture the notion
of a dynamic extension [19]. However, for the sake of a
simpler presentation, I leave the explicit treatment of time
to future work.

2.2.1 Advantages
The closed world assumption in constructive modeling im-

plies that any object always has a known classifier as the only
way objects may enter the known universe is through incar-
nation from a known type. It is therefore never necessary to
use intensions for working out which objects are classified by
a type. As a consequence, intensions play a rather different
role in nominal typing.

Figure 4 demonstrates that the extensions of nominal types
may be different even though the respective intensions are
equivalent. This allows modelers to sharply define a type
(essentially through extensional enumeration) without ex-
plicitly using a highly discriminative intension. Such high
level of control obviously also avoids unintentional captures

Chimney

height

diameter 

Smokestack

height

diameter 
≡

≠

Figure 4: Nominal Typing

as it may occur with descriptive types (cf. Sect. 2.1.2) and
furthermore allows separating types even if their instances
may not be distinguishable (at a certain desirable level of
abstraction). Therefore we ask for

Requirement R4. Types should be distinguishable even
in the absence of phenomenological differences between their
instances.

The same high level of control is afforded by nominal typing
with respect to subtyping. Again, subtyping relationships
between types are not implied by intensions but explicitly
controlled by modelers. As in descriptive typing, nominal
subtyping typically implies that the subtype’s intension is
stronger than the suberconcept’s intension, but unlike in
descriptive typing, no typing relationship follows from such
intension implication (cf. (2)):

T2 <n T1 8 (T2.ι→ T1.ι)

For instance, even if Bee’s intension builds on Wasp’s inten-
sion by adding a nectar collection trait, Bee will only be
considered a subtype of Wasp if the modeler explicitly intro-
duces such a subtyping relationship. Consequently, it be-
comes much easier to honor the Liskov Substituation Prin-
ciple (LSP) [18] as one only needs to establish subtyping
relationships when subtype behaviour is known to be com-
patible with supertype behavior.

Technically, subsumption (2) guarantees the LSP auto-
matically but only if all relevant behavior is explicitly spec-
ified through intensions. However, the latter is very hard
to achieve in practice because of the challenges involved in
capturing all relevant behavior and the respective effort and
modeler skills required. It seems advisable to always require
modeler authorization for subtyping even in the presence of
behavior capturing intensions in order to avoid granting sub-
stitutability before sufficient evidence for true substitutabil-
ity has been gathered. It is thus appropriate to request

Requirement R5. Substitutability should be granted by
modelers, as opposed to being assumed on the basis of typi-
cally incomplete intensions.

2.2.2 Disadvantages
The ease with which nominal types can be sharply de-

fined through their extensions invites negligence regarding
the maintenance of accurate intensions and hence provokes
the existence of distinct types that do not self-document
their respective differentiae. We thus call for

Requirement R6. Types should be defined as explicitly
as tenable in terms of creation and maintenance cost.



3. UNIFYING FRAMEWORK
The trade-off analysis of Sect. 2 suggests that descrip-

tive and nominal typing have weaknesses and strengths that
complement each other. The high cost associated with the
creation and maintenance of highly discriminating types in
declarative typing (cf. R2–R5) is avoided in nominal typing.
Conversely, the inadequacy of nominal typing to support an
open world assumption due to the implied need to individu-
ally assign every discovered object manually (cf. R1) and its
potential for over-reliance on type names rather than explicit
type intensions (cf. R5), can be addressed by incorporating
aspects of descriptive typing.

The aim of the unified framework presented here is to
allow the unimpeded application of explanatory and con-
structive modeling modes while providing consolidating ab-
stractions that support fluid transitioning between them.

The first key to a successful unification of the two typing
disciplines is the observation that any constructive type T ,
i.e., an instance generator, also has the potential to be used
in a descriptive capacity by referencing its intension. In
constructive settings one will typically not encounter explicit
intensions but the set of features specified for instances forms
an implicit intension and the thus accepted set of instances
(εd) will likely to be larger than the actual nominal extension
(εn) that is created through constructors and modified by
invoking operations. For example, a type representing a
collection may always produce and maintain instances where
the value of a count property matches the number of elements
in a container feature. Unless a respective constraint is added
to the type as an invariant, the implicit intension will allow –
i.e., be considered to describe – any collection instance where
the count value and the number of elements in the container

are unrelated. We can thus use the difference between the
nominal extension T.εn and the descriptive extension T.εd
of a type as a basis for using a single type in two roles; a
descriptive role and a characterizing role.

3.1 Conformance
A type describes an object, if and only if the object satis-

fies the type’s intension:

o�d T 
 T.ι(o) (6)

We may say the object conforms to the type and subsump-
tion (<d) follows as in (2):

T2 <d T1 
 (∀o : o�d T2 → o�d T1) (7)

3.2 Explicit Type Declarations
Before I can fully define the characterizing role of a type, I

need to introduce the second key to a successful unification;
the modification of the notion of a nominal extension so
that nominal typing can accommodate object discovery as
occurring in explanatory modeling. I propose to generalize
the idea of the set of direct instances of a type – i.e.,

T.εdi = {x | x ∈ Υ ∧ x.type = T} (8)

– to not only include objects that have been generated us-
ing T , but also objects have been adopted by T . Consider
the golden retriever gary in Fig. 5. It is described by types
Mongrel, Dog, and Animal. All these types are candidates for
becoming gary’s nominal type. If Dog is chosen, for exam-
ple, all other candidate types will still continue to describe
gary, but gary then maintains an“adopted”relationship to Dog

(cf. fido and Poodle) and Dog becomes gary’s characterizing
type (cf. Sect. 3.3). With T.εo only containing the offspring
of T , i.e., the instances generated using T , we have

o�a T 
 (o�d T ) ∧ (o.type = T ) ∧ (o 6∈ T.εo) (9)

Dog

Collie

fido

lassie

Poodle Mongrel

gary : 

GoldenRetriever

Animal

adopted byoffspring of

Figure 5: Explanatory Modeling Choices

Note that while none of the types in Fig. 5 ideally charac-
terizes gary – no GoldenRetriever type is available – this does
not present a problem in nominal typing. A modeler has the
option of adding another suitable dog breed type but may
also just adopt gary to any of the available types it conforms
to. A respective type assignment will not enable access to
the full set of gary’s features, unless some kind of runtime in-
terrogation of features is supported, but it is the prerogative
of the modeler to forgo the respective opportunities.

3.3 Characterization
Object adoption gives the modeler a means to nominate a

type for an object that not only describes but characterizes
the object, i.e., provides the most adequate classification
amongst a given set of types.

o�n T 

o�d T ∧
o.type ≤n T

(10)

An object that has been assigned a characterizing type is
said to be bound –

β(o) =

{
false, o.type = ⊥
true, otherwise

(11)

– e.g. in Fig. 5 both lassie and fido are bound. Note that
they are still described by Animal, Dog, etc. but these rela-
tionships have been omitted from Fig. 5 for clarity.

Of course we have

o�n T → β(o) (12)

Any object characterized by a type is in the latter’s set of
direct instances εdi so with this abstraction of both offspring
and adoptees (cf. (8) & (9)) in place, we can define the
nominal extension of a type:



T.εn = T.εdi ∪ T.εs, where

T.εs =
⋃

Si∈Ts

Si.εn and

Ts = {s | s <n T}

(13)

Figure 6: Unified Framework

Figure 6 visualizes all sets defined so far and illustrates
(13), i.e., that the nominal extension of a type consists of its
direct instances (εdi) and all (indirect) nominal instances
(εs) contributed by its nominal subtypes. Figure 6 also
depicts that the nominal extension (εn) is a subset of the
descriptive extension (εd) and that the complement of the
former with respect to the latter (εd \ εd) can be referred to
as the set of orphans of a type. I suggest the term “orphans”
because these instances may or may not become adoptees of
the type in the future.

3.4 Explicit Subtype Declarations
From requirements R2 and R3 we know that subsumption

on its own would not be sufficient to maintain taxonomies in
a cost-effective manner. The unified framework therefore re-
tains the idea of explicit subtype relationships from nominal
typing. A type S can be declared to be subtype of another
type T , if T subsumes S:

S <e T → S <d T (14)

The explicitly declared subtyping relationships“<e”give rise
to a transitive nominal subtyping relationship:

R <n T 

R <e T ∨
∃S : (R <e S <n T )

(15)

Nominal subtyping should be free of cycles and shortcuts:

acyclic ∀T1, T2, i ≥ 2 : T1<n
i T2 → T1 6= T2

shortcut-free ∀ i ≥ 2 : <n
i ∩<e = ∅.

3.5 Consolidated Classification
With description (�c) and characterization (�n) the frame-

work features two separate typing relationships. In order to
integrate them into a unified framework, I define a consoli-
dated typing relationship “�”: An object o is an instance of

a type T , if and only if, o conforms to T , and o being bound
implies that its characterizing type is (a subtype of) T .

o� T 

o�d T ∧
β(o) → o�n T

(16)

Conformance to T is a necessary but not a sufficient con-
dition for an object o to be regarded as being an instance
of T . This design introduces the third key idea underlying
the proposed framework, i.e., the notion that the descrip-
tive or characterizing role of a type is selected by objects.
Unbound objects, i.e. orphan objects that have no explicit
characterizing type (yet), enjoy the automatic classification
and implicit taxonomy generation known from explanatory
modeling. The framework thus addresses requirement R1.
Bound objects, however, are considered to require a more
stringent treatment. If an object has a characterizing type,
it is assumed to be exacted to discerning classification re-
quirements that go beyond simple descriptive typing. Bind-
ing an object can be regarded as selecting a subset of the
descriptive types as certified types that appropriately char-
acterize a now fully acknowledged citizen of the known uni-
verse. For bound objects, the � relationship essentially dis-
cards the complement of the �n relationships with respect
to the �d relationships. Hence object binding represents a
very cost effective approach to avoid unintended instance
captures (cf. Sect. 2.1). The framework thus satisfies re-
quirements R2 & R3. Retaining the ability for characteriz-
ing types to maintain distinct extensions despite equivalent
intensions furthermore satisfies R4.

3.6 Subtyping
In analogy to the approach used for classification (�),

I finally integrate conformance (<d) and characterization
(<n) into a consolidated classification relationship “<”: A
type S is a subtype of another type T with respect to an
object o, if and only if T subsumes S, and o being bound
implies that S is a nominal subtype of T .

S <(o) T 

S <d T ∧
β(o) → S <n T

(17)

This definition introduces the fourth key idea underlying the
proposed framework, i.e., the notion that subtyping is not
uniformly defined for all objects but distinguishes between
unbound and bound objects. As in the case of consolidated
classification (�), bound objects are subjected to discerning
requirements that go beyond mere conformance checks. For
example in the scenario shown in Fig. 2 we do not want Shape

to indirectly classify Lucky Luke by virtue of being a super-
type of Lucky Luke’s type Cowboy, once we recognized Lucky

Luke as being a cowboy and only a cowboy. Explicitly char-
acterizing Lucky Luke as a cowboy communicates that Lucky

Luke is known to be a person, etc. but not a shape. This im-
plies that only certified subtyping relationships (<n) should
be considered for bound objects. That is why no refactor-
ing is necessary in Fig. 2 if Lucky Luke is bound to Cowboy,
because (with respect to Lucky Luke) Shape will not be consid-
ered a supertype of Cowboy anymore. Shape only subsumes
Cowboy and as this relationship has not been certified into a
nominal subtype relationship, it is not considered for bound
objects with respect to consolidated subtyping.



3.7 Discussion
The purpose of the unified framework is to support both

explanatory and constructive modeling modes without caus-
ing any compromises to either mode. With respect to the
typing disciplines it unifies, the framework achieves this by
retaining the original descriptive typing (�d, <d) and nom-
inal typing (�n, <n) relationships. Therefore, all respective
advantages are retained and the framework thus satisfies R1,
R4, and R5.

The abstracted, consolidated relationships, “�” & “<”,
add value in two ways: First, they give modelers a common
vocabulary and, second, allow shortcomings of one typing
discipline to be addressed by the opposing one. A diverse
set of modelers may therefore work collaboratively despite
different underlying default assumptions of what constitutes
a type/supertype. Whether an object has been assigned a
characterizing type is public information and hence everyone
involved is always fully informed what the types/supertypes
of a particular object are, i.e., how“�”and“<”relationships
are interpreted.

It is worth noting that there are only two categories of ob-
jects which have respective typing rules associated to them:
First, unbound objects are regular objects from a descriptive
point of view. Whether they always existed or are discovered
at some point, the standard descriptive typing rules apply
to them. From a nominal typing point of view these objects
are “orphans” (cf. Fig. 6). A constructive modeler regards
their descriptive types as candidates for a proper charac-
terizing type, but as long as such objects remain unbound,
they can be regarded as quarantined. From a constructive
modeling point of view the descriptive types associated with
an object, in general, are too indiscriminative in order to al-
low the objects to be used with such types in discerning
contexts, such as safety-critical software. Only after using
binding to elevate the status of an orphan to that of a certi-
fied member of a nominal type, will the object be admitted
to critical contexts with the type/supertypes that remain af-
ter all �d \�n have been eliminated as recognized types. As
mentioned before, this scheme prevents cowboys from being
used as shapes or vice versa (cf. Sect. 2.1) without requiring
refactoring or modification of intensions. As a result, R3 is
satisfied.

If a purely descriptive taxonomy already works perfectly,
i.e., if there are no unintended instance captures, there are
two options: Objects classified by such a taxonomy could
be considered as “safe” to use with their respective types.
Alternatively, all automatically derived typing relationships
could be confirmed manually with respective explicit nomi-
nal declarations.

The second category of objects are bound objects. They
are regular objects from a constructive point of view. They
have a known characterizing type, essentially help to sharpen
their types through enumerating the latters’ extensions, and
only acknowledge certain explicitly certified subtype rela-
tionships between their (super-)types. From an explanatory
modeling point of view, bound objects are elect objects that
opted out of certain typing relationships. To support this
capability in a purely explanatory approach, one would have
to consider an oracle that could be called upon in intensions
in order to explain why such objects do not conform to all
descriptive types despite their face value conformance. In
the unified approach, a modeler can take the role of such
an oracle. While it would be possible to embody the mod-

eler’s decisions within type intensions and thus make them
repeatable in an automated manner for any new object dis-
coveries, maintaining such taxonomies would come at a high
cost (cf. Sect. 2.1). Giving modelers the option to avoid such
cost makes the framework satisfy R2.

Due to the fact that descriptive typing relationships do
not disappear for bound objects – they are just not ac-
knowledged in the consolidated “�” and “<” relationships –
it is possible to compare the nominal classification relation-
ships with the descriptive ones. If desired, a model/ontology
may be iteratively refactored – through modifications to the
intensions – until all nominal and descriptive relationships
exactly coincide. Such a set of descriptive types could be la-
beled as “perfectly discriminating”. The fact that the frame-
work supports such endeavors makes it satisfy R6.

Summarizing, modifying the “bound” status of an object
by assigning/unassigning a directly characterizing type to
it – whether actually or just hypothetically – makes it pos-
sible to address shortcomings in one typing discipline by
exploiting the advantages of the opposing one. The respec-
tive “per-object-category switch” for typing rules lies at the
heart of the proposed unified framework. Its novel nature
can be easily understood by phrasing it in terms of descrip-
tion logic [5]: Essentially, “ABox”-facts (whether an object
is bound or not), select one of two available “TBoxes” (i.e.,
typing rules). While this may seem unsettling at first, the
approach should be uncontentious with respect to “�” be-
cause answering questions about an object’s type naturally
depends on the object itself (here, including whether it is
bound or not).

It is considerably more unconventional, though, to make
subtyping relationships between types dependent on object
categories, i.e., to use “<(o)” rather than static relationships
that universally apply to all objects. Yet, I maintain that
it is just a matter of perspective to allow this design to be
recognizable as entirely adequate: After all, subtyping rela-
tionships in themselves are not of particular interest. Their
relevance is created by the implications they have on which
types constitute alternative, indirect types of an object, e.g.,
whether Shape is an indirect type of Lucky Luke or not. If one
phrases the “subtype/supertype” question from the perspec-
tive of an object in the form of“What are an object’s indirect
types?” then it becomes obvious that it is perfectly valid to
make the answer to this question dependent on the object
(here, including whether it is bound or not).

4. CONCLUSION
In this paper I proposed a step towards removing the gulf

between explanatory and constructive modeling technolo-
gies. There are many commonalities between

• ontologies and conceptual models,

• descriptive and prescriptive models,

• and the technologies used to support them.

Essentially, knowledge engineering and knowledge represen-
tation underlie many similar but separated applications of
modeling and while this recognition is a prerequisite for in-
creasing the synergy arising between these separated areas,
the main challenge is to find ways in which the differences
between these separated areas can be addressed.



The work presented here focused on addressing the signif-
icant differences between the typing disciplines that under-
pin explanatory versus constructive approaches. The pre-
sented unifying framework can support both typing disci-
plines while providing consolidating concepts that abstract
away from the differences between them. I believe in order
for the framework to become accepted as a common ba-
sis and thus support further integration of explanatory and
constructive technologies, it is necessary that modelers from
neither camp should have to adapt to any conventions or
even workarounds that are not native to their original ap-
proach. I therefore retained the core of each typing discipline
and provided an additional abstracting layer of consolidat-
ing notions on top of them, plus a mechanism to allow fluid
transitioning between the typing disciplines. I maintain that
the proposed framework succeeds in allowing modelers with
diverse background assumptions to agree on classification
and subtyping relationships without compromising the ad-
vantages of their familiar typing discipline. On the contrary,
judicious use of transitioning objects between typing disci-
plines can address the shortcomings inherent to either typing
discipline.

The framework I propose is based on four key ideas:

1. All types have two roles; a descriptive role (through
their intension) and a characterizing role (through ex-
plicitly maintaining an extension).

2. Discovered objects can be assimilated into a nominal
typing regime through object adoption, i.e., by assign-
ing a characterizing type to them. The resulting ab-
straction of direct instances of a characterizing type
is a generalization of both generated instances and
adoptees.

3. Whether consolidated classification only considers char-
acterizing types or also includes descriptive types de-
pends on the status of the object in question. If an
object is bound – i.e., has a characterizing type – then
all purely descriptive types are not acknowledged as
consolidated classifiers.

4. Consolidated subtyping also makes a difference be-
tween unbound and bound objects. From a nominal
perspective, these object categories represent orphans
and certified citizens respectively. For certified citi-
zens, the set of (indirect super-) types is reduced to
those that are established by explicit certified subtyp-
ing relationships, as opposed to being based on the
typically much more liberal subsumption relationships.

As discussed in Sect. 3.7, this approach satisfies all re-
quirements that were collected in the initial trade-off anal-
ysis of the typing disciplines (cf. Sect. 2). In addition, the
framework supports a mixed mode environment in which no-
tions like quarantining and adoption are supported. These
notions do not exist in either typing discipline separately but
enable a collaborative cooperation between diverse modelers
in the unified framework, or alternatively, simply enable a
single modeler to choose the most appropriate typing ap-
proach for a task at hand.

The trade-off analysis revealed that descriptive typing is
strong on automatically recognizing the maximum amount
of classification potential and equally excels at explicitly cap-
turing the nature of types, making the latter self-document-
ing. Its weaknesses – a high cost of maintaining intensions

and useful taxonomies – are perfectly addressed by nominal
typing with its cost-effective “by declaration” approach to
classification. Conversely, the weaknesses of nominal typing
– the potential of an over-reliance on type names rather than
explicit definitions and the inability to deal with discovered
objects – are perfectly addressed by descriptive typing and
the notion of object adoption.

The completeness with which descriptive and nominal typ-
ing complement each other suggests that their integration
into one unified framework should not only be regarded as a
means to reduce a gulf between separated worlds, but rather
as a desirable typing discipline in its own right.

5. FUTURE WORK
In order to increase the clarity of presentation I did not

formally capture time, i.e. the possibility for dynamic ex-
tensions to grow and shrink over time, and the possibility of
known universes to expand due to object discovery. For a
similar reason and due to space constraints, I did not discuss
“multiple classification” either, i.e., the ability of an object
to have multiple direct types. I plan to add both aforemen-
tioned aspects in the future.

A less clearcut question is how to define the semantics of
“potency” [4] in the unified framework. In its present form
the framework only addresses two-level paradigms in the
form they are commonly encountered in explanatory tech-
nologies. Increasingly, however, both explanatory and con-
structive environments support multi-level modeling and the
presented framework should therefore be extended to cover
multiple levels of classification, including “potency” specifi-
cations.

Since the framework is intended to improve practical mod-
eling, I plan to implement the presented ideas with a tool.
The open source project Melanee [3] is an excellent plat-
form to validate the approach and support an exploration
of appropriate interaction patterns regarding quarantining,
adoptions, etc. Melanee already supports both explanatory
and constructive modes of modeling to some extent [16] and
ideas regarding identifying type candidates and assigning
characterizing types are currently explored as part of a mas-
ter thesis that aims at adding better connection support to
Melanee [10]. A respective implementation will furthermore
facilitate the exploration of ideas such as allowing abandon-
ment as an inverse to adoption. Such an operation would al-
low instances to be created from a known type (e.g., Cuckoo)
and let them be adopted by other types (e.g. Sparrow), for
example to explore how a system would respond to potential
future adoptions of discovered objects.

A tool supporting the unified framework could moreover
provide means to measure how close a descriptive taxon-
omy is to being “perfectly discriminating” (cf. Sect. 2.1.2).
Further taxonomy styles could be identified and checked by
the tool, such as a “minimally concrete”-style, in which only
leaf types in a taxonomy are allowed to be characterizing
types [14].
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