
Meaningful Metrics for Multi-Level Modelling
Thomas Kühne

Victoria University of Wellington

Wellington, New Zealand

thomas.kuehne@ecs.vuw.ac.nz

Arne Lange

University of Mannheim

Mannheim, Germany

lange@informatik.uni-mannheim.de

ABSTRACT
One of the key enablers of further growth of multi-level modeling

will be the development of objective ways to allow multi-level mod-

eling approaches to be compared to one another and to two-level

modeling approaches. While significant strides have been made

regarding qualitative comparisons, there is currently no adequate

way to quantitatively assess to what extent a multi-level model may

be preferable over another model with respect to high-level quali-

ties such as understandability, maintainability, and control capacity.

In this paper, we propose deep metrics, as an approach to quanti-

tatively measure high-level model concerns of multi-level models

that are of interest to certain stakeholders. Beyond the stated goals,

we see deep metrics as furthermore supporting the comparison

of modeling styles and aiding modelers in making individual de-

sign decisions. We discuss what makes a metric “depth-aware” so

that it can appropriately capture multi-level model properties, and

present two concrete proposals for metrics that measure high-level

multi-level model qualities.

CCS CONCEPTS
• Software and its engineering → Software design engineer-
ing; •Computingmethodologies→Modelingmethodologies.

KEYWORDS
multi-level modeling, metrics, model comparison

ACM Reference Format:
Thomas Kühne and Arne Lange. 2020. Meaningful Metrics for Multi-Level

Modelling. In Proceedings of MULTI 2020: International Workshop on Multi-
Level Modeling in conjunction with MODELS ’20: ACM/IEEE 23rd International
Conference on Model Driven Engineering Languages and Systems Proceedings
(MULTI 2020). ACM, New York, NY, USA, 9 pages. https://doi.org//10.1145/

nnnnnnn.nnnnnnn

1 INTRODUCTION
Multi-level modeling as a field has two ways to grow. First, it could

increase the level of adoption by furthering its case through objec-

tive demonstrations of the superiority of multi-level models over

two-level models. While many convincing qualitative arguments

have been made [21] and deficiencies in using two-level approaches

have been pointed out [9], the more persuasive approach of using

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

MULTI 2020, October 16–23, 2020, Virtual
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $0.00

https://doi.org//10.1145/nnnnnnn.nnnnnnn

quantitative comparisons has not been fully utilized yet. Gerbig

used a metrics-based approach to compare a multi-level model to

a two-level equivalent [15], but since he employed relatively ba-

sic two-level metrics, the comparison was not suited to measure

high-level qualities in a manner that would adequately reflect the

idiosyncrasies of a multi-level model.

The secondway inwhichmulti-level modeling can grow as a field

is to support objective comparisons between various multi-level

modeling approaches [4, 8]. Previous attempts at comparing multi-

level languages with each other were based on language feature

comparisons [2, 18] or employed so-called “Modeling Challenges”

to qualitatively compare different multi-level modeling approaches

through standardizing the domain and requirements [1, 11]. The

latter have allowed to approach observing the concrete effect lan-

guage choice may have on model properties such a complexity.

However, while some intuitive evaluation criteria such as model

size and model maintainability exist, no standardized definitions

were put forward in these challenges and no attempt at achieving

quantitative comparisons was made.

Metrics are a commonly accepted approach for supporting the

objective evaluation of software artifacts such as programs or mod-

els [16]. While some low-level metrics such as “depth of inheritance”

may not be directly meaningful in term of more high-level and com-

plex qualities such as “maintainability”, metrics overall have the

potential to produce at least useful indicators for important model

qualities. As long as a community can agree that particular metrics

correlate with desirable model qualities, metrics can be an objective

and inexpensive method to compare models to each other. Such

comparisons could reveal differences between various multi-level

modeling approaches, as their respective differences in choice of

concepts will imply different models for the same domain scenario.

Metric-based comparisons could furthermore reveal differences be-

tweenmulti-level vs two-level solutions, ideally accounting for both

negative and positive aspects of using multiple levels instead of just

two. Finally, metrics could be utilized to compare modeling styles

to each other or even support modelers in making micro-design

decisions.

In the following, we first clarify what exactly we want to target

with our metrics in the context of multi-level modeling. Next we

discuss the notion of meaningful metrics. Subsequently, we look at

what deep metrics need to take into consideration in comparison

to traditional metrics. We then briefly discuss two deep metrics

candidates. Finally, we discuss related work, potential future work,

and conclude.

https://doi.org//10.1145/nnnnnnn.nnnnnnn
https://doi.org//10.1145/nnnnnnn.nnnnnnn
https://doi.org//10.1145/nnnnnnn.nnnnnnn

MULTI 2020, October 16–23, 2020, Virtual Thomas Kühne and Arne Lange

2 METRICS TARGETS
Prior to measuring something, it is important to define what ex-

actly should be measured. Some traditional software metrics target

qualities such as robustness, efficiency, availability, reliability, etc.

which are clearly properties of the final product (e.g., deployed

code), rather than properties of the source (e.g., a model or source

code). Fig. 1 labels the target of respect metrics as “Product Quality”.

Some authors refer to such qualities as “external quality character-

istics” [26]. Analyzing a model may support predictions of such

product properties, but the properties are nevertheless properties

of the product as opposed to properties of the model.

Product
Quality

Model Product

Model
Quality

Model
Adequacy

Subject

Intrinsic Problem
Complexity

Figure 1: Potential Metrics Targets

It can also be useful to measure how adequate the model is

with respect to its subject (cf. Fig. 1 “Model Adequacy”). Relevant

questions include: Does the model –

• cover the subject with respect to its intended purpose?

• achieve sufficient fidelity with respect to the subject and the

model’s purpose?

• exhibit “direct mapping” [28]?

• add “accidental complexity” [7] to the “Intrinsic Problem

Complexity” shown in Fig. 1?

All these questions can only be answered by considering both

the subject of the model and the model in combination.

Finally, there are qualities associated with a model that can be

assessed without reference to the model’s subject and that are not

directly associated with the product either. Model size, coupling be-

tween and cohesion of model elements (cf. [17]), understandability,

and maintainability are examples for what in Fig. 1 is referred to

as “Model Quality” and some authors refer to as “internal quality

characteristics” [26].

In the following, we will focus on the latter model qualities. Ex-

amining product quality is out of scope sincewith respect to product

properties it is (almost, see below) irrelevant what the model quali-

ties of any supporting models are. Examining model adequacy, on

the other hand, would very much be on-topic, in particular with

respect to comparing multi-level models to two-level models. How-

ever, such investigations necessitate the formalization of the subject

(domain of discourse) (cf. [19]). For the purposes of this paper, we

therefore focus on model properties whose measurements only

involve the model itself.

We note, however, that model qualities are

(1) influenced by model adequacy, and are

(2) expected to have an indirect impact on product quality.

Regarding (1), in particular, accidental complexity [7] is understood

to impact on internal model qualities such as understandability

and maintainability. As such, measuring model qualities could very

well imply indirectly measuring, at least in part, model adequacy.

Comparisons based on measuring models therefore either need

to ensure that the models to be compared share the same level of

adequacy, or indeed, could infer that different quality measurements

are due to different levels of adequacy (e.g., in multi-level vs two-

level comparisons).

Regarding (2), since internal qualities are generally acknowl-

edged to be the key to achieving external qualities (here “Product

Quality”) [32], it is not only useful to initially focus on model prop-

erties for pragmatic purposes, but also in terms of overall relevance.

Note that we will restrict our focus to metrics relating to model

elements and their relationships. Considering the internals of oper-

ations (e.g., clabject methods) would open up the scope to include

notions like McCabe’s cyclomatic complexity [25], but are not of

immediate interest here.

3 MEANINGFUL METRICS
There are many low-level metrics, such as “class count”, “attribute

count”, “average subtyping depth”, etc., that are trivial to obtain but

have a very tenuous, if any, relationship to high-level qualities like

understandability and maintainability. Even more complex metrics

such as coupling [10], measure a technical property that is not

necessarily of interest to stakeholders. Only if, for instance, coupling

is reliably correlated to a high-level quality such as maintainability,

should it be considered as contributing to the latter’s measurement,

and can then be regarded as being stakeholder-relevant.

Note that Sommerville refers to low-level metrics as measuring

“internal quality attributes” and to stakeholder-relevant qualities as

“external quality attributes” [32]. Since this use of the “internal” vs

“external” dichotomy conflicts with the terminology of other authors

such as McConnell [26], we refrain from using this terminology

altogether and use the terms “low-level” vs “high-level” when it

comes to characterizing the level of ambition a metric has with

respect stakeholder view relevance.

Table 1 lists the stakeholder views we regard as relevant in the

context of this paper. None of these could be adequately supported

by low-level metrics such as “number of elements”, “depth of spe-

cialization”, etc. In order to be ameaningful metric to the respective
stakeholders, a metric has to correlate with a high-level model

quality. In other words, we essentially see a “stakeholder relevance”

dimension running orthogonal to the target dimension shown in

Fig. 1 – which spans a spectrum of very simple low-level measure-

ments to complexly defined high-level metrics.

View Variable Outcome

language

comparisons

language choice

demonstration of

language superiority

multi- vs

two-level

classification depth multi-level pros/cons

modeling

guidelines

modeling style

style trade-off

analysis

model

development

individual design

decisions

design optimization

Table 1: Stakeholder Views

Meaningful Metrics for Multi-Level Modelling MULTI 2020, October 16–23, 2020, Virtual

A spectrum of metrics with increasing level of importance to

multi-level modeling could be defined as follows:

(1) Two-level metric. Classic, two-level metric.

(2) Depth-unawaremulti-levelmetric.Classicmetric applied

to a multi-level model.

(3) Low-level deepmetric. Low-level metric which recognizes

classification depth in a multi-level model.

(4) High-level deep metric. High-level metric which incorpo-

rates classification depth in order to produce a measurement

that correlates with a stakeholder view.

To date, to the best of our knowledge, only metrics up to level

(2) have been used in multi-level modeling research. The level (3)

metrics are relatively “low hanging fruit” since they amount to

determining properties such as “maximum classification depth”

that are analogous to similar metrics on specialization hierarchies.

The metrics we are most interested in are the level (4) metrics.

4 DEEP METRICS
There are two aspects of multi-level models that traditional, object-

oriented metrics do not have to consider: The presence of

(1) an unbounded number of classification levels [5], and

(2) deep characterization [6].

4.1 Classification Dimension
Standard object-oriented metrics do not need to consider deep

classification chains. For instance, when analyzing dependencies

between elements, the only elements that may be affected due to

changes to their types are the bottom-level (O0) objects. Therefore,

in a two-level setting the only elements that may easily have an

impact on types upon change are supertypes. Note that in this

context, we are not considering the impact of changes that may

occur through associations; this type of dependency constitutes its

own impact category since it can be partially addressed through

encapsulation. Rather, we are focusing on change impact that occurs

through subtyping interfaces (or lack thereof) which intentionally

offer weak protection only.

Subtypes and their supertypes often tightly interact through

shared attributes and overridden operations, resulting in excellent

code sharing and extensible systems, which is why such designs are

considered to be an integral part of the object-oriented approach.

However, even though natural and intended, such tight integration

comes at the cost of having very little protection against ripple

effects when changes occur anywhere within a subtype hierarchy

branch. The strong mutual dependency between subtypes and their

supertypes has lead authors to recommend composition/forwarding
over inheritance [14].With respect to operations, the respective lack

of encapsulation between subtypes and supertypes leads to the so-

called fragile base class problem [29]. Visibility scopes such as private
in C++ or Java are intended to alleviate the fragility challenge

but obviously cannot always help without entirely negating the

advantages of subtyping. In summary, subtyping introduces some

level of error-proneness and change dependency which we refer to

as subtyping-induced fragility.
To illustrate the case of subtyping-induced fragility, consider

Actor in Fig. 2 which is a supertype of two subtypes: SeniorActor
and StdActor. When Actor was initially created, it embodied the

requirement that all actors had to be available for eight hours per

day. If subsequently the availability requirement for actors is relaxed

from eight hours to four hours per day, e.g. to allow for part-time

actors, and established at Actor, this change will have a ripple effect
on SeniorActor. Senior actors are still required to be available for

eight hours per day, so the respective requirement now has to be

established at SeniorActor. If SeniorActor had any subtypes, then the

fix to SeniorActor would restore the original requirement for these

as well, illustrating that ripple effects are typically expected to die

off near the “epicenter” of the change.

Inmulti-level models, types (at any level) may not only be derived

from supertypes but may also be – and in fact are expected to be –

derived from their own type at the level above. As a result, both the

supertype and the type of a type (at any level) can determine the

latter’s shape in a multi-level model. Hence, a similar dependency

to that between supertypes and subtypes exists in the form of

classification-induced fragility for any ontologically typed element

at any level in a multi-level model. Both sources of fragility can be

viewed as being caused by a derivation dependency. We consider

classification-induced fragility in Sect. 5.1 when proposing a metric

for predicting the impact of change to a multi-level model.

4.2 Deep Characterization
The presence of metatypes (of any order) in multi-level models

obviously not only has a detrimental impact on models. As a matter

of fact, metatypes can reduce error-proneness when used to enforce

certain structures at subjacent levels.

Metatypes (of any order) are used to their fullest potential when

they exert deep characterization. For instance, a ProductType element

at level O2 can enforce the presence of a price slot for all product
instances at level O0, without depending on product types such

as DVD to engage in a powertype scenario [6]. This means that

any modeler who introduces a new product type to the system can

never fail to make the new product instances have a price slot. Fig. 2
shows the deep metatype TaskType as performing an analogous role,

ensuring that task enactments, such as PythonCoding, are guaranteed
to have a duration slot. We consider this highly welcome increase

of control when proposing a metric for capturing the increase of

guarantees afforded by deep models in Sect. 5.2.

5 SPECIFIC METRIC PROPOSALS
In this section we propose two deep metrics whose validity still has

to be established. Both are specifically designed to be applicable to

deep models and are intended to provide meaningful measures of

high-level model qualities.

5.1 Expected Change Impact
The “Expected Change Impact” (ECI) metric is intended to be used in

contexts in which individual model elements are subject to change

with a certain probability. The intent of the metric is to predict

the expected impact of such changes, on average, including ripple

effects. For now, we are only considering ripple effects caused by

derivation dependencies (cf. Sect. 4.1), but the ECI metric should

nevertheless correlate well with the notion of the maintainability
of a model. The higher the expected overall change of impact, the

MULTI 2020, October 16–23, 2020, Virtual Thomas Kühne and Arne Lange

transitions2

O2

uses2

produces2

O1

uses1

produces1executes1

transitions1

transitions1

reviews2

executes2

reviews1

ActorType2TaskType2

duration: int

ArtefactType2

ProcessElementType0

Actor1
:ActorType

yearsExperience: int

Task1
:TaskType

duration: int

SWEngineeringArtefact1
:ArtefactType

RequirementSpecification1
:ArtefactType

RequirementAnalysis1
:TaskType

duration: int

StdActor1
:ActorType

SeniorActor1
:ActorType

Design1
:TaskType

duration: int

Coding1
:TaskType

duration: int

ProgramLanguage1
:ArtefactType

version: String

Code1
:ArtefactType

numberOfLines: int

O0

executes0
uses0

produces0

executes0

transitions0

executes0 produces0

transitions0

reviews0

reviews0

executes0

ChadColeman0
:StdActor

yearsExperience = 2

ModelAppAnalysis0
:RequirementAnalysis

duration = 5

PythonCoding0
:Coding

duration = 25

ModelApp0
:Code

numberOfLines = 10456

Python0
:ProgramLanguage

version = '3.7'

DanDacosta0
:SeniorActor

yearsExperience = 21

ModelAppRequirements0
:RequirementSpecification

numberOfPages = 10

BobBrown0
:SeniorActor

yearsExperience = 4
ModelAppDesign0

:Design

duration = 15
EricEchols0
:SeniorActor

yearsExperience = 4

AnnSmith0
:SeniorActor

yearsExperience = 24

Figure 2: Multi-level model with applied metrics

Meaningful Metrics for Multi-Level Modelling MULTI 2020, October 16–23, 2020, Virtual

more costly it is to maintain a model, assuming that all ripple effects

must be attended to manually, incurring some labor cost.

In this context it is useful to define a local impact scope that
comprises all elements that may potentially require attention after

a particular element is changed. For instance, changing a type may

affect the classification hierarchy upwards (i.e., its type and so on,

recursively), the classification hierarchy downwards (i.e., its direct

instances and so on, recursively), and analogously both upwards

and downwards directions for the subtype hierarchy.

In order to maintain simplicity and since respective further con-

tributions are expected to be negligible, for now we only consider

the first-order impact scope of an element; Fig. 2 marks the ele-

ments in the first-order impact scope of SeniorActor, using triangles

(classification) and circles (subtyping).

The ECI metric is intended to account for the following kinds of

ripple effects:

• well-formedness repairs that become necessary within the

impact scope of a changed element. For instance, moving

an operation down from a supertype to a subtype may re-

quire the removal or change of operations in other subtypes

that previously claimed to override a supertype operation.

While such well-formedness repairs can in some cases be

automated (e.g., adjusting a changed potency value in all

derived elements [3]), not all can.

• model adequacy repairs that are required to maintain the

model’s level of fidelity in terms of representing the domain.

For instance, changing the meaning of a class may imply a re-

structuring of all derived classes, whether they are subtypes

or instances of the changed class.

Every particular change to a model element will have a very

specific impact, ranging from zero ripple effect, i.e., an entirely

local change, to a change affecting every element in the element’s

impact scope. In the worst case, every element in the entire model

could be impacted, if a respective change occurs to a pivotal element,

such as a global suptyping root.

As a result, the ECI only attempts to predict average impact

values caused by changes to elements ci , i.e., an average of many

actual impact values that can be observed over a long time:

lim

n→∞

(
1

n

n∑
i=0

ECI (ci)

)
= lim

n→∞

(
1

n

n∑
i=0

actual-impact(ci)

)
(1)

To this end, we use the concept of an expected value from prob-

ability theory, i.e., the probability-weighted average of individual

events xi :

E[X] =

n∑
i=0

xi ∗ pi (2)

An elegant way to define ECI according to this notion is to

express it as the vector dot product between a probability (likelihood

of change) vector and an impact (impact of change) vector:

ECI [I] = ®L · ®I =

©­­­­­­­«

LoC(c1)

LoC(c2)

...

LoC(cn)

ª®®®®®®®¬
·

©­­­­­­­«

IoC(c1)

IoC(c2)

...

IoC(cn)

ª®®®®®®®¬
(3)

5.1.1 Likelihood of Change. The likelihood with which a partic-

ular element will be subject to an initial change – which in turn

may create ripple effects – depends on the context. Here, we are

assuming an open world scenario in which a descriptive model is

intended to represent a domain and in which, from time to time,

new kinds of individuals are discovered. Each such found individual

needs to be accommodated by some type of descriptive model. We

could require modelers to assign a probability pt to each type t in
the model, which reflects the likelihood with which they expect t
to require a change. This would give us:

LoC(t) = pt

However, such an approach would be far too demanding on model-

ers. Instead, we suggest that modelers only assign a probability ph
to each topmost ancestor root in the system which reflects the prob-

ability of a change occurring anywhere in the hierarchy (relative to

other hierarchies). This allows modelers to express different levels

of stability for respective hierarchies while drastically reducing the

effort through computing the probability of the vast majority of

elements based on the root probabilities.

For the respective probability computation we are making two

assumptions:

(1) a type is less likely to change, the higher up a hierarchy it is

positioned.

(2) the probability of siblings in a type’s extension or subtype

partition is uniformly distributed.

Regardless of whether the classification hierarchy or the subtype

hierarchy is concerned, types at higher levels/layers are less likely

to require change since their higher level of abstraction provides

them with more immunity against the need for revision. From (2)

it follows that the combined probability of any of n siblings to

require change is independent of n, but that the likelihood for each

individual sibling to require change is reduced by the factor
1

n .

Therefore, assuming that the factor with which the probability

of change changes when going upwards the hierarchy is
1

fc
, i.e., in

the case of a single descendant fc =
pt

pancestor(t)
, the probability of an

element t changing can be calculated recursively:

p(t) = p(t ,
ph (t)

ptotal(root(t))
)

where

p(t ,pr) =

pr , ansc(t) = 0

fc
|siblings(t) | ∗ p(ancestor(t),pr), otherwise

and

ptotal(t) = p(t , 1) +
∑

e ∈descendants(t)

ptotal(e)

We are using ptotal(root(t)) to normalise the probability for the

top element of the hierarchy such that the total probability of all

elements in the hierarchy sums up to ph (t).
In order to obtain the full formula for LoC, we need to use the

above function and employ it for the classification (7→ t_p(t)) and
subtype hierarchies (7→ s_p(t)) respectively. We anticipate that

these hierarchies do not contribute to the likelihood of change in

equal measure which is why we introduce a type weight factor tw

MULTI 2020, October 16–23, 2020, Virtual Thomas Kühne and Arne Lange

for the classification hierarchy contribution and then normalize the

result with the denominator 1 + tw:

LoC(t) =
1

1 + tw
(s_p(t) + tw ∗ t_p(t)) (4)

Ideally, empirical experimentation should be used to obtain the

appropriate tuning for tw. In the absence of any empirical input,

one may assume tw = 1.

5.1.2 Two-Dimensional Fragility. When a model element is altered

during the lifetime of the model, the change might have certain

effects on associated elements in its impact scope. In order to il-

lustrate the impact scope of SeniorActor in our example (cf. Fig. 2)

the triangles denote the impact scope in terms of the classification

hierarchy and the circles denote for the impact scope in terms of

the inheritance hierarchy, i.e., SeniorActor’s impact scope for the

subtyping dimension only contains Actor, but its impact scope in the

classification dimension contains BobBrown, EricEchols, AnnSmith,
and DanDacosta, plus ActorType .

In order to predict the average “impact of change” (IoC) for a
given element t , we first define a context-free impact:

IoC(t) = it

The value it represents the impact (i.e., effort proxy) of dealing with

the change required for element t locally, without involving any

other elements.

If the element t has a direct ancestor then there is an average

probability with which it can cause a ripple effect on the latter.

We define the additional impact caused by such a direct neighbor-

induced impact as it ∗ ip_up. In other words, ip_up is an impact

dampening factor (ip_up < 1). With ip_up set to 0.25, for instance,

the effort-of-change proxy for a direct ancestor of t would be 25%

of the effort of changing t itself. We expect this impact value to

decrease exponentially with the distance of the ancestor. Hence an

ancestor with distance d will make the following contribution to

the overall impact:

Impact_Contribution(d) = it ∗ ip_upd

The total sum of all ancestor impact factors for an element t with
ansc(t) ancestors is therefore

IoCa (t) =
ansc(t)∑
i=1

ip_upi

We assume the absence of multiple classification and multiple in-

heritance, which makes the above formula complete.

Analogously, the total sum of all descendant impact factors for

an element t with a single linear descendant chain of depth desc(t)
is:

IoCd (t) =
desc(t)∑
i=1

ip_downi

Since elements can have multiple direct descendants – whether

these are instances or subtypes – we need to sum over all of these

descendants and apply IoCd recursively:

IoCd (t) =

1, descendants(t) = �∑
e ∈descendants(t)

ip_down ∗ IoCd (e), otherwise

Combining the downward and upward impact contributions in

both classification and subtyping dimensions, and multiplying the

impact factor contributions with the local impact value it yields:

IoC = it ∗

©­­­­­­­­­«

1

+

s_IoCd(t) + s_IoCa(t)

+

t_IoCd(t) + t_IoCa(t)

ª®®®®®®®®®¬
(5)

There is no need for an explicit weighting factor for the classifi-

cation dimension in this formula because different contribution

strengths can be chosen via respective s_ip_up, s_ip_down, t_ip_up,
and t_ip_down factors.

Also, note that we do not normalize the impact with respect

to the size of the impact scope since the overall impact actually

increases with the size of the impact scope.

5.2 Control Capacity
The second concrete metric we propose is intended to measure the

control capacity (CC) of a multi-level model. Note that indepen-

dently of the number of levels, bottom level (O0-level) elements can

never control any other elements and top level elements are not (on-

tologically) controlled by any other elements. Hence, two-level ap-

proaches imply type level (O1) anarchy since there are no limitations

(outside generic language well-formedness rules) that constrain

modeler activity at the (top level) type level. Such a lack of control

makes it impossible to ensure any intended structure/organization

at the type level. This, in turn, increases error-proneness since it is

then possible to inadvertently violate design requirements or fail

to adhere to mandatory structural constraints.

Hence it is desirable to use levels O2 and above to control O1

level content. The tighter the control exerted by levels higher up

the classification hierarchy, the fewer errors can be made.

A very crude approximation forCC would be the ratio of clabjects

that are ontologically typed versus the total count of clabjects. With

Ct as the set of ontologically typed clabjects –

Ct = {c | ∃T : c ▹T }

– and C the set of all clabjects we have as a first approximation:

CC =
|Ct |

|C |
(6)

Note that in a two-level model, no O1-level clabjects can make a

positive contribution to CC in terms of being classified by a type.

While it is unavoidable to have some number of untyped elements

in a non-self-terminating ontological classification hierarchy (i.e.,

|Ct |
|C |

can never reach 100%), a multi-level modeling hierarchy is

nevertheless intrinsically better equipped to maximize CC.
A more refined approach to calculating CC needs to

(1) consider control through supertypes, and

(2) account for the depth of control.

Supertypes impose the presence of features just as (deep) types do.

While it could be argued that any element is more likely to have

an ontological type than it is to have one or more supertypes, it

is most certainly the case that once a supertype is nominated, the

Meaningful Metrics for Multi-Level Modelling MULTI 2020, October 16–23, 2020, Virtual

latter exerts some level of control, e.g. guaranteeing the presence

of fields, operations, and relationships to other elements.

For both the classification and subtyping dimensions it can be

argued that the further the reach of control, the more powerful it

can be considered to be. For instance, a deep O3-level type with

potency-3 features will impose more order on the whole multi-level

model than a regular O1-level type. However, we should ensure to

not “overcount” control capacity in order to avoid giving too much

weight to elements with deep control. If we simply replaced each

element that counts as 1 in |Ct | with its ancestor count then the

overall sum would entail cumulative contributions, e.g., the deep

classification of PythonCoding in Fig. 2 would not just result in a

weight of 2 (with TaskType being two levels up), but in 2 + 1 = 3 as

the contribution 1 from Coding would also be counted.

Therefore, to calculate CC – for now only taking the classifica-

tion dimension into account – we only consider elements without

descendants:

C⊥ = {c | descendants(c) = �}

We can then define:

CC =
1

|C |

∑
e ∈C⊥

ansc(e) (7)

Note that Eq. 7 produces the same result as the earlier crude ap-

proximation
|Ct |
|C |

if there are only two levels. Eq. 7 produces more

adequate results than the crude approximation if there is a high

proportion of deep characterization (since summing up all branch

lengths in a tree yields a higher value than counting its edges).

For the full definition of CC we now only need to consider the

suptype dimension as well:

CC =
1

|C | ∗ (1 + tcw)

©­­­­­­­«

∑
e ∈Cs⊥

ansc_s(e)

+

tcw ∗
∑

e ∈Ct⊥
ansc_t(e)

ª®®®®®®®¬
(8)

The weight tcw is used to adjust the contribution from classification

to control capacity versus the contribution from generalization.

Again, we are not claiming to be in possession of an empirically

justified value for tcw. A value of 1 would achieve equal contribution

from both dimensions.

6 RELATEDWORK
Atkinson and Kühne applied a minimalistic metric – number of ele-

ments in a model – when comparing the complexity of multi-level

models with two-level models [7]. The underlying assumption was

that requiring fewer model elements to describe the same subject

indicates less accidental complexity and thus aids understandibility

and maintainability.

De Lara et al. included references/associations, stereotypes, and

pattern occurrences in their respective size metric [21].

Rossini et al. [31] compared a two-level version of a cloud mod-

eling language called CloudML, which employs the type-object

pattern [24], to a multi-level modeling version. The authors also

assume that a small model size is desirable because a larger model

is harder to comprehend. Of the high-level evaluation criteria they

considered, “extensibility” is the one most related to our ECI metric.

Rossini et al.’s “extensibility” relates to minimizing impact on re-

lated modeling elements when adjusting a model, e.g., to increase its

adequacy. They found the multi-level model to be more extensible

than its two-level counterpart.

Gerbig compared a multi-level model to a standard two-level

UML model [15]. As well as numerous standard object-oriented

design metrics [10, 22, 23, 30], he also applied the aforementioned

minimalistic accidental complexity metric, applying it separately

to different kinds of model elements, e.g., classes versus connec-

tions. Gerbig also used the following compound metric definition to

measure “complexity”:
AW F+AAP

DSC , where AWF is the average well-

formedness rules count, AAP is the average additional operations

count, and DSC is the design size (class count). Further high-level

model qualities he considered include reusability, understandabil-

ity, and extendability. For these, Gerbig used the relatively simple

compound metrics defined in [23, Tab. 8] and applied them to both

a multi-level model and a two-level model.

McQuillan and Power observed that the majority of UMLmetrics

are low-level “counting metrics” [27]. They furthermore point out

that some popular metrics such as Halstead’s metrics are often

criticized for not having been demonstrated to correlate well with

high-level model quality attributes. McQuillan and Power moreover

point out that some standard software metrics intended to measure

code quality can straightforwardly be used on models, mentioning

in particular Chidamber and Kemerer [10] which were used by

Gerbig (see above).

De Lara et al. proposed and used three quality metrics for level

contents – reusability, domain-specificity, and simplicity – when

evaluating the impact of model refactorings on these quality as-

pects [20]. The notion of domain-specificity is related to our notion

of control capacity since the former is defined by the relative count

of linguistic extensions in a level, i.e., the ratio of elements which

are not ontologically classified. De Lara et al. thus maintain that less

control over level content indicates increased domain-specificity of

said content.

Athena is a language-independent and customizable software

metrics tool [33]. Focused on programming languages, Athena

supports Pascal, Ada, and C, and not only offers the possibility

of measuring a set of kernel metrics but also features a specially

designed specification language that allows further design and

code metrics to be easily added. We believe that an analogous tool

supporting deep model metrics would be very desirable.

Vanderfeesten et. al. presented an approach for applying metrics

to business process models [34]. They employed the ProM tool

to compute the metrics “complexity”, “cohesion”, “coupling”, and

“modularity”. In order to evaluate the “cohesion” and “coupling”

metrics the ProM tool transforms models into graphs from which

the metrics are computed.

The “Maintainability Index (MI)” is a compound metric that

was designed to correlate with the maintainability of a system

by calculating the weighted sum of four standard metrics [12].

Despite its adoption in Visual Studio, the metric has a number of

detractors that doubt its adequacy. Nevertheless, this compound

metric is relevant in our context since it attempts to measure a

high-level quality, and due to the empirical approach which was

used to determine the weight values. A regression analysis was

MULTI 2020, October 16–23, 2020, Virtual Thomas Kühne and Arne Lange

used to determine the weights based on the values of the lower-

level metrics and developer verdicts about the maintainability of

the measured systems. We propose that values for deep metric

parameters, such as the ones used in Sect. 5, could be obtained in a

similar way.

7 FUTUREWORK
In this paper we have outlined some of the issues involved in defin-

ing meaningful deep metrics on multi-level models, and have pre-

sented examples of what such metrics could look like. This line of

work could be continued in a number of directions, including –

• investigating further deep metrics for model qualities,

• expanding the scope to model adequacy metrics,

• the consideration of (deep) connections [13], and/or opera-

tion bodies,

• developing a universal, abstract representation of multiple

multi-level models, that would allow standardized metric

definitions to be applied to multi-level models regardless of

the native language they are expressed in,

• building an environment using this universal representation

approach which is able to accept custom metric definitions,

and

• using multiple multi-level models and open world scenarios

in order to ascertain empirically motivated values for the

“dampening” and “likelihood” parameters used in Sect. 5.

8 CONCLUSION
In this paper we have motivated the utility of deep metrics as a way
to extend the community’s ability to compare multi-level modeling

approaches, not only to each other but also against two-level ap-

proaches. Beyond supporting such comparisons, deep metrics will

also allow comparative evaluations of various models expressed

in the same multi-level modeling language, but employing differ-

ent modeling styles. Even single fine-grained modeler decisions

could be supported by quantitative predictions regarding high-level

model qualities.

As samples of the kind of metrics we are envisioning, we pre-

sented two deep metrics for computing the expected impact change
and the control capacity for models respectively. The novel no-

tion of control capacity is particularly destined to be suitable to

demonstrate measurable advantages of multi-level models over

two-level models. We do not claim that these proposals represent

ready-to-employ solutions; certainly we did not attempt to suggest

any concrete values for the parameters with which these metrics

can be tuned. Instead, our main purpose was to illustrate the value

a deep classification dimension can provide and to give an idea of

the (very manageable) complexity involved in defining metrics that

attempt to correlate with high-level model qualities.

While significant further work is still necessary to make the

vision of a community-accessible tool for comparing multi-level

approaches a reality, once this kind technology has become avail-

able, it will provide an objective method to quantitatively evaluate

multi-level models with respect to relevant high-level qualities such

as understandability, maintainability, and control capacity.

ACKNOWLEDGMENTS
We thank Colin Atkinson for extensive discussions related to the

topics of this paper and comments on an earlier version of this

paper. We also thank the anonymous reviewers for their helpful

remarks.

REFERENCES
[1] João Paulo A. Almeida, Adrian Rutle, Manuel Wimmer, and Thomas Kühne.

The MULTI Process Challenge. In 2019 ACM/IEEE 22nd International Conference
on Model Driven Engineering Languages and Systems Companion (MODELS-C)
(2019-09). 164–167. DOI:https://doi.org/10.1109/MODELS-C.2019.00027

[2] Colin Atkinson and Ralph Gerbig. 2016. A Feature-based Comparison of Melanee

and MetaDepth. In Proceedings of the 3rd International Workshop on Multi-Level
Modelling co-located with ACM/IEEE 19th International Conference onModel Driven
Engineering Languages & Systems (MoDELS 2016) (Multi 2016).

[3] Colin Atkinson, Ralph Gerbig, and Bastian Kennel. 2012. On-the-Fly Emendation

of Multi-level Models. In Modelling Foundations and Applications - 8th European
Conference, ECMFA 2012, Kongens Lyngby, Denmark, July 2-5, 2012. Proceedings
(Lecture Notes in Computer Science), Antonio Vallecillo, Juha-Pekka Tolvanen,

Ekkart Kindler, Harald Störrle, and Dimitrios S. Kolovos (Eds.), Vol. 7349. Springer,

194–209. DOI:https://doi.org/10.1007/978-3-642-31491-9_16
[4] Colin Atkinson, Ralph Gerbig, and Thomas Kühne. 2014. Comparing multi-level

modeling approaches. In Proceedings of the 1st International Workshop on Multi-
Level Modelling co-located with the 17th ACM/IEEE International Conference on
Model Driven Engineering Languages and Systems (MODELS 2014) (CEURWorkshop
Proceedings), Vol. Vol-1286. 43–52.

[5] Colin Atkinson and Thomas Kühne. 2001. The Essence of Multilevel Metamodel-

ing. In Proceedings of the 4th International Conference on the UML 2000, Toronto,
Canada (LNCS 2185), Martin Gogolla and Cris Kobryn (Eds.). Springer Verlag,

19–33. DOI:https://doi.org/10.1007/3-540-45441-1_3
[6] Colin Atkinson and Thomas Kühne. 2003. Rearchitecting the UML Infrastructure.

ACM Transactions on Modeling and Computer Simulation 12, 4 (Oct. 2003), 290–

321.

[7] Colin Atkinson and Thomas Kühne. 2008. Reducing accidental complexity in

domain models. Software & Systems Modeling 7, 3 (2008), 345–359.

[8] Colin Atkinson and Thomas Kühne. 2017. On EvaluatingMulti-LevelModeling. In

Proceedings of the 4th International Workshop on Multi-Level Modelling co-located
with the 20th ACM/IEEE International Conference on Model Driven Engineering
Languages and Systems (MODELS 2017) (CEUR Workshop Proceedings, ISSN 1613-
0073), Vol. Vol-2019. 274–277.

[9] Freddy Brasileiro, João Paulo A. Almeida, Victorio A. Carvalho, and Gian-

carlo Guizzardi. 2016. Applying a Multi-Level Modeling Theory to Assess

Taxonomic Hierarchies in Wikidata. In Proceedings of the 25th International
Conference Companion on World Wide Web (WWW ’16 Companion). Inter-
national World Wide Web Conferences Steering Committee, 975–980. DOI:
https://doi.org/10.1145/2872518.2891117

[10] Shyam R Chidamber and Chris F Kemerer. 1994. A metrics suite for object

oriented design. IEEE Transactions on software engineering 20, 6 (1994), 476–493.

[11] Tony Clark, Ulrich Frank, and Manuel Wimmer. 2017. Preface to the 4th Interna-

tional Workshop on Multi-Level Modelling. In Proceedings of the 4th International
Workshop on Multi-Level Modelling co-located with the 20th ACM/IEEE Interna-
tional Conference on Model Driven Engineering Languages and Systems (MODELS
2017) (CEUR Workshop Proceedings), Vol. Vol-2019. 210–212.

[12] D. Coleman, D. Ash, B. Lowther, and P. Oman. 1994. Using metrics to evaluate

software system maintainability. Computer 27, 8 (1994), 44–49.
[13] Thomas Kühne Colin Atkinson, Ralph Gerbig. 2015. A unifying approach to con-

nections for multi-level modeling. In Proceedings of MODELS’15. IEEE Computer

Society, 216–225.

[14] E. Gamma, R. Helm, R. E. Johnson, and J. Vlissides. 1994. Design Patterns: Elements
of Object-Oriented Software Architecture. Addison-Wesley.

[15] Ralph Gerbig. 2017. Deep, seamless, multi-format, multi-notation definition and
use of domain-specific languages. Ph.D. Dissertation. Universität Mannheim.

https://madoc.bib.uni-mannheim.de/42010/

[16] Brian Henderson-Sellers. 1995. Object-oriented metrics: measures of complexity.
Prentice-Hall, Inc.

[17] Sallie Henry and Dennis Kafura. 1981. Software structure metrics based on

information flow. IEEE transactions on Software Engineering 5 (1981), 510–518.

[18] Muzaffar Igamberdiev, Georg Grossmann, and Markus Stumptner. 2016. A

Feature-based Categorization of Multi-Level Modeling Approaches and Tools. In

Proceedings of the 3rd Workshop on Multi-Level Modelling co-located with the 19th
ACM/IEEE International Conference on Model Driven Engineering Languages and
Systems (MODELS 2016) (CEUR Workshop Proceedings), Vol. Vol-1722. 45–55.

[19] Thomas Kühne. 2006. Matters of (Meta-) Modeling. Software and SystemModeling
5, 4 (2006), 369–385. DOI:https://doi.org/10.1007/s10270-006-0017-9

https://doi.org/10.1109/MODELS-C.2019.00027
https://doi.org/10.1007/978-3-642-31491-9_16
https://doi.org/10.1007/3-540-45441-1_3
https://doi.org/10.1145/2872518.2891117
https://madoc.bib.uni-mannheim.de/42010/
https://doi.org/10.1007/s10270-006-0017-9

Meaningful Metrics for Multi-Level Modelling MULTI 2020, October 16–23, 2020, Virtual

[20] Juan De Lara and Esther Guerra. 2018. Refactoring Multi-Level Models. ACM
Trans. Softw. Eng. Methodol. 27, 4, Article 17 (Nov. 2018), 56 pages. DOI:https:
//doi.org/10.1145/3280985

[21] Juan De Lara, Esther Guerra, and Jesús Sánchez Cuadrado. 2014. When and

how to use multilevel modelling. ACM Transactions on Software Engineering and
Methodology (TOSEM) 24, 2 (2014), 1–46.

[22] Mark Lorenz and Jeff Kidd. 1994. Object-oriented software metrics: a practical
guide. Prentice-Hall, Inc.

[23] Haohai Ma, Weizhong Shao, Lu Zhang, Zhiyi Ma, and Yanbing Jiang. 2004. Ap-

plying OO metrics to assess UML meta-models. In International Conference on
the Unified Modeling Language. Springer, 12–26.

[24] Robert C Martin, Dirk Riehle, and Frank Buschmann. 1997. Pattern languages of
program design 3. Addison-Wesley Longman Publishing Co., Inc.

[25] Thomas J McCabe. 1976. A complexity measure. IEEE Transactions on software
Engineering 4 (1976), 308–320.

[26] Steve McConnell. 2004. Code Complete, Second Edition. Microsoft Press, USA.

[27] Jacqueline A McQuillan and James F Power. 2006. On the application of software

metrics to UML models. In International Conference on Model Driven Engineering
Languages and Systems. Springer, 217–226.

[28] Bertrand Meyer. 1997. Object-Oriented Software Construction (2nd Ed.). Prentice-
Hall, Inc., USA.

[29] Leonid Mikhajlov and Emil Sekerinski. 1997. The fragile base class problem and

its impact on component systems. In European Conference on Object-Oriented
Programming. Springer, 353–358.

[30] Sandeep Purao and Vijay Vaishnavi. 2003. Product metrics for object-oriented

systems. ACM Computing Surveys (CSUR) 35, 2 (2003), 191–221.
[31] Alessandro Rossini, Juan De Lara, Esther Guerra, and Nikolay Nikolov. 2015. A

comparison of two-level and multi-level modelling for cloud-based applications.

In European Conference on Modelling Foundations and Applications. Springer,
18–32.

[32] Ian Sommerville. 2018. Software Engineering (10. ed.). Hallbergmoos.

[33] C. Tsalidis, D. Christodoulakis, and D. Maritsas. 1992. Athena: A software

measurement and metrics environment. Journal of Software Maintenance: Re-
search and Practice 4, 2 (1992), 61–81. DOI:https://doi.org/10.1002/smr.4360040202

arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/smr.4360040202

[34] Irene Vanderfeesten, Jorge Cardoso, Jan Mendling, Hajo A Reijers, and Wil MP

van der Aalst. 2007. Quality metrics for business process models. BPM and
Workflow handbook 144 (2007), 179–190.

https://doi.org/10.1145/3280985
https://doi.org/10.1145/3280985
https://doi.org/10.1002/smr.4360040202
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/smr.4360040202

	Abstract
	1 Introduction
	2 Metrics Targets
	3 Meaningful Metrics
	4 Deep Metrics
	4.1 Classification Dimension
	4.2 Deep Characterization

	5 Specific Metric Proposals
	5.1 Expected Change Impact
	5.2 Control Capacity

	6 Related Work
	7 Future Work
	8 Conclusion
	Acknowledgments
	References

