
A Relaxed Balanced Non-Blocking Binary Search Tree
Manish Singh

manish.singh@weltec.ac.nz
Wellington Institute of Technology

Lower Hutt, New Zealand

Lindsay Groves
lindsay.groves@ecs.vuw.ac.nz

Victoria University of Wellington
Wellington, New Zealand

Alex Potanin
alex.potanin@ecs.vuw.ac.nz

Victoria University of Wellington
Wellington, New Zealand

ABSTRACT
We present a new relaxed balanced concurrent binary search
tree in which all operations are non-blocking. We utilise
the notion of separating balancing operation and update
operations in a concurrent environment and design a non-
blocking balancing operation in addition to the regular insert,
search and relaxed delete operations. Our design uses a single-
word CAS supported by most modern CPUs.

CCS CONCEPTS
• Computing methodologies → Concurrent algorithms.

KEYWORDS
Non-blocking,lock-free, Concurrent Binary Search Tree

1 INTRODUCTION
To counter Intel’s single socket 28-core processor, AMD an-
nounced a 32 core processor with 64 threads for desktops
recently. This trend in embedding more and more cores in
multi-core processors has necessitated the design of scalable
and efficient concurrent data structures. Due to the asynchro-
nous model of computation in multi-core systems designing of
data structures which can efficiently synchronise concurrent
access are considered to be hard. A considerable amount of
research has been done towards making both blocking and
non-blocking concurrent versions of sequential data struc-
tures. Unlike blocking, a concurrent algorithm is non-blocking
if it ensures that no thread accessing the data structure is
postponed indefinitely while waiting for other threads that
operate on the data structure. Performance has been always
an important factor that will drive the design of these data
structures.

The Binary Search Tree (BST) is a fundamental data
structure. In recent years, many of concurrent BST (both
blocking and non-blocking versions) have been proposed [1–7].
However, only few designs include self-balancing operations.
Table 1 summaries some of the state of art concurrent BSTs.
Most of the published work try to emulate the sequential
specification of the data structure in their concurrent version.
This results in performance compromise as strict invariants
must be maintained in each operation execution. In a concur-
rent environment effects of some operations might cancel out
effects of other operations. In case of a self-balancing BST
each insert or delete operation requires a balancing operation
to be performed immediately to maintain the height of the

ICPP ’19, August 05–08, 2019, Kyoto, Japan
2019. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Figure 1: Right Rotation example. T1: a thread carrying out a
search operation oblivious of ongoing concurrent rotation.

tree. In such scenarios a balancing operation might cancel
out effect of other balancing operations on the same node.
This has led to the idea of relaxing some of the invariants of
the data structure while designing their concurrent versions.

Relaxing some of the structural properties of a sequential
data structure in concurrent environment is not completely
a new idea. Lazy deletion is an example of relaxing the re-
quirement that nodes are immediately removed from the
concurrent linked list. In a concurrent self-balancing trees
such as AVL or chromatic tree rotation operations are per-
formed separately from insertion and deletion operations.
However, most previously published designs which includes
balancing operation are blocking or lock-based and therefore,
not immune to the problems associated with locks. We de-
sign a non-blocking relaxed balanced BST in which balancing
operations are done separately from the regular insert and
delete operations.

2 ALGORITHM DESCRIPTION
We implement a set in which the underlying data structure
is a BST. Our implementation supports search(k): to check
if the key is in set or not, insert(k): to add the key into the
abstraction, delete(k): to remove the membership of key if
it is present in the dataset. A BST could behave similar to
a linked-list where traversal could take O(n) time especially
when the input are in increasing or decreasing order. In
order to prevent that our algorithm also supports rotation
operation and a abstract update operation. This design closely
tries to mirror the sequential version of BST except for the
delete operation, where key is first flagged as deleted and
then physically removed later by a dedicated separate thread
which also carries the rotation operation. The aforementioned
dedicated thread traverses the tree in pre-order, carries out
first physical removal of deleted nodes, adjusts local heights
of the node and starts the rotation operation if the balance
condition is found to be violated.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

ICPP ’19, August 05–08, 2019, Kyoto, Japan Manish Singh, et al.

BST Type BalOpn SyncTech Add Info
Howley[5] Internal no non-blocking Descriptor based
Natrajan[1] External no non-blocking Edge marking
Chaterjee[2] Internal no non-blocking threaded
Bronshon[4] Partially External yes blocking lock coupling
Crain[6] Partially External yes blocking Eager abstract n lazy structural modification
Drachsler[3] Internal yes blocking logical ordering of updates, threaded
Our tree Partially Internal yes non-blocking AVL based relaxed and delete operation

Table 1: Existing concurrent BST’s.

To achieve lock-freedom 1 any thread before carrying out
the actual operation which modifies the tree either the content
or structure first announces its intention. To do so the thread
first collects needed information into a structure known as
operation-descriptor and tries to insert a pointer to operation-
descriptor into the operation field of that node using a CAS.
Once the pointer is inserted, the operation would not fail as
we have designed helping methods which ensure any other
conflicting thread will carry out the announced operation
before it carrying out its own. The idea is that the operation
owns the nodes or locations to be updated not a particular
thread which makes it possible for other threads to finish
contending operations .

Updating multiple locations using a single word CAS while
persevering atomicity of updated locations is a challenging
task. Especially, in case of rotation operation three locations
are needed to be updated automatically, we achieve this
by careful design of our rotation operation. Whenever a
balance condition is found to be violated, the dedicated thread
prepares a operation descriptor then it tries to grab the node
by inserting a pointer to the descriptor in the operation-field
of parent of the node. If it is successful then it tries to do the
same for all the nodes involved in that particular rotation
operation using CAS. Failing to insert the pointer in any of
the nodes means that there is another operation on progress
and it should help the ongoing operation first then retry.
Once the first node is grabbed any other thread can finish the
announced rotation operation by first, grabbing the remaining
nodes then carrying out the rest of the operation. As shown
in figure 1, first a newnode having same key as the node where
balance violation have been occurred is created. After that
Right and left pointers of the newnode are allocated to those
child which it would get after notation figure 1 (b). Next
step is to insert the newnode to its position after rotation,
as shown in figure 1 (c). In this case of right rotation the
newnode would be the right-child of node 𝐶. The third and
last step is swing pointer to connect 𝐶 to the parent 𝑃
directly effectively removing node 𝑁 from the tree.

A notable feature of our algorithm is that the rotation
operations are invisible to search operations, as a result, the
later simply traverses the tree and never restarts. A thread
carrying out delete operation simply marks the node to be
1Both non-blocking, lock-free and thereby lock-freedom are synony-
mously used in literature

deleted which is considered to be logically removed. The
deleted node then is physically removed by the dedicated
thread if it has no child or have only one child. Nodes with
two child are not removed until it becomes one child node
or both of its child are deleted. A Thread carrying out in-
sert operation upon finding the insert location prepares an
operation-descriptor and tries to insert a pointer to the to be
parent of the newnode. Similar to the rotation operation, once
the operation-descriptor is successfully inserted the operation
is guaranteed to be completed. Otherwise it goes to help the
ongoing operation and restarts. While doing insert if the
thread finds key present in the tree and the node is flagged
as deleted it simply sets off the deleted flag.

3 SUMMARY
In our design, all the operations are non-blocking. The search
operation is free of any additional synchronization. We are
evaluating performance of our algorithm on x86 _ 64 and
SPARC multi-core machines against the concurrent BSTs
shown in table 1. A mechanized proof outline has been done
using the linearisability as correctness criteria. To the best
of our knowledge, this is the first design which utilises decou-
pling of operations as well as rotations to balance the tree in
a non-blocking concurrent set-up.

REFERENCES
[1] N. Mittal A. Natarajan. 2014. Fast concurrent lock-free binary

search trees. In Proceedings of the 19th ACM SIGPLAN Sym-
posium on Principles and Prac- tice of Parallel Programming
(PPoPP) (2014).

[2] Bapi Chatterjee, Nhan Nguyen, and Philippas Tsigas. 2014. Ef-
ficient Lock-free Binary Search Trees. In Proceedings of the
2014 ACM Symposium on Principles of Distributed Comput-
ing (PODC ’14). ACM, New York, NY, USA, 322–331. https:
//doi.org/10.1145/2611462.2611500

[3] Dana Drachsler, Martin Vechev, and Eran Yahav. 2014. Practical
Concurrent Binary Search Trees via Logical Ordering. SIGPLAN
Not. 49, 8 (Feb. 2014), 343–356. https://doi.org/10.1145/2692916.
2555269

[4] Hassan Cha Nathan G. Bronson, Jared Casper and Kunle Olukotun.
2010. A practical concurrent binary search tree. ACM SIGPLAN
Symposium on Principals and Practice of Parallel Programming
(2010).

[5] Jeremy Jones Shane V. Howley. 2012. A non blocking internal
binary tree. SPAA (June 2012).

[6] M. Raynal T. Crain, V. Gramoli. 2013. contention-friendly binary
search tree. In In Euro-Par. 229–249.

[7] YehudaAfek. 2012. A practical concurrent self-adjusting search
tree. Tel Aviv University (2012).

https://doi.org/10.1145/2611462.2611500
https://doi.org/10.1145/2611462.2611500
https://doi.org/10.1145/2692916.2555269
https://doi.org/10.1145/2692916.2555269

	Abstract
	1 Introduction
	2 Algorithm description
	3 Summary
	References

