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    Abstract—Maximizing  the  lifetime  of  wireless  sensor  networks
(WSNs) is an important and challenging research problem. Prop-
erly scheduling the movements of mobile sinks to balance the en-
ergy  consumption  of  wireless  sensor  network  is  one  of  the  most
effective approaches to prolong the lifetime of wireless sensor net-
works.  However,  the  existing  mobile  sink  scheduling  methods
either require  a  great  amount  of  computational  time  or  lack  ef-
fectiveness in  finding  high-quality  scheduling  solutions.  To  ad-
dress the above issues, this paper proposes a novel hyperheuristic
framework, which can automatically construct high-level heurist-
ics to schedule the sink movements and prolong the network life-
time. In the proposed framework, a set of low-level heuristics are
defined as building blocks to construct high-level heuristics and a
set  of  random networks  with  different  features  are  designed  for
training. Further, a genetic programming algorithm is adopted to
automatically evolve promising high-level heuristics based on the
building  blocks  and  the  training  networks.  By  using  the  genetic
programming  to  evolve  more  effective  heuristics  and  applying
these heuristics in a greedy scheme, our proposed hyper-heuristic
framework  can  prolong  the  network  lifetime  competitively  with
other methods, with small time consumption. A series of compre-
hensive experiments, including both static and dynamic networks,
are  designed.  The simulation results  have  demonstrated that  the
proposed  method  can  offer  a  very  promising  performance  in
terms of network lifetime and response time.
    Index Terms—Genetic  programming,  hyper-heuristics,  static  and
dynamic networks, wireless sensor networks (WSNs).

I.  Introduction

W IRELESS sensor  networks  (WSNs)  have  been  de-
ployed  for  a  wide  range  of  applications  such  as  water

quality  monitoring  [1],  [2],  smart  cities  [3], wildlife  protec-
tion [4],  and medical  care  [5].  In  real-world applications,  the
lifetime of wireless sensor networks is one of the most import-
ant attributes affecting the performance of the network, since
sensors  in  wireless  sensor  network are  often battery-powered
and disposable.  Prolonging the network lifetime is a signific-
ant and challenging research topic in the wireless sensor net-
work  community  [6]–[9]. Over  the  past  decades,  various  ap-
proaches  have  been  proposed  to  maximize  the  lifetime  of
wireless sensor networks [10]–[16]. Among them, scheduling
the movements  of  mobile  sinks  to  balance  the  energy  con-
sumption  of  sensors  is  one  of  the  most  effective  strategies
[17]. In particular, a mobile sink, which can move to different
locations of  the  sensing  region,  is  the  device  utilized  to  col-
lect  data  from sensors  and send data  to  the  base  station.  The
proper  movement  scheduling  of  the  mobile  sinks  is  essential
to  the  energy  consumption  of  the  network  and  thus  able  to
prolong the network lifetime.

However, to find the optimal movement of the mobile sink
is  an  NP-hard  optimization  problem  [18].  In  the  literature,
various  methods  have  been  proposed  to  solve  this  problem,
including  linear  programming  methods  (e.g.,  the  mixed
integer  linear  programming  model  (MILP)  [18]),  greedy
heuristic methods (e.g.,  the greedy maximum residual energy
(GMRE)  [17]),  and  stochastic  search  methods  (e.g.,  the  ant
colony  optimization  (ACO)  [19]).  Traditional  linear
programming  methods  generally  require  a  large  amount  of
memory  and  huge  computational  time,  which  makes  them
inapplicable  for  large-scale  wireless  sensor  networks.  The
greedy heuristic methods are not able to provide high quality
solutions  due  to  the  inefficient  human-design  heuristics.  The
stochastic  search  methods,  on  the  other  hand,  are  capable  of
finding high quality solutions. Nevertheless, they often require
a  huge  amount  of  computational  time,  since  they  contain  an
iterative  search  process  for  optimization  during  the
application.  Besides,  due  to  the  long  response  time,  both  the
existing  linear  programming  methods  and  the  existing
stochastic  search  methods  are  not  suitable  for  dynamic  cases
whose network settings are changing over time.

Keeping  the  above  in  mind,  to  find  high  quality  solutions
efficiently,  a  novel  hyper-heuristic  framework  (HHF)  is
proposed in this paper. In the proposed framework, primitives
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(i.e.,  the  low-level  heuristics  and  linking  functions)  for
constructing  high-level  heuristics  and  training  networks  for
simulating the performance of evolved high-level heuristics are
firstly designed, respectively. Then, the genetic programming
(GP) based framework is developed to evolve better high-level
heuristics  off-line,  based  on  the  predefined  primitives  and
training networks. In our framework, the high-level heuristics,
which  consist  of  basic  information  of  networks  and  other
human-designed functions, are denoted as s. Lastly, the 
with  the  best  performance (i.e.,  the  one can offer  the  longest
average lifetime on training networks) is outputted as the final
solution.  This  outputted  can  then  be  used  to  schedule  the
movements of the mobile sink in unseen testing networks.

H2

H2

H2
H2

There are several advantages of the proposed HHF to break
the dilemma of solution quality and response time. 1) Because
HHF  designs  heuristics  (i.e., s)  automatically  based  on
some  low-level  heuristics,  it  avoids  the  tedious  and  time-
consuming manual designing process of the heuristic rules. 2)
Since  typical  heuristic  rules  serve  as  a  part  of  low-level
heuristics  in  the  search  space,  HHF  is  likely  to  evolve  more
efficient  and  flexible s  than  typical  ones.  3)  Because  the
proposed  HHF  is  trained  off-line  before  the  application  and
the obtained s can be used directly in new unseen networks,
the obtained s mitigate the huge time consumption of linear
programming  methods  and  ACO,  and  have  a  short  response
time in  real-world  applications.  The  short  response  time also
makes HHF suitable for dynamic networks.

This  paper  has  designed  a  series  of  comprehensive
experiments to analyze the proposed HHF. A large number of
static  and  dynamic  networks  with  different  scales  have  been
designed  for  testing  and  several  state-of-the-art  methods  are
also  compared  with  the  proposed  method.  Besides,  different
training schemes of HHF, including training on matching and
mismatching training networks, have also been investigated to
facilitate the practicability of the proposed HHF in real-world
applications.  The  empirical  results  have  demonstrated  that
HHF  can  produce  feasible  high-quality  solutions  in  various
scenarios and has a short response time.

This  paper  extends  our  early  paper  [20]  with  three
improvements: 1) This paper extends [20] with more practical
formulation of the to-be-solved problem, more comprehensive
technical  details  of  the  algorithm  implementation,  and  more
theoretical  analysis;  2)  The  previous  work  focused  on  static
networks, while in this work, the proposed method is applied
to both static and dynamic networks.  The corresponding new
experiments  on  dynamic  networks  are  also  conducted  to
validate  the  efficacy  of  the  proposed  framework;  3)  A  much
more  comprehensive  experimental  study  has  been  conducted
to facilitate the practical applications of the proposed method,
with more procedure results and more compared methods. The
final  performance  and  the  procedure  results  both  show  the
effectiveness and reliability of the proposed method.

The  rest  of  the  paper  is  organized  as  follows.  Section  II
describes  the  related  works.  Section  III  gives  the  problem
definition.  The  proposed  hyper-heuristic  framework  is
presented  in  Section  IV,  which  is  followed  by  the  empirical
studies  in  Section  V  and  Section  VI.  Finally,  Section  VII
draws the conclusion.

II.  Related Works

Mobile sink scheduling problem in wireless sensor networks
requires finding a proper visiting order and sojourn time of the
candidate sink sites, so that the lifetime of the network can be
maximized. Over the past decades, various methods have been
proposed  to  solve  the  mobile  sink  scheduling  problem  [8],
[21]–[23]. Generally, existing methods can be categorized into
two  main  classes:  the  centralized  algorithms  and  the
distributed  algorithms  [17].  The  main  difference  between
these two types of algorithms is how much information can be
utilized  in  searching  the  route  of  sink  movement.  For  the
centralized  algorithms,  all  information  on  the  map  can  be
aggregated to the sink (so called “centralized”) so that the sink
movement  can  better  approximate  the  global  optima.  In
contrast,  the  distributed  algorithms  can  only  know  the
information around it. It means when there are multiple sinks
on the map, each sink searches its own route respectively only
based on local information.

In  the  centralized  algorithms,  the  information  of  the  whole
system, such as the residual energy and the consumption rate
of  each  sensor,  is  given.  Based  on  the  global  information  of
the system, the centralized algorithms usually regard the sink
scheduling  problem  as  mathematical  optimization  problems
(e.g.,  linear  programming problems).  For  example,  Gandham
et  al.  [24]  proposed  to  use  integer  linear  programming  (ILP)
to determine the locations of the base stations (i.e., the sinks),
with  an  objective  to  minimize  the  maximum  energy
consumption of the network in scheduling. However, there is
no constraint on the sink movements and no relation between
the  number  of  base  stations  and  their  locations.  Wang et  al.
[25]  formulated  the  mobile  sink  scheduling  problem  as  an
optimization problem of maximizing the sum of sojourn time
of the sink at every candidate sink site. They proposed a linear
programming  (LP)  method  to  solve  the  problem.  Since  the
LP-based methods discussed above are very time-consuming,
Luo et al. [26] proposed an enhanced primal-dual algorithm to
reduce  the  computational  time.  Generally,  the  centralized
algorithms  can  find  the  global  optimal  solution.  However,
they require the global information of the system in advance,
which is often impractical in real-world applications. Besides,
the  centralized  algorithms  usually  require  a  large  amount  of
computation  time  and  memory,  which  makes  them
inapplicable for large-scale wireless sensor networks.

To  overcome  the  limitations  of  the  centralized  algorithms,
distributed  algorithms  have  been  proposed  [27]–[29].  For
example,  Basagni et  al.  [17]  proposed  a  greedy  maximum
residual  energy  (GMRE)  heuristic  rule  to  schedule  the  sink
movement,  and  found  approximation  solutions  of  the  global
optimal  solutions  in  mobile  sink  scheduling.  In  the  GMRE,
the sink prefers to move to candidate sink sites which possess
the largest residual energy in the neighborhood. The GMRE is
further discussed and applied in various scenarios [30]. Since
only optimizing the sink movement is not yet effective enough
to  prolong  the  network  lifetime,  several  joint  optimization
problems  with  controlled  sink  movements  have  also  been
formulated and solved by distributed algorithms. For instance,
Yun et al.  [31] proposed a distributed algorithm to maximize
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the  network  lifetime  and  determine  the  data  flow  routing
simultaneously,  in  a  delay-tolerant  wireless  sensor  network.
Although  the  distributed  algorithms  have  enjoyed  a  great
success in many wireless sensor networks, the performance of
the existing distributed algorithms requires to be improved for
real-world applications.

In  recent  years,  several  researchers  have  proposed  to  use
evolutionary  algorithms  to  schedule  the  mobile  sink  in  the
wireless  sensor  networks.  For  example,  Carrabs et  al.  [32]
combined  the  genetic  algorithm  (GA)  with  the  column
generation  techniques  to  maximize  the  network  lifetime.
Zhong et  al.  [19]  and  Xie et  al.  [33]  adopted  the  ant  colony
optimization  (ACO)  to  solve  the  lifetime  maximization  and
data  aggregation  in  wireless  sensor  network,  respectively.
Recently,  based  on  their  ideas,  Kumar et  al.  [34]  also
proposed an ACO based mobile  sink framework to  solve  the
sink  deployment  and  path  determination  with  a  non-uniform
data  sensing  rate.  Since  the  evolutionary  algorithm  shows  a
great  potential  in  prolonging  the  network  lifetime,  its
corresponding  researches  on  wireless  sensor  networks  are
concluded  in  some  surveys  [35],  [36].  However,  all  these
algorithms  have  a  drawback  limiting  their  practicability  in
real-world  dynamic  networks.  They  usually  require  a  much
larger  amount  of  computational  time  due  to  their  iterative
nature and long simulation time.

To  relive  the  disadvantages  in  the  centralized  algorithms
and  the  evolutionary  algorithms,  and  to  further  improve  the
performance  of  the  distributed  algorithms,  a  new  hyper-
heuristic  framework  is  proposed  in  this  paper.  The  hyper-
heuristics  is  a  type  of  algorithms  designing  heuristics
automatically based on a set of given low-level heuristics and
a  given  problem  [37].  Currently,  it  has  been  widely  and
successfully  applied  in  various  practices,  such  as  job  shop
scheduling  [38],  production  scheduling  [39],  and  other  kinds
of  combinatorial  optimization  problems  [40].  Especially,  the
genetic  programming  based  hyper-heuristics  methods  is  an
important branch of hyper-heuristics [41]–[43].  In contrast  to
the  centralized  algorithms,  the  proposed  hyper-heuristic
method  uses  the  obtained  heuristics  to  schedule  sink
movements,  which  can  be  trained  off-line  and  have  a  short
response  time.  Meanwhile,  unlike  existing  greedy  heuristics
that  were  designed  by  human  experts,  the  proposed  method
can  construct  effective  heuristics  automatically  based  on
simple low-level heuristics.

III.  Problem Definition

M = (S ,C,Ψ) S
|S | = n C |C| = m

Ψ M
{s ∈ Ψ,c ∈ Ψ|∀s ∈ S ,∀c ∈C} n m

In this section, the definition of the mobile sink scheduling
problem in wireless sensor networks is introduced. We denote
the  given  wireless  sensor  network  as ,  where 
( )  is  the  set  of  sensors,  ( )  is  the  set  of
candidate sink sites, and  is the sensing region of  so that

.  and  are  the  number  of
sensors  and  the  number  of  candidate  sink  sites,  respectively.
As in [18], some assumptions of the network are described as
follows.

C1) The sink moves around among  and collects data from
sensors. The sink is supposed to have unlimited energy which
can support its running during the whole network lifetime.

∆t
L

L

2) The sojourn time of the sink at each candidate sink site is
the  number  of  rounds  the  sink  stays  at  the  site  (each  round
lasts  for  a  minimum  time  interval  of ).  The  lifetime  of  a
wireless sensor network (denoted as ) is regarded as the sum
of  rounds  from  the  beginning  to  the  time  when  at  least  one
sensor runs out of its power. The  is computed by (1)

L =
m∑

c=1

tc (1)

tc

δlc

where  is the number of rounds the sink stays at the cth sink
site. To describe the location of the sink in the lth round, an-
other variable  is also introduced.

δlc =

{
1, if the sink stays at the cth sink site
0, otherwise. (2)

∑m
c δ

l
c = 1,∀l δlc tc

tc =
∑

l δ
l
c

For  wireless  sensor  networks  with  a  single  sink,  we  have
. And according to the definition of ,  can be

calculated by .

ℓ
S l+1 S l+1 = ℓ(S l)

S l+1 = ℓ(S l) = S l,∀l

Ei (i ∈ S )
r

3)  The  sensors  are  distributed  in  the  sensing  region
according to a sensor-updating function . The distribution of
sensors  in  the  next  round  is  defined  as .  In
particular,  indicates  that  the  sensors  are
static.  Sensors  sense  the  physical  environment  and  transmit
the data packets to the sink. Every sensor has a same limited
initial  energy  and  the  sensing  data  rate  of  each
sensor is .

R i j
di, j ≤ R di, j

i j

4)  The  sink  and  sensors  have  a  maximum  communication
range . Sensor  can transmit data packets to sensor  (or the
sink)  in  one  hop  if  and  only  if  where  is  the
Euclidean distance between sensor  and sensor  (or the sink).

H
R i

pl
i ql

i pl
i ql

i
H

pl
i

ql
i

S l c : δlc = 1
Gl = [gl

1,g
l
2, . . . ,g

l
n] H

c ∈C

5)  The  sensors  can  send  data  to  the  sink  by  a  multi-hop
transmission  tree  ( )  if  their  distances  to  the  sink  are  larger
than .  The  amount  of  data  sent  (or  received)  by  sensor  in
the lth  round  is  denoted  as  (or ).  Both  and  are
determined  based  on ,  which  is  calculated  by  the  flow
augmentation  algorithm (FA) proposed in  [44].  Therefore, 
and  can  be  regarded  as  the  results  of  FA  method  whose
inputs  are , ,  and  the  residual  energy  of  sensors

,  as  shown  in  (3).  The  is  reconstructed
when the sink moves to another .

[pl
i, q

l
i] = FA(S l,c : δlc = 1,Gl). (3)

i

r∆t
H

∥ql
i∥ ∥pl

i∥
i

H

6) For a certain sensor , the amount of inflow data is always
equal to the amount of outflow data. The inflow data is made
up  of  the  sensing  data  generated  by  itself  ( )  and  the
transmission  data  from  other  sensors  in  the  subtree  of 
( ).  The  outflow  data  ( )  is  the  transmission  data  sent
from sensor  to next node (i.e., another sensor or the sink) in

.

i etl
i

erl
i etl

i, j etl
i

dl
i A B

dl
i, j

i j (∀ j ∈ S
∪

C) erl
i

7) The energy consumption of a sensor only consists of data
sending  and  data  reception.  The  consumption  rates  of  data
sending and reception of sensor  in the lth round are  and

,  respectively.  Each component  of  is  a  function of
the  distance ,  as  shown  in  (4).  The  and  are  constant
coefficients, and  is the Euclidean distance between sensor
 and sensor (or the sink)  . In our model,  is a
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constant vector.

etl
i, j = A×dl

i, j
2
+B. (4)

∑
l (etl

i · pl
i+ erl

i · ql
i)

Therefore,  based  on  the  assumptions  5)  and  7),  the  energy
consumption of a sensor during the network lifetime can also
be calculated by .

C
t c ∈C t≪ ∆t

H
i ∈ S j ∈ S

di, j ≤ R po
po

pi (∀i ∈ S )

Besides,  there  are  some  complements  about  these
assumptions. In assumption 1),  is a finite set. The traveling
time  between two different  is ignored because .
In  assumption 5),  all  sensors  are  reachable  in .  This  means
that  for  any ,  there  must  be  at  least  one  so  that

. The routing overhead  generated by the FA method
is  ignored  because  is  much  smaller  than  the  amount  of
sending data .  In assumption 7),  the movements of
sensors will not generate energy consumption because in real-
world  applications,  the  movements  of  sensors  are  usually
caused  by  physical  environment  factors  such  as  the  ocean
flow.

Based  on  the  assumptions  introduced  above,  the  lifetime
maximization problem is modeled as follows.

max L =
m∑

c=1

tc (5)

s.t. tc =
∑

l

δlc,∀c ∈C (6)

m∑
c

δlc = 1,∀l (7)

∥pl
i∥− ∥ql

i∥− r∆t = 0,∀i ∈ S (8)

∥pl
i∥0 = 1,∀i ∈ S (9)

Ei−
∑

l

(etl
i · pl

i+ erl
i · ql

i) ≥ 0,∀i ∈ S . (10)

M

∥pl
i∥

∥ql
i∥ ri∆t

H

The objective of the problem is to maximize the lifetime of
the  whole  network.  Constraints  (6)  and  (7)  describe  the
sojourn time of each candidate sink site and that there is only
one  mobile  sink  in .  Constraint  (8)  introduces  the  flow
conservation  mentioned  in  assumption  6),  which  means  the
outgoing flow  is always equal to the sum of the reception
flow  and  the  self-sensing  flow  during  a  round.
Constraint  (9)  defines  that  every  sensor  can  have  only  one
parent  in  the  multi-hop  transmission  tree .  Constraint  (10)
requires  that  the  residual  energy  of  every  sensor  must  be
larger  than  0  when  the  network  is  alive.  Otherwise,  the
network is dead and the final lifetime is outputted.

IV.  Proposed Framework

In  this  section,  the  general  framework  of  the  proposed
hyper-heuristic  framework  is  introduced  at  first.  Then,  the
major  components  of  the  proposed  framework,  i.e.,  the
training network design, primitive design, and hyper heuristic
discovery, are introduced.

A.  General Framework
The heuristic-based scheduling strategy commonly works as

∆t
∆t

Γ

Γ∗

L

follows:  given  a  minimum  sojourn  time ,  the  mobile  sink
periodically makes a decision in each  to decide whether to
stay  at  the  current  sink  site  or  to  move  to  the  next  sink  site
based  on  a  heuristic  rule.  This  process  is  repeated  until  the
network dies. One typical example of the heuristic rule is the
GMRE [18]. Based on this scheduling strategy, how to design
a  suitable  heuristic  to  select  sink  sites  properly  is  the  key
point to prolong the network lifetime. In this way, the problem
of  determining  the  optimal  path  of  the  mobile  sink  can  be
transformed  into  designing  a  proper  heuristic  that
maximizes the network lifetime , as can be expressed by (11)

Γ∗ = argmax
Γ

T (Γ) (11)

T (Γ) Γ

Γ

where  is the scheduling network lifetime based on  and
 is used as the heuristic rule to schedule the mobile sink.

H2

H2
H2

H2
H2 H2

Γ∗

Γ∗

To  solve  (11),  the  HHF  is  specially  developed  for  finding
proper  heuristics  automatically. Fig. 1 illustrates  the  general
framework  of  the  proposed  HHF.  The  HHF  contains  three
parts:  training  network  design,  primitive  design,  and  hyper
heuristic  discovery.  Firstly,  according to the prior knowledge
of the unseen testing networks, a number of training networks
and a set of primitives are designed. Then, the GP-based hyper
heuristic  discovery  is  performed  to  design s  based  on  the
training  networks  and  primitives.  By  applying  the  designed

s to schedule the sink movements on training networks, the
fitness of s  (i.e.,  the average lifetime of  simulated training
networks)  is  obtained.  The  hyper  heuristic  discovery  and  the
fitness  evaluation  of s  are  performed  iteratively  to  evolve
better s. Finally, the  with the best fitness is outputted as
the  final  solution  (i.e., )  when  the  termination  condition  is
met. The  is used to schedule the sink movements in unseen
testing networks.

B.  Training Network Design

n
m

ℓ

Several  factors  should  be  considered  during  the  design  of
training  networks,  including  the  number  of  sensors ,  the
deployment of sensors,  the number of candidate sink sites ,
the deployment of  candidate sink sites,  and the updating rule
of  sensors .  The  deployment  of  sensors  describes  the
locations of sensors monitoring the physical environment. One
of  the  most  common  deployment  strategies  is  the  uniform
deployment strategy. Besides, in this study, the deployment of
the  candidate  sink  sites  in  training  and  testing  networks  is
obeying  the “grid  distribution”.  The  grid  distribution  means
that  the  candidate  sink  sites  are  obtained  by  dividing  the
sensing region into grids and the grid centers are considered as
the locations of candidate sink sites. By generating the sensors
and candidate sink sites obeying uniform distribution and grid
distribution,  we  can  obtain  a  number  of  random  training
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Fig. 1.     The proposed hyper-heuristic framework.
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networks with different features.

ℓ(S l) = S l

n = 50 m = 30
M = (S ,C,Ψ)

S ∈ R50×2

S : uniform distribution C ∈ R30×2

C : grid distribution Ψ = (0,100)× (0,100)

(0,100)× (0,100)

To make the design process clearer, here is an example for
training  network  design.  Suppose  we  want  to  define  a  2-D
stationary  ( )  training  networks  with  50  sensors
( )  and  30  candidate  sink  sites  ( )  in  a  square
sensing  region.  The  network  is  formulated  as ,
where  follows  the  uniform  distribution
( ),  follows  the  grid
distribution  ( ),  and .
We can firstly determine the candidate sink sites by “plotting”
grids  on  the  map.  Then  we  generate  50
sensors by sampling a series of positions obeying the uniform
distribution  within  the  map.  The  final  network  example  is
shown in Fig. 2. By this means, various network cases can be
generated based on different network formulations.

C.  Primitive Design

+,−,×,÷

The  design  of  primitives  (i.e.,  low-level  heuristics  and
concatenate  functions)  is  problem  specific.  In  this  paper,  we
adopt four common arithmetic operations as linking functions
(i.e., )  and  design  five  typical  and  general  low-level
heuristics to construct the hyper-heuristics. The five low-level
heuristics are defined as follows.

λ

R

H
λ c ∈C

λ

1) Minimum Residual Energy (λ):  represents the minimum
residual  energy  of  sensors  which  can  communicate  with  the
sink  in  one  hop  (i.e.,  the  sensors  less  than  away  from  the
sink).  Because  the  sensors  close  to  the  sink  often  need  to
transmit a lot of packets from the subtree of , which makes
them run  out  of  energy  quickly.  By  considering ,  the 
covering sensors with larger minimum residual energy is more
likely to be selected. Specifically,  is computed as follows.

λ =min
i

gl
i, ∀i ∈ S l,d(i,c) ≤ R (12)

d(i,c) i
c

where  is  the  Euclidean  distance  between  sensor  and
the candidate sink site .

Λ Λ
d(i,c) ≤ R

λ Λ

Λ

2)  Maximum  Residual  Energy  ( ):  represents  the
maximum  residual  energy  of  sensors  whose .  It  is
opposite to . In fact,  is a popular heuristic rule used in the
greedy  maximum  residual  energy  (GMRE),  which  was
proposed in [17]. The computation of  is as follows.

Λ =max
i

gl
i, ∀i ∈ S l,d(i,c) ≤ R. (13)

κ κ3) Local Simulated Network Lifetime ( ):  implies the sink
to  select  the  site  which  leads  to  the  maximum  simulated

po

R

d(i,c) ≤ R

c ∈C

network  lifetime.  Here  the  simulated  network  lifetime  is
calculated by keeping the sink staying at that sink site till the
network  dies.  To  relive  the  routing  overhead ,  the
simulation  just  considers  the  sensors  less  than  away  from
the sink site. Therefore, the simulated lifetime is the minimum
of  the  quotient  between  the  residual  energy  and  the  energy
consumption  among  the  sensors  whose .  This
heuristic  integrates  the  residual  energy  and  the  consumption
rate to imply the potential lifetime of every .

κ =min
i

gl
i

etl
i · pl

i+ erl
i · ql

i

∀i ∈ S l,d(i,c) ≤ R. (14)
µ µ

µ
4) Average Sensor Energy ( ):  guides the sink to the sink

site  that  has  the  maximum  surrounding  energy  density.  is
computed as follows.

µ =

∑
i∈Φ gl

i

∥Φ∥0+1

Φ = {i|∀i ∈ S l,d(i,c) ≤ R}. (15)
The “+1” in  denominator  is  used  to  guarantee  that  the

denominator is always a positive number.
ν ν

c ∈C
ν

5)  Average  Consumption  Rate  of  Sensors  ( ):  guides  the
sink to the site with the minimum average consumption rate of
sensors  surrounding .  The  lower  average  consumption
rate  implies  a  longer  network  lifetime  in  some  way.  is
computed as follows.

ν =

∑
i∈Φ etl

i · pl
i+ erl

i · ql
i

∥Φ∥0+1

Φ = {i|∀i ∈ S l,d(i,c) ≤ R}. (16)

D.  GP-based Hyper Heuristic Discovery

H2
H2

H2
H2

H2
H2

H2

In  this  subsection,  a  GP-based  hyper  heuristic  discovery
approach (GPHH) is proposed. The flowchart of the proposed
approach  is  shown  in Fig. 3,  which  consists  of  four  major
steps:  initialization,  reproduction,  fitness  evaluation,  and
selection.  In  the  proposed  approach,  a  population  of
chromosomes  are  initialized  at  first.  Each  chromosome
represents a candidate  for scheduling the sink movements.
Then,  new s  are  generated  using  genetic  operators  (the
implementation  of  genetic  operators  is  further  introduced
below).  The  fitness  values  of  newly  generated s  are
evaluated by simulating the training networks. Finally, the s
with  higher  fitness  values  are  selected  to  form  the  new
population  for  the  next  generation.  When  the  termination
conditions are met, the best  is considered as the outputted

 to  schedule  the  sink  movements  on  unseen  testing
networks.  In  this  paper,  a  recently  published  GP  variant
named self-learning gene expression programming (SL-GEP)
[45]  is  adopted  as  the  GP  solver  to  evolve s.  It  is  worth
mentioning that  other GP variants can also be adopted as the
GP  solver  in  the  proposed  framework.  The  implementation
details of the proposed approach are as follows.

Xi = [xi,1, xi,2, ..., xi, j]
xi, j +,×

1)  Chromosome  Representation: In  SL-GEP,  each
chromosome  is  a  vector  of  symbols .
Each  symbol  can  be  a  function  (e.g., ),  a  low-level

 

Candidate sink sites Sensors Sink
 
Fig. 2.     An example 2-D training network.
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λ Λ

H2

+×ADFΛµκλ−
I1I2 Λ×µ+ κ−λ

heuristic  (e.g.,  and ),  and  other  symbol  types  (e.g.,  the
automatically  defined  function  (ADF)  mentioned  in  [45]).
Each  chromosome  can  be  decoded  as  a  parsing  tree  to
represent  a  formula  (i.e.,  a )  by  using  a  breath-first-search
travelling  scheme. Fig. 4 shows  an  example  of  the
chromosomes in SL-GEP, which contains a main program and
one ADF. In this example, the chromosome “

” is decoded as “ ”. More detail introduction of
the chromosome representation can be referred in [45].

Xi

2)  Reproduction: The  reproduction  includes  two  main
operations: mutation and crossover. These two operations are
used  to  change  the  genes  in  chromosomes  to  generate  new
chromosomes.  In  mutation  operation,  the  symbols  in
chromosomes  are modified into other values based on the
“DE/current-to-best/1” mutation,  as  introduced  in  [45].  For

Λ+µκλ
Λ+ νκλ µ

ν

+×Λµκ sin+λνΛ
sin+Λµκ

example, the five-value chromosome “ ” can give birth
to another five-value chromosome “ ” by mutating “ ”
into “ ”.  In  crossover  operation,  new  chromosomes  are
generated  by  substituting  the  segments  of  one  chromosome
into  another  chromosome.  For  example,  two  chromosomes
“ ” and “ ” can  generate  a  new  chromosome
“ ” by  substituting  the  first  two  values  from  latter
chromosome into the former one.

H2
H2

H2

Γ
S l Gl

Γ
c : δl+1

c = 1

H2

τ
H2

3)  Fitness  Evaluation: To  evaluate  the  fitness  value  of  a
newly generated , a simulation is performed to schedule the
sink in the training networks using the given . The average
lifetime  of  all  training  networks  is  then  used  as  the  fitness
value  of  the  given .  The  simulation  follows  the “sense-
think-act” paradigm, as shown in Fig. 5. For example, given a
decoded chromosome , the information of the network (e.g.,
the  sensors  deployment  and  the  residual  energy )  is
obtained firstly (i.e., sense). Then the  is calculated based on
the network information to select the next sink site 
(i.e.,  think). After that, the sink is moved to the selected sink
site  in  simulation  (i.e.,  act).  For  each  training  network,  the
given  is  applied  to  schedule  the  movements  of  the  sink
using  the “sense-think-act” paradigm  repetitively  until  the
death of  the  training network.  After  all  training networks are
simulated using the above method, the average lifetime of all
training  networks  is  calculated  as  the  fitness  value  ( )  of  the
given 

τ =

∑
t Lt

N
(17)

Lt Nwhere  is the lifetime of the tth training network and  is the
number  of  training  networks.  It  is  worth  mentioning  that  the
starting point of the sink for each simulation is set to the can-
didate  sink  site  which  is  closest  to  the  middle  point  of  the
sensing region.

H2

4) Selection: After the fitness values of all chromosomes are
obtained,  the  selection  operation  is  performed.  The  selection
operation implements the “survival of the fittest” principle in
nature evolution. In this operation, a certain number of better
chromosomes  are  selected  to  form the  new population.  After
the  selection,  the  reproduction  and  selection  operations  are
repeated  until  the  termination  conditions  (e.g.,  the  maximum
generation) are satisfied. It  is  worth mentioning that the low-
level  heuristics  are  also  the  candidate  solutions  in  the  search
space  of  the  proposed  HHF.  Thus,  the  proposed  HHF  has
potential  to  find  the s  that  can  perform  better  than  the
predefined low-level heuristics.

 

Initialization
Initialize the population according to the

chromosome representation using the
concatenate functions and low-level heuristics

Reproduction

Fitness evaluation

Selection

Output

Use the mutation and crossover to generate
new chromosomes (H2s)

Evaluate the fitness (the average lifetime) of
chromosomes on all training networks

Select the chromosomes with higher fitness
value to form the next generation.

Reach the maximum generation or
maximum running time

Output the H2 with the highest fitness value

Y

N Termination condition

 
Fig. 3.     The flowchart of the hyper heuristic discovery.
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Main program:
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+

×

×

ADF
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Λ μ κ λ

- I1 I2

- I1 I2

-

I1 I2

Γ(Λ, μ, κ, λ) = Λ × μ + ADF (κ, λ)

ADF (I1, I2) = I1 − I2

The final solution: Γ(Λ, μ, κ, λ) = Λ × μ + κ − λ
 
Fig. 4.     The parsing tree of an example chromosome.
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Fig. 5.     The “sense-think-act” paradigm.
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H2

H2

Overall, to apply the proposed framework more effectively,
a  careful  design  of  training  networks  and  primitives,  and  a
well  tune  of  GPHH  parameters  are  needed.  Among  them,
designing  the  training  networks  and  primitives  for  GPHH  is
the most important step for application. The training networks
should be designed with various features (e.g., the distribution
of sensors, candidate sink sites, and the sensor updating rules)
to produce a more general . It should be noticed that more
properties  of  the  application  can  also  be  considered  in  the
training  network  design  to  improve  the  performance  of
obtained s,  if  these  properties  are  available.  At  the  same
time, it  is advisable to design effective primitives for GPHH,
since the redundance and ineffectiveness of the information in
primitives will degrade the performance of GPHH. It is worth
mentioning  that  the  proposed  framework  can  be  easily
transferred  to  other  WSN applications  such  as  noise  filtering
[46],  [47].  For  example,  the  proposed  HHF  can  be  used  to
automatically design a more robust triggering condition which
needs careful beforehand design (i.e., the triggering threshold
matrix and filter parameters) mentioned in [47].

V.  Experiments on Stationary Networks

H2

In this section, to validate the effectiveness of the proposed
HHF,  the  generated  by  the  HHF  is  applied  to  stationary
networks  which  can  be  categorized  into  two  classes:  the
simple networks and the complex networks.

A.  Experiment Design

r
∆t A,B

R

H

(width : length = 1 : 3)

(20,70)× (20,70)

The stationary networks are wireless sensor networks whose
sensor deployment is  unchanged during the network lifetime.
In  the  experiment  of  stationary  networks,  the  sensors  are
uniformly  deployed  in  the  sensing  region.  Ten  types  of
networks (indexed from “0” to “9”) are designed for training
and testing. There are ten testing wireless sensor networks and
twenty  training  wireless  sensor  networks  in  each  network
type.  The  parameters  of  wireless  sensor  networks  are  set
according to [48]: the sensing rate  is 1 bit/s, the least sojourn
time  is set as 3600 seconds, and the coefficients  in (4)
are set as 50 nJ/bit and 100 pJ/bit/m2 respectively. The energy
consumption for packet reception of every sensor is 50 nJ/bit.
The maximum communication range of sensors and the sink 
is 30 meters. The flow augmentation algorithm (FA) proposed
in [44] is used to construct the multi-hop flow routing tree .
These  parameters  are  also  listed  in Table I.  All  experiments
are performed by a computer with the Intel Core i7-7700 with
3.6 GHz and four cores. The size of memory of the platform is
16  GB.  Besides,  there  are  several  different  parameters  for
each network type and they are listed in Table I. For example,
the  number  of  sensors  is  50  for  network “0” but  100  for
network “1”. The initial energy is 50 Joule for network “0” to
“7”,  but  500  Joule  for  network “8” and “9”.  Especially,  the
network “6” is  set  on  a  rectangle 
sensing region (i.e., similar to the health monitoring of bridges
or  skyscrapers)  and  the  network “7” has  a  sink-forbidden
region .  The  network “8” and “9” are  two
large-scale  networks  which  are  used  to  evaluate  the
generalization of testing methods.

There are three main parameters in SL-GEP: the population

size,  the  length  of  chromosome  head,  and  the  length  of
chromosome tail [45]. Generally speaking, the population size
needs  a  careful  adjustment  to  be  appropriate.  A  large
population size would lead to a slow convergence speed while
a  small  one  would  result  in  easy  premature.  Besides,  it  is
advisable  for  the  length  of  chromosome  head  and  tail  to  be
proportional  with  the  number  of  primitives  so  that  the
chromosomes  can  contain  enough  primitives  to  construct
solutions.  In our work, the parameters of SL-GEP are set  the
same as those in [45]. Further, to validate the performance of
the  HHF,  the  proposed  HHF  is  compared  with  seven  other
methods.  The  first  one  is  the  linear  programming  method
(LP(C-MB)),  which  is  a  classic  deterministic  method  for
maximizing  the  network  lifetime  with  constrained  sink
mobility  [49].  In  our  experiments,  the  LP(C-MB)  is
implemented by GNU Linear Programming Kit 4.60 (GLPK-
4.60) which can be downloaded from the website1.  Since the
LP(C-MB)  considers  the  global  information  and  the  whole
solution  space,  it  can  usually  obtain  the  optimal  solution  but
with a  high cost  of  time and memory.  The second one is  the
ant  colony  optimization  (ACO)  [19],  a  stochastic  search
algorithm,  which  has  a  strong  global  search  ability  and  has
been  shown  quite  effective  in  solving  network  lifetime
maximization  with  mobile  sink.  In  this  study,  the  parameters
of ACO are set the same as [19]. The third one is the greedy
maximum  residual  energy  (GMRE)  [17],  which  is  a  typical
distributed algorithm for the sink movement scheduling. Each
round, the sink will move to the candidate sink site which has
the  sensor  with  the  highest  residual  energy.  The  GMRE  can
only  provide  a  local  optimal  solution  due  to  its  local  greedy
searching  manner.  The  other  four  methods  are  those  which  
1https://www.gnu.org/software/glpk/

 

TABLE I  
The Parameters of Stationary Wireless Sensor Networks

Index Shared parameters Settings

0

∆t
ri = 1 (bit/s)

 = 3600 (s)
A = 50 (nJ/bit)

B = 100 (pJ/bit/m2)
eri = 50 (nJ/bit)

R = 30 (m)
Routing algorithm

= FA [44]

n = 50 m = 5×5
Ψ(m) = (0,100)× (0,100)

, ,
, Ei = 50 J

1
n = 100 m = 5×5

Ψ(m) = (0,100)× (0,100)
, ,

, Ei = 50 J

2
n = 50 m = 10×10

Ψ(m) = (0,100)× (0,100)
, ,

, Ei = 50 J

3
n = 100 m = 10×10

Ψ(m) = (0,100)× (0,100)
, ,

, Ei = 50 J

4
n = 50 m = 20×20

Ψ(m) = (0,100)× (0,100)
, ,

, Ei = 50 J

5
n = 100 m = 20×20

Ψ(m) = (0,100)× (0,100)
, ,

, Ei = 50 J

6
n = 100 m = 10×30
Ψ(m) = (0,50)× (0,150)

, ,
,

rectangle stationary networks, Ei = 50 J

7

n = 100 m = 20×20
Ψ(m) = (0,100)× (0,100)

(20,70)× (20,70)

, ,
,

the network with a sink-forbidden region.
The forbidden region is , Ei

= 50 J.

8
n = 1000 m = 50×50
Ψ(m) = (0,200)× (0,200)

, ,
,

large-scale stationary networks, Ei = 500 J

9
n = 1000 m = 100×100
Ψ(m) = (0,200)× (0,200)

, ,
,

large-scale stationary networks, Ei = 500 J
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ν

∆t Λ

directly use the low-level heuristics introduced in Section IV-
C  as  heuristic  rules  to  guide  the  sink  movements.  For  these
four  methods,  the  sink  will  move  to  the  candidate  sink  site
with  higher  heuristic  value  (lower  heuristic  value  for )  in
each  based on these heuristic rules. Since the  is the same
as GMRE, it is omitted in the experiment.

B.  The Training Process of HHF
H2

H2

H2

First,  the  proposed  HHF  is  utilized  to  learn s  based  on
training  wireless  sensor  networks.  According  to  the  training
wireless  sensor  networks  fed  to  HHF,  two  versions  of  HHF,
the distinct HHF and the transfer HHF, are performed. In the
distinct  HHF,  the  twenty  training  wireless  sensor  networks
and  ten  testing  wireless  sensor  networks  all  come  from  the
same network type.  In the transfer HHF, the network type of
training wireless sensor networks is different from the one of
testing  networks.  In  our  experiment,  the “5” network  type  is
used as the training network type of the transfer HHF, which
means the outputted  of “5” network will be directly used to
schedule  the  sink  movements  in  any  other  network  types  in
the transfer HHF. It is worth mentioning that the transfer HHF
would  be  more  generalized  and  practical  since  its  prior
knowledge of training networks can be not a perfect matching
with  the  testing  networks.  But  the  transfer  HHF  is  likely  to
perform worse than the distinct one because the transfer HHF
has  less  prior  knowledge  of  the  training  networks.  For  each
training process, the SL-GEP is performed for 500 generations
to  search  for  a  good  based  on  twenty  training  networks
from one type.

To investigate the convergence of the proposed method, the
convergence curves of networks “1”, “5”, and “8” are taken as
examples and they are shown in Fig. 6. The curves of network
“1” and “5” both  converge  to  a  maximum  value,  with  steep
increase  at  the  beginning  of  evolution  and  relatively  steady
increment  after  200  generations.  Although  the  curve  of
network “8” also  reaches  a  maximum,  it  seems  it  has  not
converged yet since network “8” is a large-scale network. The
increment  of  these  three  fitness  curves  validates  the
effectiveness of the GPHH training.

H2After 500 generations, the  with the highest fitness value

H2

is  outputted  to  guide  the  sink  movement  in  unseen  testing
networks.  The  outputted s  and  the  training  time  of  the
distinct  HHF  are  shown  in Table II.  It  is  worth  mentioning
that, because the training time of networks “8” and “9” is too
long (i.e., each generation will take more than 2 days) for our
experiment, these two large-scale networks are omitted for the
distinct  HHF  and  networks “8” and “9” are  only  used  to
evaluate the generalization of other testing methods. It is clear
that  the  time  consumption  of  hyper  heuristic  discovery  is
pretty large, especially facing the large-scale network such as
networks “8” and “9” which  makes  the  training  time
unbearable.  However,  we  still  believe  the  HHF  has  a  high
practicability in real-world applications. On one hand, because
the  information  of  many  stationary  wireless  sensor  networks
can  be  determined  beforehand,  the  time-consuming  training
process can be performed off-line before applications. On the
other hand, since the heuristic rules designed by the proposed
method  can  be  easily  applied  to  different  networks,  it  is
flexible for users to train on small-scale networks and transfer
the outputted heuristics to large-scale networks.

C.  Empirical Results

AL
ADT

L

L DT

To evaluate the quality of the solutions, two criterion metrics
are adopted: the average network lifetime ( ) and the average
decision time ( ). The average network lifetime represents
the average of the simulated network lifetime ( ) of a certain
method  on  the  ten  testing  wireless  sensor  networks  for  each
network type. Based on  given in (5), the decision time ( )
which represents the time consumption for each sink movement
decision, is computed by (18)

DT =
Trun

L
(18)
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Fig. 6.     The convergence curves of networks: (a) network “1”; (b) network
“5”; (c) network “8”.
 

 

TABLE II  
The Training Results of the Distinct HHF on Stationary

Wireless Sensor Networks

Index Hyper heuristic Time (s)

0
(
λ+
λ

Λ

ν
+

λ+
λ

Λ

ν
ν

λ
× (κ+

κ

Λ
)
)× (
λ

κ
− κ) 8251.8

1
µ

Λ

ν
−2ν+ κ 29 610.3

2 (
(ν+µ+Λ)× (κ+λ)
ν×µ× (ν×µ+2ν)

− κ)× κ 22 105.5

3 λ9 × (ν− κ)
ν2κ3

72 941.2

4

Λ−µ
ν+Λ−µ

κ+
Λ−µ
ν+Λ−µ

79 480.2

5
ν

(
Λ

ν
)2 −Λ− (ν2 − κ)× λ× κ

ν2
212 345

6 κ× (
λ× (Λ−λ)+λ× (κ−λ)
Λ× (ν×µ−Λ)

− κ) 134 033

7
(κ− ν−µ)× ν+µ

κ
× (2ν+ κ)

(κ− ν)× ν
κ
+
µ

ν

103 028
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where  is the  total  running time of  a  wireless  sensor  net-
work.  The  is  the average of  on ten testing network
cases.  The  measures  the  quality  of  solutions  of  methods
while  the  measures  the efficiency of  methods to  obtain
solutions.

d t

AL

ADT

AL

∆t

AL ADT

AL AL
ADT

H2

ADT H2

Table III lists the simulation results on the testing networks,
where  HHF  and  HHF  are  the  distinct  version  and  transfer
version of HHF, respectively. It can be observed that the s
of  the  two  HHFs  are  statistically  similar  to  those  of  ACO in
most  cases.  Furthermore,  the s  of  the  HHFs  are  much
shorter  than  those  of  ACO,  and  similar  to  those  of  the
distributed  algorithms.  The  LP(C-MB)  method  obtains  the
highest  in  the  smallest  network  type.  This  is  because  the
LP(C-MB) considers the global information to find solutions.
Besides,  the  sojourn  time  of  each  sink  site  found  by  LP(C-
MB) may not be the integer times of , which makes LP(C-
MB)  reaches  a  better  approximation  of  the  global  optimal
solution. However, the LP(C-MB) requires too much memory
and computational  time,  which makes it  unsuitable for  larger
networks.  Another  centralized  algorithm,  ACO,  has  the
second  best  performance  in  but  a  longer  compared
with  other  distributed  algorithms.  As  for  other  distributed
algorithms,  such as  GMRE,  they cannot  obtain  a  satisfactory
solution (i.e., the  of GMRE is only 60% to 70% of the 
of ACO). All distributed algorithms have a similar short .
However,  since  the s  are  the  combinations  of  low-level
heuristics  and need to  be  decoded from chromosomes before
each  round,  the s  of s  are  usually  lightly  longer  than

AL

H2

those  of  other  distributed  algorithms.  The  two
implementations  of  HHF  have  a  similar  performance  with
each other in these stationary networks and they are capable of
obtaining  significantly  higher  than  other  distributed
algorithms.  The  above  results  demonstrate  that  the  proposed
HHF  is  effective  to  find  promising s  to  guide  the  sink
movements.

7
8

7

8 t

t

To further analyze the performance of HHF, the cumulative
distribution function (CDF) of the hop number of packets and
the average sojourn time of  every sink on each network type
are  given  out.  Because  ACO  and  GMRE  are  the  popular
centralized  scheduling  algorithm  and  distributed  algorithm,
respectively,  ACO,  GMRE,  and  two  versions  of  HHF  are
taken as the examples to be compared. The networks “ ” and
“ ” are  taken  as  examples  because  they  are  relatively  more
complex  than  other  networks  (i.e.,  network “7” with  a  sink-
forbidden region and network “8” is large-scale). The CDF of
the hop number of these two networks are shown in Fig. 7. To
reduce the energy consumption and improve the transmission
efficiency, the hop number of packets is expected to be as few
as possible. Therefore, the CDF of the hop number reflects the
efficiency of the network and implies the network lifetime in
some way. It can be observed that, in network “ ”, the curves
of  two  HHFs  even  perform  lightly  better  than  ACO.  And  in
network “ ”,  the  CDF  curves  of  ACO  and  HHF  nearly
coincide  with  each  other  while  the  curve  of  GMRE  is  much
lower and broader than the curves of ACO and HHF .

The  average  sojourn  time  of  these  four  methods  on

 

TABLE III  
The Results of Stationary Wireless Sensor Networks

Index LP(C-MB) ACO GMRE λ κ µ ν dHHF tHHF

0
AL 130.33 + 94.20 + 64.1 - 64.8 - 60.3 - 66.2 - 64.8 - 84.6 - 82.9

ADT (s) 0.0766 - 0.0229 - 0.0010 - 0.0013 - 0.0013 - 0.0013 - 0.0013 - 0.0003 ≈ 0.0003

1
AL N/A 139.9 ≈ 87 - 118.4 - 99.8 - 107.3 - 102.7 - 136.6 ≈ 139.5

ADT (s) N/A 0.0887 - 0.0005 ≈ 0.0005 ≈ 0.0006 - 0.0005 ≈ 0.0006 - 0.0006 - 0.0005

2
AL N/A 110.0 ≈ 64.9 - 62.9 - 66.7 - 70.5 - 63.1 - 101.8 ≈ 99.7

ADT (s) N/A 0.0323 - 0.0008 ≈ 0.0008 ≈ 0.0008 ≈ 0.0007 ≈ 0.0008 ≈ 0.0008 - 0.0007

3
AL N/A 144.5 ≈ 99.0 - 106.4 - 84.5 - 101.4 - 88.7 - 133.0 ≈ 137.5

ADT (s) N/A 0.1005 - 0.0005 + 0.0005 + 0.0009 + 0.0006 + 0.0006 + 0.0015 - 0.0013

4
AL N/A 107.4 ≈ 65.0 - 71.9 - 51.2 - 71.4 - 44.6 - 101.5 ≈ 103.6

ADT (s) N/A 0.0616 - 0.0058 + 0.0060 + 0.0060 + 0.0071 + 0.0088 ≈ 0.0026 - 0.0023

5
AL N/A 152.6 + 111.7 - 114.9 - 80.1 - 111.8 - 74 - 136.1 ≈ 136.1

ADT (s) N/A 0.1375 - 0.0006 + 0.0007 + 0.0009 + 0.0007 + 0.0010 + 0.0043 ≈ 0.0043

6
AL N/A 112.9 ≈ 85.6 - 86.4 - 76.2 - 83.8 - 65 - 109.7 ≈ 109.7

ADT (s) N/A 0.142 - 0.0003 + 0.0008 + 0.0008 + 0.0007 + 0.0011 + 0.0034 - 0.0032

7
AL N/A 137.4 + 84.4 - 111.3 + 107.1 + 106 + 70.9 + 125.1 ≈ 121.9

ADT (s) N/A 0.134 - 0.0004 + 0.0008 + 0.0007 + 0.0007 + 0.0010 + 0.0033 - 0.0032

8
AL N/A 763.0 ≈ 504.9 - 668.6 - 509.1 - 677.5 - 240.4 - N/A 725.6

ADT (s) N/A 9.124 - 0.0133 + 0.0127 + 0.0135 + 0.0144 + 0.0152 + N/A 0.2404

9
AL N/A 761.9 + 485.5 - 641.5 - 371.1 - 658.7 - 279.4 - N/A 727.9

ADT (s) N/A 12.10 - 0.0395 + 0.0346 + 0.0464 + 0.0340 + 0.0521 + N/A 0.9094

≈,+,Symbols  and – represent the corresponding method is similar to, significantly better, and worse than the transfer HHF according to the Wilcoxon rank-
sum test at α = 5%. The same symbols are also used in Table VI
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networks “7” and “8” are shown in Fig. 8. For the network “ ”
which has the forbidden region, the sojourn times of sink sites
of  ACO  and  the  two  HHFs  are  mostly  distributed  along  the
margins of the forbidden region, which are the closest places
to  the  central  region  of  the  map.  This  is  because,  for  the
square  map,  the  usually  has  a  smaller  hop  number  of  the
packets  in  the  whole  network  when  the  sink  in  the  central
region  of  the  sensing  region.  However,  the  sink  in  GMRE
seldom selects the sink sites in the central part of the sensing
region (i.e., the margins of forbidden region) and it prefers to
stay at the marginal part of the sensing region. Such solutions
bring  a  large  hop  number  of  packets  in  networks  (i.e.,  some
packets need to be transmitted through the whole map to reach
the  sink).  Besides,  the  sojourn  time  of  sink  sites  of  GMRE
only lies in a few candidate sink sites. This makes the sensors
near these sink sites need to transmit much more packets than
others during the network lifetime. This also makes the energy
of a part of sensors drop down rapidly.

8

t

t

H2

For  the  large-scale  network “ ”,  the  sojourn  time  of
candidate sink site of ACO is mostly distributed in the center
of  the  sensing  region  like  the  Gaussian  distribution.  The
sojourn  time  in  HHF  looks  different  with  the  one  of  ACO,
but  they  still  have  some  common  characteristics.  Firstly,  in
HHF ,  several  sink  sites  in  the  central  region  have  a  large
sojourn time to make the networks have a small  hop number
of  packets.  Secondly,  other  sink  sites  with  smaller  sojourn
times are distributed widely from the center  to the margin of
the sensing region to make the energy consumption of sensors
more  balanced.  The  similarity  of  the  CDF of  hop  number  of
packets and the similarity of the average sojourn time in ASO
and HHF both validate that  the outputted  of the proposed
framework  is  quite  efficient  to  have  a  competitive
performance  with  ACO  in  terms  of  prolonging  network
lifetime.

VI.  Experiments on Dynamic Networks

A.  Simulation Settings
In  this  section,  three  types  of  dynamic  networks  are

designed  to  test  the  effectiveness  of  the  proposed  method.
These  three  types  of  dynamic  networks  are  as  follows:
networks  containing  shaking  sensors  (e.g.,  those  networks
with  sensors  which  detect  positions  containing  noise),
networks  with  migrating  sensors  (e.g.,  those  used  for
monitoring  the  ocean  flow),  and  networks  with  sensors
gathering  to  a  moving  point  (e.g.,  those  used  for  target
tracking).  As  same  for  stationary  networks,  there  are  twenty
training  networks  and  ten  testing  networks  for  each  network
type. ACO, GMRE, and two versions of HHF are taken as the
testing  methods  to  validate  the  effectiveness  of  the  proposed
HHF.  The  detail  experiment  settings  are  listed  in Table IV.
For network “10”, every sensor will move to another location
in the sensing region randomly with different small step sizes
every round.  For network “11”,  the sensors  move around the
2-D  sensing  region  obeying  the  clock-wise  direction.  For
network “12”, there is a random moving point on the sensing
region  and  it  moves  randomly  every  round.  The  sensors  in
network “12” will gather around the moving point each round.
Other  parameters  are  set  the  same  with  stationary  networks.
For  these  dynamic  networks,  the  mobile  sink  should  make  a
decision  about  next  sink  site  within  an  acceptable  response
time  which  is  dependent  on  the  least  sojourn  time  (i.e.,  a
response time is  acceptable when it  is  much smaller  than the
least  sojourn  time).  However,  the  least  sojourn  time  is
problem specific, which means it may be unsuitable to define
a  fixed  acceptable  response  time  for  all  problems  (including
the  existing  benchmark  problems  in  our  work  and  other
application problems) to discuss the effectiveness of different
algorithms.  Nevertheless,  the  response  time  of  different
algorithms should be as small as possible to make themselves
more practical in applications.

ℓ

H2

L

To adopt  ACO into  dynamic  networks,  ACO is  performed
at  the  beginning  of  every  round  and  the  second  step  of  the
outputted solution (i.e., a sequence of sink sites) is regarded as
the  next  step  according  to  the  current  network  status.  Since
GMRE  and  HHF  are  distributed  algorithms,  they  can
determine the next step each time the network is updated. The
training  process  of  the  distinct  HHF  in  dynamic  networks  is
similar  to  the  one  in  stationary  networks  and  the  sensors  are
updated  using  the  updating  rule  in  each  round  during  the
training process. The GP algorithm also runs 500 generations
on  twenty  training  networks  and  outputs  the  best .  It  is
worth  mentioning  that  the  initial  networks  (i.e.,  the  sensor
positions)  of  these  twenty  training  networks  and  ten  testing
networks  in  dynamic  networks  are  the  twenty  training
networks and ten testing networks of  stationary network “5”.
The training results of the distinct HHF on dynamic networks
are shown in Table V. The training time becomes much longer
than stationary  networks  because  the  mobility  of  sensors  can
also  do  help  to  energy  balance  of  sensors,  which  leads  to  a
larger  in simulation.

B.  Empirical Results
AL ADT

d

t

The  and  are  still  used  as  the  criteria  of  the
experiments  on  dynamic  networks.  The  experimental  results
are  listed  in Table VI.  Generally  speaking,  the  HHF  and
HHF  have very competitive performances in comparison with
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Fig. 7.     The CDF of hop number in stationary networks. (a) the percentage
vs. hop number on network “7”; (b) the percentage vs. hop number on net-
work “8” (the curve of HHFd is omitted because of unbearable training time).
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ADT

ADT

the  ACO  in  most  cases  according  to Table VI.  Due  to  the
global  searching ability,  ACO obtains  the  longest  among
all these three network types. However, the s of ACO are
much longer than those of distributed algorithms (e.g., nearly
10 000  times  of s  of  the  distributed  algorithms  in
networks “10” and “12”),  which  means  it  is  more  likely  for
ACO  to  become  impractical  in  applications  of  dynamic
networks.  It  should  also  be  noticed  that  since  the  centralized
algorithms (e.g.,  ACO) need a  large computation burden,  the
decision  time  would  be  longer  when  these  centralized
algorithms are implemented on mobile sinks (e.g.,  unmanned
aerial  vehicles)  which  have  less  computation  power  than  our
experiment platform. GMRE still has a shorter  but lower

AL AL

ℓ 12
AL ADT

 performance.  The  of  GMRE is  averagely  the  60% to
70% of  the  one  of  ACO,  which  is  similar  to  the  one  in
stationary  networks.  The  distinct  HHF  performs  better  than
(or  at  least  similar  to)  the  transfer  HHF  on  all  testing
networks.  Especially,  in  network “12”,  the  transfer  HHF
performs  much  worse  than  other  methods  because  of  the
seriously  mismatching  priori  knowledge.  By  learning  the
priori  knowledge  from  the  training  networks,  including  the
updating  rule ,  the  distinct  HHF can  solve  the  network “ ”
with higher  but shorter . Based on the results, it can
conclude that the competitive performance and short response
time  mainly  benefit  from  the  properly  designed  training
networks  and  the  beforehand  training.  Without  them,  the
performance of the proposed method would be unsatisfactory,
like  the  HHFt on  network “12”.  Also,  since  the  proposed
method  only  utilizes  the  distinct  knowledge  of  each  network
type instead of each network case, it is reasonable for HHFd to
have a lightly worse performance than ACO which schedules
the sink movement for every network case.

t d

The  cumulative  distribution  function  (CDF)  of  the  hop
number  of  packets  and  the  average  sojourn  time  of  the  sink
sites  on  each  network  type  are  also  given  out.  The  networks
“11” and “12” are  taken  as  the  examples.  The  CDFs  of  hop
number are shown as Fig. 9. In network “11”, the CDF curve
of  ACO  means  the  most  efficient  network  in  the  network
“11”.  HHF ,  HHF ,  and  GMRE  are  ranking  two  to  four
respectively,  which  properly  reflects  the  network  efficiency
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Fig. 8.     The average sojourn time in stationary complex network (The result of HHFd on network 8 is missing because the training time is too long).
 

 

TABLE IV  
The Parameters of Dynamic Wireless Sensor Networks

Index Settings

10
n = 100 m = 20×20 Ψ(m) = (0,100)× (0,100), , , the network with shaking sensors (i.e., every sensor will move to another place every round
with different small step sizes randomly), Ei = 50 J

11
n = 100 m = 20×20 Ψ(m) = (0,100)× (0,100), , , the network with migrating sensors (i.e., every sensor will move around the sensing region
obeying the clock-wise direction), Ei = 50 J

12
n = 100 m = 20×20 Ψ(m) = (0,100)× (0,100), , , the network with sensors aggregating to a moving point (i.e., the target point randomly
moves to another place on the sensing region every round. Then the sensors aggregate to a small square whose center is the target point),
Ei = 50 J

 

 

TABLE V  
The Training Results of Distinct HHF on Dynamic

Wireless Sensor Networks

Index Heuristic rule Time (s)

10


ν

µ
+ κ

ν+ κ
+ κ

× κ 307 474

11
Λ

ν2

ν− κ − κ
271 784

12 Λ− κ− ν−λ
κ

482 388
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and s. The curves of network “12” also imply that, with the
mismathcing  priori  knowledge,  the  network  efficiency  of
HHF  is much lower (i.e., even lower than the one of GMRE).
By introducing the correct prior knowledge, the HHF can have
a very competitive performance with ACO.

The average sojourn time of these two networks are shown
in Fig. 10. For the network “11” whose sensors move around
the  sensing  region  in  the  clock-wise  direction,  the  sensor
distribution in every round can be regarded as a new random
distribution.  Therefore,  the  average  sojourn  time in  the  ACO
and  the  two  HHFs  are  distributed  around  the  central  part  of
the sensing region like the Gaussian distribution as  shown in
Fig. 10.  On  the  contrary,  the  sojourn  time  in  GMRE  is  still
distributed on the marginal part.

For  the  network “12”,  there  is  an  important  characteristic:
too  many  candidate  sink  sites  will  share  a  same  or  a  similar
heuristic  value,  since  the  sensors  will  aggregate  densely  to  a
randomly  moving  point  on  the  sensing  region.  This  leads  to
two  phenomena  of  the  sojourn  time.  Firstly,  in Fig. 10,  the
sojourn  times  in  GMRE  are  distributed  in  the  region  with
small X and small Y. X and Y are the coordinate values of the
sensing region. This is because when many sensors aggregate
in  a  small  region,  many  candidate  sink  sites  have  a  same
maximum residual energy and GMRE can not distinguish the
difference from them. Therefore, when the algorithm visits all
candidate  sink  sites  from  small X and Y to  large X and Y to
select the candidate sink site with the highest heuristic value,

H2

the  algorithm  will  always  prefer  the  first  sink  site  with  the
highest heuristic value which lies in small X and Y. Secondly,
in Fig. 10,  the  sojourn  time  in  the  transfer  HHF  is  quite
uniform across the whole sensing region. It means that the 
from the transfer HHF acts like a random selection because of
the  mismathcing  prior  knowledge.  These  two  types  of
distributions  of  sojourn  time  in  sink  sites  imply  that  the
GMRE  and  the  transfer  HHF  can  not  effectively  tell  the
quality of the candidate sink sites. On the contrary, benefitting
from  the  global  information  and  the  priori  knowledge,  ACO
and the distinct HHF can perform very well in network “12”.

AL H2

DT

To  summary,  the  proposed  HHF  can  have  a  very
competitive performance with the centralized ACO in terms of

 metric.  Furthermore,  the  outputted s  can  have  a  much
shorter response time (i.e., ) than that of ACO. The above
advantages  make  our  method  more  convenient,  flexible,  and
suitable of real-world applications.

VII.  Conclusions

H2

H2

H2

H2

In  this  paper,  we  have  proposed  a  hyper-heuristic
framework  (HHF)  to  design  heuristic  rules  which  can
intelligently  schedule  the  movements  of  mobile  sinks  in  the
wireless sensor networks to maximize the network lifetime. In
the  proposed  framework,  training  networks  and  low-level
heuristics  are  designed  at  the  beginning  according  to  prior
knowledge.  Then,  the  GP  algorithm  is  developed  to
automatically  construct  high-level  heuristics  based  on  the
training networks and the predefined low-level heuristics. The
GP  algorithm  finally  outputs  the  heuristics  with  the  highest
fitness as the results. The outputted heuristic rules can then be
applied to new networks in practical applications. To validate
the performance of the HHF, a number of stationary networks
and  dynamic  networks  have  been  designed  for  testing.  The
experimental results demonstrate that the s provided by the
proposed  framework  can  perform  much  better  than  the
human-design  heuristics  in  terms  of  prolonging  the  network
lifetime. Besides, the s can perform competitively with the
evolutionary algorithm ACO in terms of the network lifetime,
but  in  much  shorter  response  time.  Generally,  the  proposed
method  is  more  effective  and  practical  than  the  centralized
ACO method and other well-known human-design distributed
methods.  As  for  future  work,  we  plan  to  improve  the
readability  of  the  found s  by  utilizing  multi-objective
optimization  techniques  to  optimize  the  quality  and
complexity of s at the same time.
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Fig. 9.     The CDF of hop number in dynamic networks. (a) the percentage
vs. hop number on network “11”; (b) the percentage vs. hop number on net-
work “12”.
 

 

TABLE VI  
The Results of Dynamic Wireless Sensor Networks

Index ACO GMRE HHFd HHFt

10
AL 197.8 + 128.9 - 190.6 ≈ 173.0

ADT (s) 11.14 - 0.0064 - 0.0048 + 0.0052

11
AL 162.1 ≈ 138.6 - 152.0 ≈ 157.6

ADT (s) 9.953 - 0.0060 - 0.0048 + 0.0051

12
AL 661.3 + 228.7 + 656.9 + 104.5

ADT (s) 21.77 - 0.0061 - 0.0050 + 0.0052
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Fig. 10.     The sojourn time of dynamic networks.
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