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a b s t r a c t 

Multi-modal optimization is an active research topic that has attracted increasing atten- 

tion from evolutionary computation community. Particle swarm optimization (PSO) with 

niching technique is one of the most effective approaches for multi-modal optimization. 

However, in existing PSO with niching methods, the number of particles around different 

niches varies distinctly from each other, which makes it difficult for the algorithm to find 

high-quality solutions in all niches. To address this issue, this paper proposes a new nich- 

ing PSO with equilibrium factor named E-SPSO. Different from the existing niching PSOs, 

the numbers of particles in different niches have been kept in balance in E-SPSO. The ve- 

locity of each particle is influenced by not only the personal best particle and the global 

best particle, but also an equilibrium factor (EF). By using the equilibrium factor to up- 

date the velocities of particles, the particles can be allocated uniformly among the niches. 

In this way, the computation resources can be assigned to the niches in a more balanced 

manner, so that the algorithm can gain more population diversity and find high-quality 

solutions in all niches. Experimental results on eleven benchmark problems show that the 

proposed mechanism not only increases the number of optima found, but also improves 

the search efficiency. 

© 2019 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

1. Introduction 

Multi-modal optimization, which requires finding all optimal solutions in the search space, is an active research topic

that has a number of real applications such as clustering problems [26] , inversion of teleseismic waves [14] , simulation-

based design of power systems [9] and feeder network design problems [25] . EAs are population-based heuristic search

algorithms which have been shown effective in solving complex optimization problems [5,33] . Since EAs contain a popu-

lation of solutions, they have natural advantages in locating multiple optimal solutions in a single run. However, without

specific design, traditional EAs are difficult to locate all global and local optima in a single run with high accuracy. 

Niching method is one of the most effective methods to identify more solutions for multi-modal optimization problems

(MMOPs). The key idea of the niching method is to maintain a high population diversity by using techniques such as fitness

sharing [10] , clustering [44] , crowding [24] , and restricted tournament selection [11] . Although the niching method has been

proven effective in improving the capability of EAs to find more optimal solutions with high accuracy, it often requires much

more computation cost, for the niching method usually slows down the convergence speed of the algorithms. 
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Particle Swarm Optimization (PSO) is a well-known EA variant. It makes use of individuals’ experience and information

of the population to guide the search. PSO has been proven to be effective and robust when faced with complicated opti-

mization problems [47,48] . In recent years, niching PSOs are commonly used for solving MMOPs, and a number of niching

PSOs have been proposed, such as VPSO [37] and nichePSO [3] . Niching PSOs search for the optima with the help of multiple

stable subpopulations [19] . Due to its advantages, niching PSO has become one of the most popular approaches for MMOPs

and has also been applied to a range of practical applications, such as clustering problems [26] and inversion teleseismic

waves [14] . Famous niching PSOs include FERPSO [18] , SPSO [27] , Ring topology PSO [20] , and etc. Furthermore, to enhance

the capability of finding more accurate solutions, local search method is also integrated with niching PSO to improve the

search efficacy [32] . 

However, existing niching PSOs, including FERPSO and SPSO, still encounter the problem of distinct disequilibrium of

particle numbers among different niches. The numbers of particles in different niches tend to vary from each other during

the searching process, especially when the number of optima is relatively large. In niching PSO, if the number of particles

in a niche is too small, the niche may not be able to find highly accurate solutions due to the lack of diversity. Therefore,

balancing the number of particles among niches is important for niching algorithms to find high accurate solutions in all

niches, especially on complex MMOPs that contain many optimal solutions. 

Keeping this in mind, this paper proposes an equilibrium factor (EF) to guide the search process. The key idea is to

decrease the differences among the numbers of particles in different niches. EF encourages the worst particles in the largest

niche to move towards the smallest niche. This mechanism can not only maintain the solution accuracy of the former niche,

but also increase the probability of finding better solution in the latter niche. We embed EF inside SPSO with local search,

forming a new niching PSO named E-SPSO. Different from the existing niching PSOs, the difference of particle numbers

among different niches have been decreased in E-SPSO. By using EF to update the velocity of particles, the particles are

distributed more evenly in the niches. The proposed E-SPSO has two main advantages. First, it increases the number of

optima found in complex problems. By reducing the number of particles in the largest niche, the algorithm can drive more

particles to explore other search space, which is useful to find more optimal solutions. Second, it improves the search

efficiency. By increasing the number of particles in niches with less particles, the particles can be distributed uniformly

among the niches. In this way, all niches can have enough diversity to avoid local stagnation and to search for highly

accurate solutions, which is useful for improving the search efficiency. 

The remainder of this paper is organized as follows. Section 2 gives a brief overview of basic PSO, and the related work

on PSO for MMOPs. In Section 3 , the proposed method is introduced. Section 4 describes the experimental studies. Finally,

the conclusion part is given in Section 5 . 

2. Preliminaries 

In this section, some preliminaries of our work are introduced. First, the definition of multi-modal optimization problem

is presented. Then, a brief introduction to the particle swarm optimization (PSO) algorithm is given. Last, some related works

are presented. 

2.1. Multi-modal optimization problem (MMOP) 

MMOP is a challenging optimization problem in evolutionary computation community. It requires identifying multiple

solutions in a single run. However, locating multiple local optima and the global ones at the same time introduces extra

difficulties, for it requires the algorithm to maintain the different optima found and improve the accuracy during the search

process. 

It should be noted that the MMOP is similar to the group- or cluster-consensus problem [39,40] (G/CCP). First, both

problems can be solved by multi-agent system, where the agents will gradually converge to multiple states. Second, in both

problems, each agent can communicate with other agents to update its state. For MMOP, the agents are implicitly driven by

a fitness function. While for G/CCP, the agents are explicitly driven by a directed graph and the weights associated to the

graph. However, the connection among the agents of the two problems are different. For G/CCP, the state of an agent can

be directly obtained by linearly combining the states of nearby connected agents and the weights associated to them. While

for MMOP, due to the randomness in reproduction operators, the relationships between agents are changing dynamically.

Thus, the new state of an agent may be influenced by different agents in different time steps. 

2.2. Particle swarm optimization 

Over the past decades, a number of methods have been proposed to solve the MMOP. Among others, the PSO, which

is proposed by Kennedy and Eberhart [7] , has been proven to be excellent in solving MMOPs [23] . In PSO, each solution

is represented by a particle, which searches solutions in a multi-dimension space by learning from its own experience and

other particle’s past experience. Its position X and velocity V are updated according to the following equations: 

V 

d 
i ( t + 1 ) = w ∗ V 

d 
i ( t ) + c 1 ∗ rand 1 

d 
i 

(
pbes t d i ( t ) − X 

d 
i ( t ) 

)
+ c 2 ∗ rand 2 

d 
i ∗

(
gbes t d ( t ) − X 

d 
i ( t ) 

)
(1) 
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X 

d 
i (t + 1) = X 

d 
i (t) + V 

d 
i (t + 1) (2)

where t represents the current generation, d refers to a dimension of the individual, and i is the index of a particle. c 1 and

c 2 are the acceleration constants. rand1 d 
i 

and rand2 d 
i 

are two random numbers from a uniform distribution within the range

of [0,1]. The inertia weight w is used to balance the global and local search performance. pbest i is the previously visited

position yielding the best fitness value for the i th particle while gbest is the best position found by the whole population.

In traditional PSO, Eq. (1) shows how the velocity of each particle will be updated during each iteration. pbest means the

personal best position, which is the best position that a particle has ever identified. gbest means the global best particle in

the whole population, which is the best position that the whole population has ever identified. X is the current position of

a particle. w, c 1, c 2 are parameters that are used to control the velocity of a particle. During each iteration, the velocity of a

particle is influenced by pbest and gbest on the basis of the particle’s current velocity. And the particles tend to be attracted

by pbest and gbest , as expressed in Eq. (1) . With the help of pbest and gbest , the particles tend to converge around a global

(or local) optimum. Eq. (2) shows how the position of a particle will be updated. In traditional PSO, the position of each

particle is calculated by its current position and velocity from Eq. (1) . 

2.3. Related work on PSO for MMOP 

PSO has been verified to have great potential in solving optimization problems and many enhanced PSO variants have

been developed in the past decade. Existing PSOs for MMOP can be generally classified into two types. The first type focuses

on preventing the particles from moving into the optima areas which have been identified during the searching process. To

achieve this goal, it is important to improve the population diversity and different techniques have been proposed in the

literature [8,42] . The second type focuses on the niching methods [19,32] . The key idea is to identify multiple optima using

a group of niches and then maintain the identified optima till the end of the algorithm. 

In the first type of algorithms, different methods have been proposed. For example, Parsopoulos and Vrahatis [28] pro-

posed a PSO algorithm cooperated with some transformation techniques to solve this problem. In their work, the deflection

and stretching techniques are used for transformation of the objective functions, and a repulsion source at each detected

optima is used to ensure that a particle will be repelled away from moving towards the detected optima. Ran et al. [35] pro-

posed a novel PSO called self-adaptive escape PSO, which uses a special mutation-escape operator to make particles explore

the search space more efficiently. It produces a large speed value dynamically according to the variation of the speed, which

encourages the particles to explore the local and global optima thoroughly at the same time. Michael et al. [31] proposed

a PSO with Single Particle Repulsivity to solve the multi-modal optimization problem. They use a repulsive mechanism to

improve the performance of the algorithm. Amit and Dilip [6] proposed a real-coded genetic algorithm (RCGA) by using a

novel restart strategy. Lin et al. [22] proposed an improved differential evolution with searching pioneer in this field. They

guided the vectors towards potential solution space by sharing parameter information of the vector that performed best in

previous iteration with the other vectors. Li and Tan [16] proposed a loser-out tournament based fireworks algorithm, sug-

gesting using competition as a new manner of interaction. In their new method, the fireworks are compared with each other

according to both their current status and their progress rate. Antonia et al. [45] proposed a LaF-CMAES hybrid to achieve

a balance between exploration and exploitation, in which techniques with distinct mechanisms for the task of exploration

and the task of exploitation are developed. 

In the second type of algorithms, niching techniques are used to improve the performance. For example, Brits et al.

[3] proposed the NichePSO, which utilizes a group of subswarms to locate multiple optimal solutions. The subswarms are

formed from an initial swarm by monitoring the fitness of individual particles. They can be merged together or absorb

other individuals from the main swarm. The authors also proposed nbestPSO [4] , in which a particle’s neighborhood is

defined by its k −closest particles and the particle’s neighbourhood best is defined as the average position of its neighbors.

Parrott and Li [27] proposed speciation-based PSO (SPSO). Li utilized the notion of species [17] and the size of species

is determined by a radius parameter. The procedure for identifying species seeds, suggested by Pétrowski in [30] and Li

et al. in [15] is also incorporated. The algorithm is then extended aiming to improve its robustness to the parameter r s
[1] . Bird and Li [1] proposed the Adaptive Niching PSO (ANPSO). It combats the problem of predefining niche radius by

defining the radius as the average distance between a particle and its closet neighbor instead. Li [18] proposed the Fitness

Euclidean-distance Ration Based PSO (FERPSO). He adopted the idea of Fitness-Euclidean-distance ratio (FER) from FDR-

PSO (Fitness-Distance-Ratio based PSO) [43] . In FERPSO, a parameter named FER (Fitness and Eulicdean-distance Ratio) is

calculated in order to determine a particle’s fittest-and-closet neighborhood point p n . The particles will be attracted towards

p n , instead of a single global best in canonical PSO. Schoeman and Engelbrecht [37] proposed vector-based (VPSO). They

utilized the vector operations to determine the size of a niche and treated each individual as a vector. The process of

determining the niche is terminated in a sequential manner and the algorithm doesn’t require any predefined parameter. A

parallel version of VPSO named PVPSO [36] is also proposed, which keeps all the niches in parallel and merges the niches

when the distance between two niches is below a defined threshold. Passaro and Starita [29] proposed k-means clustering

PSO (kPSO). Their work is inspired by Kenny’s work [12] , in which the k-means clustering algorithm is first used in a PSO

algorithm to determine the personal bests and neighborhood bests. In kPSO, the parameter k is specified with the help

of Bayesian information criterion (BIC) [38] and the k-means is applied to the swarm population at a regular interval. Li
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[20] proposed ring topology PSO. It allows different neighborhood bests to coexist with the help of a ring topology and all

the particles interact only with their immediate neighbors in this mechanism. The idea for searching with topology comes

from [13] , in which population structure is used to combine with PSO. In ring topology PSO, different niches will be formed

around the identified neighborhood bests p n s if the population size is large enough. All the niching methods have achieved

some progress in MMOP and the related work is still going on in these years. 

The PSO methods mentioned above hope to solve the MMOP by increasing the population diversity. With the help of

searching in different subswarms, more optima can be identified and maintained till the end of the search. Nevertheless,

all these methods have no mechanism to balance the distribution of particles. This paper proposed a general and effective

balancing mechanism which can be applied to improve existing Niching PSOs. 

3. The proposed method 

The corresponding pseudocode is given in Algorithm 1 . Generally, the proposed E-SPSO consists of four main steps,

Algorithm 1 The pseudocode of E-SPSO. 

1: Randomly generate an initial population, set the value of species radius r 

2: while Termination criterion is not met do 

3: L sorted ← all the particles sorted in decreasing order of fitness value 

4: Niche seeds S ← ∅ 
5: while L sorted � = ∅ do 

6: p ← the current fittest particle from L sorted 

7: The seed of p seed p ← ∅ 
8: for all the particles s in S do 

9: if distance( p, s ) < r then 

10: seed p ← s ( p falls into the same niche with s ) 

11: break 

12: end if 

13: end for 

14: if seed p == ∅ then 

15: S ← S 
⋃ { p} (Sort niche seeds in S in decreasing order of fitness) 

16: seed p ← p ( p become the seed of a new niche) 

17: end if 

18: L sorted ← L sorted − { p} 
19: end while 

20: for i = 1 → populationsize do 

21: nbest i ← seed i 
22: end for 

23: Find the largest niche ( LN) and the smallest niche ( SN) 

24: Sort all particles in ( LN) in decreasing order of fitness values 

25: DV = SeedL − SeedS, DS = (sizeL − sizeS) / 2 

26: Update the velocities and positions for the last DS particles in LN with Eq. (9) and Eq. (10) 

27: Update the rest particles with Eq. (8) and Eq. (10) 

28: Update pbest for every particle 

29: Local search 

30: end while 

namely initialization, construction of the niche, updating velocity and position, and local search procedure. It should be

noted that the major contribution of this paper lies in Step 3, while the other three steps are based on the existing SPSO

[27] . The meanings of important abbreviations in this paper are listed in Table 1 . Fig. 1 compares the distribution of particles

for E-SPSO and SPSOLS on F1, while Table 2 gives more details of the results in Fig. 1 . The comparison results indicate that

particles in E-SPSO are allocated more uniformly than those in SPSOLS. 

Step-1 Initialization 

Similar to traditional PSO algorithm [7] , the first step in E-SPSO is to randomly generate NP (population size) particles

to form an initial population. All the particles are uniformly distributed around the search space at first. The aims of the

first step are to initialize the particles’ positions and to initialize their velocities. Both position and velocity are represented

in the form of vector. The dimension number D is specified according to the concrete problem. Specifically, the first step is

executed based on the following equations: 

X 

d 
i = rand d i (RangL d i , RangR 

d 
i ) (3) 

V max d = RangR 

d − RangL d (4) 
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Table 1 

Important abbreviations and their meanings. 

Abbreviation Meaning of abbreviation 

ANFE Average number of function evaluations 

ANFO Average number of optima found 

ANOI Average number of iterations 

FERPSO Fitness Euclidean-distance Ration Based PSO 

FERPSOLS Fitness Euclidean-distance Ration Based PSO with local search 

SPSO Speciation Based PSO 

SPSOLS Speciation Based PSO with local search 

MMOP Multi-modal optimization problems 

SR Success rate 

EF Equilibrium factor 

E-SPSO \ EF E-SPSO without equilibrium factor 

E-SPSO \ LS E-SPSO without local search 

Fig. 1. Distribution of particles for SPSOLS and E-SPSO on F1. The curve of test problem F1 and the distribution of particles for SPSOLS and E-SPSO are 

shown. The figure shows that particles of E-SPSO are allocated more uniformly among the niches than SPSOLS. 

Table 2 

Distribution of particles for SPSOLS and E-SPSO on F1. 

Niche 1 Niche 2 Niche 3 Niche 4 Niche 5 Standard deviation Variance Range 

SPSOLS 9 10 19 4 8 5.522681 30.5 15 

E-SPSO 10 15 9 8 8 2.915476 8.5 7 

 

 

 

 

 

 

 

 

 

 

 

 

 

V 

d 
i = rand d i ((−0 . 5) ∗ V max d , 0 . 5 ∗ V max d ) (5)

where i ∈ [1, NP ] is the index of a particle and d ∈ [1, D ] refers to the dimension. X d 
i 

means the d th element of the i th par-

ticle’s position, and similarly, V d 
i 

means the d th element of the i th particle’s velocity. rand d 
i 
(a, b) returns a random number

within the range of [ a,b ]. As a particle may fly out of the search area if the velocity is too large, parameter Vmax d is used

to determine the bounds of the d th element in a particle’s velocity. RangR d and RangL d represent the upper bound and the

lower bound of the d th dimension of the search space respectively. 

Step-2 Construction of the species 

In order to better solve MMOPs, we adopt niching technique to help identify and maintain multiple optima. Like SPSO

[27] , in E-SPSO, the niches are named species and the best particle in each species is called a seed. The species are cre-

ated around the seeds and are responsible for converging around the optima. Species in E-SPSO will be updated in each

generation, as described in the following parts. 

In each generation, all the particles will be sorted in the descending order of their fitness values. Particles with the same

fitness value will be sorted according to their original order in the whole population. After ordering all the particles, the

algorithm checks the particles one by one to see whether they are suitable to be a seed. A species radius r is used in this

procedure to determine the size of a species. The best particle in the whole population will be selected as the seed directly

and be put into a set S for seeds. In each generation, S is defined to be empty at first and then the seeds will be added to S .



238 Y. Li, Y. Chen and J. Zhong et al. / Information Sciences 494 (2019) 233–246 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The other particles will be tested one by one in order by using the species radius r . If the distance between a particle

and a seed is smaller than (or equal to) r , the particle is then considered to be a member of the same species with the

seed. If the distances between a particle and all seeds in S are greater than r , then the particle will be considered to be

a new seed and be put into S . After checking all the particles, every particle is assigned to a species. It should be noted

that the k nearest neighbors method [41] can also be used to replace the species radius r when determining the size of the

species. Performances of the k nearest neighbor method and species radius are similar according to our empirical study. For

simplicity, we adopt species radius r in this paper. 

Step-3 Update velocity and position with equilibrium factor 

In E-SPSO, each particle is guided by some anchor particles during each iteration. pbest i and nbest i are two kinds of

anchor particles used in E-SPSO. In this paper, the best position found by particle i is named the personal best of i ( pbest i ),

while the current best position of its species seed is called the neighbor best of i ( nbest i ). The anchor particles are adopted

in velocity equation, which is similar to velocity equation of PSO. The only difference is that gbest is replaced by nbest i in

E-SPSO. Velocity equation of E-SPSO is shown in Eq. (8) and (9) . 

In most cases, numbers of particles in different species will vary gradually during the search procedure. In order to

minimize the difference, we propose the equilibrium factor (EF) mechanism, where the worst few particles in the largest

species will be thrown out and driven to some other species. A deviation vector ( DV ) is added to the velocity equation of

these particles so that they will move in a direction to the species that has fewer individuals. 

When implementing EF, species will be sorted in the descending order of their sizes. The largest species and the smallest

one will be picked out to calculate DV : 

DV 

d = seed S d − seed L d (6) 

where seedL is the seed of the largest species and seedS refers to the seed of the smallest one. 

Meanwhile, all the individuals in the largest species will be sorted according to their fitness values. A parameter named

deviation size ( DS ) is calculated to determine the number of particles that will adopt EF. DS is calculated by Eq. (7) : 

DS = 0 . 5 ∗ (sizeL + sizeS) (7) 

where sizeL and sizeS are the numbers of particles in the largest species and the smallest one respectively. The aim of

equation (7) is to balance the number of particles in the largest niche and the smallest niche, by moving a number of

particles in the largest niche towards the smallest niche. The value of DS is set to be the average number of sizeL and

sizeS in order to balance the number of particles in the largest and smallest niches after each iteration. Then, the worst DS

particles in the largest niche will be influenced by EF. The EF mechanism specifies DV during each iteration and determines

which particles will be influenced by the vector at the same time. DV is then used to update particles’ velocities. 

After calculating the DV , velocities and positions of the particles are updated by: 

V 

d 
i ( t + 1 ) = w ∗ V 

d 
i ( t ) + c 1 ∗ rand 1 

d 
i ∗

(
pbes t d i ( t ) − X 

d 
i ( t ) 

)
+ c 2 ∗ rand 2 

d 
i ∗

(
nbes t d ( t ) − X 

d 
i ( t ) 

)
(8) 

V 

d 
i ( t + 1 ) = w ∗ V 

d 
i ( t ) + c 1 ∗ rand 1 

d 
i ∗

(
pbes t d i ( t ) − X 

d 
i ( t ) 

)
+ c 2 ∗ rand 2 

d 
i ∗

(
nbes t d ( t ) − X 

d 
i ( t ) 

)
+ DV (9) 

X 

d 
i (t + 1) = X 

d 
i (t) + V 

d 
i (t + 1) (10) 

where Eq. (9) is used for the particles adopt the EF and Eq. (8) is used for the particles that are not influenced by EF. The

worst DS particles that have been selected by EF in the largest niche will use Eq. (9) to update their velocities, while the

other particles will adopt Eq. (8) . The positions of all the particles are updated according to Eq. (10) . 

Step-4 Local search 

In the fourth step, all the pbest s will be updated according to the local search procedure proposed in [32] . Each pbest

will generate a new particle around itself and compete with it. If the new particle has a better fitness value, it will replace

the original pbest to become a new pbest . More specifically, for each pbest in the population, a fine-tuning operator takes

place according to the difference between the original pbest and another pbest that is the nearest one to it ( pbest nearest ). 

Finally, a repetition between step 2 and step 4 will be executed until the termination condition is met. 

4. Experiment studies 

4.1. Experimental settings 

In this section, the proposed E-SPSO is competed against seven state-of-the-art algorithms (i.e., LIPS [34] , LoICDE [2] , Fast-

LIPS [50] , Fast-NCDE [50] , triDEMO [46] , FERPSOLS [18,32] and SPSOLS [27,32] ) to test its performance. Eleven commonly

used multimodal benchmark functions of different types [21] are used for testing. The characteristic of these functions are

presented in Table 3 . The details of other parameter settings are listed in Table 4 . Note that a successful found of a certain

peak requires that the distance between a particle and the peak is smaller than the tolerance value (accuracy level). What’s

more, the acceleration constants and the inertia weight of all the algorithms are set to be the same [32] : c 1 = 2.05, c 2 = 2.05

and w = 0.729843788. In the experiment, each benchmark will be run 200 independent times. 
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Table 3 

Benchmark test functions. 

Name Test function Range Peaks 

global/ local 

F1 Five-uneven-peak Trap f 1 (x ) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

80(2 . 5 − x ) 0 ≤x < 2 . 5 

64(x − 2 . 5) 2 . 5 ≤x < 5 

64(7 . 5 − x ) 5 ≤x < 7 . 5 

28(x − 7 . 5) 7 . 5 ≤x < 12 . 5 

28(17 . 5 − x ) 12 . 5 ≤x < 17 . 5 

32(x − 17 . 5) 17 . 5 ≤x < 22 . 5 

32(27 . 5 − x ) 22 . 5 ≤ x < 27 . 5 

80(x − 27 . 5) 27 . 5 ≤ x ≤30 

0 ≤ x ≤ 30 2/3 

F2 Equal Maxima f 2 (x ) = sin 6 (5�x ) 0 ≤ x ≤ 1 5/0 

F3 Uneven Decreasing f 3 (x ) = exp[ −2 log(2) . ( x −0 . 08 
0 . 854 

) 2 ] 0 ≤ x ≤ 1 1/4 

Maxima ∗sin 6 (5�(x 3 / 4 − 0 . 05)) 

F4 Himmelblua’s function f 4 (x, y ) = 200 − (x 2 + y − 11) 2 −6 ≤ x, y ≤ 6 4/0 

−(x + y 2 − 7) 2 

F5 Six-Hump Camel Back f 5 (x, y ) = −4[(4 − 2 . 1 x 2 + 

x 4 

3 
) x 2 −1 . 9 ≤ x, y ≤ 1 . 9 2/4 

+ xy + (−4 + 4 y 2 ) y 2 ] 

F6 Shubert function f 6 ( � x ) = p = − ∏ 2 
i =1 

∑ 5 
j=1 −10 . 0 ≤ x 1 , 18/many 

jcos [( j + 1) x i + j] x 2 ≤ 10.0 

F7 Vincent 1 Dimension f 7 (x ) = sin (10 log(x )) 0.25 ≤ x 1 ≤ 6/0 

10.0 

F8 Vincent 2 Dimension f 8 ( � x ) = 

1 
2 

∑ 2 
i =1 sin (10 log(x i )) 0.25 ≤ x 1, 36/0 

x 2 ≤ 10.0 

F9 Modified Rastrigin 2 f 9 ( � x ) = − ∑ 2 
i =1 (10 + 9 cos (2� ∗ 5 x i )) 0.0 ≤ x 1, 25/0 

Dimension x 2 ≤ 1.0 

F10 Modified Rastrigin 5 f 10 ( � x ) = − ∑ 5 
i =1 (10 + 9 cos (2� ∗ 2 x i )) 0.0 ≤ x 1, x 2, x 3, 32/0 

Dimension x 4, x 5 ≤ 1.0 

F11 Modified Rastrigin 6 f 11 ( � x ) = − ∑ 6 
i =1 (10 + 9 cos (2� ∗ 2 x i )) 0.0 ≤ x 1, x 2, x 3, 64/0 

Dimension x 4, x 5, x 6 ≤ 1.0 

Table 4 

Population size, number of function evaluations and level of accuracy of LIPS [34] , LoICDE [2] , Fast-NCDE [50] , 

Fast-LIPS [50] , triDEMO [49] , FERPSOLS [32] , SPSOLS [32] and E-SPSO. 

Function No. Population size No. of function Level of 

evaluations accuracy 

F1 50 10 0 0 0 0.0 0 05 

F2 50 20 0 0 0 0.0 0 0 0 0 01 

F3 50 20 0 0 0 0.0 0 0 0 0 01 

F4 50 20 0 0 0 0.0 0 0 0 0 01 

F5 50 20 0 0 0 0.0 0 0 0 01 

F6 250 10 0 0 0 0 0.05 

F7 100 20 0 0 0 0.0 0 01 

F8 250 20 0 0 0 0 0.001 

F9 250 10 0 0 0 0 0.0 0 0 0 0 01 

F10 2400 20 0 0 0 0 0.05 

F11 20 0 0 40 0 0 0 0 0.05 

 

 

 

 

 

 

 

 

 

 

 

In this paper, we use the following three criteria to evaluate the performance of the algorithms: 1) Success rate (SR),

which describes the probability of a certain algorithm finding all the peaks in an MMOP; 2) Average number of found

optima (ANFO), which means the average number of peaks found over 200 runs in a given accuracy, showing the recall

ability of the algorithm; 3) Average number of function evaluations (ANFE), which measures the average time cost for an

algorithm to identify all the required optima, reflecting the speed of convergence. When the success rate is zero, the ANFE

equals the predefined maximum function evaluation times. 

4.2. Results and discussions 

The Wilconxon signed-rank test was performed to assess the significance of differences between the algorithms in terms

of SR, ANFO and ANFE. The results are shown in Table 5 to 7 , where symbols + , − and ≈ represent that the competitor is

respectively significantly better than, worse than and similar to E-SPSO, respectively, according to the Wilcoxon signed-rank

test at α = 0.05. 

The success rates (SR) for the seven comparison algorithms are compared with E-SPSO and the results are presented in

Table 5 . It can be observed from the results that E-SPSO performs better in most cases. On F5, the value of SR is better than

that of LIPS, Fast-LIPS, Fast-NCDE, triDEMO, SPSOLS, and FERPSOLS. On F9, the value of SR has been improved by 1307.69%
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Table 5 

Comparison of success rate (SR). 

Test LIPS LoICDE Fast- Fast- tri- FERPSOLS SPSOLS E-SPSO 

function [34] [2] NCDE [50] LIPS [50] DEMO [46] [18,32] [27,32] 

F1 0.98 − 0.975 − 0.96 − 1 ≈ 0.905 − 0.09 − 0.965 − 1 

F2 1 ≈ 1 ≈ 1 ≈ 1 ≈ 0.985 − 1 ≈ 1 ≈ 1 

F3 0.97 − 0.965 − 1 ≈ 0.98 − 0.885 − 0.67 − 0.97 − 1 

F4 1 ≈ 1 ≈ 1 ≈ 0.84 − 0.82 − 0.83 − 1 ≈ 1 

F5 0.12 − 0.14 ≈ 0.11 − 0.13 − 0.12 − 0 − 0.11 − 0.14 

F6 0.82 + 0.78 + 0.385 − 0.84 + 0.615 + 0.86 + 0.235 − 0.42 

F7 0.98 ≈ 0.965 ≈ 0.96 − 0.98 ≈ 0.97 ≈ 0.965 ≈ 0.945 − 0.98 

F8 0 ≈ 0.26 + 0 ≈ 0 ≈ 0.42 + 0 ≈ 0 ≈ 0 

F9 0.88 − 0.865 − 0.87 − 0.9 − 0.895 − 0.065 − 0.895 − 0.915 

F10 0.95 − 0.935 − 0.97 ≈ 0.96 − 0.94 − 0.92 − 0.975 − 0.985 

F11 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 

Symbols + , − and ≈ represent that the competitor is respectively significantly better than, worse than and similar 

to E-SPSO according to the Wilcoxon signed-rank test at α = 0.05. 

Table 6 

Comparison of average number of found optima (ANFO). 

Test LIPS LoICDE Fast- Fast- tri- FERPSOLS SPSOLS E-SPSO 

function [34] [2] NCDE [50] LIPS [50] DEMO [46] [18,32] [27,32] 

F1 Mean 4.96 ≈ 4.86 − 4.84 − 5 ≈ 4.38 − 2.27 − 4.965 ≈ 5 

Std 0.12 0.729 0.629 0 0.7825 0.8606997 0.18424 0 

F2 Mean 5 ≈ 5 ≈ 5 ≈ 5 ≈ 4.92 ≈ 5 ≈ 5 ≈ 5 

Std 0 0 0 0 0.24 0 0 0 

F3 Mean 4.955 ≈ 4.925 ≈ 5 ≈ 4.94 ≈ 4.32 ≈ 3.68 − 4.97 ≈ 5 

Std 0.25 0.252 0 0.352 0.426 1.88557 0.24973 0 

F4 Mean 4 ≈ 4 ≈ 4 ≈ 3.7 − 3.26 − 3.82 − 4 ≈ 4 

Std 0 0 0 0.232 0.2632 0.41041 0 0 

F5 Mean 4.652 − 4.705 ≈ 4.54 − 4.68 − 4.25 − 1.955 − 4.635 − 4.715 

Std 0.356 0.625 0.405 0.352 0.482 0.2078243 0.68858 0.70445 

F6 Mean 17.84 + 17.52 + 15.96 − 17.86 + 17.25 + 17.84 + 16.12 − 16.975 

Std 0.23 1.86 1.232 0.569 0.426 0.4186602 1.11075 1.04874 

F7 Mean 5.975 ≈ 5.97 − 5.965 − 5.975 ≈ 5.96 − 5.96 − 5.925 − 5.98 

Std 0.156 0.156 0.172 0.213 0.232 0.2205521 0.22855 0.14035 

F8 Mean 25.42 − 28.86 + 27.56 + 26.62 − 29.85 + 19.825 − 26.08 − 27.04 

Std 1.3236 1.658 0.43296 1.3656 1.5286 2.144146 1.51163 1.750922 

F9 Mean 24.82 − 24.28 − 24.56 − 24.86 − 24.76 − 22.73 − 24.825 − 24.91 

Std 0.476 0.468 0.452 0.3256 0.425 1.362491 0.34983 0.30391 

F10 Mean 31.36 − 31.06 − 31.76 − 31.48 − 31.425 − 27.565 − 31.975 − 31.985 

Std 1.626 1.64 1.527 1.6542 1.6782 3.29461 2.16953 2.42321 

F11 Mean 47.74 − 46.94 − 47.82 − 47.85 − 47.72 − 45.09 − 46.66 − 48.105 

Std 23.25 58.62 46.24 57.82 3.2856 4.337739 3.412127 3.556292 

Symbols + , − and ≈ represent that the competitor is respectively significantly better than, worse than and similar to 

E-SPSO according to the Wilcoxon signed-rank test at α = 0.05. 

 

 

 

 

 

 

 

 

 

 

 

than FERPSOLS, 2.23% than triDEMO and 2.23% than SPSOLS. Meanwhile, the value is also improved on F1, F3, F4, F7 and

F10. On F6, the SR of E-SPSO is improved by 78.72% than SPSOLS and 9.09% than Fast-NCDE, but the other few algorithms

perform better than E-SPSO on this function. It shows that the recall capabilities of the algorithms are different on different

test functions. On F2, all the algorithms perform well in all runs. 

Table 6 shows that E-SPSO performs better than or at least competitively to the other algorithms in most cases. The

values of ANFO have been raised by 10.94% than triDEMO, 1.73% than SPSOLS, 3.85% than Fast-NCDE and 141.18% than

FERPSOLS on F5, respectively. As for F1, F3, F7 and F9, the values are also improved. On F6, the value of ANFO is raised by

5.30% than SPSOLS and by 6.36% than Fast-NCDE. But the other algorithms perform better on this test function, which is the

same as the result in success rates (SR). While on F2, all of the eight algorithms identify nearly all the optima in the whole

runs. 

For most of the test functions, E-SPSO identifies all the optima within the required accuracy with a relatively less number

of function evaluations. As can be seen in Table 7 , on F4, the value of ANFE is improved by 23.09% than triDEMO, 14.31%

than Fast-NCDE, 20.03% than Fast-LIPS, 4.73% than SPSOLS and 13.84% than FERPSOLS, respectively. As for F2, F5, F9 and F10,

the ANFE value is also improved on average. 
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Table 7 

Comparison of average number of function evaluations (ANFE). 

Test LIPS LoICDE Fast- Fast- tri- FERPSOLS SPSOLS E-SPSO 

function [34] [2] NCDE [50] LIPS [50] DEMO [46] [18,32] [27,32] 

F1 Mean 4731 − 4631.5 − 3831 + 4622.5 − 7117 − 1150 + 4003.25 ≈ 3942.25 

Std 771.31 881.23 826.47 819.2 931.526 487.356 863.731 877.684 

F2 Mean 11023 − 9639.5 − 11131 − 11522.5 − 12506 − 16729 − 9678.6 − 9421.5 

Std 1634.5 1923.26 2118.1 1623.3 1776.52 1703.4 1549.166 1471.665 

F3 Mean 8826 + 8126 + 9126.5 + 8912 + 12031 − 640.909 + 9589.9 − 9331 

Std 1632.57 1391.07 1327.42 1314.16 319.932 261.085 1617.763 1343.302 

F4 Mean 15734 − 16170 − 17621.5 − 19120 − 19632.5 − 17525.3 − 15850 − 15100 

Std 1837.5 2632.115 2298.263 3421.32 3617.46 1965.65 3733.965 3800.453 

F5 Mean 18394.5 − 17620 − 16612.5 − 16346 − 17812.5 − – 18418.18 − 16315.385 

Std 2893.22 3771.345 2623.32 2596.46 3316.27 – 3630.512 2820.594 

F6 Mean 33222.5 + 27405 + 28160 + 26630 + 31085 + 410 0 0 + 27066.25 + 51750 

Std 1412.57 1062.25 1645 1630.22 1805.46 2306.215 1544.205 3718.35 

F7 Mean 10269 + 12652 − 11972 ≈ 11828 ≈ 11529.5 + 28122.28 − 10772.63 + 12097.96 

Std 2169.24 2352.82 2652.46 1852.56 2252.62 8559.64 5280.486 2722.027 

F8 Mean – 122380 – – 130 0 0 0 – – –

Std – 8037.65 – – 6157.25 – – –

F9 Mean 111140 − 149580 − 114130 − 111630 − 110737.5 − 576832.5 − 101743.025 − 90750.25 

Std 10640.2 16910.21 20240.52 17630.65 18905.45 51014.75 15918.695 18093.73 

F10 Mean 163707 − 199658 − 175662 − 181632 − 193130 − 1187200 − 62938.776 − 42076.584 

Std 13080.21 15650.46 16400.52 11050.16 10615.87 13268.46 5708.384 4965.88 

F11 Mean – – – – – – – –

Std – – – – – – – –

Symbols + , − and ≈ represent that the competitor is respectively significantly better than, worse than and similar to E-SPSO 

according to the Wilcoxon signed-rank test at α = 0.05. 

Fig. 2. The influence of species radius on ANFO, and the influence of population size on ANFO and ANOI. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3. Algorithm analysis 

After comparing against the other seven algorithms, the proposed E-SPSO is tested on F1-F11 by changing the parameter

species radius, population size and DS value. The results are evaluated by the following three criteria: average number

of found optima (ANFO), average number of function evaluations (ANFE) and average number of iterations (ANOI). The

experimental results shown in Fig. 2 and Fig. 3 demonstrate that the performance of E-SPSO is influenced by all the three

parameters. 

The values of average number of optima (ANFO)found are influenced by species radius, population size and DS value. On

F5, E-SPSO performs the best when the value of species radius is set to 0.06. The value of ANFO decreases when species

radius becomes larger. On F6, the value of ANFO increases at first. When radius grows larger, the value of ANFO decreases.

The best value of species radius on F6 is about 0.86. On F9, the experimental results are opposite to the results on F6. The

value of ANFO decreases at first. But it increases when species radius grows larger. Experimental results on species radius

show that the best values of species raius are different for different test problems, but E-SPSO performs relatively well on

most test functions when species raiuds is set to 0.06. The results on population size show that a larger population has a

better recall capability in E-SPSO. When the value of population size increases, more optima can be found on average. The

performance of E-SPSO is also influenced by the DS value. Experiment results show that when w = 0.5, E-SPSO performs

well on most of the test problems. 

For all the eleven test functions, the average number of iterations (ANOI) decreases when the population size grows

larger. Experiment results show that a larger population helps E-SPSO speed up its convergence process. As for the influence
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Fig. 3. The influence of parameter DS value on ANFO and ANFE. W is a parameter that is used to calculate the DS value, where DS = W ∗ sizeS + (1 − W ) ∗
sizeL .. 

Table 8 

Comparison of success rate (SR). 

Function E-SPSO/LS E-SPSO/EF E-SPSO 

F1 0.925 – ( − ) 0.965 − 1 

F2 0.94 – ( − ) 1 ≈ 1 

F3 0.87 – ( − ) 0.97 − 1 

F4 0.84 – ( − ) 1 ≈ 1 

F5 0.12 - ( ≈ ) 0.11 − 0.14 

F6 0.24 - ( ≈ ) 0.235 − 0.42 

F7 0.895 – ( − ) 0.945 − 0.98 

F8 0 ≈ ( ≈ ) 0 ≈ 0 

F9 0.785 – ( − ) 0.895 − 0.915 

F10 0.96 – ( − ) 0.975 − 0.985 

F11 0 ≈ ( ≈ ) 0 ≈ 0 

Symbols − and ≈ outside brackets represent that the competitor is respec- 

tively significantly worse than and similar to E-SPSO according to the Wilcoxon 

signed-rank test at α = 0.05. The symbols in brackets are the corresponding 

results between E-SPSO(without local search) and E-SPSO(without EF). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

of DS value on average number of function evaluations (ANFE), results show that E-SPSO performs relatively better when

w = 0.5 on most of the test problems. 

Next, the influence of equilibrium factor and local search is investigated. Specifically, we conduct experiments on two

simplified E-SPSO, named E-SPSO/EF (E-SPSO without equilibrium factor) and E-SPSO/LS (E-SPSO without local search). The

success rates (SR) for E-SPSO, E-SPSO/EF and E-SPSO/LS are listed in Table 8 . It can be observed that E-SPSO performs better

in most cases. On F1, F3, F5, F6, F7, F9 and F10, E-SPSO achieves a higher success rate than the other two algorithms. As for

F8 and F10, the SR values of the three algorithms are all zero. With the help of local search method and EF, E-SPSO is able

to achieve a higher success rate. 

Table 9 shows the results of ANFO for E-SPSO, E-SPSO/EF and E-SPSO/LS. On most of the test functions, E-SPSO identifies

more optima on average. The value of ANFO has been improved by 5.30% than E-SPSO/EF and 14.39% than E-SPSO/LS on F6.

On F2, all the algorithms manage to find all the optima in a single run. 

In Table 10 , when compared on the results of ANFE, the results show that E-SPSO performs better or competitively to

E-SPSO/EF and E-SPSO/LS in most cases. On F5, the value has been improved by 11.42% than E-SPSO/EF and 13.73% than

E-SPSO/LS. On F1, F2, F3, F4, F9, F10, E-SPSO also identifies all the optima with a smaller number of function evaluations.

The above experimental results show that both local search method and EF help improve the searching efficiency. 

Fig. 4 shows the influence of population diversity on E-SPSO. The diversity of population is determined by two aspects.

One aspect is the species size, the other aspect is the number of species in the whole population. In Fig. 4 (a), E-SPSO is

tested on F1. The result shows that when species size grows larger, the algorithm will achieve a higher level of accuracy.

In Fig. 4 (b), E-SPSO is also tested on F1 to show how the number of species will influence the performance of E-SPSO.

In E-SPSO, the swarm was divided into different species. Different species are responsible for searching different areas. If

the number of species is too small, the algorithm may not be able to identify all the optima. Otherwise, if the number of

species is large enough, the algorithm will be more likely to identify more optima. The curve in Fig. 4 (b) shows that when

the number of species is large enough, E-SPSO can identify more optima in a single run. Last, diversity curves of the eight
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Table 9 

Comparison of average number of found optima (ANFO). 

Function E-SPSO/LS E-SPSO/EF E-SPSO 

F1 Mean 4.865 – ( − ) 4.965 ≈ 5 

Std 0.8606997 0.18424 0 

F2 Mean 5 ≈ ( ≈ ) 5 ≈ 5 

Std 0 0 0 

F3 Mean 3.98 – ( − ) 4.97 ≈ 5 

Std 1.885571 0.24973 0 

F4 Mean 3.72 – ( − ) 4 ≈ 4 

Std 0.41041 0 0 

F5 Mean 3.955 – ( − ) 4.635 − 4.715 

Std 0.2078243 0.68858 0.70445 

F6 Mean 14.84 – ( − ) 16.12 − 16.975 

Std 0.4186602 1.11075 1.04874 

F7 Mean 5.91 – ( − ) 5.925 − 5.98 

Std 0.2205521 0.22855 0.14035 

F8 Mean 22.825 – ( − ) 26.08 − 27.04 

Std 2.144146 1.51163 1.750922 

F9 Mean 23.73 – ( − ) 24.825 − 24.91 

Std 1.32491 0.34983 0.30391 

F10 Mean 31.425 – ( − ) 31.975 − 31.985 

Std 2.426 2.16953 2.42321 

F11 Mean 45.32 – ( − ) 46.66 − 48.105 

Std 3.526252 3.412127 3.556292 

Symbols − and ≈ outside brackets represent that the competitor is respectively 

significantly worse than and similar to E-SPSO according to the Wilcoxon signed- 

rank test at α = 0.05. The symbols in brackets are the corresponding results be- 

tween E-SPSO(without local search) and E-SPSO(without EF). 

Table 10 

Comparison of average number of function evaluations (ANFE). 

Function E-SPSO/LS E-SPSO/EF E-SPSO 

F1 Mean 4162.5 – ( − ) 4003.25 ≈ 3942.25 

Std 487.3565 863.731 877.684 

F2 Mean 10121.24 – ( − ) 9678.6 − 9421.5 

Std 2084.4 1549.166 1471.665 

F3 Mean 10176.25 – ( − ) 9589.9 − 9331 

Std 319.93225 1617.763 1343.302 

F4 Mean 16283.5 – ( − ) 15850 − 15100 

Std 41835.705 3733.965 3800.453 

F5 Mean 18912 – ( − ) 18418.18 − 16315.385 

Std 3346 3630.512 2820.594 

F6 Mean 31132.5 + ( − ) 27066.25 + 51750 

Std 24162.725 1544.205 3718.35 

F7 Mean 12635.45 – ( − ) 10772.63 + 12097.96 

Std 2202.3 5280.486 2722.027 

F8 Mean – – –

Std – – –

F9 Mean 114400.5 – ( − ) 101743.025 − 90750.25 

Std 16374 15918.695 18093.73 

F10 Mean 84299.088 – ( − ) 62938.776 − 42076.584 

Std 37630.2 5708.384 4965.88 

F11 Mean – – –

Std – – –

Symbols + , − and ≈ outside brackets represent that the competitor is respec- 

tively significantly better than, worse than and similar to E-SPSO according to the 

Wilcoxon signed-rank test at α = 0.05. The symbols in brackets are the corre- 

sponding results between E-SPSO(without local search) and E-SPSO(without EF). 

 

 

 

 

 

 

algorithms are also compared in Fig. 5 . The element-wise position diversity [49] is used to calculate the position diversity.

The results show that E-SPSO maintains better position diversity during the process of iteration. 

The reasons why E-SPSO can achieve promising performance are as follows. Firstly, the number of particles in the small-

est niches is raised with the help of the equilibrium factor. As a consequence, searching capability in the smallest niche is

improved at the same time. The phenomenon helps speed up the searching progress of the algorithm and makes it possible

to identify more optima in a single run. Secondly, in the joint influence of the equilibrium factor and the original velocity

equation, the particles added with the deviation vector are able to search in a larger scale of area. The equilibrium factor
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Fig. 4. The influence of species size on accuracy, number of species on ANFO. 

Fig. 5. Diversity curves on Five-uneven-peak Trap problem. The eight algorithms are tested on F1. And element-wise position diversity [49] is used to 

calculate the position diversity.. 

 

 

 

 

 

 

 

 

 

 

 

 

 

helps the chosen particles in the largest niche move towards the smallest niche by adding a deviation vector to the particles’

velocity. And the velocity equation in SPSOLS helps all the particles in the population move towards their species seeds at

the same time. Consequently, the chosen particles in the largest niche will move in the joint influence of the equilibrium

factor and the original velocity equation. The velocity direction of the chosen particles are decided by the result of the de-

viation vector and the original velocity equation. Some of the chosen particles may move to other area expect the species

seed and the smallest niche. The particles are able to search in a larger scale of area, with the help of the equilibrium factor

and the velocity equation. As a result, more optima are able to be identified in the process and the success rate is raised as

well. 

5. Conclusion 

In this paper, a diversity enhancement method named equilibrium factor mechanism, has been proposed to improve the

performance of Niching PSO for multimodal optimization. The equilibrium factor not only can balance the distribution of

particles in different niches, but also improves the probability of the algorithm to identify more optima in the searching

space. The experimental results have shown that the proposed niching PSO with equilibrium factor outperforms the original

niching PSO variants when faced with MMOPs. 

There are several interesting future research topics. One is to improve the current migration strategy. In the proposed

E-SPSO, the migration strategy for the particles is relatively simple. Only particles in the largest niches can be influenced by
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EF and be moved towards the smallest niches during each iteration. Meanwhile, the number of particles that will be moved

by EF is relatively fixed. In the future research work, the adaption strategy can be used in E-SPSO to improve its current

migration strategy. The random number can also be used in the migration strategy to improve its performance. The second

work is about parameter setting. In E-SPSO, the size of species is determined by species radius. In future, we plan to try

some other mechanisms to determine the species size, for example, the k nearest neighbors method in which a topological

distance is used to influence the size [41] . Another future work is applying the proposed equilibrium factor to improve other

multi-modal EAs such as DE and GA. In addition, many problems in our daily life are MMOPs. The E-SPSO can be used to

solve realistic problems in the future research work. 
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