
An Imperative Pure Calculus 1

Andrea Capriccioli

DIBRIS
Università di Genova

Italy

Marco Servetto2

Victoria University of Wellington
New Zealand

Elena Zucca3

DIBRIS
Università di Genova

Italy

Abstract

We present a simple calculus where imperative features are modeled by just rewriting source code terms,
rather than by modifying an auxiliary structure which mimics physical memory. Formally, this is achieved
by the block construct, introducing local variable declarations, which also plays the role of store when such
declarations have been evaluated. In this way, we obtain a language semantics which is more abstract, and
directly represents at the syntactic level constraints on aliasing, allowing simpler reasoning about related
properties. We illustrate this possibility by a simple extension of the standard type system which assigns a
capsule tag to expressions that will reduce to (values representing) isolated portions of store.

Keywords: operational semantics, imperative calculus, aliasing

1 Introduction

Traditional execution models for imperative languages use an auxiliary structure,

calledmemory or store, which is a mathematical abstraction of the physical memory,

and is typically a map from locations (modeling memory addresses) into storable

values. Locations are a runtime notion, and their names are globally available, that

1 This work has been partially supported by MIUR CINA - Compositionality, Interaction, Negotiation,
Autonomicity for the future ICT society.
2 Email: marco.servetto@ecs.vuw.ac.nz
3 Email: elena.zucca@unige.it

Available online at www.sciencedirect.com

Electronic Notes in Theoretical Computer Science 322 (2016) 87–102

1571-0661/© 2016 The Authors. Published by Elsevier B.V.

www.elsevier.com/locate/entcs

http://dx.doi.org/10.1016/j.entcs.2016.03.007

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

mailto:marco.servetto@ecs.vuw.ac.nz
mailto:elena.zucca@unige.it
http://www.elsevier.com/locate/entcs
http://dx.doi.org/10.1016/j.entcs.2016.03.007
http://dx.doi.org/10.1016/j.entcs.2016.03.007
http://www.sciencedirect.com
http://creativecommons.org/licenses/by/4.0/

is, memory is flat, whereas variables are a language notion, and their names obey

scoping rules (shadowing) and α-conversion.

In this paper, we propose an alternative, more abstract, execution model which

is a pure calculus. That is, execution is modeled by just rewriting source code terms,

in the same way lambda calculus models functional languages.

The following is an example of reduction sequence in the calculus, where we

emphasize at each step the redex which is reduced.

D z=new D(0) C x=new C(z,z) C y=x D w=new D(y.f1.f+1) x.f2=w x −→

D z=new D(0) C x=new C(z,z) D w=new D(x.f1 .f+1) x.f2=w x −→

D z=new D(0) C x=new C(z,z) D w=new D(z.f +1) x.f2=w x −→

D z=new D(0) C x=new C(z,z) D w=new D(0+1) x.f2=w x −→

D z=new D(0) C x=new C(z,z) D w=new D(1) x.f2=w x −→
D z=new D(0) C x=new C(z,w) D w=new D(1) x

The main idea is to use local variable declarations, as in the let construct, to directly

represent memory. That is, a declared variable is not replaced by its value, as in

standard let, but the association is kept and used when necessary. 4

The calculus is designed with an object-oriented flavour 5 , inspired to Feather-

weight Java [14]. That is, assuming a program (class table) where class C has two

fields f1 and f2 of type D, and class D has an integer field f, in the initial term the

first two declarations can be seen as a store which associates to z an object of class

D whose field contains 0, and to x an object of class C whose two fields contains (a

reference to) the previous object. The first reduction step eliminates an alias, by

replacing occurrences of y by x. The next three reduction steps compute x.f1.f+1, by

performing two field accesses and one sum. The last step performs a field assign-

ment. The final result of the evaluation is an object of class C whose fields contain

two objects of class D, whose field contains 0 and 1 field, respectively. As usual, ref-

erences in the store can be mutually recursive, as in the following example, where

we assume a class B with a field of type B.

B x= new B(y) B y= new B(x) y

In the examples until now, memory is flat, as it usually happens in models of

imperative languages. However, in our calculus, we are also able to represent a

hierarchical memory, as shown in the example below, where we assume a class A

with two fields of type B and D, respectively.

D z= new D(0)
A w= (B x= new B(y) B y= new B(x) A u= new A(x,z) u)
w

Here, the store associates to w a block introducing local declarations, that is, in turn

4 As it happens, with different aims and technical problems, in cyclic lambda calculi [4,3], see the Conclusion
for more comments.
5 This is only a presentation choice: all the ideas and results of the paper could be easily rephrased, e.g.,
in a ML-like syntax with data type constructors and reference types.

A. Capriccioli et al. / Electronic Notes in Theoretical Computer Science 322 (2016) 87–10288

a store. 6 The advantage of this representation is that it models in a simple and

natural way constraints about aliasing among objects, notably:

• the fact that an object is not referenced from outside some enclosing object is

directly modeled by the block construct: for instance, the object denoted by y

can only be reached through w

• conversely, the fact that an object does not refer to the outside is modeled by

the fact that the corresponding block is closed (that is, has no free variables):

for instance, the object denoted by w is not closed, since it refers to the external

object z.

Note that both information is kept also in the following term

D z= new D(0) B x= new B(y) B y= new B(x) A u= new A(x,z) u

but should be reconstructed by computing dependencies among variables. In other

words, our calculus smoothly integrates memory representation with shadowing and

α-conversion. However, there is a problem which needs to be handled to keep this

representation correct: reading (or, symmetrically, updating) a field could cause

scope extrusion. For instance, the term C y= (D z= new D(0) C x= new D(z,z) x) y.f

would reduce to C y= (D z= new D(0) C x= new D(z,z) x) z. To avoid this problem, the

above reduction step is forbidden. However, reduction is not stuck, since we can

transform the above term in the equivalent term where the inner block has been

flattened, and get the following correct reduction sequence:

D z= new D(0) C x= new D(z,z) C y= x y.f −→
D z= new D(0) C x= new D(z,z) x.f −→
D z= new D(0) z

That is, we consider expressions to be equivalent modulo moving a sequence of

declarations from a block to the directly enclosing block, and conversely, and this

equivalence is used exactly in the same way α-equivalence is used in lambda calculus,

to allow reduction steps which would, otherwise, be prevented since not correct.

Note also that in the final term the declaration of x has been be removed (more

precisely, we get this simplified term again by equivalence) since useless.

An imperative calculus without store has been preliminarly proposed in [17],

where, however, reduction rules required a stack of sequences of local declarations

as auxiliary structure. In this paper, we formalize the same idea by a pure calculus,

where only language terms are reduced, providing a simple and natural foundational

model for imperative languages, analogous, as said above, to lambda calculus for

functional languages.

Besides its elegance and simplicity, this language execution model is not driven

by the machine implementation and does not rely on runtime structures that do not

exist in the source program. More importantly, it can constitute the basis for many

important research directions, since, as illustrated above, object graph topologies

are directly formalized in syntactic way, hence their properties can be expressed and

formally verified more naturally and easily. Even though the focus of the current

6 In the examples, we omit for readability the brackets of the outermost block.

A. Capriccioli et al. / Electronic Notes in Theoretical Computer Science 322 (2016) 87–102 89

e ::= x | e .f | e .m(es) | e .f = e′ | new C(es) | (ds e) expression

d ::= Cx = e declaration

dv ::= Cx =rv evaluated declaration

rv ::= new C(xs) | (dvs v) right value

v ::= x | rv value (object)

E ::= [] | E .f | E .m(es) | x.m(xs, E , es) | E .f = e′ | x.f = E evaluation context

| new C(xs, E , es) | (dvs C x =E ds e) | (dvs E)
Fig. 1. Expressions, values, and evaluation contexts

paper is on the calculus in itself, in order to illustrate these possibilities we provide

a simple extension of the standard type system for the language where it is possible

to assign to an expression a capsule tag, meaning that the expression will reduce to

a reachable object subgraph which cannot be aliased from the outside. This notion

has many variants in the literature about aliasing (externally unique [5], balloon

[2,19], island [13,8], isolated [12]).

The rest of the paper is organized as follows: in Section 2 we provide the formal

definition of the calculus, in Section 3 the type system, in Section 4 the results,

and in Section 5 some conclusion and pointer to further work. The Appendix

provides auxiliary definitions. Proofs omitted for lack of space will be provided in

a forthcoming extended version of this paper.

2 Calculus

The syntax is given in Figure 1. We assume sets of variables x, y, z, . . . , class

names C, field names f, and method names m. We adopt the convention that a

metavariable which ends by s is implicitly defined as a (possibly empty) sequence,

for example, ds is defined by ds ::= ε | d ds, where ε denotes the empty string.

An expression can be a variable (including the special variable this denoting the

receiver in a method body), a field access, a method invocation, a field assignment,

a constructor invocation and a block consisting of a sequence of declarations and a

body. A declaration specifies a type, a variable and an initialization expression. We

assume that in well-formed blocks there are no multiple declarations for the same

variable, that is, ds can be seen as a map from variables into expressions, and we use

the notation dom(ds) and ds(x). Moreover, for simplicity, we allow mutual recur-

sion only among evaluated declarations 7 , e.g., (C x= new C(x) x) is allowed, whereas

(C x= x.f x) is not. Allowing general recursion would require a sophisticated type

system 8 , as in [18], but this is not the focus of this paper.

In the examples we feel free to also use expressions of primitive types such as int,

7 Defined by the third production, and informally explained below.
8 To avoid access to objects not initialized yet as in the example.

A. Capriccioli et al. / Electronic Notes in Theoretical Computer Science 322 (2016) 87–10290

but they are omitted in the formal definition for simplicity. Moreover, we generally

omit the outermost brackets of a block, and abbreviate (Cx = e e′) by e e′ when x

does not occur free in e′.
A sequence dvs of evaluated declarations plays the role of the store in conven-

tional models of imperative languages, that is, each dv can be seen as an association

of a right value to a variable. Right values can be either object states, of shape

new C(xs), or block values, that is, blocks where all declarations have been evalu-

ated, and the body is (recursively) a value. The latter case allows the store to be

hierarchical.

An object state new C(xs) represents an elementary allocation unit, and can

be considered as a shorter form for a block (Cx =new C(xs) x), as formal-

ized by congruence rule (new) in Figure 2. Hence, a block value has shape

(dvs1 (. . . (dvsn x) . . .)), for n ≥ 0. We call x the root of the value, and we

assume that in well-formed block values it is bound in some dvsi.

A value is the final result of the reduction of an expression, and is either a

variable (a reference to an object), or an object state, or a block value. A closed

expression is expected to reduce to a closed value.

Evaluation contexts express standard left-to-right evaluation. Note that in field

access, method invocation, and field assignment subterms are considered evaluated

(hence the corresponding action can be performed), when they are variables (refer-

ences to objects).

We write FV(e) and FV(ds) for the free variables of an expression and a sequence

of declarations, respectively, formally defined in the Appendix.

Semantics is defined by a congruence relation, which captures structural equiva-

lence, and a reduction relation, which models actual computation, similarly to what

happens, e.g., in π-calculus [15].

The congruence relation, denoted by ∼= , is defined as the smallest congruence

satisfying the axioms given in Figure 2.

Rule (alpha) is the usual α-conversion.

By the following two rules we can manipulate the declarations in a block. Rule

(reorder) states that we can move evaluated declarations first, in an arbitrary or-

der. Informally, this is safe since they have no longer side effects. Rule (garbage)

states that we can remove (or, conversely, add) a useless sequence of evaluated decla-

rations from a block. Note that it is only possible to safely remove/add declarations

which are evaluated, since, otherwise, their evaluation could have side effects.

By the following two rules we can eliminate and introduce blocks. Rule (elim)

states the obvious fact that a block with no declarations is equivalent to its body.

In rule (new), a constructor invocation can be seen as an elementary block where

a new object is allocated.

By the remaining rules we can move a sequence of declarations from a block

to the directly enclosing block, or conversely, as it happens with rules for scope

extension in the π-calculus [15].

In the first two rules, (body) and (dec-right), the inner block is the body,

or the right-hand side of a declaration, respectively, of the enclosing block. The

A. Capriccioli et al. / Electronic Notes in Theoretical Computer Science 322 (2016) 87–102 91

(alpha)
(ds C x = e ds′ e′) ∼= (ds C y = e ds′ e′)[y/x]

(reorder)
(ds C x =rv ds′ e) ∼= (Cx =rv ds ds′ e)

(garbage)
(dvs ds e) ∼= (ds e)

FV((ds e)) ∩ dom(dvs) = ∅

(elim)
(e) ∼= e

(new)
new C(es) ∼= (Cx =new C(es) x)

(body)
(ds (ds1 ds2 e)) ∼= (ds ds1 (ds2 e))

FV(ds1) ∩ dom(ds2) = ∅
FV(ds) ∩ dom(ds1) = ∅

(dec-right)
(ds C x =(ds1 ds2 e) ds′ e′) ∼= (ds ds1 Cx =(ds2 e) ds′ e′)

FV(ds1) ∩ dom(ds2) = ∅
FV(ds ds′) ∩ dom(ds1) = ∅

(field-access-rcv)
(ds e).f ∼= (ds e .f)

(meth-call-rcv)
(ds e).m(es) ∼= (ds e .m(es))

FV(es) ∩ dom(ds) = ∅

(meth-call-arg)
e .m(es, (dvs e′), es′) ∼= (dvs e .m(es, e′, es′))

FV(e, es, es′) ∩ dom(dvs) = ∅

(field-assign-left)
(ds e).f = e′ ∼= (ds e .f = e′)

FV(e′) ∩ dom(ds) = ∅

(field-assign-right)
e .f = (dvs e′) ∼= (dvs e .f = e′)

FV(e) ∩ dom(dvs) = ∅

(new-arg)
new C(es, (dvs e), es′) ∼= (dvs new C(es, e, es′))

FV(es, es′) ∩ dom(dvs) = ∅

Fig. 2. Congruence rules

side conditions ensure that the declarations can be safely moved. More precisely:

the former prevents to move outside a declaration which depends on local variables

of the inner block. Conversely, the latter prevents to move inside a declaration

which is used by other declarations of the enclosing block. Note that both these

conditions cannot be obtained by α-conversion. Moreover, note that the conditions

dom(ds1) ∩ dom(ds2) = ∅ and dom(ds1) ∩ dom(ds) = ∅ (dom(ds1) ∩ dom(ds ds′) = ∅
in the second rule) are implicit from well-formedness of blocks.

The other rules handle the cases when the inner block is a direct subterm of

a field access, method invocation, field assignment or constructor invocation. In

all such cases, the action to be executed is propagated to the body of the block,

within the scope of the declarations. Hence, we must avoid capture of free variables,

as specified by the side conditions of the rules, which can be always obtained by

α-renaming. Moreover, as in rules (reorder) and (garbage) above, we must

preserve the evaluation order, hence in some cases declarations are required to be

evaluated, that is, to have no longer side effects.

Reduction rules are given in Figure 3. We write e[y/x] for the expression obtained

by replacing all (free) occurrences of x in e by y, and HB(E) for the hole binders of

E , that is, the variables declared in blocks enclosing the context hole, both formally

defined in the Appendix.

We assume a fixed class table, abstractly modeled by the following functions:

A. Capriccioli et al. / Electronic Notes in Theoretical Computer Science 322 (2016) 87–10292

(ctx)
e −→ e′

E[e] −→ E[e′] (congr)
e1 −→ e2

e′1 −→ e′2

e1 ∼= e′1
e2 ∼= e′2

(field-access)
(dvs E[x.f]) −→ (dvs E[y])

dvs(x) = Cx =rv

x �∈ HB(E), y �∈ HB(E)
fields(C) = C1 f1 . . .Cn fn and f = fi

get(rv, i) = y and y ∈ FV(rv)

(meth-call)
(dvs E[x.m(x1, . . . , xn)]) −→ (dvs E[e[x/this][x1/y1] . . . [xn/yn]])

x �∈ HB(E)
xi �∈ HB(E) ∀ i ∈ 1..n

dvs(x) = Cx =rv

mbody(C,m) = 〈y1 . . . yn, e〉

(field-assign)
(dvs E[x.f = y]) −→ (dvs[x = rv′] E[y])

dvs(x) = Cx =rv

x �∈ HB(E), y �∈ HB(E)
fields(C) = C1 f1 . . .Cn fn and f = fi

set(rv, i, y) = rv′

(dec)
(dvs e) −→ (dvs′ e′)

(dvs C x = e ds e′′) −→ (dvs′ Cx = e′ ds e′′)

(alias)
(dvs C x =y ds e) −→ (dvs ds e)[y/x]

Fig. 3. Reduction rules

• fields(C) gives, for each declared class C, the sequence of its fields declarations

C1 f1 . . .Cn fn
• mbody(C,m) gives, for each method m declared in class C, the pair 〈x1 . . . xn, e〉
consisting of the sequence of its parameters, and its body.

The most interesting reduction rules are those for reading/assigning a field, so

we first illustrate these rules in detail, also providing examples, then explain the

others.

Field access

In rule (field-access), given a field access of shape x.f, the first enclosing

declaration for x is found (side condition x �∈ HB(E) ensures that it is the first),

and fields of the class C of x are retrieved from the class table. If f is actually the

name of a field of C, say, the i-th, then the field access is reduced to the reference

y stored in this field. The function get returning the i-th field of a right value is

defined below (The auxiliary function auxGet also returns the root of a value.)

• get(new C(x1, . . . , xn), i) = xi

• get((dvs v), i) = y if auxGet((dvs v), i) = 〈x, y〉
• auxGet(x, i) = 〈x,⊥〉

• auxGet((dvs v), i) =

{
〈x, y〉 if auxGet(v, i) = 〈x,⊥〉, get(dvs(x), i) = y

auxGet(v, i) otherwise

The side condition y �∈ HB(E) ensures that there are no inner declarations for

y (otherwise y would be erroneously bound), and can be always obtained by α-

renaming. For instance, assuming a class table where class A has an int f field, and

class B has an A f field, the term

A. Capriccioli et al. / Electronic Notes in Theoretical Computer Science 322 (2016) 87–102 93

A a= new A(0) B b= new B(a) (A a= new A(1) b.f)

is reduced to

A a= new A(0) B b= new B(a) (A a1= new A(1) a)

The side condition y ∈ FV(rv), requiring that the reference y is not locally declared

in rv, prevents scope extrusion, and can always be guaranteed by congruence, that

is, by applying rule (congr). For instance, without this side condition, the term

D x= (C y= new C() D z= new D(y) z) x.f

would reduce to

D x= (C y= new C() D z= new D(y) z) y

where the last occurrence of y would be unbound. Instead, we can take the equivalent

term

C y= new C() D x= (D z=new D(y) z) x.f

which correctly reduces to

C y= new C() D x= (D z=new D(y) z) y

Field assignment

In rule (field-assign), given a field assignment of shape x.f = y, the first

enclosing declaration for x is found (side condition x �∈ HB(E) ensures that it is the
first), and fields of the class C of x are retrieved from the class table. If f is actually

the name of a field of C, say, the i-th, then the i-th field of the right value of x

is updated to y. We write dvs[x = rv′] for the sequence of evaluated declarations

obtained from dvs by replacing the right-hand side of the declaration of x by rv′

(the obvious formal definition is omitted).

The function set returning a right value where a field has been updated is defined

below (the auxiliary function auxSet also returns the root of a value).

• set(new C(x1, . . . , xn), i, y) = new C(x1, . . . , xi−1, y, xi+1, . . . , xn)

• set((dvs v), i, y) = rv if auxSet((dvs v), i, y) = 〈x, rv〉
• auxSet(x, i, y) = 〈x,⊥〉

• auxSet((dvs v), i, y) =

⎧⎪⎨
⎪⎩
〈x, (dvs[x = set(rv, i, y)] v)〉 if auxSet(v, i, y) = 〈x,⊥〉,

dvs(x) = rv

auxSet(v, i, y) otherwise

The side condition y �∈ HB(E), requiring that there are no inner declarations for the

reference y, prevents scope extrusion, and can be always guaranteed by congruence,

that is, by applying rule (congr). For instance, without this side condition, the

term

D x=new D(...) (C y=new C() x.f=y)

would reduce to

D x=new D(y) (C y=new C() y)

A. Capriccioli et al. / Electronic Notes in Theoretical Computer Science 322 (2016) 87–10294

T ::= μ C type

μ ::= capsule | readable | ε type modifier

Γ ::= x1:T1, . . . , xn:Tn type context

Fig. 4. Types and type contexts

Other rules

Rule (ctx) is the usual contextual closure. Rule (congr) states that congruence

is preserved by reduction, and can be used, as shown above, to reduce a term which

otherwise would be stuck, as it happens for α-rule in lambda calculus.

In rule (meth-call), given a method invocation of shape x.m(x1, . . . xn), the

first enclosing declaration for x is found (side condition x �∈ HB(E) ensures that it

is the first), and method m of the class C of x is retrieved from the class table,

if actually provided. In this case, the call is reduced to the method body where

this has been replaced by (the reference to) the receiver object, and parameters

have been replaced by arguments. The side condition xi �∈ HB(E) ∀i = 1..n ensures

that there are no inner declarations for some argument (which, otherwise, would be

erroneously bound), and can be always obtained by α-renaming.

Rule (dec) avoids to duplicate the above rules for field access, method invocation

and field assignment, to handle the case where they occur in the right-hand side of

a declaration, rather than in the body, of the block containing that of the receiver

object.

In rule (alias), a reference x which is initialized as an alias of another reference

y is eliminated by replacing all its occurrences.

3 Type system

Types and type contexts are given in Figure 4.

A type consists in a class name possibly decorated by a type modifier which can

be either capsule or readable. A capsule expression is expected to reduce to a

capsule object, that is, an object with no references from/to the outside (formally, a

closed block value), whereas a readable expression denotes an object which cannot

be modified or aliased. 9

Type contexts are assumed to be sets (that is, order and repetitions are immate-

rial), and we use ∅ for the empty set. Moreover, as usual, they are partial functions

from variables to types (that is, no variable occurs more than once). Finally, we

assume that such types are either class names, obtained from type annotations in

source code, see rule (t-block), or readable types, obtained by weakening current

types by rule (t-capsule). That is, whereas capsule types can be assigned to

expressions, they are not allowed as types of variables. 10

9 More precisely, can be temporarily aliased, e.g., when passed as parameter of a method, but cannot be
stored within other objects. That is, aliasing here means static aliasing in the sense of [13]. As discussed
there, static alias can cause unpleasant surprises at an arbitrarily distant point in an execution, whereas
dynamic alias has no effects beyond the scope in which it occurs.
10The reason is that, to preserve the capsule property, a capsule variable should be used only once. In

A. Capriccioli et al. / Electronic Notes in Theoretical Computer Science 322 (2016) 87–102 95

(t-capsule)
toReadable(Γ) � e : C

Γ � e : capsule C
(t-sub)

Γ � e : T

Γ � e : T′
T ≤ T′

(t-var)
Γ � x : T

Γ(x) = T (t-field-access)
Γ � e : μ C

Γ � e .f : μ Ci

fields(C) = C1 f1 . . .Cn fn

f = fi

(t-meth-call)
Γ � ei : Ti ∀i ∈ 0..n

Γ � e0 .m(e1, . . . , en) : T

T0 = μ C

mtype(C,m) = 〈T, μ,T1 . . .Tn〉

(t-field-assign)
Γ � e : C Γ � e′ : Ci

Γ � e .f = e′ : C ′
fields(C) = C1 f1 . . .Cn fn

f = fi

(t-new)
Γ � ei : Ci ∀i ∈ 1..n

Γ � new C(e1, . . . , en) : C
fields(C) = C1 f1 . . .Cn fn

(t-block)
Γ[Γ′] � ei : Ci ∀i ∈ 1..n Γ[Γ′] � e : T

Γ � (C1 x1 = e1 . . .Cn xn = en e) : T
Γ′ = x1:C1 . . . xn:Cn

Fig. 5. Typing rules

The typing judgment has shape Γ � e : T, meaning that expression e has type

T in the type context Γ.

The subtyping relation is the reflexive and transitive relation on types induced

by

capsule C ≤ C ≤ readable C

The class table provides type information about methods, abstractly modeled

by the following function:

mtype(C,m) gives, for each method m declared in class C, the triple

〈T, μ0, μ1 C1 . . . μn Cn〉 consisting of its return type, type modifier for this, and

parameter types. Type modifiers μ0, . . . , μn are either readable or ε.

Of course, we assume a well-typed class table, that is, method bodies are expected

to be well-typed w.r.t. the corresponding method type. Formally, if mtype(C,m) =

〈T, μ0,T1 . . .Tn〉, then it should be

mbody(C,m) = 〈x1 . . . xn, e〉, and Γ � e : T with

Γ = this:μ0 C, x1:T1, . . . , xn:Tn.

Typing rules are given in Figure 5.

Rule (t-capsule) states that an expression can be typed as capsule if all its

free variables are used as readable. We write toReadable(Γ) for the type context

obtained from Γ by setting all type modifiers to readable. Rule (t-sub) is the usual

subsumption. Other rules are mostly standard, apart that they model the expected

this paper for simplicity we prefer to omit this special semantics.

A. Capriccioli et al. / Electronic Notes in Theoretical Computer Science 322 (2016) 87–10296

behaviour of type modifiers. Notably, in rule (t-field-access), the type modifier

is propagated to fields. For instance, fields of a readable object are readable as well.

In rule (t-field-assign), neither the receiver nor the right-hand-side expression

can be readable. In rule (t-new), analogously, values assigned to fields cannot be

readable, since saving a reference as field of an object introduces an alias.

In rule (t-block), we write Γ[Γ′] for the concatenation of Γ and Γ′ where, for
the variables occurring in both domains, Γ′ takes precedence.

It should be clear how to extend the formal definition to handle primitive types,

used in previous and following examples. Briefly, modifiers make no sense on such

types, which are simply used in the standard way. For instance, in the premise of

rule (t-new) the types of constructor arguments could be primitive types as well,

whereas in rule (t-meth-call) the type of method receiver could not.

We illustrate now how the rule (t-capsule) works. Consider the following term:

D z= new D(0)
C x= (D y= new D(z.f+1) new C(y,y))
x

The inner block (right-hand side of the declaration of x) can be typed capsule,

since free variable z is only used as readable (neither modified nor aliased).

Formally, we can apply rule (t-capsule). Indeed, the block reduces to

(D y= new D(1) C x = new C(y,y) x) which is a capsule.

As a counterexample, consider the following term:

D z= new D(0)
C x= (D y= z new C(y,y))
x

Here the inner block cannot be typed capsule, since z is internally aliased. Formally,

we cannot apply (t-capsule) on the block, since we should typecheck the block

with Γ = z:readable D, while (t-block) requires D as type of z. Indeed, the block

reduces to (new C(z,z)) which is not a capsule.

4 Results

We use the abbreviations e −→ for e −→ e′ for some e′, � e : T for ∅ � e : T, and

� e for � e : T for some T.

The soundness theorem states that reduction of well-typed closed expressions

does not get stuck.

Theorem 4.1 (Soundess) If � e, and e −→� e′, then either e′ is a value, or
e′ −→.

Soundness is obtained, as usual, as a consequence of progress and subject re-

duction theorems. Note that, since our operational model is a pure calculus, in the

proofs we do not need invariants on auxiliary structures such as memory.

Theorem 4.2 (Progress) If � e, then either e is a value, or e −→.

The progress theorem is obtained as an immediate corollary of extended progress.

A. Capriccioli et al. / Electronic Notes in Theoretical Computer Science 322 (2016) 87–102 97

Theorem 4.3 (Extended Progress) If Γ � e : T, then one of the following cases

holds:

(i) e is a value, with FV(e) ⊆ dom(Γ)

(ii) e −→
(iii) e = E [x.f], x �∈ HB(E), and x ∈ dom(Γ)

(iv) e = E [x.m(xs)], x �∈ HB(E), and x ∈ dom(Γ)

(v) e = E [x.f = y], x �∈ HB(E), and x ∈ dom(Γ).

Theorem 4.4 (Subject reduction) If Γ � e : T, and e −→ e′, then Γ � e′ : T.

In addition to soundness, we state that the capsule modifier actually ensures

the expected behaviour. A nice consequence of our non standard operational model

is that this can be easily formally expressed and proved, as shown below.

Informally, a capsule is a reachable object subgraph where nodes cannot be

reached from the outside. In our model, where reachable object subgraphs are

directly represented by language values, a capsule is simply a closed value. Hence

the fact that an expression of capsule type actually reduces to a capsule can be

stated as in Theorem 4.6 below.

Let typectx(E) be the type context extracted from a context E , whose trivial

definition is given in the Appendix. Moreover, to trace the reduction of an expression

inside a context, let us assume that in the result E [e] of filling the hole of a context,

we can still recover the subterm e (for instance, we can replace the hole by [e], with

square brackets immaterial for reduction rules).

Lemma 4.5 If � E [e], typectx(E) � e : T, and E [e] −→ E ′[e′], then � E ′[e′] and
typectx(E ′) � e′ : T.

Theorem 4.6 (Capsule) If � E [e], typectx(E) � e : capsule C, and E [e] −→�

E ′[v], then v is closed.

Proof. We know that typectx(E ′) � v : capsule C by Lemma 4.5. Set Γ′ =

typectx(E ′). By structural induction on v.

x Empty case. Indeed, we can assign a capsule type to a variable only by rule

(t-capsule) or (t-var). However, to apply rule (t-capsule) we should derive

toReadable(Γ′) � x : C, which is not possible, and to apply rule (t-var) we should

have Γ′(x) = capsule C, whereas type contexts do not assign capsule types.

(dvs v) We can assign a capsule type to a block only by rule (t-capsule) or (t-

block). If we have applied rule (t-capsule), then all free variables are required

to be readable. Free variables in block values only occur as values of fields (the

root variable is necessarily bound), which cannot be readable, hence the block

has no free variables. If we have applied rule (t-block), then v has a capsule

type as well, hence by inductive hypothesis is closed. Hence, (dvs v) is equivalent

to v by congruence rule (garbage).

�

A. Capriccioli et al. / Electronic Notes in Theoretical Computer Science 322 (2016) 87–10298

5 Conclusion

We have presented an imperative calculus where the block construct, introducing

local variable declarations, also plays the role of store when such declarations have

been evaluated. In this way we are able to define a pure semantics with no auxiliary

data structure, where aliasing properties can be directly expressed at the syntax

level, allowing much simpler reasoning.

To illustrate this advantage, let us consider typing rule (t-capsule) in Figure 5.

Here we want to express that an expression e, subterm of a program, can be typed

capsule if it can modify only its local objects. Objects which are reachable from

other parts of the program, instead, can only be used as readable. In our model,

the objects reachable from other parts of the program are simply those denoted

by the free variables in e, whose type is required indeed to be readable in the

premise of the rule, whereas the local objects are those denoted by local variables

declared in e. In other terms, the portion of memory only reachable from e is

encoded in e itself. In a conventional model with global memory, to express the

same property, we should, first of all, type the memory locations as well, and add

invariants on the memory to prove subject reduction. Then, we should require to

use only as readable the locations which are reachable from other parts of the

program. However, the information that some locations are only reachable from e

is lost in the global memory. To be concrete, consider the following example:

A a= new A(...) B b=(C c=new C() c.foo())

In the conventional model, this program is reduced by first adding to the memory

two new locations, say ιa and ιc, which are then used to replace variables a and c,

respectively. We then get to execute ιc.foo(). To type this expression, we would

use the following judgement: ∅; ιa:A, ιc:C � ιc.foo():B. As you can see, there is no

information about how ιc is used inside the rest of the program. For example ιc may

be in the reachable graph of ιa. In our approach C c=new C() is kept in place, and we

use the following judgment: a:A � (C c=new C() c.foo()):B. Here the information

that c is used only in the block is implicit from the block scope. Our aim here

is to formalize the execution model we have in mind in a simple and abstract way.

To this end, we define a congruence on terms which can be used to reduce a term

which otherwise would be stuck. Of course an implementation should detect when

and how to apply a congruence rule, very much in the same way an implementation

of the lambda calculus must apply α-conversion when necessary.

The fact that aliasing properties can be expressed at the syntax level should more

easily allow the implementation of an interpreter for the calculus into a theorem

prover. Indeed, e.g., the Key theorem prover [1] uses an approach, called abstract

object creation, where parallel update (a kind of runtime expression) is added to the

language and used to represent the store inside the code: all the object creations

and field updates are preserved and consulted by field accesses.

The Racket stepper [7] is a program execution visualization tool that simulates

a pure calculus out of a language with mutable bindings defined in the conventional

way, relying on specially forged runtime expressions. The stepper accurately models

A. Capriccioli et al. / Electronic Notes in Theoretical Computer Science 322 (2016) 87–102 99

the functional setting of Racket. In the stepper, bindings are lifted to the top level;

while it does not currently step through mutable bindings, the authors argue that it

can be easily extended in such a way. A more recent development, PLT Redex [9],

could be applied to a pure calculus like ours.

The fact that language values are blocks with mutually recursive declarations

is reminiscent of cyclic lambda calculi, see, e.g., [4,3]. Indeed, in both cases a

declared variable is not replaced by its value, as it happens with standard let, but

the association is kept and used when necessary. However, in cyclic lambda calculi

there is a different aim (mainly to provide an efficient reduction strategy), and, on

the technical side, there is no equivalent of the problem that reading/assigning a

field can cause scope extrusion.

Felleisen’s syntactic theory of state [10,11] mangles the store in the expressions,

but it relies on labelled values, a kind of runtime expression modelling the value

and the location address at the same time.

In future work, we plan to use (variants of) the calculus presented in this pa-

per as a basis to express and formally verify different properties of object graphs,

among those proposed in the wide literature about ownership, see, e.g., [6]. A more

ambitious goal will be to investigate (a form of) Hoare logic on top of this model.

We believe that the hierarchical structure of our memory representation should

help local reasoning, allowing specifications and proofs to mention only the relevant

portion, analogously to what is achieved by separation logic [16].

We also plan to formally state and prove the equivalence of the calculus with

conventional imperative models.

Acknowledgements

We warmly thank the anonymous referees for their very useful comments. In par-

ticular, one referee pointed out the analogy with scope extrusion in the pi-calculus,

leading to a better formulation of congruence and reduction rules. We also thank

Lindsay Groves, co-author of a preliminary version of this work [17], with focus on

didactic applications.

References

[1] Wolfgang Ahrendt, Frank S. de Boer, and Immo Grabe. Abstract object creation in dynamic logic. In
FM 2009: Formal Methods, pages 612–627, 2009.

[2] Paulo Sérgio Almeida. Balloon types: Controlling sharing of state in data types. In Mehmet Aksit and
Satoshi Matsuoka, editors, ECOOP’97 - Object-Oriented Programming, volume 1241 of Lecture Notes
in Computer Science, pages 32–59. Springer, 1997.

[3] Z. M. Ariola and Stefan Blom. Skew confluence and the lambda calculus with letrec. Ann. Pure Appl.
Logic, 117(1-3):95–168, 2002.

[4] Zena M. Ariola and Matthias Felleisen. The call-by-need lambda calculus. Journ. of Functional
Programming, 7(3):265–301, 1997.

[5] David Clarke and Tobias Wrigstad. External uniqueness is unique enough. In ECOOP’03 - Object-
Oriented Programming, volume 2473 of Lecture Notes in Computer Science, pages 176–200. Springer,
2003.

A. Capriccioli et al. / Electronic Notes in Theoretical Computer Science 322 (2016) 87–102100

[6] David G. Clarke, John Potter, and James Noble. Ownership types for flexible alias protection. In
ACM Symp. on Object-Oriented Programming: Systems, Languages and Applications 1998, pages 48–
64, 1998.

[7] John Clements, Matthew Flatt, and Matthias Felleisen. Modeling an algebraic stepper. In ESOP’01 -
European Symposium on Programming, pages 320–334, 2001.

[8] Werner Dietl, Sophia Drossopoulou, and Peter Müller. Generic universe types. In Erik Ernst, editor,
ECOOP’07 - Object-Oriented Programming, volume 4609 of Lecture Notes in Computer Science, pages
28–53. Springer, 2007.

[9] Matthias Felleisen, Robert Bruce Findler, and Matthew Flatt. Semantics Engineering with PLT Redex.
The MIT Press, 2009.

[10] Matthias Felleisen and Daniel P. Friedman. A syntactic theory of sequential state. Theoretical
Computer Science, 69(3):243–287, 1989.

[11] Matthias Felleisen and Robert Hieb. The revised report on the syntactic theories of sequential control
and state. Theoretical Computer Science, 103(2):235–271, 1992.

[12] Colin S. Gordon, Matthew J. Parkinson, Jared Parsons, Aleks Bromfield, and Joe Duffy. Uniqueness
and reference immutability for safe parallelism. In Gary T. Leavens and Matthew B. Dwyer, editors,
ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages and Applications
(OOPSLA 2012), pages 21–40. ACM Press, 2012.

[13] John Hogg. Islands: Aliasing protection in object-oriented languages. In ACM Symp. on Object-
Oriented Programming: Systems, Languages and Applications 1991, pages 271–285. ACM Press, 1991.

[14] Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight Java: a minimal core calculus
for Java and GJ. ACM Transactions on Programming Languages and Systems, 23(3):396–450, 2001.

[15] Robin Milner. Communicating and mobile systems - the Pi-calculus. Cambridge University Press,
1999.

[16] John C. Reynolds. Separation logic: A logic for shared mutable data structures. In Proc. IEEE Symp.
on Logic in Computer Science 2002, pages 55–74. IEEE Computer Society, 2002.

[17] Marco Servetto and Lindsay Groves. True small-step reduction for imperative object-oriented
languages. FTfJP’13- Formal Techniques for Java-like Programs, 2013.

[18] Marco Servetto, Julian Mackay, Alex Potanin, and James Noble. The billion-dollar fix - safe
modular circular initialisation with placeholders and placeholder types. In Giuseppe Castagna, editor,
ECOOP’13 - Object-Oriented Programming, volume 7920 of Lecture Notes in Computer Science, pages
205–229. Springer, 2013.

[19] Marco Servetto, David J. Pearce, Lindsay Groves, and Alex Potanin. Balloon types for safe
parallelisation over arbitrary object graphs. In WODET 2014 - Workshop on Determinism and
Correctness in Parallel Programming, 2013.

A. Capriccioli et al. / Electronic Notes in Theoretical Computer Science 322 (2016) 87–102 101

A Auxiliary definitions

HB(E):

HB([]) = ∅
HB(E.f) = HB(E .m(es)) = HB(x.m(xs, E, es)) = HB(E.f = e′) = HB(x.f = E) =

HB(new C(xs, E, es)) = HB(E)
HB((dvsC x =E ds e)) = HB(E) ∪ dom(dvs) ∪ dom(ds)

HB((dvs E)) = HB(E) ∪ dom(dvs)

typectx(E):

typectx([]) = ∅
typectx(E.f) = typectx(E .m(es)) = typectx(x.m(xs, E, es)) = typectx(E.f = e′) =

typectx(x.f = E) = typectx(new C(xs, E, es)) = typectx(E)
typectx((dvsC x =E ds e)) = typectx(dvs ds)[typectx(E)]
typectx((dvs E)) = typectx(dvs)[typectx(E)]
typectx(C1 x1 = e1 . . .Cn xn = en) = x1:C1 . . . xn:Cn

FV(e):

FV(x) = {x}
FV(e .f) = FV(e)

FV(e0 .m(e1, . . . , en)) = FV(e0) ∪ . . . ∪ FV(en)

FV(e .f = e′) = FV(e) ∪ FV(e′)
FV(new C(e1, . . . , en)) = FV(e1) ∪ . . . ∪ FV(en)

FV((ds e)) = (FV(ds) ∪ FV(e)) \ dom(ds)

FV(C1 x1 = e1 . . .Cn xn = en) = FV(e1) ∪ . . . ∪ FV(en)

e[y/x]:

x[y/x] = y

z[y/x] = z if z �= x

e .f[y/x] = e[y/x].f

e0 .m(e1, . . . , en)[y/x] = e0[y/x].m(e1[y/x], . . . , en[y/x])

(e .f = e′)[y/x] = e[y/x].f = e′[y/x]
new C(e1, . . . , en)[y/x] = new C(e1[y/x], . . . , en[y/x])

(ds e)[y/x] = (ds[y/x] e[y/x]) if x /∈ dom(ds), y �∈ dom(ds)

(ds e)[y/x] = (ds e) if x ∈ dom(ds)

(C1 x1 = e1 . . .Cn xn = en)[y/x] = C1 x1 = e1[y/x] . . .Cn xn = en[y/x]

A. Capriccioli et al. / Electronic Notes in Theoretical Computer Science 322 (2016) 87–102102

	Introduction
	Calculus
	Type system
	Results
	Conclusion
	References
	Auxiliary definitions

