People-centric Evolutionary System for Dynamic
Production Scheduling

Su Nguyen, Member, IEEE and Mengjie Zhang, Fellow, IEEE and Damminda Alahakoon,
and Kay Chen Tan, Fellow, IEEE

Abstract—Evolving production scheduling heuristics is a chal-
lenging task because of the dynamic and complex production
environments and the interdependency of multiple scheduling
decisions. Different genetic programming methods have been
developed for this task and achieved very encouraging results.
However, these methods usually have trouble in discovering
powerful and compact heuristics, especially for difficult problems.
Moreover, there is no systematic approach for the decision
makers to intervene and embed their knowledge and preferences
in the evolutionary process. This paper develops a novel people-
centric evolutionary system for dynamic production scheduling.
The two key components of the system are a nmew mapping
technique to incrementally monitor the evolutionary process and
a new adaptive surrogate model to improve the efficiency of
genetic programming. The experimental results with dynamic
flexible job shop scheduling show that the proposed system
outperforms the existing algorithms for evolving scheduling
heuristics in terms of scheduling performance and heuristic sizes.
The new system also allows the decision makers to interact on
the fly and guide the evolution towards desired solutions.

Index Terms—genetic programming, flexible job shop schedul-
ing, diversity, visualisation.

I. INTRODUCTION

HERE have been an increasing number of studies on

machine learning (ML) and artificial intelligence (Al) in
the context of smart factories and Industry 4.0 [1]. Most of the
studies emphasise the applications of ML and Al to advanced
process control (APC) such as real-time equipment moni-
toring, fault detection and classification, quality control, and
preventive maintenance. Scheduling is a critical function in
APC to make sure that manufacturing resources are optimally
utilised. However, the scheduling methods proposed for smart
factories have been still based on traditional approaches (e.g.
dispatching rules) with the support of computer simulation and
real-time data [2]. There have been several studies on adaptive
scheduling methods based on ML and online optimisation
but these methods are restricted by many assumptions and
not flexible enough to cope with the complexity of smart
factories [3], [4]. Big data analytics solutions developed for
scheduling purposes only provide real-time monitoring of
orders and inventories, with only little emphases on making
optimal planning and scheduling decisions.

Advances in computing power and optimisation have led
to the developments of new solution methods for production
scheduling. Meta-heuristics [5], [6], [7] is a popular approach
to find near optimal solutions for a wide range of production
scheduling problems. However, manually designing a good
meta-heuristic algorithm is not a trivial task and it can be

very time consuming and requires a lot of problem domain
knowledge. In addition, there is no guarantee that these
algorithms may work in stochastic and dynamic production
environments without major modifications. In recent years,
genetic programming (GP) has been adopted to solve a wide
range of production and supply chain management problems
[8], [9]. Due to its flexibility and powerful search mechanisms,
GP can be easily customised to deal with different planning
and scheduling decisions in complex production and logistics
systems, which cannot be easily handled by other ML and
optimisation methods. One of the most popular applications
of GP in this domain is the automated design of production
scheduling heuristics [10]. Previous studies have shown that
GP can successfully evolve superior scheduling heuristics
compared with those manually designed by researchers and
practitioners and other ML methods [11], [12], [13], [14].
Moreover, heuristics evolved by GP have some useful proper-
ties for practical applications such as simplicity, scalability, re-
activeness, and interpretability (in some cases), which are very
difficult to achieve with conventional optimisation methods. As
an evolutionary computation (EC) methods, GP can also take
advantage of advanced techniques such as evolutionary multi-
objective optimisation and surrogate models to improve its
efficiency and to tackle real-world challenges. These properties
make GP an attractive ML solution for dynamic and complex
production systems such as smart factories.

Although the past experiments have demonstrated that GP
can discover very powerful heuristics for different scheduling
applications, searching for such heuristics is not trivial. When
the production environments are complex and involve multiple
planning and scheduling decisions [11], [13], [15], a large
number of features (from jobs and machines) need to be
taken into consideration, which results in a very large heuristic
search space. Therefore, it is computationally expensive and
difficult to find the most effective heuristics. To overcome this
limitation, researchers have investigated and developed new
representations [14], [16], surrogate models [17], [18], feature
selection methods [19], and learning techniques [20], [21]. For
instance, Hildebrandt and Branke [17] proposed a surrogate-
assisted GP which relies on a simple surrogate model based on
phenotypic characteristics of evolved scheduling heuristics for
dynamic job shop scheduling. They showed that the surrogate
model can improve GP convergence by efficiently generate
new heuristics. Nguyen et al. [18] extended this surrogate
model to deal with dynamic flexible job shop scheduling
and made a modification to enhance population diversity. The
experiments showed that surrogate-assisted GP is significantly

better than the simple GP method in terms of fitnesses. On the
other hand, Mei et al. [19] proposed a new method to measure
the importance of each feature and developed a two-phase
learning algorithm for GP. They showed that it is possible to
improve the effectiveness of GP if the optimal feature subset
is selected. Some researchers focused on ensemble learning
strategies [21] and they showed that combining multiple
heuristics can improve scheduling decisions. Hart and Sim
[20] developed a sophisticated algorithm based on ensemble
learning to deal with a diverse set of problem instances and
showed very promising results.

The above developments undoubtedly enhance the perfor-
mance of evolved scheduling heuristics. However, there are
key drawbacks with these existing methods. First, the existing
methods cannot efficiently monitor what heuristics have been
generated during the evolutionary process of GP. As a result,
GP can waste its time examining bad heuristics or exploring
the same areas of the search space without making significant
improvements. In some extreme cases, GP can double the
sizes of its heuristics just to achieve marginal improvements
in terms of fitnesses. Given that the fitness evaluations can
be very computationally expensive (e.g. using discrete-event
simulation to measure heuristic performance), GP needs to
be effective in generating potential heuristics when applying
genetic operations.

Second, the sizes of evolved heuristics increase dramatically
during the evolutionary process, especially with advanced
GP methods mentioned above. As a consequence, it is very
difficult to explain how the scheduling decisions are made.
It is undesirable because interpretability is one of the attrac-
tive properties of GP. Although some techniques including
simplification [22] and visualisation [14] have been proposed
to gain more insights about the evolved heuristics, they are
restricted to simple scheduling problems and a low number
of features. Interpretable ML [23] and people-centric Al [24]
are the current trend in the AI and ML research community
to gain the values of these technologies by interpreting the
representations learned and decisions made by these AL/ML
models, and building new technologies to enhance human
interaction with AI/ML.

Finally, GP evolution is currently a black-box optimisa-
tion process. In previous studies, researchers and decision
makers can only provide some inputs (e.g. features, heuristic
structures) and observe the final outputs. They have little or
no knowledge about how or which heuristics are generated.
Therefore, it is impossible to embed their insights and pref-
erences to speed up the evolutionary process or to guide the
search towards their most favourite solutions.

This paper aims to develop a new people-centric evolu-
tionary system (PES) that can efficiently utilise the historical
search data to adaptively and interactively guide the search
towards effective and interpretable production heuristics. The
main contributions of this paper are:

1) A new mapping technique that can efficiently capture

the topological relations of evolved heuristics,

2) A new adaptive surrogate model that can integrate

diversity control and bloat control to evolve powerful
and compact scheduling heuristics,

3) A new surrogate-assisted algorithm that can evolve

superior and compact production scheduling heuristics,

4) A new human-computer interaction component that

allows decision makers to monitor and to guide the
evolutionary process on the fly.

Different from existing approaches, the proposed system
provides users and decision makers with a “people-centric”
way to monitor the evolutionary process, control the evolu-
tionary behaviours, integrate preferences, and generate com-
pact solutions. To demonstrate the effectiveness of the new
approach, the proposed PES algorithm is applied to evolve
scheduling heuristics that simultaneously handle routing and
dispatching decisions in dynamic flexible job shop scheduling
problems. This problem is investigated as it is a good exam-
ple of a complex production environment in which multiple
scheduling decisions, uncertainty, and dynamic changes have
to be taken into consideration. Extensive experiments using
different simulated shop utilisations and flexibility are used
to compare the performance and generalisation of PES and
existing GP algorithms.

The rest of this paper is organised as follows. Section II
describes the dynamic flexible job shop scheduling problems
and scenarios to be investigated in this study. Section III
presents the overview of the proposed algorithm and its key
components. Section IV describes the experiment settings, and
Section V presents the results in terms of test performance and
sizes of evolved heuristic. Further analyses of the proposed
algorithm are presented in Section VI. Finally, conclusions
and future research directions are shown in Section VII.

II. DYNAMIC FLEXIBLE JOB SHOP SCHEDULING

Dynamic flexible job shop scheduling (DFJSS) is a variant
of job shop scheduling problems in which a set of jobs J
must be allocated and processed by a set of machines M.
Each job 7 € J has a number of predefined operations
Oj = {0j1,042,...,0;n,}. Different from the traditional job
shop scheduling problem, an operation o;; can be processed
by any machine in the subset M ; C M. The processing time
of the operation oj; is p(0j;,m) if it is routed to a machine
m € M ;. Since routing decisions, i.e. specify which machine
to process an operation, can greatly influence the scheduling
performance, they need to be considered and optimised along
with the sequencing decisions.

The flexible job shop in this study is similar to the simula-
tion model used in [5] and [13], but we focus on the dynamic
scheduling problems instead of static problem instances. The
simulated shop will have |M| = 10 machines and new jobs
will arrive randomly over time. Each job j will have a number
of operations N; following a discrete uniform distribution
U{1,| M|}, and each operation o;; can be processed by a set
of alternative machines M ;. The size of M ; is proportional
to the flexibility f% [13]. If the flexibility f% is high, an
operation is likely to be handled by more machines. In the
simulated shop, if the flexibility f% = 50%, the size of
M; will follow the discrete uniform distribution /{1, 5} as
f x |M| = 5. All processing times p(0;;,m) will follow an
exponential distribution Exp(1/u) with the mean processing
time 1/p = 1.

Similar to previous simulation studies of dynamic job shops,
job arrivals will follow Poisson process with the arrival rate A
[25], [18] calculated as follow:

where p is the utilisation of machines and 7 is the average
number of operations per job which is (1 + |M]).

The due date d; a new job j will be determined by the
total work content (TWK) rule [26], ie. d; = 7; + h X
Zojieoj Pavg(05i) Where h is the allowance or tightness factor
[5], [27] and pavg(oji) is the average processing time of
operation 0;; (across all alternative machines). For the weights
w; of jobs, the 4:2:1 rule is employed [5], [27].

The simulation starts with an empty shop and new jobs
will arrive randomly over time. Upon their arrivals, new jobs
will be immediately released to the shop. If the machine to
process the current operation o;; has not yet been specified,
the routing rule is applied to calculate the priority P,.(m, j)
for each machine m € M; based on the information of the
job j and the status of machine m. The machine m* with
the highest P,.(m, j) will process the operation o;;. Similarly,
the dispatching rule will be used to determine the priority
Pa(j, M) for each job j € Q(m) based on the attributes of
the job j and the current status of related machines in the shop
when the machine m become idle and its queue Q(m) is not
empty. The objective of the dynamic FJSS problem here is to
minimise the total weighted tardiness:

TWT =Y w;T; 2
jeC

A=p

where T; = (d;—C}) is the tardiness, and C} is the completion
time of job j. In this equation, C is the set of completed
jobs recorded during the simulation. To measure the long-
term performance of evolved scheduling heuristics, we set the
warm-up time as the arrival time of the 500" job and the
statistics from the next completed 5000 jobs will be recorded
to calculate the objective value (i.e. |C| = 5000).

III. PEOPLE-CENTRIC EVOLUTIONARY SYSTEM

Fig. 1 shows how the proposed PES works. The initial
population H = {#;,Ho, - ,Hn} of scheduling heuristics
are randomly generated. Then all heuristics in the popula-
tion will be evaluated by using the simulator presented in
Section II. The phenotypic characteristics phenotype(H), the
corresponding fitnesses fitness(#), and the sizes of evaluated
heuristics (i.e. number of nodes) are saved in an archive A.
Principal component analysis (PCA) is applied to transform
the dataset X of phenotypic characteristics (with the dimen-
sion of D stored in A) to X’ with a lower dimensionality
(by using the first K principal components where K << D).
Then, the transformed dataset X’ is fed into a modified version
of growing neural gas (GNG) [28]. The network N = (V, E)
obtained with the modified GNG (mGNG) contains a set of
nodes V' and a set of undirected edges E that represent the
distributions of generated heuristics on the explored search
space. After the network is learned, the user can optionally
modify the network either by changing node positions or

Initialise the
population

Evaluate all heuristicsin | _____
the population

Start

_)

Update the archive of /

generated heuristics

Yes Reach stapping Apply PCA on the
Stop condition? phenotypic characteristics
No
Benerate an Update the GNG network
intermediate population
s ; 3
§ A4
X
g, Build Surrogate Model v— Visualise GNG network
N netwark
S infarmation & change node
Estimate fitnesses of heuristics in pasitions
the intermediate population v £ weights

User

Rank programs based on
approximate fitnesses

Create new population
from the top heuristics

> determine phenotypic
characteristic H

Fig. 1. People-centric evolutionary system.

selection pressures. PES will build a surrogate model based
on the historical search data and the information from the
obtained mGNG network. An intermediate population is then
generated by applying genetic operations. Newly generated
heuristics will be efficiently estimated by using the surrogate
model with inputs from the phenotypic characteristics and
sizes of those heuristics, archive .4, the network A/, and user
preferences. The population for the next generation is the
collection of the top heuristics in the intermediate population
ranked by the estimated fitnesses. In the rest of this section,
we will provide the details of each key component in this algo-
rithm including the GP representation of scheduling heuristics,
genetic operations, the mGNG algorithm, and the surrogate
model.

A. Representation

The proposed PES utilises both genotype characteristics
(heuristic sizes) and phenotype characteristics (rankings of
jobs) of evolved heuristics to improve its efficiency.

1) Genotype: The standard GP tree representation is used
for routing rules P, and dispatching rules P;. The terminal
sets and functions sets to construct the two rules are presented
in Table I and Table II [18]. In these tables, ¢ is the decision
moment or the current simulation time, mr; is the time job j
joins the queue of machine m, and o,y is its current operation.
The function workload(Q(m)) is the total processing time of
all jobs waiting in the queue of machine m. These attributes
are selected because they have been employed in previous
studies on automated design of scheduling heuristics [29],
[13], [17], and most attributes are used in existing rules in the
literature. For the routing rules, the last two attributes are used
as the rough estimate of the job priority when it is assigned
to a specific machine.

2) Phenotype: This study used the phenotypic characteris-
tics proposed by [17] to capture the behaviours of dispatching

TABLE I
ATTRIBUTES/FUNCTIONS OF ROUTING RULES Pr(j, m)

Notation Description

WLN workload of machine m = workload(Q(m))

NON number of operations waiting at m = |Q(m)|

rPT ratio between workload of operations in Q(m) with
processing times larger than p(oj, m).

rSLACK ratio between workload of operations in Q(m) with

slack larger than the slack of job j

Function set +,—, X, protected division %, min, max

TABLE II
ATTRIBUTES/FUNCTIONS OF DISPATCHING RULES Py (j, M)

Notation Description

rrJ time-in-system of job (t — r;)

rRJ job queuing time (t — mr;)

RO number of remaining operations |O7|.

RT work remaining of the job peojr,m) +
Zoﬁ €O \k Pavg(05i)

PT operation processing time p(oj, m)

rDD time to due date = d; — ¢

SL slack of the job = d; — (t + RT)

w weight of job w;

Random number from O to 1

NPT average processing time of the next operation
paug(aik+l)

WINQ avereige workload in the next queue
m Zm/EMik+1 workload(Q(m’))

Function set +,—,X, protected division %, min, max

rules. The phenotype of an evolved rule is a decision vector
that captures how the rule ranks jobs in D specific decision
situations (each situation has a set of predefined jobs). For each
situation, the ranks of jobs based on a reference rule (smaller
ranks for jobs with higher priorities) is first determined. Then,
the rank (based on the reference rule) of the job with the
highest priority given by an evolved rule for each decision
situation is the decision value for that situation in the decision
vector. For any pair of rules, Euclidean distance between their
decision vectors is used to compute their similarity. As the
routing rules evolved by PES are also priority functions, the
same technique can be applied to determine the phenotypic
characteristics of routing rules. The phenotype of a scheduling
heuristic is simply a concatenation of the phenotypes of the
two rules (routing and sequencing). An example of phenotypes
for the considered scheduling heuristic can be found in [17]
and [30].

B. Genetic operations

In the proposed algorithm, subtree crossover, subtree muta-
tion [31], and subtree extraction [32] are used to produce new
rules for the scheduling heuristic H = {P,, P4}. To generate
new heuristics, individuals in the population are randomly
selected as parents. When a genetic operation is applied, it
only focuses on one specific rule (routing or sequencing) to
avoid generating random heuristics (i.e. too different from
parents). The subtree crossover creates new rules by randomly
recombining subtrees from two selected parent rules. The
subtree mutation is performed by selecting a node of a chosen
rule and replacing the subtree rooted by that node with a newly

randomly-generated subtree. Meanwhile, the subtree extraction
simply replaces a rule with its random subtree so the size
of the new rule is always smaller than the parent rule. To
improve the diversity of the population, all the same duplicated
heuristics (based on phenotypic similarity) will be eliminated
before applying the proposed surrogate model [17].

C. Mapping evolutionary process

To efficiently explore competitive scheduling heuristics, it is
crucial for PES to capture the topological relations and distri-
butions of previously generated heuristics. Since the heuristics
generated by genetic operations are complicated and usually
contain redundant components, phenotypic characteristics are
more useful than the genotypic characteristics to determine
the similarity between generated heuristics. Also, phenotypic
characteristics is a good predictor of program fitnesses [17],
[18] and the phenotypic diversity has good correlations with
the fitness improvements [33]. Therefore, we employ the
phenotypic characteristics to map the evolutionary process
of PES. There are two main steps in mapping evolutionary
process with PES: (1) dimensionality reduction with PCA, and
(2) topogical learning with mGNG.

1) Dimensionality reduction: Directly using the high-
dimensional dataset X to map the evolutionary process is
not efficient and can greatly influence the scalability and
the accuracy of the proposed algorithm. To overcome these
challenges, a dimensionality reduction technique is needed to
transform the input data in the high-dimensional space to a
space of fewer dimensions. There are many dimensionality
reduction methods designed to cope with different types of
data. For the application investigated in this paper, PCA is
used for dimensionality reduction because it is an efficient and
well-established approach. Moreover, PCA is an appropriate
method to deal with the multicollinearity issue in the decision
vectors. It is noted that decision situations used to determine
the decision vector are randomly generated. Thus, there is a
good chance that similar siutations (similar set of jobs) are
created, which can lead to similar decision values when a
specific rule is evaluated.

2) Modified growing neural gas: Algorithm 1 shows how
mGNG can adapt the network to the input data. All data points
in X = {phenotype(H)|H € A} are transformed into X’
by PCA. In each epoch, an input x is then sampled from
the transformed data X’ and mGNG determines, in terms
of Euclidean distance, the nearest unit (s1) and the second
nearest unit (so) which are adapted towards the input data. An
edge connecting these two units is also created (if it has not
yet existed) and its age is set to zero. After each epoch, the
algorithm will identify the unit with the maximum error and
systematically insert a new unit nearby to reduce the total error
of the network. Meanwhile, a unit can be removed if its utility
is too low as compared to the maximum error. This mechanism
is proposed in [28] to deal with non-stationary distributions.
In PES, removing nodes with low utilities has two main
advantages: (1) reducing the running times of mGNG, and
(2) discarding noisy nodes (i.e. representing heuristics which
are rarely generated in recent generations). The parameter 6 is
used to control the resolution of networks. If 8 is high, nodes

Algorithm 1 Modified growing neural gas (mGNG)

Input: dataset X, current network N (if exist)
Output: (updated) mGNG network N, PCA model

1: X’ < transform dataset X with PCA

2: epoch < 0

3: randomly initialise N with two nodes if A is empty

4: repeat

5: randomly shuffle X’

6: for each data point z € X’ do

7: w,, < the nearest (winning) node s; for input z
8: update the error of s1: B, = E,, + ||z — ws, ||?
9: updating unit s1: ws, = ws, + (T — ws,)

10: updating neighbour n of s1: w,, = w,+€,(r—w,)

—_

create an edge between s; and ss (the second-
nearest unit to x) and set its age to zero if the edge does
not exist; otherwise set the edge’s age to zero

12: increment the age of edges connecting s; and each
neighbor n € N

13: removing edges with age larger than a4, = | X|
and nodes with no emanating edges

14: updating the utility of s1: Uy, = Uy, + ||z —
W2 = [[z — w,, |2

15: let ¢ is the unit with maximum error and [is the
unit with minimum utility

16: remove the unit ! if E,/U; > 6

17: for each unit c € A/ do

18: E.=(1-p)E.

19: U.=(1-p)U.

20: insert a new unit to A/ between ¢ and its neighbor if

the number of nodes in N < maz_node
21: until epoch = maximum_epoch or mGNG converges

will be unlikely to be removed and mGNG will try to fit the
network to the whole dataset. If 8 is low, mGNG will focus
on more representative programs (frequently reproduced) and
main evolutionary traits. The maximum age of edges is set to
the size of the dataset to preserve most relations of programs.
We also adopt a scheme like k-means to adapt the learning
rate over time [34], i.e. ey = 1/Nyin and e, = 100/Nqyin (see
steps 9-10 in Algorithm 1) where 1., is the number of input
signals for which the considered node has been a winner.

The mGNG network is updated after the whole population
is evaluated and before new heuristics are produced. The ob-
tained network V' captures distributions of generated heuristics
and allows PES to monitor how GP explores the heuristic
search space. mGNG has a number of advantages as compared
to existing mapping techniques such as self-organizing map
(SOM) [35] or MAP-Elites [36]. First, because of its growing
nature, mGNG does not require any prior knowledge the input
data, which is important for MAP-Elites or SOM to predefine
the map size. Second, mGNG produces a network which
allows PES to efficiently determine the topological relations
of generated programs. Finally, mGNG can update the map
(i.e. network) efficient during the evolutionary process, which
makes mGNG a suitable approach to mapping the explored
search space. In the next section, we show how the mGNG

network can be used as the input to help GP adaptively and
effectively explore the search space.

D. Adaptive surrogate model

When a new heuristic H = (P, Pq) is generated by
genetic operations, its corresponding phenotypic characteristic
phenotype(H) = (phenotype(P,)|phenotype(Py)) is deter-
mined by using the technique discussed in section III-A2. In
the previous study [17], the fitness was estimated by:

f(H) = fimess <arg min ||phenotype(H) — phenotype(?—[')”)
HeA
3)
In the proposed algorithm, we generalise this surrogate model
by adding a control factor based on the information from the
network N. The new model will estimate the fitness as:

fa (H) = f(H) x control_factor(H,N) 4)
in which:
control_factor (H.N) = df(H.A) x ERD)

where df (H,N), bf(H,N), and pf(H,N) are three key
factors to control the behaviours of PES in terms of di-
versity, sizes of evolved heuristics, and user preferences. If
control_factor(H,N) = 1, the proposed model will be the
same as the surrogate model in [17] because fo(H) = f(#).
Heuristics with a higher control_factor(H,N) will be less
likely to be selected.

1) Diversity control: PES uses a simple strategy to control
the diversity of evolved heuristics, i.e. reduce the chance to
select heuristics located in a well-explored area of the search
space. Since the distribution of evolved heuristics has been
captured by mGNG, we can easily determine the density of a
certain area in the search space and use it to adjust the estimate
fitness. Given a newly generated heuristic 7, a diversity factor
is determined:

nd(H,N)
SOHN) = {T nd(H,N)>T

1 otherwise

(6)

where nd(H, N) is the neighbourhood density of the heuristic
‘H given the network N and T is a predefined diversity thresh-
old (0 < T < 1). To calculate nd(H,N'), phenotype(H) must
be transformed to lower dimensional space by the PCA model
obtained from the Algorithm 1, and the node n4}* in N with
the minimum distance to the transformed phenotype(H) is
determined. Then, the neighbourhood density is calculated as:

>

nGNB(n;\{/*)

nd(H,N) = !

= g | freadf) +

freqg(n) | (7

where freq(n) is the matching frequency of node n € N
determined by the number of entries in A that best match
node n, and NB(né_[/*) is the set of neighbours of né_{*, ie.
basically any nodes in A that are directly connected to nf;*
by an edge. A higher neighbourhood density indicates that the
area covering the neighbourhood of the considered heuristic
‘H has been explored more frequently.

From equations (4)—(6), it is clear that the new surrogate
model gives a heuristic H a worse fitness (higher value) if it is
located in the area with the neighbourhood density greater than
T'. This mechanism is created to discourage GP from visiting
too crowded areas. If T is high, PES will focus on areas where
good heuristics have been identified. If T is extremely small,
PES will distribute its computational efforts to explore all areas
in the search space without relying on the fitnesses. In other
words, PES tends to explore more aggressively with a smaller
T and the exploitation level of GP will be enhanced if a high
T is used. In the proposed algorithm, T" provides a convenient
way for GP to adapt its search during the evolutionary process
rather than predefining a fixed rule (e.g. with a fixed tourna-
ment size for tournament selection). In the early generations,
T will only have a small influence on the approximate fitnesses
because heuristics are randomly generated, i.e. the density of
each node in mGNG network will be similarly low. In this
case, PES will favour new heuristics with higher f (+),1i.e. more
exploitation. However, when no improved heuristic is found in
a few generation, the neighbourhood density of the areas where
top evolved heuristics are located will increase due to the
selection mechanism that favours high performing heuristics
(see Fig. 1). When the neighbourhood density eventually
rises above the threshold level 1", PES will favour heuristics
that have slightly worse fitnesses but are located in the less
explored areas. Depending on the evolutionary progress, PES
will adaptively adjust its exploration and exploitation intensity.

2) Bloat control: The most common approach to control
bloat issue in GP is to predefine the maximum length, the
maximum depth, or the penalty parameter to control sizes of
evolved programs. However, without prior knowledge about
the problem, it is difficult to determine good values for these
parameters. To control bloat in PES, we further take advantage
of the obtained network N. Given a newly generated heuristic
H, a bloat factor is determined:

B
size(H) size(H)
b N) =T (ms(H,N) 1) me Ay L (g)
1 otherwise

where size(H) is the size of heuristic H (total number of
terminals and functions) and ms(H,) is the maximum size
of heuristics H’ € A that best matched node né_{* (defined
in the previous section). If size(H) < ms(H,N'), the bloat
factor will have no impact on the estimated fitness of H.
Otherwise, the parameter B > 1 governs the tradeoffs between
the sizes of the evolved heuristics and their quality. The bloat
factor curves with different B values are shown in Fig. 2. If
B is higher, PES will put a higher priority on the fitnesses (a
lower bloat factor) and a lower priority on the heuristic sizes. If
B is low, PES will focus on generating compact rules. Similar
to diversity control, this bloat control is also adaptive to the
evolutionary progress, i.e. larger heuristics are only preferred
when they have better fitnesses and there is no similar heuristic
previously generated. It should be noted that B will have a
reverse impact on the bloat factor is size(H)/ms(H,N) > 2,
i.e. a higher B will control the sizes of newly generated
heuristics more aggressively if the their sizes size(H) are dou-
ble the maximum size of heuristics ms(H,). This property

2.01
— B=1
18 B=2
g16{ —— B=4
E Ll B=6
@ — B=8
1.2+
1.0 1

T

0.75 1.00 1.25 1.50 1.75
size(H)/ms(H,N)

0.00 0.25 0.50 2.00

Fig. 2. Bloat factor curves.

helps PES avoid generating heuristics with too many redundant
components in one generation which are likely to be included
in the parent heuristics if a higher B value is used.

3) User preferences: PES allows the users and decision
makers to interact with the evolutionary process by selecting
the areas in the search space that they want PES to explore.
This property is useful if there has been already an effective
heuristic applied in the production system and the decision
makers only want to make some improvements without dra-
matically changing the current scheduling practice. Another
useful case is when the decision makers want to find a good
tradeoff between program sizes and complexity on the fly
rather than using a predefined objective function. With the
obtained network A/, the decision makers can easily guide
the search of PES simply by selecting a node or a set of
nodes, corresponding to specific areas in the search space, to
further explore. When the network A is generated or updated,
the default preference for each node n is pref(n) = 1.
The decision makers can assign a particular preference value
to each node within the range [1,mazp]. Given a newly
generated heuristic H, a preference factor is determined:

pref(n%*) -1
mazrp — 1

pf(HN) =1+ ©))
From equation (5) and equation (9), it is clear that PES will
select heuristics located near to nodes with high preference
factors because of high preference values pref (n%*) The
users can select and increase the preference values of one or
multiple nodes in N and higher preference values should be
assigned to more desirable nodes (e.g. similar to certain rules
or explainable rules). The users may choose to interact with
PES at the end of each generation or set up a periodic review
depending on the speed of the evolutionary process.

In general, PES is developed to overcome a number of key
challenges in existing GP algorithms. First, PES can efficiently
capture the distributions of evolved heuristics across genera-
tions with the mGNG network. This network can provide use-
ful aggregate information about the evolutionary progress. Sec-
ond, PES provides a convenient way to adaptively control the
diversity based on the evolutionary progress rather than simply
applying random genetic operations, which is inefficient and
sensitive to predefined parameters such as tournament size,
crossover probability, and mutation probability. Third, PES
can adaptively control the sizes of newly generated heuristics
based on the sizes of their similar heuristics evolved in the
previous generations instead of explicitly fixing the maximum

size of evolved heuristics. Finally, PES has a visualisation and
interaction component that allows users to monitor and guide
the evolutionary process. These properties help PES discover
scheduling heuristics more efficiently, especially for highly
complex environments with multiple decisions such as DFJSS.

IV. EXPERIMENT SETTINGS

This section describes the simulation configurations, param-
eter settings, and performance metrics used to evaluate the
performance of the proposed PES. In our experiments, PES
will be compared to a simple genetic programming (referred to
as GP) algorithm [37] and the surrogate-assisted GP (referred
to as SGP) [17].

A. Simulation configurations

Six different simulation scenarios based on two utilisation
levels (p = 85% and 95%) and three levels of flexibility
(f% = 30%, 50%, and 70%) are used to evaluate the
performance of PES, GP, and SGP. During the training process,
the fitnesses (i.e. total weighted tardiness in equation(2))
of evolved heuristics in a specific generation are calculated
based on an independent simulation replication to improve the
efficiency and effectiveness of the three algorithms [37], [38].
For testing, 50 independent simulation replications are used
to evaluate the performance of the best heuristics evolved by
the three algorithms. Common random number [25] is used
as the variance reduction technique in our experiments for
both DFJSS simulation and population initialisation. To reduce
the computational cost, the simulation will terminate early if
the number of jobs in the shop exceeds 500, i.e. the shop is
overloaded [37].

B. Parameter settings

The default parameters for the three algorithms are shown
in Table III. All algorithms use the same terminal set and
function set in Table I and Table II. The maximum number of
nodes in mGNG is 500. The utility factor 6 is 50 (to ensure
that representative programs generated during the evolution
are captured) and the maximum number of epochs to learn
the mGNG networks is 1000 or when the algorithm is con-
verged, i.e. the total error is not improved in 5 epochs. These
parameters are selected based on our preliminary experiments.
It is noted that the mGNG algorithm is very efficient and
does not show significant impacts on the running times of
PES. As compared to the simulation time used to evaluate
heuristics, the mapping time is negligible. The preference
parameter maxp for interactions is 4. For SGP and PES, the
phenotype of each rule in an evolved heuristic is determined
by 100 decision situations (D = 2 x 100) and with a reference
heuristic using least waiting time (LWT) [39] as the routing
rule and 2PT + WINQ + NPT [29] as the dispatching rule.

C. Performance metrics

For comparisons, 30 independent runs of GP, SGP, and PES
are performed and their best evolved heuristics are recorded.
The Wilcoxon test with a = 0.05 is used for statistical
significance tests of the fest performance and sizes of evolved
heuristics. The test performance of an evolved heuristic is the

TABLE III
PARAMETER SETTINGS

SGP
200

Parameter GP PES

Population size

Initialisation ramp-half-and-half [31]
Tournament size 5
Maximum generation 50
Maximum depth 17 17 -
Crossover rate 80% 80% -
Mutation rate 15% 20% -
Reproduction rate 5% - -
of decision situations D - 200 200
Size of intermediate population - 2000 2000
of principal components K - - 5
Diversity threshold T° - - 0.05
Bloat control parameter B - - 1, 8

average TWT from 50 independent simulation replications.
For these two performance metrics, the lower the better.

We also examine the behaviours of the three algorithms in
terms of the training fitnesses, the number of components in
the network A/, and the number of nodes in N. It should be
noted that the mGNG networks N are only used to capture the
evolutionary patterns of GP and SGP and do not influence their
search mechanisms. The number of connected components
shows the connectivity of evolved heuristics across genera-
tions. The connectivity can help explain the behaviours of
each algorithm. Meanwhile, the number of nodes represents
the diversity of evolved heuristics. If an algorithm converges
to a certain area in the search space, the number of nodes will
be low. If an algorithm continues to explore different areas in
the search space, the number of nodes will be high.

V. COMPUTATIONAL RESULTS

This section presents the experimental results for PES, GP,
and SGP. First, these three algorithms are compared in terms
of the test performance and heuristic sizes. Then, the test
results on unseen scenarios are provided to investigate their
generalisation. Finally, we investigate the behaviours of the
algorithms using visualisation and illustrate how users can
intervene in the evolutionary process.

A. Test performance

The test performances of the three algorithms are shown in
Fig. 3. PES-B1 and PES-B8 represent the PES algorithm using
the default parameters in Table III with B =1 and B = 8§
respectively. For each PES variant, a notation |r is used to
show the outputs of statistical tests. [and r are the algorithms,
i.e. ¢ for GP and x for SGP, which are significantly worse
(or better) than a PES variant. In all scenarios, PES variants
are significantly better than GP. Meanwhile, PES variants are
either significantly better than or not significantly different
from SGP in all scenarios. PES-B8 has a slightly lower
variance as compared to PES-B1 and SGP. In general, PES
shows consistent and superior performance in a wide range of
scenarios with different levels of flexibility and utilisation.

1.6 1 0.50 1
0.45 1
1.44
0.40 1
1.24

504
250 250 1

200
1501 150+ I
1001 |

501 ; 501 ;

% 0.30 1

1.04 €L
PES-B1°PES-B8**| GP PES-B1*IPES-Bg SGP GP PES-BI1**IPES-B8I° SGP GP PES-B1°*'PES-B8! SGP
(a) (85%,30%) (b) (85%,50%) (a) (85%, 30%) (b) (85%,50%)
0.275 1 351
300 1
0.250 304 3001
0.225 2004
951 2004
0.200 1
% i i 100
0.175 4 2.0 1004 ; ;
0.150 : . . : 0 : . . .
GP PES-BI°'PES-B8" SGP GP PES'BIYPES-B8™ SGP GP PES-B1*/PES-Bg° SGP GP PES-B1'PES-B§ SGP

(©) (85%,70%) (d) (95%, 30%)

(©) (85%,70%) (d) (95%, 30%)

1.0 —|— 0.35 —|_
081 0.30 1 .
0.25 J_

T
’ ; = * 0.20 % ; —

0.4

T 300 T T
300 2501 |

200

200 A

100 T 100

= | 0

PES-B1° PES-B8?" SGP
® (95%, 70%)

GP PES-BI°f PES-B&" SGP GP
(e) (95%, 50%)

Fig. 3. Test performance (average T'W'T' of evolved heuristics.

B. Program size

Fig. 4 shows the sizes of the best heuristics evolved by PES,
GP, and SGP. PES-B1 obviously produces the most compact
heuristics in all scenarios. Heuristics evolved by PES-B1 are
roughly twice smaller than GP and three times smaller than
SGP. In addition, the variances of heuristic sizes for PES-
B1 are also much smaller than those for other algorithms.
Given than PES-B1 is better than SGP in terms of the test
performance, it is safe to conclude that PES-B1 is a superior
algorithm to evolve heuristics for DFJSS. Although PES-BS is
slightly better than PES-B1 in terms of the test performance,
PES-B8 evolves much larger heuristics than PES-B1.

C. Generalisation

To examine the generalisation of the three algorithms, we
show the detailed results for unseen scenarios in Table IV. The
results of PES are bold if they are significantly better than
GP and italic if they are better than SGP (bold-italic if PES is
significantly better than both GP and SGP). In general, PES
and SGP are better than GP in the scenarios used for training
and are able to maintain their dominance in unseen scenarios.
These results showed that PES, especially the PES-BS variant,
and SGP are not overfitted to the training scenarios. It means
that loosely controlling bloat with a high B does not have a
negative impact on the generalisation of PES.

In terms of training scenarios, heuristics evolved with
(85%,30%) are most effective across scenarios. The main

PES-B1°*PES-B8'
) (95%, 70%)

GP PES-BI**'PES-B8"® SGP GVP
(e) (95%, 50%)

Fig. 4. Sizes of evolved heuristics.

reason is that a low flexibility and a low utilisation force the
algorithms to evolve dispatching rules and routing routes that
assigned accurate priorities to effectively utilise machines. For
a high flexibility, an operation will have many options and it
is easy to find a reasonably good routing rule. Similarly, for
a high utilisation, simple time-based dispatching rules such as
shortest processing time (SPT) and 2PT+WINQ+NPT perform
quite well and their variances can also easily be discovered.
Therefore, heuristics evolved with a high utilisation or a high
flexibility may not generalise well to unseen scenarios.

D. Visualisation

With the mGNG, PES has a built-in ability to visualise the
evolutionary process. Fig. 5 shows the visualisation of PES
with B = 8 and K = 2, GP, and SGP through generations of
a particular run for the scenario (95%, 30%). It is noted that a
higher K value can be used but may lead to a complex network
which is hard to understand. Each node in a network visualised
in Fig. 5 is a node in the obtained mGNG network at the end
of each generation. The position of a node is determined using
the weights of that node. The node colour (from red to green)
and node size represent the average fitness and the number of
all heuristics H € A that are nearest to that node. Red (green)
nodes represent the area with bad (good) heuristics.

After initialisation, all algorithms have the same population
(the same network), in which heuristics are scattered randomly.
After a few generations, we start to see the difference in

TEST PERFORMANCE OF EVOLVED SCHEDULING HEURISTICS (RESULTS IN THE FORM OF MEDIAN [MINIMUM, MAXIMUM])

TABLE IV

Test Scenario

Trained with (85%, 30%)

Trained with (95%, 30%)

GP

PES-B1

PES-B8

SGP

GP

PES-B1

PES-B8

SGP

(0.85%, 30%)
(0.95%, 30%)
(0.85%, 50%)
(0.95%, 50%)
(0.85%, 70%)
(0.95%, 70%)

1.37 [1.20,1.78]
2.45[2.17,3.32]
0.46 [0.37,0.67]
0.75 [0.54,1.18]
0.27 [0.20,0.41]
0.38 [0.27,0.65]

1.11 [1.01,1.26] 1.09 [1.01,1.21] 1.12 [1.04,1.32]

2.02 [1.79,2.35]
0.34 [0.30,0.40]
0.50 [0.42,0.62]
0.20 [0.16,0.25]
0.25 [0.19,0.31]

2.01 [1.75,2.19]
0.33 [0.30,0.42]
0.48 [0.42,0.63]
0.19 [0.17,0.26]
0.23 [0.19,0.34]

2.04 [1.86,2.53]
0.35 [0.31,0.46]
0.51 [0.45,0.73]
0.20 [0.17,0.27]
0.25 [0.21,0.38]

1.51 [1.24,2.33]
2.61 [2.14,3.47]
0.58 [0.40,1.22]
0.90 [0.60,1.55]
0.36 [0.23,0.89]
0.51 [0.30,1.04]

1.16 [1.03,1.43]
2.01 [1.79,2.49]
0.39 [0.32,0.49]
0.57 [0.46,0.77]
0.22 [0.18,0.28]
0.29 [0.22,0.40]

1.13 [1.03,1.28]
1.96 [1.76,2.33]
0.37 [0.32,0.47]
0.52 [0.44,0.70]
0.22 [0.17,0.29]
0.28 [0.21,0.40]

1.19 [1.06,1.38]
2.04 [1.85,2.43]
0.41 [0.32,0.53]
0.61 [0.46,0.81]
0.24 [0.18,0.32]
0.32 [0.22,0.46]

Test Scenario

Trained with (85%, 50%)

Trained with (95%, 50%)

GP

PES-B1

PES-B8

SGP

GP

PES-B1

PES-B8

SGP

(0.85%, 30%)
(0.95%, 30%)
(0.85%, 50%)
(0.95%, 50%)
(0.85%, 70%)
(0.95%, 70%)

1.43 [1.16,2.66]
2.98 [2.25,8.29]
0.39 [0.32,1.00]
0.63 [0.49,2.78]
0.21 [0.18,0.58]
0.28 [0.22,1.41]

1.26 [1.11,1.47]
2.58 [2.16,3.49]
0.33 [0.30,0.38]
0.50 [0.45,0.60]
0.18 [0.15,0.21]
0.22 [0.19,0.26]

1.28 [1.05,1.57]
2.60 [1.98,3.54]
0.33 [0.30,0.41]
0.51 [0.45,0.66]
0.18 [0.16,0.22]
0.22 [0.20,0.29]

1.27 [1.11,1.62]
2.67 [2.14,3.46]
0.34 [0.29,0.43]
0.53 [0.43,0.71]
0.18 [0.16,0.23]
0.23 [0.20,0.32]

1.44 [1.23,1.81]
2.81 [2.43,3.81]
0.43 [0.34,0.65]
0.68 [0.49,1.12]
0.24 [0.18,0.38]
0.32 [0.22,0.60]

1.19 [1.09,1.59]
2.34 [2.06,3.20]
0.33 [0.31,0.42]
0.48 [0.44,0.64]
0.18 [0.17,0.22]
0.22 [0.20,0.29]

1.17 [1.04,1.30]
2.26 [1.84,2.70]
0.32 [0.30,0.37]
0.47 [0.42,0.57]
0.18 [0.16,0.20]
0.22 [0.19,0.26]

1.22 [1.06,1.37]
2.33 [2.05,3.06]
0.33 [0.28,0.44]
0.49 [0.42,0.65]
0.18 [0.16,0.25]
0.22 [0.18,0.33]

Test Scenario

Trained with

(85%, 70%)

Trained with (95%, 70%)

GP

PES-B1

PES-B8

SGP

GP

PES-B1

PES-B8

SGP

(0.85%, 30%)
(0.95%, 30%)
(0.85%, 50%)
(0.95%, 50%)
(0.85%, 70%)
(0.95%, 70%)

1.64 [1.30,2.63]
3.59 [2.65,6.28]
0.43 [0.33,0.69]
0.73 [0.52,1.32]
0.22 [0.17,0.33]
0.30 [0.21,0.54]

1.43 [1.10,1.77]
3.16 [2.12,4.23]
0.35 [0.30,0.44]
0.57 [0.44,0.74]
0.18 [0.16,0.20]
0.23 [0.19,0.29]

1.38 [1.19,1.79]
3.06 [2.30,4.33]
0.33 [0.31,0.41]
0.54 [0.46,0.72]
0.17 [0.16,0.24]
0.22 [0.19,0.32]

1.42 [1.17,1.87]
3.18 [2.19,5.06]
0.35 [0.31,0.43]
0.57 [0.47,0.78]
0.18 [0.16,0.21]
0.23 [0.20,0.30]

1.52 [1.26,2.22]
3.07 [2.50,5.64]
0.40 [0.32,0.60]
0.67 [0.46,1.04]
0.21 [0.17,0.34]
0.28 [0.21,0.52]

1.35 [1.17,1.65]
2.79 [2.19,5.82]
0.33 [0.30,0.41]
0.52 [0.44,0.66]
0.17 [0.15,0.22]
0.22 [0.19,0.29]

1.30 [1.19,1.80]
2.81 [2.40,4.09]
0.32 [0.30,0.44]
0.50 [0.45,0.73]
0.17 [0.16,0.21]
0.21 [0.20,0.27]

1.30 [1.14,1.59]
2.65 [2.16,3.55]
0.33 [0.29,0.39]
0.50 [0.45,0.65]
0.18 [0.16,0.20]
0.22 [0.20,0.28]

their evolutionary processes. At generation 10, while GP still
randomly explores the search space (small nodes scattered
across the network), PES and SGP have a focus on a certain
area and the diversity in PES is slightly higher than that of
SGP. At generation 20, GP starts to narrow down its search
but it evolves a mix of both good and bad heuristics. PES also
narrows its search but in a more efficient way, i.e. focusing on
good heuristics (a green area on the left of the network). SGP
does not change significantly. At generation 30, GP shows a
tendency to converge to the left area. SGP still focus on one
area but slightly expand the search. PES, on the other hand,
starts to form two clusters in the network. At generation 40,
GP and SGP converge to a particular in their networks but
PES converges to two distinct areas represented by the two
large clusters. This visualisation suggests that SGP and PES
are much more efficient than GP as they can identify and
evolve good heuristics rather than random heuristics. PES,
with the ability to maintain its diversity and efficiently explore
the search space, shows a better adaptive ability than SGP
which highly restricts its exploration and loses its diversity
quickly in later generations (the number of nodes is reduced).

E. Human-guided evolutionary process

To illustrate how a decision maker can intervene the evo-
lutionary process, we conduct a small experiment in which
the decision maker can interact with the mGNG network and
decide which nodes or areas that PES should explore. To make
the visualisation easier to interpret, we use four benchmark
scheduling heuristics: (1) FIFO-LWT (first-in-first-out for the
dispatching rule and least-waiting time for the routing rule),
(2) WSPT-LWT (weighted shortest processing time for the

dispatching rule and LWT), (3) EDD-LWT (earliest due date
for the dispatching rule and LWT), and (4) SL-LWT (minimum
slack for the dispatching rule and LWT). Their phenotypic
characteristics are obtained to identify their position in the
network (gray crosses). In this case, we assume that the
production system is currently employing FIFO-LWT because
of its simplicity, and the decision maker wants to make some
improvements without significantly changing the scheduling
behaviours. To achieve this goal, the decision maker will
interact with the mGNG network at the end of each generation
and select the nodes nearest to FIFO-LWT and adjust their
preference values (see Section III-D3) for PES to explore.

Fig. 6 shows the outcomes of the interaction. With the inputs
of the decision makers, PES narrows its search to areas close
to FIFO-LWT. In the caption of each sub figure, we also show
the best-so-far scheduling heuristics. In the initial generation,
the best heuristic is quite random. At generation 3, after
two rounds of interaction, the best heuristic has changed to
Py =W and P, = (rPT — W LN). This heuristic is actually
a variant of FIFO-LWT. With P; = W, jobs are basically
prioritised as FIFO if they have the same weight. Similarly,
P, = (rPT —WLN) will behave like LWT if the term rPT
is removed. Having »PT will help the routing rule break the
tie when the considered machines have the same workload. At
generation 6, a better heuristic is identified. The new heuristic
has the same routing rule as one found at generation 3 but
its dispatching rule is a variant of WSPT. It is reasonable as
PES has explored a new good area between FIFO-LWT and
WSPT-LWT. This experiment demonstrates that it is possible
to include decision makers’ inputs on the fly by using the
proposed PES. This property is very useful in the case that

10

» \’ \

2

— ~ P — ~ B — lzb ~ D
5 A - B R e - e

2 [2 [2 [

RN o 3 o J \:.:. N S

-

AR

(c) SGP-generation 0

(m) GP-generation 40 (n) PES—generation 40 (0) SGP-generation 40

Fig. 5. Visualisation of the evolutionary process. The node colour and node size show the average fitness and the density for each corresponding node. The
network rotation through generation indicates a genetic drift, i.e. the changes in the distributions of generated heuristics.

the user or decision maker wants to navigate the evolutionary
process to find the solutions of interest without hardcoding the
search algorithm or the fitness function.

VI. FURTHER ANALYSES

The previous section has shown effectiveness and capability
of PES. In this section, we further analyse the key parameters

of PES to understand how they influence the evolutionary pro-
cess of PES. Because of the space limitation, we only present
the results for the scenario (95%, 30%). Similar patterns are
also observed for other scenarios.

. EDD-LWT
) .
o o
Y 2]
o e
. “yregt® S
Firou
o "t
. . .
o
g .
o wseTinTg
o 0 .
[) WSPTLWT
.
®e
o © .
o o o
° % FIROLWT
® o [} S
» .
L) P d
. L]
‘0
% . EDDAWT
° e sLwT
o o °
® 0
L)
¢ d

. .
e EDDALWT

sLawT

(b) Generation 3:
Pa=W

(a) Generation 0:
Pq = max(rRJ, W)

P, = (rPT— NON)— (NON — NON)) Py. = (rPT — WLN)

(c) Generation 6:
Pa = (W x div(W, PR))
Pr = (rPT —WLN)

Fig. 6. Visualisation of the evolutionary process. For better presentation, only the areas with high fitnesses in the mGNG network are shown. The gray crosses
represent benchmark rules. The blue boundaries indicates that the nodes are preferred. div(-,-) is the protected division.

3.50
---- T=0.01 500
025 80 — T=0.03 50
9 — T=0.05
3.00 § ---- T=0.07 $ 400
8601 —— T=0.09 3
£ cp Z 350
£ o °
é”‘ ; 40+ — SGP é 300
] -g ; 250
= 204
200
01 150
17 0 10 20 30 40 50 0 10 20 30 40 50
GP T=001" T=003" T=005" T=007" T=009"| SGP Generation Generation
(a) Test performance (b) Number of network components (¢) Number of network nodes
Fig. 7. Influence of diversity control.
T 2004 ---- B=1 0.5 ee- B=1
_ Zd -
125 B=2 g B=2
7 . — B=4 04 — B=4
0 §1501 —-—- B=6 ---- B=6
g™ 7 GP 203 — GP
£ @001 sgp g — SGP
s o 75
& ||| ST Y| 0.2
100 SO G =T
; + 259 - 01
0 10 20 30 40 50 0 10 20 30 40 50

! neration
GP B=1" B=2 B=4' B=6° B=§ SGP Generatio

(a) Sizes of final heuristics

Fig. 8. Influence of bloat control.

A. Influence of diversity control

The threshold 7' is the key parameter of PES to control
the diversity of PES across generations. Fig. 7(a) shows the
test performance of evolved heuristics when 7" increases from
0.01 to 0.09. It is easy to see that setting 7' too low has a
negative effect on the test performance as PES tries too hard
to maintain the diversity rather than boosting the quality of
evolved heuristics. However, with the lowest 7" = 0.01, PEs
is still better than GP. The 7" values from 0.05 to 0.09 seems
to be consistent. As SGP is a special case of PES with T' =1
(without bloat control and user preferences), it is reasonable

(b) Sizes of best-so-far heuristics

Generation

(c) Best fitness

to say that using a high T value is also undesirable.

Fig. 7(b) and Fig. 7(c) show the number of connected
components and the number of nodes in the obtained mGNG
network. it is easy to see that PES has a different behaviour as
compared to GP and SGP. A common observation is that the
numbers of connected component increase quickly in the first
few generations and then converge to 1 (i.e. each node has at
least one connection). However, GP and SGP are slower than
PES in terms of the increasing speed and the convergence
speed. There are no significant differences in terms of the
number of connected components when different 7" values are

3.25 80

Test Performance
Number of Components

L.

*)
0
K=5" SGP

(a) Sizes of final heuristics

neration
GP K=" K=3 K=4 Generatio

Fig. 9. Influence of dimensionality reduction.

(b) Number of network components

e K=2 500
K=3 450
— K=4
---- K=5 émo
e 2 350
—— SGP k]
2
2 300
5
=z
250
200
150
40 50 0 10 20 30 40 50

Generation

(¢) Number of network nodes

3.25 80

Number of Components

200

Number of Nodes

L

GP TW=5"" TW=10" TW=20"" TW=50" SGP

Generation

(a) Test performance

Fig. 10. Influence of time window.

applied. The differences in terms of the number of nodes are
much more obvious. All algorithms search unexplored areas
very quickly and reach the maximum number of nodes (500) in
the first few generations. Then most algorithms except for PES
with T' = 0.01 starts to lose their diversity. As expected, a low
T helps PES maintain a high diversity across generations. GP
and SGP lose their diversity very quickly as compared to PES.
These results confirm that 7" is a very useful and predictable
parameter to control the population diversity.

B. Influence of bloat control

The ability to produce compact heuristic is an attractive
property of PES. Fig. 8(a) shows that the sizes of evolved
heuristics increase very quickly when B increases from 1 to
8. When B > 4, PES behaves like SGP. This can be further
observed in Fig. 8(b). Clearly, PES with B = 1 is best at
control the heuristic sizes when the average sizes of its best
heuristics only increase from 10 to more than 50. Meanwhile,
the sizes of final heuristics evolved by PES with B = 8 and
SGP are about 20 times larger than their initial heuristics. PES
with B = 2 is similar to GP in terms of heuristic sizes. It
should be noted that the best fitnesses of all algorithms except
for GP are not significantly different as shown in Fig. 8(c)
although the heuristic sizes are very different.

C. Influence of dimensionality reduction

As dimensionality reduction plays an important role to
improve the efficiency of mGNG, it is important to see if
they have a negative impact on PES. Fig. 9(a) show the

(b) Number of network components

40 50 0 10 20 30 40 50
Generation

(c) Number of network nodes

test performance of PES when different numbers of principal
components K are applied. The results show that there is
no significant difference in terms of the test performance
when different K values are used. K also does not influence
the number of connected components as shown in Fig. 9(b).
However, the diversity seems to be reduced when a smaller
K is used as presented in Fig. 9(c). One explanation for this
phenomenon is that a lower K will reduce the discrimination
ability when mGNG tries to learn the topological relations of
evolved heuristics. Therefore, PES cannot effectively see the
difference in terms of phenotypic characteristics of evolved
heuristics to accurately determine their estimate fitnesses.

D. Influence of time window

The archive A is needed for mGNG to map the explore areas
in the search space. However, keeping all evolved heuristics
in A may reduce the efficiency of mGNG and PES. In
this section, we will examine the recency of the archive by
restricting the number of recorded heuristics only to the most
recent generation, i.e. time window T'W. Fig. 10(a) shows the
test performance when different TW's are used (e.g. TW =5
means that only heuristics evolved in the last 5 generations
are kept in .A). The results show that PES is not sensitive to
TW. In Fig. 10(b), it is interesting to see that the number
of components are very high for 7W = 5 and this number
is significantly reduced when TW = 10. The reason is that
the number of evolved heuristics in .4 is not large enough for
mGNG to form a well connected network. Fig. 10(c) shows
that the number of nodes with TW = 5 is still higher than
those of GP and SGP although their variances are much higher

(because there are significant changes in A in each generation).
These results suggest that T'W can be significantly reduced
without influencing the performance of PES.

VII. CONCLUSIONS

This paper presents a new evolutionary system for learning
powerful and compact scheduling heuristics for a complex
production environment. The proposed system is a systematic
combination of conventional genetic operations, surrogate-
assisted modelling, topological data analysis, and visualisation.
The core principle of PES is to monitor the evolutionary
progress by incrementally learning topological relations of
evolved heuristics and using that knowledge to guide the evo-
lution. The experiments have shown that PES can outperform
the state-of-the-art SGP in terms of heuristic performance.
Moreover, PES has overcome a major limitation of SGP by
successfully controlling the sizes of evolved heuristics without
deteriorating its performance. On average, heuristics evolved
by PES are twice smaller than the simple GP and three time
smaller than SGP. Smaller evolved heuristics will make it
much easier to analyse and interpret how scheduling decisions
are made. Mapping the evolutionary progress also provide
PES with the visualisation and interaction abilities that allow
the users and decision makers to integrate their inputs on
the fly. The extensive analyses presented in this paper also
demonstrate that the key parameters are intuitive and can be
used to control many aspects of the evolution.

Future studies will focus on improving the efficiency of
PES by investigating other machine learning methods for
topological data analysis such as growing self-organizing map
and self-organizing incremental neural network. As finding
the right parameters for PES for an arbitrary problem is not
straightforward, an important task is to reduce the number of
parameters and make the algorithm more adaptive. It would
be interesting to also examine how PES can be used for multi-
objective optimisation and other machine learning tasks such
as classification, symbolic regression, and computer vision.

ACKNOWLEDGMENT

This work was partially supported by David Myers Research
Fellowship from La Trobe University, the Marsden Fund of
New Zealand Government (VUW1509), the National Natural
Science Foundation of China (Grant No. 61876162/F060604),
and the Shenzhen Scientific Research and Development Fund-
ing Program (Grant No. JCYJ20180307123637294)

REFERENCES

[1] J. Moyne and J. Iskandar, “Big data analytics for smart manufacturing:
Case studies in semiconductor manufacturing,” Processes, vol. 5, no. 3,
2017.

[2] D. Ivanov, A. Dolgui, B. Sokolov, F. Werner, and M. Ivanova, “A
dynamic model and an algorithm for short-term supply chain scheduling
in the smart factory industry 4.0,” International Journal of Production
Research, vol. 54, no. 2, pp. 386—402, Jan. 2016.

[3] Y.-C. Wang and J. M. Usher, “Application of reinforcement learning

for agent-based production scheduling,” Engineering Applications of

Artificial Intelligence, vol. 18, no. 1, pp. 73-82, Feb. 2005.

[4] H. Mao, M. Alizadeh, I. Menache, and S. Kandula, “Resource Manage-
ment with Deep Reinforcement Learning,” in Proceedings of the 15th
ACM Workshop on Hot Topics in Networks, ser. HotNets '16. New
York, NY, USA: ACM, 2016, pp. 50-56.

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

X. N. Shen and X. Yao, “Mathematical modeling and multi-objective
evolutionary algorithms applied to dynamic flexible job shop scheduling
problems,” Information Sciences, vol. 298, pp. 198-224, Mar. 2015.

J. Li, Q. Pan, and P. Duan, “An improved artificial bee colony algorithm
for solving hybrid flexible flowshop with dynamic operation skipping,”
IEEE Transactions on Cybernetics, vol. 46, no. 6, pp. 1311-1324, 2016.
Y. Han, D. Gong, Y. Jin, and Q. Pan, “Evolutionary multiobjective
blocking lot-streaming flow shop scheduling with machine breakdowns,”
IEEE Transactions on Cybernetics, vol. 49, no. 1, pp. 184-197, 2019.
S. Nguyen, D. Thiruvady, A. Ernst, and D. Alahakoon, “Genetic
programming approach to learning multi-pass heuristics for resource
constrained job scheduling,” in Proceedings of the Genetic and Evolu-
tionary Computation Conference, ser. GECCO ’18. New York, NY,
USA: ACM, 2018, pp. 1167-1174.

S. Chand, Q. Huynh, H. Singh, T. Ray, and M. Wagner, “On the use of
genetic programming to evolve priority rules for resource constrained
project scheduling problems,” Information Sciences, vol. 432, pp. 146—
163, 2018.

J. Branke, S. Nguyen, C. W. Pickardt, and M. Zhang, “Automated design
of production scheduling heuristics: A review,” IEEE Transactions on
Evolutionary Computation, vol. 20, no. 1, pp. 110-124, Feb. 2016.

C. W. Pickardt, T. Hildebrandt, J. Branke, J. Heger, and B. Scholz-Reiter,
“Evolutionary generation of dispatching rule sets for complex dynamic
scheduling problems,” International Journal of Production Economics,
vol. 145, no. 1, pp. 67-77, 2013.

S. Nguyen, M. Zhang, M. Johnston, and K. C. Tan, “Dynamic multi-
objective job shop scheduling: A genetic programming approach,” in
Automated Scheduling and Planning. Springer Berlin Heidelberg, 2013,
no. 505, pp. 251-282.

L. Nie, L. Gao, P. Li, and X. Li, “A GEP-based policies constructing
approach for dynamic flexible job shop scheduling problem with job
release dates,” Journal of Intelligent Manufacturing, vol. 24, no. 4, pp.
763-774, Aug. 2013.

J. Branke, T. Hildebrandt, and B. Scholz-Reiter, “Hyper-heuristic evo-
lution of dispatching rules: A comparison of rule representations,”
Evolutionary Computation, vol. 23, no. 2, pp. 249-277, Jun. 2015.

S. Nguyen, M. Zhang, M. Johnston, and K. C. Tan, “Automatic design
of scheduling policies for dynamic multi-objective job shop scheduling
via cooperative coevolution genetic programming,” IEEE Transactions
on Evolutionary Computation, vol. 18, no. 2, pp. 193-208, Apr. 2014.
M. Durasevic, D. Jakobovic, and K. Knezevic, “Adaptive scheduling on
unrelated machines with genetic programming,” Applied Soft Computing,
vol. 48, pp. 419-430, Nov. 2016.

T. Hildebrandt and J. Branke, “On using surrogates with genetic pro-
gramming,” Evolutionary Computation, vol. 23, no. 3, pp. 343-367, Sep.
2015.

S. Nguyen, M. Zhang, and K. C. Tan, “Adaptive charting genetic
programming for dynamic flexible job shop scheduling,” in Proceedings
of the Genetic and Evolutionary Computation Conference, ser. GECCO
’18. New York, NY, USA: ACM, 2018, pp. 1159-1166.

Y. Mei, S. Nguyen, B. Xue, and M. Zhang, “An efficient feature selection
algorithm for evolving job shop scheduling rules with genetic pro-
gramming,” [EEE Transactions on Emerging Topics in Computational
Intelligence, vol. 1, no. 5, pp. 339-353, Oct 2017.

E. Hart and K. Sim, “A hyper-heuristic ensemble method for static job-
shop scheduling,” Evolutionary Computation, vol. 24, no. 4, pp. 609—
635, Dec. 2016.

M. Durasevi¢ and D. Jakobovi¢, “Comparison of ensemble learning
methods for creating ensembles of dispatching rules for the unrelated
machines environment,” Genetic Programming and Evolvable Machines,
vol. 19, no. 1, pp. 53-92, Jun 2018.

S. Nguyen, M. Zhang, and K. C. Tan, “Surrogate-assisted genetic pro-
gramming with simplified models for automated design of dispatching
rules,” IEEE Transactions on Cybernetics, vol. 47, no. 9, pp. 2951-2965,
Sep. 2017.

F. Doshi-Velez and B. Kim, “A roadmap for a rigorous science of
interpretability,” CoRR, vol. abs/1702.08608, 2017. [Online]. Available:
http://arxiv.org/abs/1702.08608
Google Al, “People + Al
Research Initiative Symposium, Sep. 2017.
https://ai.google/research/teams/brain/pair

A. M. Law and D. M. Kelton, Simulation Modeling and Analysis.
McGraw-Hill Higher Education, 1999.

S. Kreipl, “A large step random walk for minimizing total weighted
tardiness in a job shop,” Journal of Scheduling, vol. 3, pp. 125-138,
May 2000.

+ Al
Auvailable:

research,” in People
[Online].

(271

[28]

[29]

[30]

(31]

[32]

[33]

(34]

[35]
(36]

[37]

[38]

[39]

S. Nguyen, M. Zhang, M. Johnston, and K. C. Tan, “A computational
study of representations in genetic programming to evolve dispatching
rules for the job shop scheduling problem,” IEEE Transactions on
Evolutionary Computation, vol. 17, no. 5, pp. 621-639, Oct. 2013.

B. Fritzke, “A self-organizing network that can follow non-stationary
distributions,” in Proceeedings of International Conference on Artificial
Neural Networks: ICANN’97. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1997, pp. 613-618.

V. Sels, N. Gheysen, and M. Vanhoucke, “A comparison of priority
rules for the job shop scheduling problem under different flow time-
and tardiness-related objective functions,” International Journal of Pro-
duction Research, vol. 50, no. 15, pp. 4255-4270, Sep. 2011.

S. Nguyen, M. Zhang, D. Alahakoon, and K. C. Tan, “Visualizing
the evolution of computer programs for genetic programming [research
frontier],” IEEE Computational Intelligence Magazine, vol. 13, no. 4,
pp. 77-94, Nov 2018.

J. R. Koza, Genetic Programming: On the Programming of Computers
by Means of Natural Selection. Cambridge, MA: MIT Press, 1992.
S. Nguyen, M. Zhang, M. Johnston, and K. Tan, “Automatic Program-
ming via Iterated Local Search for Dynamic Job Shop Scheduling,”
IEEE Transactions on Cybernetics, vol. 45, no. 1, pp. 1-14, 2015.

E. K. Burke, S. Gustafson, and G. Kendall, “Diversity in genetic
programming: An analysis of measures and correlation with fitness,”
IEEE Transactions on Evolutionary Computation, vol. 8, no. 1, pp. 47—
62, Feb. 2004.

S. Furao and O. Hasegawa, “An incremental network for on-line unsu-
pervised classification and topology learning,” Neural Networks, vol. 19,
no. 1, pp. 90-106, 2006.

T. Kohonen, “Self-organized formation of topologically correct feature
maps,” Biological Cybernetics, vol. 43, no. 1, pp. 59-69, Jan. 1982.

J. Mouret and J. Clune, “Illuminating search spaces by mapping elites,”
CoRR, vol. abs/1504.04909, 2015.

T. Hildebrandt, J. Heger, and B. Scholz-Reiter, “Towards improved
dispatching rules for complex shop floor scenarios — A genetic pro-
gramming approach,” in Proceedings of 2010 Genetic and Evolutionary
Computation Conference, ser. GECCO’10. Portland, Oregon, USA:
ACM Press, 2010, pp. 257-264.

S. Nguyen, M. Zhang, M. Johnston, and K. C. Tan, “Selection Schemes
in Surrogate-Assisted Genetic Programming for Job Shop Scheduling,”
in SEAL’14: Simulated Evolution and Learning. Springer International
Publishing, 2014, pp. 656-667.

J. C. Tay and N. B. Ho, “Evolving dispatching rules using genetic
programming for solving multi-objective flexible job-shop problems,”
Computers & Industrial Engineering, vol. 54, no. 3, pp. 453-473, Apr.
2008.

Su Nguyen (M’13) received the Ph.D. degree in
artificial intelligence and data analytics from the
Victoria University of Wellington, New Zealand,
in 2013. He is currently a David Myers Research
Fellow with the Centre for Research in Data Ana-
lytics and Cognition, La Trobe University, Australia.
His primary research interests include computational
intelligence, optimization, data analytics, large-scale
simulation, and their applications in operations man-
agement and social media.

Mengjie Zhang (M04-SM10-F19) re- ceived the
B.E. and M.E. degrees from Artificial Intelligence
Research Center, Agricultural University of Hebei,
Hebei, China, and the Ph.D. degree in computer
science from RMIT University, Melbourne, VIC,
Australia, in 1989, 1992, and 2000, respectively. He
is currently Professor of Computer Science, Head of
the Evolutionary Computation Research Group, and
the Associate Dean (Research and Innovation) in the
Faculty of Engineering. His current research inter-
ests include evolutionary computation with applica-
tion areas of image analysis, multi-objective optimization, feature selection
and reduction, job shop scheduling, and transfer learning. He has published
over 500 research papers in refereed international journals and conferences.
Prof. Zhang is a Fellow of Royal Society of New Zealand and has been a
Panel member of the Marsden Fund (New Zealand Government Funding), a
Fellow of IEEE, and a member of ACM.

He was the chair of the IEEE CIS Intelligent Systems and Applications
Technical Committee, and chair for the IEEE CIS Emergent Technologies
Technical Committee and the Evolutionary Computation Technical Commit-
tee, and a member of the IEEE CIS Award Committee. He is a vice-chair of
the IEEE CIS Task Force on Evolutionary Feature Selection and Construction,
a vice-chair of the Task Force on Evolutionary Computer Vision and Image
Processing, and the founding chair of the IEEE Computational Intelligence
Chapter in New Zealand. He is also a committee member of the IEEE NZ
Central Section.

Damminda Alahakoon received the Ph.D. degree
from Monash University, Australia, in 2002. He is
currently a Professor of business analytics with the
La Trobe University Business School, Melbourne,
Australia, and the Director of the Research Centre
for Data Analytics and Cognition. He has published
over 100 research articles in data mining, clustering,
neural networks, machine learning, and cognitive
systems. He received the Monash Artificial Intelli-
gence Prize from Monash University.

Kay Chen Tan (SMO0S8-F14) is a full Professor
with the Department of Computer Science, City
University of Hong Kong. He is the Editor-in-Chief
of IEEE Transactions on Evolutionary Computation,
was the EiC of IEEE Computational Intelligence
Magazine (2010-2013), and currently serves on the
Editorial Board member of 10+ journals. He is an
elected member of IEEE CIS AdCom (2017-2019).
He has published 300+ refereed articles and 6 books.
He is a Fellow of IEEE.

