
A Hybrid GA-PSO Method for Evolving
Architecture and Short Connections of Deep

Convolutional Neural Networks

Bin Wang, Yanan Sun, Bing Xue, and Mengjie Zhang

School of Engineering and Computer Science
Victoria University of Wellington, PO Box 600, Wellington 6140, NEW ZEALAND

bin.wang, bing.xue, yanan.sun, mengjie.zhang}@ecs.vuw.ac.nz

Abstract. Image classification is a difficult machine learning task, where
Convolutional Neural Networks (CNNs) have been applied for over 20
years in order to solve the problem. In recent years, instead of the tra-
ditional way of only connecting the current layer with its next layer,
shortcut connections have been proposed to connect the current layer
with its forward layers apart from its next layer, which has been proved
to be able to facilitate the training process of deep CNNs. However,
there are various ways to build the shortcut connections, it is hard to
manually design the best shortcut connections when solving a particular
problem, especially given the design of the network architecture is al-
ready very challenging. In this paper, a hybrid evolutionary computation
(EC) method is proposed to automatically evolve both the architecture
of deep CNNs and the shortcut connections. Three major contributions
of this work are: Firstly, a new encoding strategy is proposed to encode a
CNN, where the architecture and the shortcut connections are encoded
separately; Secondly, a hybrid two-level EC method, which combines par-
ticle swarm optimisation and genetic algorithms, is developed to search
for the optimal CNNs; Lastly, an adjustable learning rate is introduced
for the fitness evaluations, which provides a better learning rate for the
training process given a fixed number of epochs. The proposed algorithm
is evaluated on three widely used benchmark datasets of image classifi-
cation and compared with 12 peer Non-EC based competitors and one
EC based competitor. The experimental results demonstrate that the
proposed method outperforms all of the peer competitors in terms of
classification accuracy.

Keywords: Evolutionary Computation · Image Classification · Convo-
lutional Neural Networks · Shortcut Connections.

1 Introduction

Deep Convolutional Neural Networks (CNNs) have been the leading approach
for solving image classifications tasks since it was introduced around 30 years ago
[12]. Various CNN methods have been developed, e.g. VGGNet [16], Xception [2]
and GoogLeNet [21]. Deep CNNs have achieved better and better accuracy on
image classification tasks. However, the architectures of CNNs grow deeper and



2 B. Wang, Y. Sun, B. Xue and M. Zhang

deeper (i.e. more and more layers), which makes the training of deep CNNs
much harder due to the difficulty in the CNNs architecture design and network
training.

Almost all of the state-of-the-art CNNs are with a manually designed archi-
tecture, which is very challenging to achieve without expertise both in CNNs and
domain knowledge on the target problem. However, most real-world users often
do not have such knowledge. In recent years, evolutionary computation (EC) has
shown to be effective in automatically searching for the optimal architecture of
CNNs [13] [24] [20].

Back-propagation with gradient descent optimisation is the most commonly
used method for training CNNs, but the vanishing gradients problem often occurs
when training a deep CNN [1] [18]. Recently, shortcut connections have been
introduced and shown to be effective in dealing with this problem [15]. Shortcut
connections add extra connections between the current layer and the forward
layers. Typical examples are ResNet [6] as shown in Fig. 1 and the densely-
connected shortcuts in DenseNet [7] as illustrated in Fig. 2. As can be seen
from Fig. 1, in ResNet, along with the direct forward connections between the
current layer and the next layer, there are also jump connections, which connect
the current layer to the layer after the next layer. DenseNet divides the CNN
architecture into a number of blocks. Each layer can be connected to all of the
forward layers of the same block, which is called densely-connected structure.
Such shortcut connections have been heavily investigated in recent years with
different variants [15] [25]. However, such shortcut connections are manually
designed and there still are a large number of open questions. For example,
although the operations after shortcut connections are addition in ResNet and
concatenation in DenseNet, it is unclear whether the shortcut connections in
ResNet with the concatenation mechanism is better than DenseNet. Without
rich expertise, it is still challenging to design the best shortcut connections to
effectively and efficiently address a given problem. Therefore, it is needed to
develop an approach to automatically searching for the shortcut connections.

Goals: we aim to develop a novel EC based approach that can automat-
ically find the optimal CNN architecture and decide whether there should be
shortcut connection(s) between one layer and its forward layer(s). A two-level
encoding strategy is proposed, which is then used by a hybrid EC method of a
genetic algorithm (GA) and particle swarm optimisation (PSO) to evolve both
the network architecture and shortcut connections. Since both the architecture
and the shortcut connections are dynamically decided during the evolutionary
process without any human interference, the proposed method is named Dy-
namicNet. The proposed method will be examined and compared with one EC
based method and 12 state-of-the-art non-EC based methods on three of the
widely-used datasets having different levels of difficulties. The specific objectives
and contributions are:

– Design a new encoding strategy that includes both the CNN architecture
and the shortcut connections. Since the CNN architecture is decisive to the
classification accuracy and the shortcut connections impact how well the



A Hybrid GA-PSO Method for Evolving Deep CNNs 3

Fig. 1: ResNet architecture (image taken from [6])

Fig. 2: DenseNet architecture (image taken from [7])

CNN can be trained, a two-level encoding is proposed with the first level
representing the CNN architecture and the second level representing the
shortcut connections. These two levels are encoded as a vector with decimal
values and a vector of binary values, respectively;

– Develop a hybrid algorithm that can work with the two-level encoding. A
variable-length PSO algorithm is proposed to evolve the CNN architectures
due to PSO’s promising performance on continuous optimisation while GA
is used to evolve the shortcut connections since it works well on optimisation
tasks with binary values;

– Propose a new fitness evaluation method to improve the effectiveness and
efficiency of the encoded CNN. Classification accuracy is used as the fitness
value of the proposed method. Each evaluation requires to train the encoded
CNN, which is an expensive process. Motivated by previous work [19], a small
number of training epochs is used to speed up the training. Furthermore, an
automation method is developed to search for the best learning rate among
a sequence of learning rates to improve the classification accuracy.

2 Background

2.1 ResNet

As shown in Fig. 1, the architecture is built on a plain CNN architecture called
VGG nets [17], which mostly contains convolutional layers with 3×3 filters; while
by inserting shortcut connections, the plain architecture is turned into the re-
cently proposed ResNet. The output is calculated based on Equation (1), where
x is the input, F(x,Wi) represents the output of the convolutional layer with
the weights Wi, and Ws can be a constant of 1 if the dimension of the input is
identical to that of the output of the convolutional layer; otherwise it will be a
linear projection of the input in order to match the dimension of the output of
the convolutional layer.

y = F(x,Wi) + Wsx (1)

2.2 DenseNet

DenseNet is a newly proposed CNN architecture in image classification tasks.
As shown in Fig. 2, a DenseNet is composed of several dense blocks, and the
convolutional layer and the pooling layer between the dense blocks which are
referred to as the transition layer. To be more specific with the dense block,



4 B. Wang, Y. Sun, B. Xue and M. Zhang

suppose a single image x0 is passed to a dense block, which is composed of L
layers. Each of the L layers implements a non-linear transformation Hl(·), and
the output of the lth layer is denoted as xl. As the output of the lth layer receives
all of the feature maps of all preceding layers, the output xl can be calculated
according to Formula (2), where [x0, x1, ..., xl−1] refers to the concatenation of
the feature maps obtained from layer 0, 1, ..., l−1, and Hl represents a composite
function of three consecutive operations, which are batch normalization (BN) [8],
a rectified linear unit (ReLU) [5] and 3× 3 convolution (Conv).

xl = Hl([x0, x1, ..., xl−1]) (2)

2.3 GAs and PSO

GAs As an EC approach, GAs are inspired by the process of natural selec-
tion. The bio-inspired operators, such as mutation, crossover and selection, are
utilised to evolve the population in order to obtain a high-quality solution [14].
The procedure of GA is composed of five parts: initialisation, selection, fitness
evaluation, mutation, and crossover. At the stage of initialisation, a population
of random vectors with a fixed dimension is generated; Next, the selection is
performed by using a selection algorithm to select the individuals into a mating
pool; After that, mutation is performed by selecting one individual from the
mating pool and the value of each dimension is randomly chosen to be changed
to evolve a new individual; Crossover is performed by selecting two individuals
in the mating pool and combining a part of one individual’s vector with that of
the other. By iterating the fitness evaluation, selection, mutation, and crossover,
the new population can be filled with new individuals with hopefully better so-
lutions. The whole process terminates when the stopping criteria are met, and
the best individual of all generations is reported as the evolved solution.

vid(t + 1) = w ∗ vid(t) + c1 ∗ r1 ∗ (Pid − xid(t)) + c2 ∗ r2 ∗ (Pgd − xid(t)) (3)

xid(t + 1) = xid(t) + vid(t + 1) (4)

PSO As one of the EC approaches, PSO is motivated by the social behaviour
of fish schooling or bird flocking [9] [4]. In PSO, there is a population consisting
of a number of candidate solutions also called particles, and each particle has a
position and a velocity. The representation of the position is xi = (xi1, xi2, ...xid),
where xi is a vector of a fixed dimension representing the position of the ith
particle in the population and xid means the dth dimension of the ith particle’s
position. vi = (vi1, vi2, ...vid) illustrates the velocity of a particle, where vi is
a fix-length vector expressing the velocity of the ith particle and vid means
the dth dimension of the ith particle’s velocity. The way that PSO solves the
optimisation problems is to keep moving the particle to a new position in the
search space until the stopping criteria are met. The position of the particle is
updated according to the update equation which incorporates two equations -
the velocity update equation 3 and the position update Equation (4). In Formula
(3), vid(t+1) indicates the updated dth dimension of the ith particle’s velocity, r1

and r2 carry random numbers between 0 and 1, w, c1 and c2 are PSO parameters
that are used to fine-tune the performance of PSO, and Pid and Pgd bear the dth



A Hybrid GA-PSO Method for Evolving Deep CNNs 5

Fig. 3: The flowchart of the experimental process

dimension of the local best and the global best, respectively. After updating the
velocity of the particle, the new position can be achieved by applying Formula
(4).

3 The Proposed Method

3.1 Overall Structure of the System

Fig. 3 shows the overall structure of the system (this structure is actually used
by all of the experiments in this paper). The dataset is split into a training set
and a test set, and the training set is further divided into a training part and
a test part. The training part and the test part are passed to the EC process,
which is the HGAPSO algorithm. During the fitness evaluations, the training
part is used to train the neural network, and the test part is used to obtain the
test accuracy of the trained neural network, which is used as the fitness value.
EC produces the evolved CNN architecture, which is the best individual. Lastly,
in the CNN evaluation procedure, the produced CNN architecture is trained
on the whole training set, and the test accuracy of the trained CNN model is
obtained, which is the final output of the system.

3.2 DynamicNet - The Evolved CNN Architecture

By comparing the figures of ResNet and DenseNet, it can be observed that in
ResNet, each layer has at most two connections from previous layers. However,
in DenseNet, the connections of each layer coming from previous layers are the
number of previous layers due to the densely-connected structure. Therefore, the
number of input feature maps is the sum of the numbers of feature maps of all
previous layers, which results in the exploding growth of the number of feature
maps, particularly for the layers near the output layer. The solution introduced
in DenseNet is to divide the whole CNN into multiple blocks called Dense Block.
Each block is followed by a transition layer, which comprises a convolutional layer
and a pooling layer, to reduce the number of feature maps to half the number of
input feature maps. The hyperparameters of the convolutional layer are fixed,
which are 3 as the filter size, 1 as the stride size, and half the number of input
feature maps as the number of feature maps; The pooling layer also has fixed
hyperparameters, which are 2×2 as the kernel size and 2 as the stride size. As
the proposed DynamicNet may be densely-connected, it might have the same
exploding growth issue of the number of feature maps. Therefore, DynamicNet
adopts the block mechanism of DenseNet.



6 B. Wang, Y. Sun, B. Xue and M. Zhang

Inside each block, there are a number of convolutional layers with a fixed filter
size of 3×3 and a fixed stride size of 1. After each layer, the total number of input
feature maps grows by the number of feature maps of the convolutional layer,
which is called the growth rate of the block. In DenseNet, the number of blocks,
the number of convolutional layers and the growth rate are manually designed,
which requires good domain knowledge and a lot of manual trials to find a good
architecture. In the proposed HGAPSO algorithm, these three hyperparameters
will be also automatically designed.

3.3 HGAPSO Encoding Strategy

DynamicNet is comprised of a number of blocks which are connected by tran-
sition layers, and the shortcut connections are built between layers inside the
block. Based on the construction pattern of the network, the hyperparameters of
the architecture can be split into the architecture and the shortcut connections.
Regarding the architecture of the network, there are various hyperparameters
including the number of blocks, the number of convolutional layers in each block
and the growth rate of the convolutional layer in the block, which need to be
evolved. In addition to the densely-connected structure in DenseNet, different
topologies of shortcut connections, i.e. the different combination of partial short-
cut connections in each block, will be explored by the proposed HGAPSO method
in order to keep the meaningful features and remove the unmeaningful features
learned by previous layers.

Based on the analysis of the architecture and hyperparameters, the encoding
process can be divided into two steps. The first step is to encode the hyperpa-
rameters of the CNN architecture. Each of the hyperparameters is a dimension
of the architecture encoding, which is shown in Fig. 4a. The first dimension is
the number of blocks, and the two hyperparameters of each block, the number
of convolutional layers and the growth rate, as two dimensions are appended to
the vector. The first step of the encoding is named the first-level encoding, which
will be used by the first-level evolution. Based on the results of the first-level
encoding, the shortcut connections can be encoded into a binary vector at the
second-level encoding. An example of one block with 5 layers is illustrated in Fig.
4b. Each of the dimensions represents a shortcut connection between two layers
that are not next to each other, and the two layers next to each other are always
connected. Taking the first layer as an example, the three binary digits - [101]
represents the shortcut connections between the first layer to the third, to the
fourth, and to the fifth layer, respectively, where 1 means the connection exists
and 0 means there is no connection. A number of similar binary vectors shown
in Fig. 4b constitute the whole vector that represents the shortcut connections
of the whole block.

3.4 HGAPSO Search

Overview Based on the two-level encoding strategy, the algorithm is composed
of two levels of evolution, which are described in Algorithm 1. The first-level
evolution is designed to evolve the architecture of the CNNs encoded by the
first-level encoding, and the second-level evolution is performed to search for the



A Hybrid GA-PSO Method for Evolving Deep CNNs 7

(a) First-level encoding (b) Second-level encoding

Fig. 4: HGAPSO encoding

best combination of shortcut connections. There are a couple of reasons to sep-
arate the architecture evolution from the evolution of the shortcut-connection
combination. First of all, since the architecture and the shortcut connections
play different roles in the performance of CNNs, which are that the architec-
ture including the depth and the width of the CNNs represents the capacity of
network and the shortcut connections are to facilitate the training process of
the network, the training process is only comparable when the architecture is
fixed, which inspires the idea of splitting the evolution to two levels. Secondly, if
the hyperparameters of both the architecture and the shortcut connections are
combined into one encoded vector, it will bring some uncertainties to the search
space, which, therefore, may deteriorate the complex search space by introducing
more disturbance to the search space.

Algorithm 1: Framework of HGAPSO
P ← Initialize the population with first-level encoding elaborated in Section 3.3;
Pbest ← Empty PSO Personal Best;
Gbest ← Empty PSO global best;
while first-level termination criterion is not satisfied do

P ← Update the population with first-level PSO evolution described in Section 3.4;
for particle ind in population P do

P sub← Initialize the population with second-level encoding based on the value of ind
illustrated in Section 3.3;
while second-level termination criterion is not satisfied do

P sub← Update the population with second-level GA evolution described in Section
3.4;
evaluate the fitness value of each individual;
P subbest ← retrieve the best individual in P sub;

end while
Update Pbest if P subbest is better than Pbest;

end for
Gbest ← retrieve the best individual in P ;

end while

It is arguable that the computational cost of the two-level evolution may be
high, but the two-level encoding strategy divides the complex search space into
two smaller search spaces and reduces the disturbance in the search space, so
the two-level evolution we believe will not perform worse than searching for the
optima in a much more complex search space. Other than that, as the second-
level evolution of searching for the best combination of shortcut connections
only depends on the specific architecture evolved in the first-level evolution, the
second-level evolution can be done in parallel for each of the individual of the
first-level evolution, which can dramatically speed up the process if sufficient
hardware is available.

HGAPSO First-level PSO evolution Algorithm 2 shows the pseudo code
of the PSO evolutionary process. Based on the encoded vector from the first-
level encoding, the value of each dimension is a decimal value, and PSO has



8 B. Wang, Y. Sun, B. Xue and M. Zhang

been proved to be effective and efficient in solving optimisation problems with
decimal values, so PSO is chosen to perform the first-level search. However, the
dimensionality of the encoded vector is not fixed, so an adapted variable-length
PSO is proposed to solve this variable-length problem. Since the size of the
input feature maps to each block is different and the specific block is trained
and designed to learn meaningful features given the size of the input feature
maps, when applying EC operators on two individuals, it is important to find
the matched blocks which have the same size of input feature maps and apply
the operators on the matched blocks. To be specific with the PSO evolution
in HGAPSO, the length of the particle may be different from the length of
the personal best and global best, so based on the blocks of the individual, the
corresponding blocks in the personal best and the global best need to be matched
by selecting the blocks with the same size of the output feature and the PSO
algorithm is only applied on the matched blocks.

Algorithm 2: HGAPSO first-level PSO evolution
Input: The current particle ind, the personal best Pbest, the global best Gbest, the rate of

changing the number of blocks rcb;
rnd← Generate a random number from a uniform distribution;
Find the matched blocks of the particle ind by comparing the feature map size;
Update the velocity and position of the matched blocks of the particle ind according to Equation
3 and 4;
if rnd < rcb then

Update the velocity and position of the dimension of number of blocks of the particle ind
according to Equation 3 and 4;
Randomly cut or generate the blocks to the value of the number of blocks.

end if

The first dimension of the vector represents the number of blocks. When the
number of blocks changes, the depth of the CNN architectures changes, which
achieves the ability to evolve the depth of the CNN architecture and keeping the
diversity of the PSO population. However, the change of the number of blocks in-
curs a dramatic change to the CNN architecture, and if it changes too often, each
CNN architecture evolution might be too short to achieve good performance, so
it is better to leave the evolution some time to optimise other hyperparameters
given the specific number of blocks. In order to keep the diversity of the number
of blocks and reduce the disturbance caused by frequently changing the number
of blocks, the rate of changing the number of blocks in the vector is introduced,
which is a real value between [0, 1]. Therefore, the preference for diversity or
stability depending on specific tasks can be controlled by tweaking the rate of
changing the number of blocks.

When the number of blocks is changed, some blocks need to be randomly
cut or randomly generated in order to meet the requirement of the number
of blocks in the first dimension. For example, suppose the number of blocks
is increased from 3 to 4, the hyperparameters of the fourth block need to be
randomly generated based on the first-level encoding strategy, which then are
appended to the vector of 3 blocks; On the other way around, assuming the
number of blocks is decreased from 4 to 3, the last block is removed. In the
proposed HGAPSO method, whenever removing a block(s), it always starts from
the last layer because it does not affect the feature map sizes of the other blocks.



A Hybrid GA-PSO Method for Evolving Deep CNNs 9

HGAPSO Second-level GA evolution According to the second-level en-
coding depicted in Section 3.3, once the CNN architecture is obtained from the
first-level evolution, the dimensionality of the second-level encoding will be fixed,
so the encoded vector can be represented by a fixed-length binary vector. Since
GAs are good at optimising binary problems, a GA is chosen as the algorithm
to perform the second-level evolution.

3.5 HGAPSO Fitness Evaluations

It can be observed from Algorithm 1 that fitness evaluation only takes place
inside the second-level GA evolution, and the fitness of the best GA individual
is used as the fitness of its corresponding particle of first-level PSO evolution.
Backpropagation with Adam Optimiser [10] is used to train the network for a
number of epochs on part of the training data. The accuracy of the trained CNN
on the test part of the training data as the fitness value of the individual.

There are two hyperparameters for the fitness evaluations, which are the
number of epochs and the initial learning rate of Adam Optimiser. In the exper-
iment, 5 epochs are used by considering the hardware available and a fairly-short
experimental time. After the number of epochs is chosen, DenseNet is used as
a baseline to determine an initial learning rate for optimising a CNN with the
given depth and width, i.e. after the architecture of the CNN determined, the
network with fully-connected blocks are used to find a best initial learning rate
among 0.9, 0.1 and 0.01.

In order to speed up the evolution process, a part of the training dataset is
used for the second-level evolution because the second-level evolution consumes
the most computation. While for the first-level evolution, as the computational
cost is not that high, and in order to achieve a more stable performance given
the architecture of a CNN, the full training dataset is used.

4 Experiment Design

4.1 Benchmark Datasets and State-of-the-art Competitors

Due to our limited hardware resource, the DECNN method proposed in [23],
which only requires a few days running of the experiment on a single GPU,
is chosen as the peer EC competitor instead of the method proposed in [26],
which takes 28 days on 500 GPUs to obtain the final result. The state-of-the-art
machine learning algorithms used to compare with DECNN are also used as
the peer Non-EC competitors. As DECNN did not perform well on CONVEX
benchmark dataset [11], CONVEX dataset is selected as one of the benchmark
datasets to see if the proposed HGAPSO algorithm able to achieve better per-
formance. Apart from the CONVEX dataset, the MB and MDRBI datasets [11]
are also used as benchmark datasets to evaluate the proposed algorithm across
different complexities, as MB is the simplest dataset among the MB variants,
and MDRBI is the most complicated variant of the MB datasets. On MB, the
images represent the handwritten digits from 0 to 9, and there are 12,000 training
images and 5,000 test images; MDRBI contains the same amount of training and
test images, but some noises are added to the original MB dataset. The CON-



10 B. Wang, Y. Sun, B. Xue and M. Zhang

Table 1: Parameter Settings
Parameter Value

HGAPSO parameters

the range of # of layers in each block [4, 8]

the range of growth rate in each block [8, 32]

population size 20

generation 10

PSO

Parameter Value

c1, c2 1.49618

w 0.7298

GA

mutation rate 0.01

cross over rate 0.9

elitism rate 0.1

VEX dataset contains images with the shape of convex or non-convex, which are
divided into the training dataset of 8,000 images and the test dataset of 5,000
images. Since EC methods are stochastic, the experiment will be run 30 times
and statistical tests will be performed when comparing the proposed algorithm
with its peer competitors.

As it would be more convincing to evaluate the proposed HGAPSO algorithm
on larger datasets such as CIFAR-10, but the computational cost is too high,
e.g. one run of HGAPSO on CIFAR-10 takes more than a week. Therefore, the
experiment on CIFAR-10 will not be run for 30 times due to the very high
computational cost, our limited GPU resource and the time constraint. Instead,
only one run of the experiment will be performed in order to obtain an initial
result, which gives suggestions on whether it is worth continuing the experiments
for 30 runs in the future when more GPU resources are ready.

4.2 Parameter settings

All of the parameters are configured according to the conventions in the commu-
nities of PSO [22] and GAs [3] along with taking into account the computational
cost and the complexity of the search space. The values of the parameters of the
proposed algorithm are listed in Table 1.

5 Results and Discussions

5.1 HGAPSO vs. State-of-the-Art methods

The experimental results and the comparison between HGAPSO and the state-
of-the-art methods are shown in Table 2. In order to clearly show the comparison
results, the terms (+) and (-) are provided to indicate the result of HGAPSO is
significantly better or worse than the best result obtained by the corresponding
peer competitor. The term (–) means there are no available results reported from
the provider or cannot be counted.

It can be observed that the proposed HGAPSO method achieves a significant
improvement in terms of the error rates shown in Table 2. HGAPSO significantly
outperforms the other peer competitors across all the three benchmark datasets.
To be specific, it further reduces the error rate over the best competitor by 5%,
1% and 10% on the CONVEX, MB and MDRBI datasets, respectively.

5.2 HGAPSO vs. DECNN

In Table 2, it can be observed that by comparing the results between HGAPSO
and DECNN, both the mean error rate and the standard deviation of HGAPSO



A Hybrid GA-PSO Method for Evolving Deep CNNs 11

Table 2: Classification errors of HGAPSO and Competitors
Method CONVEX MB MDRBI

CAE-2 – 2.48 (+) 45.23 (+)

TIRBM – – 35.50 (+)

PGBM+DN-1 – – 36.76

ScatNet-2 6.50 (+) 1.27 (+) 50.48 (+)

RandNet-2 5.45 (+) 1.25 (+) 43.69 (+)

PCANet-2 (softmax) 4.19 (+) 1.40 (+) 35.86 (+)

LDANet-2 7.22 (+) 1.05 (+) 38.54 (+)

SVM+RBF 19.13 (+) 30.03 (+) 55.18 (+)

SVM+Poly 19.82 (+) 3.69 (+) 54.41 (+)

NNet 32.25 (+) 4.69 (+) 62.16 (+)

SAA-3 18.41 (+) 3.46 (+) 51.93 (+)

DBN-3 18.63 (+) 3.11 (+) 47.39 (+)

HGAPSO(best) 1.03 0.74 10.53

HGAPSO(mean) 1.24 0.84 12.23

HGAPSO(standard deviation) 0.10 0.07 0.86

DECNN(mean) 11.19 1.46 37.55

DECNN(standard deviation) 1.94 0.11 2.45

P-value 0.0001 0.0001 0.0001

are smaller than that of DECNN, and from the statistical point of view, HGAPSO
has a significant improvement in terms of the classification accuracy.

5.3 Evolved CNN Architecture

After investigating the evolved CNN architectures, it is found that HGAPSO
demonstrates its capability of evolving both the architecture of CNNs and the
shortcut connections between layers. By looking into the evolved CNN archi-
tectures, it can be observed that not only the CNN architectures with various
number of layers but also different topologies of shortcut connections are evolved.
For example, one evolved CNN architecture has 3 blocks. In the first block, there
are 4 convolutional layers, and [0, 0, 0, 0, 1], [0, 1, 0, 1], [0, 0, 1], [0, 0] and [1]
represent the connections from the input, the first layer, the second layer, the
third layer to the following layers, where 1 indicates the connection exists, and 0
means no connection; The second block is composed of 8 layers with the growth
rate of 34, and the corresponding connections are [1, 0, 1, 0, 1, 0, 1, 0], [0, 1, 1,
1, 1, 0, 1], [1, 1, 1, 1, 1, 0], [1, 1, 1, 0, 1], [1, 0, 0, 0], [0, 0, 0], [1, 1] and [0]; In
the third block, there are 5 layers with the corresponding connections of [0, 0,
1, 1, 0], [0, 0, 0, 0], [1, 0, 0], [0, 1] and [0], and the growth rate is 39.

5.4 One-run Result on CIFAR-10 dataset

As mentioned earlier, the computational cost of testing HGAPSO is extremely
high. For one run of the experiment using one GPU card, it takes more than
a week to evolve the CNN architecture, and it took almost 12 hours to train
the evolved CNN architecture. The classification accuracy of the specific run is
95.75%, which ranks the second among the state-of-the-art deep neural networks
ranging from 75.86% to 96.53% that are collected by the rodrigob website 1;
However, all of the state-of-the-art deep neural networks require very highly
specialised domain knowledge and tremendous experiments to manually fine-
tune the performance, while HGAPSO has the ability of automatically evolving
the CNN architecture without any human interference, which is considered as
the biggest advantage.

1 http://rodrigob.github.io/are we there yet/build/classification datasets results.html#43494641522d3130



12 B. Wang, Y. Sun, B. Xue and M. Zhang

6 Conclusions

This paper developed an EC based method for automatically evolving both the
architecture of CNNs and shortcut connections, without human intervention or
domain knowledge in either CNNs or the target problem. The proposed method
outperforms both the EC competitor and the Non-EC competitors on com-
monly used benchmark datasets. The first reason is that by evolving shortcut
connections, the feature maps learned in previous layers can be reused in further
layers, which amplifies the leverage of useful knowledge; Secondly, the shortcut
connections make the training of very deep neural networks more effectively by
passing the gradients through shortcut connections, which has been proven by
DenseNet [7]. Furthermore, the classification accuracy of HGAPSO on CIFAR-
10 is promising as it is very competitive with the state-of-the-art deep neural
networks. In addition, the most advantage of HGAPSO is that it does not re-
quire any human efforts to design the architecture of CNNs, which is usually
required for the peer state-of-the-art competitors.

In regard to the future work, firstly, due to the hardware limitation, the
proposed algorithm has been tested on relatively small datasets. It would be
more convincing if the algorithms could be tested on other larger datasets such as
ImageNet dataset; secondly, as there are more and more new CNN architectures
proposed with better performance, it would be helpful to investigate more recent
CNN architectures, based on which EC methods can be applied to automatically
evolve more advanced CNN architectures.

References

1. Bengio, Y., Simard, P., Frasconi, P.: Learning long-term dependencies with gradient
descent is difficult. IEEE transactions on neural networks 5(2), 157–166 (1994)

2. Chollet, F.: Xception: Deep learning with depthwise separable convolutions. arXiv
preprint pp. 1610–02357 (2017)

3. Digalakis, J., Margaritis, K.: An experimental study of benchmarking functions
for genetic algorithms. Proceedings of 2000 IEEE International Conference on Sys-
tems, Man and Cybernetics. (2000). https://doi.org/10.1109/icsmc.2000.886604

4. Eberhart, Shi, Y.: Particle swarm optimization: developments, applications
and resources. In: Proceedings of the 2001 Congress on Evolutionary Com-
putation (IEEE Cat. No.01TH8546). vol. 1, pp. 81–86 vol. 1 (May 2001).
https://doi.org/10.1109/CEC.2001.934374

5. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: Pro-
ceedings of the fourteenth international conference on artificial intelligence and
statistics. pp. 315–323 (2011)

6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
CoRR abs/1512.03385 (2015), http://arxiv.org/abs/1512.03385

7. Huang, G., Liu, Z., Weinberger, K.Q.: Densely connected convolutional networks.
CoRR abs/1608.06993 (2016), http://arxiv.org/abs/1608.06993

8. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

9. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Neural Networks, 1995.
Proceedings., IEEE International Conference on. vol. 4, pp. 1942–1948 vol.4 (Nov
1995). https://doi.org/10.1109/ICNN.1995.488968



A Hybrid GA-PSO Method for Evolving Deep CNNs 13

10. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

11. Larochelle, H., Erhan, D., Courville, A., Bergstra, J., Bengio, Y.: An empirical
evaluation of deep architectures on problems with many factors of variation. In:
Proceedings of the 24th international conference on Machine learning. pp. 473–480.
ACM (2007)

12. LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W.,
Jackel, L.D.: Backpropagation applied to handwritten zip code recognition. Neural
computation 1(4), 541–551 (1989)

13. Miller, J., Turner, A.: Cartesian genetic programming. In: Proceedings of the Com-
panion Publication of the 2015 Annual Conference on Genetic and Evolutionary
Computation. pp. 179–198. GECCO Companion ’15, ACM, New York, NY, USA
(2015). https://doi.org/10.1145/2739482.2756571, http://doi.acm.org/10.1145/
2739482.2756571

14. MITCHELL, M.: An introduction to genetic algorithms. MIT Press (1996)
15. Orhan, E., Pitkow, X.: Skip connections eliminate singularities. In: International

Conference on Learning Representations (2018), https://openreview.net/forum?
id=HkwBEMWCZ

16. Simonyan, Karen, Zisserman, Andrew: Very deep convolutional networks for large-
scale image recognition (Apr 2015), https://arxiv.org/abs/1409.1556

17. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. CoRR abs/1409.1556 (2014), http://arxiv.org/abs/1409.
1556

18. Srivastava, R.K., Greff, K., Schmidhuber, J.: Training very deep networks. CoRR
abs/1507.06228 (2015), http://arxiv.org/abs/1507.06228

19. Sun, Y., Xue, B., Zhang, M.: Evolving deep convolutional neural networks for im-
age classification. CoRR abs/1710.10741 (2017), http://arxiv.org/abs/1710.
10741

20. Sun, Y., Xue, B., Zhang, M., Yen, G.G.: Automatically designing CNN archi-
tectures using genetic algorithm for image classification. CoRR abs/1808.03818
(2018), http://arxiv.org/abs/1808.03818

21. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,
Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: 2015 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). pp. 1–9 (June
2015)

22. Vandenbergh, F., Engelbrecht, A.: A study of particle swarm optimiza-
tion particle trajectories. Information Sciences 176(8), 937–971 (2006).
https://doi.org/10.1016/j.ins.2005.02.003

23. Wang, B., Sun, Y., Xue, B., Zhang, M.: A hybrid differential evolution approach
to designing deep convolutional neural networks for image classification. In: Aus-
tralasian Joint Conference on Artificial Intelligence. pp. 237–250. Springer (2018)

24. Xie, L., Yuille, A.: Genetic cnn. In: 2017 IEEE International Con-
ference on Computer Vision (ICCV). pp. 1388–1397 (Oct 2017).
https://doi.org/10.1109/ICCV.2017.154

25. Yamanaka, J., Kuwashima, S., Kurita, T.: Fast and accurate image super resolution
by deep cnn with skip connection and network in network. In: Liu, D., Xie, S., Li,
Y., Zhao, D., El-Alfy, E.S.M. (eds.) Neural Information Processing. pp. 217–225.
Springer International Publishing, Cham (2017)

26. Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. arXiv
preprint arXiv:1611.01578 (2016)


