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Abstract
Designing effective dispatching rules for production systems is a difficult and time-

consuming task if it is done manually. In the last decade, the growth of computing
power, advanced machine learning, and optimisation techniques has made the au-
tomated design of dispatching rules possible and automatically discovered rules are
competitive or outperform existing rules developed by researchers. Genetic program-
ming is one of the most popular approaches to discovering dispatching rules in the
literature, especially for complex production systems. However, the large heuristic
search space may restrict genetic programming from finding near optimal dispatching
rules. This paper develops a new hybrid genetic programming algorithm for dynamic
job shop scheduling based on a new representation, a new local search heuristic, and
efficient fitness evaluators. Experiments show that the new method is effective regard-
ing the quality of evolved rules. Moreover, evolved rules are also significantly smaller
and contain more relevant attributes.
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1 Introduction

Scheduling is one of the important tasks in production planning and control (PPC),
which can directly influence the production costs, delivery speed, and customer satis-
faction (Wiendahl et al., 2005). In general, the goal of scheduling is to effectively allocate
the production resources over time to process production orders (e.g. from forecasting
or customer orders). In the literature, various production scheduling problems have
been investigated such as parallel machine scheduling, flow shop scheduling, and job
shop scheduling. Many solution methods have been developed (Pinedo, 2008) based
on industrial practice, artificial intelligence (e.g. genetic algorithm, constraint program-
ming), and operations research (e.g. mathematical programming, branch-and-bound).
Due to their computational complexity, finding optimal solutions for these schedul-
ing problems is very challenging (Baker and Trietsch, 2009) and can be impractical in
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some cases. As a result, scheduling heuristics have been proposed to find good enough
solutions in reasonable running times (Jones and Rabelo, 1998). Usually designing an
effective scheduling heuristics is time-consuming and requires a lot of problem domain
knowledge. However, because of the increasing dynamics and the turbulent environ-
ment, there are needs for a more responsive and adaptive production system (Ouel-
hadj and Petrovic, 2008; Bannat et al., 2011). Genetic Programming (GP) (Koza, 1992)
has recently been used as a powerful technique for automated design of production
scheduling heuristics and also known as GP based hyper-heuristics (Burke et al., 2009).
The main goal of this approach is to automatically discover sophisticated and effective
scheduling heuristics for complex production environments.

GP has been applied to evolve production scheduling heuristics for many pro-
duction environments such as single machine scheduling (Dimopoulos and Zalzala,
2001; Geiger et al., 2006; Nie et al., 2010), parallel machine scheduling (Jakobovic et al.,
2007; Durasevic et al., 2016), and (flexible) job shop scheduling (Miyashita, 2000; Nie
et al.,, 2013; Nguyen et al., 2014a; Hunt et al., 2014; Hart and Sim, 2016). In these stud-
ies, evolved scheduling heuristics are usually in the form of priority dispatching rules
which are used to assign priorities for jobs in the shop. The rules are encoded as GP
programs by using different representations such as tree-based structure, fixed length
linear structure, or neural network (Nguyen et al., 2013b; Branke et al., 2015). Then
the evolved rules are evaluated by a number of simulated scenarios and new rules
are generated based on genetic operators of GP and the fitness of rules in the popula-
tion. Although the idea is relatively simple, GP can find very competitive rules which
usually outperformed many rules manually designed in the past studies. Moreover,
multiple PPC decisions (Yin et al., 2003; Nie et al., 2013) and multiple conflicting ob-
jectives (Nguyen et al., 2014a; Karunakaran et al., 2016) can also be handled by GP. Re-
cently, more advanced techniques have also been proposed to improve both the effec-
tiveness and efficiency of GP for automated heuristic design such as surrogate-assisted
GP (Hildebrandt and Branke, 2015) and GP based ensemble methods (Park et al., 2016;
Hart and Sim, 2016).

Despite the success of GP for automated design of production scheduling heuris-
tics, there are a number of challenges. First, the computational costs of GP are high as
many evolved rules are generated and evaluated by expensive computer simulation.
Second, the search space of priority dispatching rules is quite large so finding effective
rules is very difficult. Third, including a wide range of attributes (e.g. for jobs, work
centre) can help to explore rules that have been discovered in the literature; however, it
may further enlarge the search space and deteriorate GP performance. Finally, the ob-
tained rules are usually large and include many redundant components, which causes
difficulties for interpretation. While the first three challenges may restrict GP from
searching for (near) optimal priority dispatching rules because of the limited compu-
tational budget and the complexity of the heuristic search space, the final challenge
restricts us from understanding how the evolved rules work.

The goal of this paper is to tackle the current challenges by developing a hybrid
GP for evolving dispatching rules for dynamic job shop scheduling (DJSS). The three
key contributions are: (1) development of a new hybrid GP algorithm can evolve effec-
tive dispatching rules for DJSS, (2) development of a new representation which allows
GP to remove less relevant attributes through the evolutionary process, and (3) devel-
opment of a new efficient local search heuristic to improve the exploitation ability of
GP. The core idea of the proposed method is to enhance the GP search mechanism by
enhancing the effectiveness of genetic operators and adding an efficient local search
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heuristic that can refine rules evolved by GP. This is motivated by the fact that the
chance to produce bad dispatching rules by genetic operators of GP is quite high and it
would be wasteful to evaluate these rules especially when the evaluations are computa-
tionally expensive. A multi-fidelity surrogate modeling approach is adopted to screen
out poor-performing rules which are generated by the genetic operators and/or via
the local search heuristic (i.e. rules in the neighborhood of an incumbent rule). More-
over, the new representation also allows GP to take attribute selection into account to
narrow down the search space adaptively through generations and to improve the in-
terpretability of evolved rules.

The rest of this paper is organised as follows. In Section 2, a brief introduction
of job shop scheduling is given, and a review of recent studies on automated design
of production scheduling heuristics is provided. The dynamic job shop problem in-
vestigated in this study and its simulation model is presented in Section 3. Detailed
descriptions of the proposed algorithm are given in Section 4. The design of exper-
iments is shown in Section 5 and the results and analyses are provided in Section 6.
Finally, Section 7 concludes the paper.

2 Background

Job shop scheduling (JSS) is an interesting optimisation problem in artificial intelli-
gence and operations research. The term job shop is used to indicate companies that
produce customer-specific components in small batches (Land, 2004). In job shops,
each customer order or job needs to be handled by some specific machines. Depend-
ing on the technical requirements, jobs can have different processing times and spe-
cial routes through a set of machines. Because jobs will compete for the production
resources, scheduling is needed to decide when jobs are processed to optimise the pro-
duction speed and customer satisfaction. Because of the complexity of this production
environment, effectively scheduling production resources is difficult. In past studies,
researchers have developed many scheduling techniques to deal with both static and
dynamic ]SS problems. In static problems, all jobs are available at the beginning of the
schedule, and the goal is to find the optimal sequence of these jobs on each machine.
For dynamic problems, jobs will arrive randomly over time, and their information is
only available upon their arrivals.

2.1 Solution methods for job shop scheduling

Past studies mainly focused on static JSS and treated them as combinatorial optimisa-
tion problems. Because JSS is an NP-hard problem, exact optimisation methods such
as dynamic programming and branch-and-bound (Pinedo, 2008) can only be used to
solve very small problem instances. Therefore, they are not suitable to handle large-
scale practical scheduling problems. In the last few decades, many heuristics have
been proposed for JSS to find quick and good enough solutions. Dispatching rules are
among the most popular scheduling techniques to deal with both static and dynamic
JSS. These rules prioritise jobs competing for some machine based on the information
of jobs and machines and the one with the highest priority will be processed next. The
advantages of dispatching rules are their ease of implementation and efficiency.

Other heuristics based on understandings of problem domains have also been pro-
posed in the literature such as shifting bottlenecks (Applegate and Cook, 1991). More
general techniques based on meta-heuristics such as tabu search (Nowicki and Smut-
nicki, 1996), simulated annealing (Aydin and Fogarty, 2004), and genetic algorithms
(Yamada and Nakano, 1995; Bierwirth and Mattfeld, 1999; Cheng et al., 1999) have been
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developed to deal with different production scheduling problems and show promising
results. Many hybrid methods have also been developed in literature to combine the
advantages of various heuristics and meta-heuristics (Goncalves et al., 2005; Kacem
et al., 2002; Sha and Hsu, 2006; Xia and Wu, 2005; Zhou et al., 2009). However, most of
these are designed for a particular static JSS problem.

2.2 Automated design of production scheduling heuristics

The field of automated heuristic design or hyper-heuristics (Burke et al., 2007, 2010) has
been very active recently to facilitate the design of heuristics for hard computational
problems. The goal of this approach is to explore the “heuristic search space” of the prob-
lems instead of the solution search space in the cases of heuristics and meta-heuristics.
The motivation of this approach is to reduce the time needed to design heuristics from
the human experts and to increase the chance to explore a wide range of powerful and
undiscovered heuristics.

Different machine learning methods have also been applied for discovering new
dispatching rules for JSS. Olafsson and Li (2010) used the decision tree method on op-
timal production data to generate dispatching rules. Attribute selection and instance
selection have also been considered to improve the interpretability and accuracy of
induced decision trees (Li and Olafsson, 2005). Meanwhile, Ingimundardottir and
Runarsson (2011) proposed a logistic regression approach which tries to discover new
dispatching rules using the characteristics of optimal solutions. The learned linear pri-
ority dispatching rules showed better results than simple rules. Shiue (2009) proposed
a GA/SVM method for dynamic dispatching rule selection in which a support vector
machine (SVM) is used for classification to select suitable dispatching rules based on
job and machine attributes and GA is used for attribute selection. Artificial neural net-
work (Weckman et al., 2008; Eguchi et al., 2008) have also been applied to determine
the priority of each given job based on the conditions of machines in the shop.

2.3 Genetic programming for production scheduling

In the last decade, genetic programming has been the dominating technique for auto-
mated design for production scheduling heuristics (Branke et al., 2016; Nguyen et al.,
2017). As compared to other hyper-heuristics, genetic programming (GP) has shown
some key advantages. First, GP has flexible representations which allow various
heuristics to be represented as computer programs. Second, GP has powerful search
mechanisms which can operate in the heuristic search space to find optimal or near-
optimal scheduling heuristics. Different from the supervised learning methods men-
tioned above, GP can simultaneously explore both the structure and corresponding
parameters. Moreover, many evolutionary multi-objective optimisation (EMO) tech-
niques are also available in the literature to help GP design effective heuristics to deal
with multiple conflicting objectives. Finally, heuristics obtained by GP can be partially
interpretable and very efficient, which is a critical feature to enhance its applicability in
practice.

GP has been applied to many production scheduling problems ranging from single
machine scheduling (Nie et al., 2010; Geiger et al., 2006), parallel machine scheduling
(Durasevic et al., 2016), to (flexible) job shop scheduling (Tay and Ho, 2008; Vazquez-
Rodriguez and Ochoa, 2011; Nie et al., 2013; Nguyen et al., 2013b; Mei et al., 2016;
Hart and Sim, 2016). In these studies, GP have been used to develop very competi-
tive dispatching rules which outperformed the existing heuristics in most cases. For
job shop scheduling, many aspects of automated heuristic design with GP have been
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investigated. Different representations of dispatching rules have been compared in
Nguyen et al. (2013b) and Branke et al. (2015). GP methods for evolving non-dominated
dispatching rules for multiple conflicting objectives in JSS have been investigated in
Nguyen et al. (2013c) and Karunakaran et al. (2016). The experimental results showed
that GP could evolve non-dominated rules with very promising trade-offs which have
not been explored in the previous studies. Other studies have also shown that GP
can be extended to handle multiple planning and scheduling decisions in job shops si-
multaneously and dynamically (Nguyen et al., 2014a; Nie et al., 2013), which are great
challenges for other methods.

Representations of scheduling heuristics have been investigated in many papers.
The tree-based representation of the traditional GP technique (Koza, 1992) is usually
used in previous studies because it can easily represent priority functions in most
scheduling heuristics (for both static and dynamic problems). The linear representa-
tion of gene expression programming (GEP) has also been applied to some studies
and produced competitive results as compared to GP representations (Nie et al., 2013).
Nguyen et al. (2013b) and Hunt et al. (2015) used grammar-based representations to re-
strict the search space of GP and improve the understandability of evolved dispatching
rules. Also trying to improve the interpretability of evolved dispatching rules, Dura-
sevic et al. (2016) applied dimensionally aware GP to ensure that the evolved rules
are semantically correct. For complicated scheduling problems with more than one
scheduling decisions to be made, specialised representations have been developed. For
example, Jakobovic and Budin (2006) proposed the GP-3 method to simultaneously
evolve two specialised rules and a discriminating function to check if the considered
machine is a bottleneck.

Recently surrogate models have been proposed to reduce the computational costs
of GP. These models have reduced the evaluation costs of GP and improved its conver-
gence. Hildebrandt and Branke (2015) proposed surrogate model based on the pheno-
typic characterisation of evolved priority functions. In this technique, the phenotype
of an evolved heuristic is characterised by a decision vector with the dimension of K
where K is the number of decision situations (each decision situation includes a number
of jobs to be prioritised). First, a reference rule (e.g. - 2(PT+WINQ+NPT)) is selected
and applied to all decision situations. The ranks of jobs (smaller ranks for jobs with
higher priorities) in each situation determined by the reference rule are recorded. For
each evolved priority function, the corresponding ranks are also determined, and the
decision value for each decision situation is the rank determined by the reference rule
of the job whose corresponding rank obtained by the evolved priority function is 1.
An archive is used to store past explored rules and their decision vectors which are
recorded during GP evolution. During the reproduction process, the fitness of a newly
generated rule is approximated by the fitness of the closest rule in the archive based
on the distance between their corresponding decision vectors. This surrogate model,
even though simple, can provide a good estimation of fitness and help to screen out
bad rules created by crossover and mutation.

Also trying to reduce the computational times of GP for automated heuristic de-
sign, Nguyen et al. (2016) proposed a new technique to estimate the fitness of evolved
rules using a simplified version of the original simulated shop. Instead of evaluat-
ing evolved heuristics with the model of the original shop which can be very large, a
smaller model of the shop is created with a smaller number of machines, shorter sim-
ulation length while maintaining the same level of utilisation, due date tightness, etc.
A set of benchmark rules are applied to different models, and their objective values are
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recorded. The simplified model that has the highest rank correlation with the original
model will be used to estimate the fitness of newly generated rules. Then, only the ones
with highest estimated fitness are moved to the next generation and evaluated by the
original model. The proposed GP technique based on this simplified models showed
better results as compared to other GP methods.

In recent years, more advanced techniques have been applied to improve effec-
tiveness and efficiency of GP for automated design of dispatching rules. Although
the results of these studies are very promising, many practical issues have not been
addressed. For example, attribute selection is an important issue to improve the per-
formance and interpretability of automated heuristic design, but it has not been sys-
tematically investigated in GP. In most previous studies, only a small set of attributes
are manually selected as the inputs for GP, but there are potentially a large number of
attributes that need to be considered when dealing with complex job shops. In these
cases, manual selection may not be accurate while maintaining a large attribute set can
dramatically enlarge the search space of GP. Moreover, given the large and complex
search of scheduling heuristics, discovering good heuristics is a very challenging task.
Although GP has excellent exploration ability, it is not effective in refining potential
evolved rules (i.e. exploitation ability). Therefore, a key challenge is to balance both
exploration and exploitation abilities of GP. In Section 4, a hybrid GP is proposed to
overcome these difficulties.

3 Simulation model

In this paper, a symmetrical job shop which has been used in previous studies (Nguyen
et al., 2013c; Hildebrandt and Branke, 2015) is employed to evaluate the quality of dis-
patching rules. Below is the simulation configuration:

¢ 10 machines

e Each job has 2 to 14 operations (re-entry is allowed)

e Processing times follow discrete uniform distribution U1, 99]
e Job arrivals follow Poisson process

e Due date = current time + allowance factor x total processing time (allowance
factor of 4 is used in our experiments)

e Utilisation of the shop is 85% or 95%
e No machine break-down; preemption is not allowed

e Weights of jobs are assigned based on the 4 : 2 : 1 rule (Kreipl, 2000; Pinedo and
Singer, 1999), i.e. 20% of jobs with the weight of 1, 60% with the weight of 2, and
20% with the weights of 4.

In each simulation replication, we start with an empty shop and the interval from
the beginning of the simulation until the arrival of the 1000" job is considered as
the warm-up time and the statistics from the set C of the next completed 5000 jobs
(Holthaus and Rajendran, 2000) will be used to calculate performance measures. Three
scheduling performance measures examined in our experiments are (1) mean tardiness,
(2) maximum tardiness, (3) total weighted tardiness. The details of these performance
measures are provided in Table 1. In this table, the tardiness is 7; = max{C; — d;,0}
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Table 1: Performance measures of dispatching rules

Mean Tardiness MeanT = ﬁ Yice T

Maximum Tardiness MaxT = max;¢c| 1}
Total Weighted Tardiness ~ TWT = 3, w; T}
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Figure 1: Hybrid genetic programming with multi-fidelity fitness evaluations.

where C; and d; are the completion time and the due date of job j. Although this
simulation model is relatively simple, it still reflects key issues of real manufacturing
systems such as dynamic changes and complex job flows. This section only considers
the shop with utilisation of 95% and 85%, and tight due date (allowance factor of 4)
because scheduling in this scenario is more challenging, which is easier to demonstrate
the usefulness of GP.

4 Proposed method

Figure 1 presents an overview of the proposed hybrid genetic programming (HGP)
method. The three main components of this method are (1) genetic programming, (2)
fitness evaluator, and (3) iterated local search. HGP starts with initialisation to generate
a population of random dispatching rules P < {A;,...,A,}. The quality of newly
generated rules will be evaluated by using the fitness evaluator. Based on the obtained
fitness, genetic operators (i.e. crossover, mutation) are applied to produce new rules
which are then selected for the next generation of GP. GP will evolve its population
through a number of generations and stop when the stopping condition is met.
During the evolution, the best rule A* obtained by GP will be frequently sent to
the iterated local search (ILS) for further refinement (see Section 5). From the initial
(incumbent) rule A€ of ILS (the best found rule from GP), a set of rules are sampled
from its neighbourhood N (A€) (more details are provided in Section 4.3). The selected
rules from the sample set will be evaluated, and the best rule will be updated if im-
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Inputs: simulation model of DJSS, simplified model S
Output: the best evolved rule A*
1: randomly initialise the population P < {A4,...,A,}
2: set A* < null and the fitness f* + 400
3: setup a set of replications R for full evaluation
4: generation < 0, select a replication =
5. while stopping condition is reached do
6: i ¢ +ooand A} < null
7: forall A; € Pdo
8: evaluate fi(A;) by applyinga A; tow
9: if (fi(A;) < f]) then
10: A — A
1m; Ii e i)
12: end if
13: end for
14:  obtain f(A}) by applyinga Af to R
15: if (f(A}) < f*) then
16: A* — A}
17 f* e f(A])
18: end if
19: if local search is activated then
20: A*, f* < apply iterated local search to A*
21: end if
22: P’ + apply genetic operations to P
23 forall A; € P’ do
24: obtain f,(A;) by applyinga A; to S
25: end for
26: replace P with the top |P| rules A; € P’
27: select a new 7
28: generation <— generation + 1
29: end while
30: return A*

Figure 2: Proposed HGP algorithm.

provements are made. In the case that no improvement are made after some trials, a
perturbation is applied to change the incumbent rule. The search of ILS will stop when
the termination condition is met, and the best rule found by ILS A* will be returned to
GP.

To search for effective dispatching rules, the operators from both GP and ILS re-
quire information about the fitness of generated rules (e.g. crossover in GP or pertur-
bation step in ILS). However, the full evaluations (based a large number of simulation
replications) of dispatching rules are expensive and cannot be applied arbitrarily. For
that reason, the fitness evaluator in this study provides a number of ways to estimate
the quality of dispatching rules: (1) full evaluations f(-), (2) lazy evaluations f;(-), and
(3) evaluations with a simplified model f,(-) (details are provided in Section 4.2). These
evaluations are different in computational times and prediction accuracy. Depending
on the requirements of each step in GP and ILS, suitable evaluations will be applied,
as shown in Figure 1. The pseudo code for the proposed HGP is provided in Figure 2.
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Table 2: Terminal and function sets of GP

Symbol Description

rrJ time-in-system of job (t — releasetime)

rRJ job queuing time (t — readytime)

RO number of remaining operation within the job.

RT work remaining of the job

PR operation processing time

rDD time to due date = (DD — t)

SJ slack of the job = DD — (t + RT)

W weight of the job

NPT processing time of the next operation

WINQ work in the next queue

APT average operation processing time of jobs in the queue
NJIQ number of jobs in the queue

MINPQ minimum processing time of jobs in the queue

MAXPQ maximum processing time of jobs in the queue

NJIS number of jobs in the shop

NJINQ number of jobs in the next queue of machine that job will visit next
MINDQ minimum due date of jobs in the queue

MAXDQ maximum due date of jobs in the queue

MAXWQ maximum weight of jobs in the queue

WOR aggregate workload at machines that the job has not yet visited
# Random number from 0 to 1

Function set +,—,x, %, min, max

"t is the time when the sequencing decision is made; DD is the due date of job. releasetime and readytime are the time

the job arrived at the system and the considered machine respectively.

In the rest of this section, we will introduce the representation of dispatching rules for
GP along with the genetic operators, the fitness evaluator, and the iterated local search
heuristic.

4.1 Representation

To make the evolved rules easier for interpretation and to help GP select relevant at-
tributes during the evolution, a new representation is proposed. A rule A; is repre-
sented in GP by two parts: (1) the priority function in the tree structure ptree; and (2) a
attribute vector avec;. Similar to previous studies, ptree; is constructed from a set of at-
tributes A < {a1,as,...,a4} (Where A is the number of attributes) and a set of function
F. Whenever scheduling decisions need to be made, the ptree; will be evaluated with
the attributes values extracted from considered jobs and machines. The description of
attributes and functions used in this study is shown in Table 2.

The outputs of ptree; are priorities of jobs, and the one with the highest priority
is selected to process. Previous studies have shown that the tree-based representa-
tion of priority function is very useful to evolve powerful scheduling heuristics (Hilde-
brandt et al., 2010; Nguyen et al., 2013a,c). One drawback of the tree-based represen-
tation (and other variable-length representations) is that the evolved rules or functions
are large and complicated. They can also include many attributes that are not use-
ful to determine job priorities (Nguyen et al., 2013b; Branke et al., 2015). Mei et al.
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H I PT + NPT + WINQ/

PT + NPT + WINQ/1

PT + NPT + WINQ
[ | zx7 | ro | xo | er | zo0 | s |wovg | wer | 0
1 1 0 1 1 1 0 1 1 0

—

Figure 3: Example of a dispatching rule with the proposed representation.

(2016, 2017) have shown that GP can find significantly better dispatching rules if a
good attribute subset is applied. However, no practical attribute selection technique
is developed in their study. In our algorithm, the attribute vector avec; is incorpo-
rated and coevolved with ptree;. The reason for including avec; into the representation
is to help GP automatically identify relevant features on-the-fly. The attribute vector
avec; = {x;1,%i2,...,T;a} is a binary array and its dimensionality is A. If z; is 1, the
ptree; will be evaluated as usual. However, if x;; is 0, the value of attribute ay, if in-
cluded in ptree;, will be fixed to 1; and therefore, the attribute a; has no effect on the
priorities of jobs set by the rule A; + {ptree;, avec;}. An example of a dispatching rule
with this representation is showed in Figure 3. In this example, the ptree; represents
the function PT + NPT + WINQ/W. Meanwhile, the avec; in the lower part of Figure 3
shows that there are ten attributes used to construct priority functions, but only seven
attributes are active for the ptree; under consideration. The other three attributes, RO,
SJ, and W, will be treated as 1 if they are included in ptree;. Thus, the rule can be sim-
plified to PT + NPT + WINOQ. It is noted that replacing attribute aj, with z;; = 0 by
the constant 1 is just one simple approach to remove the impact of a;, on the considered
rule. Alternatively, the replacement value can be adapted based on the actual opera-
tion’s neutral value or by the outputs of automatically-defined functions (Koza, 1992)
without ay,.

4.1.1 Initialisation

In the proposed HGP algorithm, the population P includes a set of dispatching rules
A; + {ptree;,avec;}. In the first generation, the population is randomly initialised.
The ramped-half-and-half technique (Koza, 1992) is used to generate the random ex-
pression tree ptree; for each rule. For the attribute vector avec;, all initial dispatching
rules possess the same avec; < {1,1,...,1}, which means that all attributes will be
active when rules are evaluated. The reason for making all attributes active in the first
generation of HGP is that it is very likely that random generated ptree; will result in
poor performance with or without relevant attributes. Thus, using random avec; in the
early generations may make HGP accidentally ignore relevant and important attributes
before it can search for good ptree;.

4.1.2 Genetic operators

For the proposed representations, new genetic operators are also developed to gener-
ate both ptree; and avec; for a dispatching rule. These operators will be used in step

10 Evolutionary Computation Volume x, Number x



A Hybrid Genetic Programming Algorithm for Automated Design of Dispatching Rules

o & °

- m
N v i R i i i

i i i e A S8 S i I i i i I
L ) L J { )
Y Y Y
Parents New ptree; New aveci

Figure 4: Illustration of genetic operators in HGP.

22 of Figure 2 and treated as the search operators in the ILS algorithm (described in
Section 4.3). As a rule A; has two components ptree; and avec;, we apply a two-step
procedure to use genetic operators as illustrated in Figure 4. In the first step, the sub-
tree crossover and the subtree mutation (Koza, 1992) are applied to selected parents (by
tournament selection) to generate new ptree;. The subtree crossover creates new indi-
viduals for the next generation by randomly recombining subtrees from two selected
parents. Meanwhile, the subtree mutation is performed by selecting a node of a cho-
sen individual and replacing the subtree rooted at that node with a newly randomly-
generated subtree. In this step, avec; is copied directly from the parent. After a new
ptree; is generated, another mutation can be applied to the copied avec; with the prob-
ability of p,. This mutation operator only randomly picks one attribute ¥ € A and
the value of x;;, in avec; will be flipped. If p, = 0, the reproduction process here will
be the same as one in the traditional GP because only the trees (priority functions) are
evolved. More subsets of attributes will be examined by HGP as p, increases.

4.2 Fitness evaluator

Three approaches are used to estimate the fitness of evolved rules in different stages
of the algorithms. In the proposed algorithm in Figure 2, f(4;) is the real fitness cal-
culated based on objective values obtained by applying A; to a large number of sim-
ulation replications with a long simulation length (completions of 5000 jobs as shown
in Section 3). The goal of f(A;) is to measure the steady state performance of A; for a
given job shop scenario (Law and Kelton, 1999; Holthaus and Rajendran, 2000).
Because of expensive simulation costs, using a large number of replications to ob-
tain all f(-) of all A; generated in the population are very slow. To improve the ef-
ficiency of HGP, multi-fidelity fitness evaluation approach is used across the HGP al-
gorithm. Within each generation of HGP, we only use one replication to evaluate the
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quality of evolved rules f;(A;) (the subscript [ is for lazy evaluation). This strategy has
been shown to be useful to improve the effectiveness of evolved rules and the diversity
in the population (Hildebrandt et al., 2010) and significantly reduce the computational
times of GP. The rule with the best f;(A;) is then fully evaluated to obtain f(A;).

After an intermediate population P’ (with |P’| > | P|) generated by genetic opera-
tors and the estimated fitness f;(A;) (for selecting parents), the fitnesses of newly gen-
erated rules are quickly evaluated by using the simplified model S. In this study, the
simplified model § is the Hal fShop model proposed in (Nguyen et al., 2016), which
has shown to be an effective and cheap model to estimate the quality of dispatching
rules. The simplified HalfShop is only half the scale of the original shop discussed in
Section 3. In Hal fShop, the number of machines is 5, and the maximum number of
operations of a job is 7 (instead of 14). The warm-up time and the simulation length
are governed by the arrival of the 100*" job and the completion of 500 jobs respectively.
Nguyen et al. (2016) showed that this simplified model provides a good estimation
[s(A;) (the subscript s is for simplified model) of the quality of evolved rules without
significant increase in the computational cost of GP.

The use of these three approaches to estimating fitness of evolved rules makes
the algorithm slightly more complicated but they allows us to utilise the computa-
tional budgets more effectively. The analyses from Hildebrandt and Branke (2015)
(with f(A;) and a surrogate model), Nguyen et al. (2014b) (with f(4,;), fi(4A;), and
a surrogate model), and Nguyen et al. (2016) (with f(A;), fi(4A;), and fs(A;)) showed
that such combinations can significantly improve the convergence of GP algorithms.
The fitness fs(A;) determines the rough quality of generated heuristics. Because the
likelihood to produce bad dispatching rules via crossover and mutation by GP is very
high, GP may waste a lot of time evaluating bad heuristics. The fitness estimated ef-
ficiently by the simplified model helps the algorithm screen out rules with poor per-
formance (steps 23-26 in Figure 2) and reduce the computational costs. Meanwhile
f1(A;) helps the algorithm identify the most potential rules (step 8) for full evalua-
tions (step 14) and improve the diversity of HGP. Moreover, f;(A;) is used within
tournament selection to select parent rules for genetic operations discussed in Sec-
tion 4.1.2. If Cost(-) and Accuracy(-) are the computational costs and accuracy of an
estimation approach, we will have Cost(f(A;)) > Cost(fi(A;)) > Cost(fs(A;)) and
Accuracy(f(4A;)) > Accuracy(fi(A;)) > Accuracy(fs(A;)). In this paper, we try to
improve the effectiveness of the search mechanism by maintaining good trade-offs be-
tween Cost(-) and Accuracy(-) across the algorithm.

4.3 Iterated local search

The previous discussions showed how GP could be used to evolve dispatching rules
for DJSS. To further improve the quality of the final evolved rule, an ILS heuristic is de-
veloped. As compared to other hybrid methods that combine EC and local search, the
frequency of applying ILS in HGP is quite low because of the high computational cost.
Through the evolution of HGP, ILS is applied every N;;; generations and only the best
dispatching rule A* is refined by ILS. The pseudo code of ILS is presented in Figure 5.
This search heuristic is extended from APRILS developed in Nguyen et al. (2015). How-
ever, APRILS is too computationally expensive to be used within our proposed HGP.
Moreover, APRILS was not designed to deal with a large number of attributes. In this
paper, we improve the efficiency and effectiveness of APRILS by using multi-fidelity
fitness evaluations.

At the beginning, the best rule A* is assigned as the initial rule A¢ <+
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Inputs: initial rule A€, simulation model of DJSS, simplified model S
Output: the best rule A*
1: set A* <+ A°and the fitness f* + f(A°)
2: setup a set of replications R for full evaluation
3: iteration < 0, select a replication
4: while iteration < maxzlIteration do
5: sample a set M « {Aq,..., A, } from the neighbourhood of A€
6: forall A; € M do
7: obtain f,(A;) by applyinga A; to S
8: end for
9:  create M’ from the top n) rules A; € M’
10: fi + +ooand A} < null
11: forall A, € M’ do
12: evaluate f;(A;) by applyinga A; tow
13: if (fi(A;) < f]) then
14: A — A
15: I fillAs)
16: end if
17: end for
18:  obtain f(A}) by applying a Aj to R
19: if (f(A}) < f*) then
20 A* — A}
21: e« f(A])
22: A° +— A¥
23: end if
24: if no improvement for f* is made in NI iterations then
25 A perturb(A*, Af)
26 end if
27: select a new 7
28: iteration < tteration + 1
29: end while
30: return A*

fIP'| =k x |P|

Figure 5: Proposed Iterated Local Search.

{ptree., avec.} for ILS. An important aspect of local search that strongly influences its
performance is the neighbourhood structure. Similar to APRILS, a restricted subtree
mutation (RSM) is applied to generate the neighbour priority functions of A°. RSM
is similar to the subtree mutation presented in Section 4.1.2 but the depth of the ran-
domly generated subtree is restricted to 2. This restriction tries to avoid large muta-
tions which make the neighbour priority functions too different from the current ptree,.
in A¢. Meanwhile, RSM still allows new components (e.g., attributes, functions) to be
introduced into the newly generated rules. In the proposed ILS, we do not put any
constraint on RSM and it is possible for the root node of an evolved rule to be selected.
The chance to select the root node is high when the rule is small (early generations) but
it will be reduced as rules in the population evolve. An interesting advantage of this
naive mutation approach is that it can help ILS find compact rules without significantly
increasing their lengths.
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Different from APRILS, attribute mutation is also applied to avec, to generate the
attribute vector for the new neighbour dispatching rules. Because the neighbourhood
N(A€) is very large (because of the tree structure, the number of attributes, and the
number of functions), it is impossible to examine all neighbour rules. Therefore, ILS
only samples a number of rules in N'(A€). A two-stage sampling procedure is applied
to help ILS search the neighbourhood effectively. In the first stage (steps 5-8 of Fig-
ure 5), ng rules are sampled from N(A°), as illustrated in Figure 6(a). The sample
M {A1,As, ..., A, } is then evaluated with S. Then a truncated sample M’ is cre-
ated from the top rules in M, based on f,(-). All A; € M’ are evaluated to calculate
fi(A;). The best rule A; is selected for a full evaluation and the best rule A* and A° are
updated if an improvement in f* is made.

This searching process (steps 5-23 in Figure 5) will be repeated until the there is no
improvement for f* made in the last N iterations. In this case, it is assumed that A° is
trapped at a local optimum, and perturbation or a “kick” is applied to generate a new
A°. However, to avoid ILS from wasting time search from a poor solution, the new A¢
will be produced from the current best rule A* and the best-sampled rule A}. In the
perturbation step, a large number (2000) of rules are generated by applying mutation
(to A*) and crossover operators (to A* and A}) with equal probability, as illustrated in
Figure 6(b). The rule with the best f,(-) is then assigned to A°. ILS will stop when the
maximum iteration (mazIteration) is reached.

(a) Sampling neighbour rules (b) Perturbation

Figure 6: Search operators in ILS.

5 Experiment design

This section shows the experiments conducted our study and the parameter settings
for HGP.

5.1 Experiment settings

The job shop simulation model presented in Section 3 is used to test the performance of
the proposed HGP. Six simulation scenarios considered from our experiments are based
on the combinations of three objectives (mean tardiness, maximum tardiness, and total
weighted tardiness) and two utilisation levels (85% and 95%). The goal of HGP is to
learn/evolve the dispatching rules for each scenario. For testing, the rule obtained by
each independent run of HGP is applied to 50 independent simulation replications of
the corresponding simulation scenario (in training) with different random seeds from
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the ones of the training simulations. The test performance (average objective values) is
the quality of the evolved rules (rules with lower average objective values are better).
For testing, all rules are applied to the same set of simulation replications (Hildebrandt
and Branke, 2015; Nguyen et al., 2016).

Two other GP methods are also applied and compared to HGP. The first one is the
simple GP (SimGP) method (Hildebrandst et al., 2010). The representation of dispatch-
ing rules in SimGP is similar to HGP except that the attribute vectors avec; are not
considered. Similar to HGP, SimGP also uses one simulation replication (changed for
each generation) to evaluate the performance of rules in the population before sending
the best rule A} for full evaluations. A key difference is that SimGP did not use the
simplified model to estimate f,(-) in the reproduction stage. To investigate the impact
of feature selection mechanism, local search heuristic ILS (lines 19-21 of Figure 2), and
fitness evaluators, we examine three other GP methods in our experiments: (1) SImGP
with feature selection mechanism (SimGPFS), (2) HGP without ILS (HGP-nols), (3) HGP
without feature selection mechanism (HGP-nofs). All methods are compared in terms
of effectiveness of evolved rules and length (number of nodes) of evolved rules, and
number of attributes selected in evolved rules. Time limits are used as the stopping
condition for the five GP methods. Particularly, 30 minutes and 60 minutes are used
to evolve rules for scenarios with utilisation of 85% and 95% respectively as the GP
methods almost converged after these time limits. Evolved dispatching rules are also
compared with a set of popular benchmark dispatching rules as explained in Table 3
(Sels et al., 2011).

Table 3: Benchmark dispatching rules

Rules Descriptions

RR Raghu and Rajendran

COVERT (weighted) cost over time

ATC (weighted) apparent tardiness cost
PT+WINQ+NPT+WSL|PT+WINQ plus NPT and waiting slack
PT+WINQ+SL processing time plus WINQ and slack
2PT+WINQ+NPT double processing time plus WINQ and NPT
SPT+PW+FDD shortest processing time +PW plus earliest flow due date
Slack/OPN slack per remaining operations

Slack slack

FIFO first in first out

EDD earliest due date

CR critical ratio

CR+SPT critical ratio plus processing time

WSPT weighted shortest processing time

LWKR least work remaining

*PT: processing time; WINQ: work in next queue; PW: process waiting time; NPT: next processing time

5.2 Parameter settings

The terminal and function sets for the five GP methods are presented in Table 2. Table 4
shows the parameters used in the proposed HGP algorithm. The upper part in this
table are parameters used in the HGP algorithm in Figure 2 and the lower part shows
the parameters for the ILS algorithm in Figure 5. For SimGP and HGP-nofs, the pa-
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Table 4: Parameter settings

Parameter Description
GP Initialisation ramped-half-and-half

Subtree crossover/mutation 80%/15%

Attribute mutation probability p, {0.1,0.5,0.9}

Elitism rates 5%

Maximum depth 8

Population size 200

Size of intermediate population P’ 2000

Selection tournament selection (size = 5)
ILS Sample size n; 500

Sample size n/, 50

Number of non-improvement iterations NI 5

Maximum iteration maxIteration 10

rameter p,, the size of P/, and ILS related parameters are irrelevant. Similarly, SImGP,
SimGPFS, and HGP-nols will not use the parameters used in the lower part of Table 4.
In ILS, the attribute mutation probability p, is the same as the one used in HGP. To re-
duce the computation cost, HGP and HGP-nofs only activates ILS every ten generations
(including the first generation).

The GP parameters in Table 4 have been used in the previous studies (Nguyen
et al., 2015, 2016) and showed good results. The new parameter p, has not been investi-
gated before and we need to conduct some pilot experiments to determine the suitable
value. In this pilot experiments, only ten attributes, in the upper part of Table 2, are
used and ILS is not applied (i.e. we use HGP-nols). The results of our pilot experiments,
with 30 independent runs for each p, value, are presented in Figure 7 and Figure 8. In
these figures, the label on the top of each subplot indicates the simulation scenarios
under consideration (obj, uti, allow), where obj, uti, and allow are respectively the ob-
jective, the utilisation, and the allowance factor. HGP-nols with p, = 0 means that the
attribute vector is not considered, and no explicit attribute selection mechanism is ap-
plied (this setting is the same as the surrogate-assisted GP proposed in Nguyen et al.
(2016)). Figure 7 and Figure 8 showed the test performance and the number of selected
attributes of the best rule evolved by HGP. It is noted that p, = 0 is not presented in
Figure 8 because it does not have an explicit attribute selection mechanism.

Figure 7 shows that the attribute mutation probability did not have clear influence
on the test performance of the evolved rules. The performance is slightly better with
pe = 0.5 in the scenarios (tmean, 85,4) and (tmazx, 95, 4). However, from Figure 8, p,
clearly influences attribute selection in HGP. For most scenarios, p, = 0.5 and 0.9 lead
to rules with a number of selected attributes which is significantly smaller than that
obtained with p, = 0.1. There is no clear difference between p, = 0.5 and p, = 0.9.
These pilot experiments show that HGP is able to select relevant attributes through
its evolution process without deteriorating the performance of evolved rules. In our
experiments in the next section, we will use p, = 0.5 as it provides good results in terms
of both the test performance and the number of selected attributes in most scenarios.

16 Evolutionary Computation Volume x, Number x



A Hybrid Genetic Programming Algorithm for Automated Design of Dispatching Rules

120 <tmean,85,4> 1800 <tmax,85,4> 350 <twt,85,4>
110 21700 ns =y £ 300
8 100 £ T 2
c T it
5 5 1600 250
& %0 [ e £ T
< w0 l l 2 1500 ] $200 ke
L S i
(9] _—
= % 3 -
70T . ‘ £ 1400 I l I g 120 E} - =
o i ; - - - il - 2 - - - -
60 pa=0.0 pa=0.1 pa:O.S pa=0.9 1300 pa=0.0 pa=0.1 pa=0.5 pa=0.9 100 pa=0.0 pa=0.1 pa=0.5 pa=0.9
1020 <tmean,95,4> _ 5400 <tmax,95,4> 1800 <twt,95,4>
1000 .y 8 T T -
L es0l T <l$)5200 i s £1700 -
0 i nE c -
& 960 5 5000 K 1600
T 940 c ° |
] 4800} = i
£ 920 . 5 LJ - 51500} ||
g 900t 71— " " g 4600} ] B g L
880 ) ) | 3 =
. 4 - + = 4400 L s : © 1400
860 - 2 - 4
840 pa=0.0 pa=0.1 pa=0.5 pa=0.9 4200 pa=0.0 pa=0.1 pa=0.5 pa=0.9 1300 pa=0.0 pa=0.1 pa=0.5 pa=0.9

Figure 7: Influence of attribute probability p, on the test performance.
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Figure 8: Influence of attribute probability p, on the number of selected attributes.

6 Results and analyses

In this section, the results of our experiments are presented. As mentioned earlier, the
proposed HGP are compared to SImGP, SimGPFS, HGP-nols, and HGP-nofs to verify its
effectiveness and efficiency. The two key performance metrics used for the comparison
are the test performance and the lengths of evolved rules of the five GP methods. For
the two metrics, smaller values are better and Wilcoxon rank sum test, with significant
level of 0.05, is used for statistical significance tests.
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Figure 9: Test performance of dispatching rules evolved by SimGP, HGP-nols, and HGP.

6.1 Test performance of evolved rules

Figure 9 shows the test performance (boxplots) of the best dispatching rules evolved by
GP methods through the 30 independent runs. The horizontal lines show the top three
existing rules in the Table 3. Overall, it is easy to see that HGP-nols, HGP-nofs, and HGP
outperform SimGP and SimGPFS in all simulated scenarios (lower boxplots are better).
The rules evolved by HGP variants can dominate the majority of rules evolved with
SimGP and SimGPFS. The gaps between SimGP, SimGPFS and our proposed methods
are much clearer when we deal with more complex scenarios. It is also noted that
HGP-nols and HGP have lower variances as compared with SimGP and SimGPFS in
most scenarios except for (tmean, 95, 4). For the scenarios with total weighted tardiness
as the objective, SimGP and SimGPFS result in very high variance and many (poor)
outliers. This clearly indicates the limitation of a simple GP method when dealing with
complex scenarios. In general, there is no significant difference between, HGP-nols,
HGP-nofs, and HGP regarding test performance.

The evolved rules show superior performance as compared with existing rules
in the literature. In the extreme case (tmean, 85,4), the mean tardiness obtained by
the best existing rule RR is 200% larger than those obtained with rules evolved by
HGP variants. For (tmean,95,4), the rules evolved by the five GP methods are also
a lot better than the best existing rule 2PT+NPT+WINQ (a very competitive rule in
the literature for mean tardiness and mean flowtime). A similar pattern can also be
observed for the scenarios with maximum tardiness as the objective although the gaps
are not as extremely large. For (twt,85,4), the best existing rule COVERT is better
than a majority of rules evolved by SimGP and SimGPFS. This means that SimGP and
SimGPFS are unable to find competitive rules within the time limit. However, most
rules evolved by HGP variants can outperform COVERT. For (twt, 95,4), the rules
evolved by SimGP and SimGPFS are much more competitive as compared to COVERT
but there are some evolved rules that are outperformed by COVERT. HGP variants
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Figure 10: Length of dispatching rules evolved by SimGP, HGP-nols, and HGP.

still demonstrate robust results in this scenario.

6.2 Program length

In terms of rule lengths (i.e. the number of nodes in the evolved rules), there is no sig-
nificant difference between SimGP and SimGPFS but they both produce smaller rules
as compared to HGP-nols in most scenarios with utilisation of 95%, as shown in Fig-
ure 10. This is consistent with findings in previous studies (e.g. Nguyen et al. (2016))
which revealed that more effective rules evolved by GP methods are usually larger. In
our experiments, SIMGP and SimGPFS are significantly better than HGP-nols in three
out of the six considered scenarios with the utilisation of 95%. For scenarios with the
utilisation of 85%, good rules can be found more quickly; therefore, the lengths of these
rules are only slightly different.

While HGP is very similar to HGP-nols, the experiment results show that HGP
can produce more compact rules (with a smaller number of nodes). In terms of pro-
gram length, HGP is significantly better than HGP-nols in five scenarios except for
(tmax, 85,4). As compared to SimGP and SimGPFS, HGP is significantly worse in one
scenario (twt, 95, 4) and significantly better in three scenarios (tmean, 85, 4), (twt, 85, 4),
and (tmax, 95,4) (there is no significant difference in the remaining scenarios). Given
that HGP is significantly better than SimGP and SimGPFS regarding test performance
in all scenarios, the fact that HGP can effectively control the rule length makes it a
more attractive method for designing dispatching rules. HGP-nofs is similar to HGP
in all scenarios. This competitive advantage of HGP and HGP-nofs is achieved by the
inclusion of the proposed ILS. More analyses will be provided in Section 6.3 to support
this claim.

From the experiment results, we can see that the proposed HGP and its variant
HGP-nofs is effective regarding the test performance and the program length when
dealing with different job shop conditions as compared to SimGP, SimGPFS, HGP-nols,
and existing dispatching rules. Also, different from other GP methods which tend to
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produce large rules to be effective, HGP can control the length of the evolved rules
quite well. This will make the evolved rules easier to interpret, and evaluations of such
rules are also faster.

6.3 Further analyses

In the rest of this section, we will further investigate how HGP can achieve good results
by looking at its evolution process and the attributes selected.

6.3.1 Behaviours of HGP through generations

Figures 11-13 show the behaviours of HGP, HGP-nols, and SimGP through the evolu-
tionary process. The lines in Figures 11-13 are the average values from 30 independent
runs and the shaded areas represent the standard errors. Because all GP methods start
with the same population, their starting points are the same. Figure 11 shows the fitness
f(A*) of the best evolved rule through generations for different simulation scenarios.
First, it is clear that HGP has a very distinctive pattern. The HGP lines for f(A*) fall
sharply after a certain period. This is because ILS is activated very ten generations
as mentioned in Section 5. For all scenarios, it only takes HGP usually less than ten
generations (about 10 minutes for scenarios with utilisation of 85% and 30 minutes for
scenarios with utilisation of 95% ) to obtain rules with the same quality as the best rule
A* evolved by SimGP at the end of the evolution. These results clearly demonstrate
the superiority of HGP over SimGP for all scenarios. Although the running times of
HGP are higher than those of SImGP when evolving rules for the same number of gen-
erations, HGP can find effective rules much faster than SimGP. This explains why HGP
can easily outperform SimGP given the same time limit.

Between HGP and HGP-nols, Figure 11 shows that HGP can improve f(A*) much
faster at the beginning of the evolution because the best rules A* obtained by GP usu-
ally perform poorly in the first few generations and can be easily improved with the
local search heuristic. However, HGP-nols can catch up with HGP performance in the
later generations since the evolved rules have been more sophisticated and the local
search heuristic becomes less efficient (the neighborhood N (A) is much larger).

As discussed previously, HGP can control the length of evolved rules quite well as
compared to SimGP and HGP-nols. Figure 12 shows the length (number of nodes) of
A* across generations (ptree; for HGP-nols and HGP). In most scenarios, HGP evolves
significantly larger rules in early generations. This is because ILS tried to evolve more
effective rules by searching neighbourhood with restricted subtree mutations. There-
fore, the rules refined by ILS tends to be large as compared to rules evolved by GP only
(e.g. SIMGP and HGP-nols). Then, the length of A* grows slowly in later generations,
which is different from SimGP and HGP-nols. Probably, rules refined by ILS help HGP
find good building blocks within the rules with little redundancy (or introns); there-
fore, the evolved rules in the later generations will be more compact and contain fewer
redundant components. In most cases, HGP-nols tends to grow much larger rules as
compared to SImGP and HGP, especially in (tmean, 95,4) and (tmaz, 95, 4). It suggests
that handling a large search space (with ptree; and avec;) without the support of ILS
can significantly increase the length of evolved rules.

Figure 13 shows the number of active attributes in avec; of the best evolved rule A;.
Since SimGP does not contain avec;, we did not show SimGP lines in Figure 13. n gen-
eral, the number of attributes selected by HGP and HGP-nols reduces quite smoothly
through generations, which suggests that HGP and HGP-nols can successfully reduce
the number of attributes to be included in the evolved rules. However, as HGP-nols
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Figure 11: Fitness of the best evolved dispatching rules through generations.
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Figure 12: Length of the best evolved dispatching rules through generations.

does not use ILS, it can normally evolve through more generations than HGP given the
same time limit and the evolved rules will have fewer active attributes.

The above analyses provide some useful insights about the role of ILS. While ILS
can help HGP find more compact and competitive rules, it does not help HGP reduce
the number of active attributes although the same mutation operator (and with the
same p,) is applied to the attribute vector in ILS. It means that the attribute muta-
tion operator is very unlikely to produce improved dispatching rules and the improve-
ments achieved through the local search heuristic are mainly obtained by the restricted
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Figure 13: Number of features selected in dispatching rules through generations.

subtree mutation. Here, we see an interesting trade-off between selecting small at-
tribute subsets and producing compact dispatching rules. Obviously, achieving these
two goals simultaneously is not trivial and requires the algorithm to maintain a bal-
ance between exploration (via GP evolution) and exploitation (via ILS). The periodic
application of ILS in the proposed HGP is certainly not the perfect option, and a more
intelligent approach should be developed in future studies.

6.3.2 Attribute selection

Here we also want to compare attribute selection ability of HGP and HGP-nols to the
natural attribute selection of SimGP. For all rules A* obtained by the five GP methods,
we determine the number of unique attributes N, < A (constants are not counted). For
example, N, for the tree in Figure 3 is 4. For SimGP, IV, is the number of attributes
needed for the evolved rules. For HGP-nols and HGP, we determine N/ which is the
number of active attributes, i.e. the number of unique attributes with the correspond-
ing z;; € avec; equal to 1. For the example in Figure 3, N/ is 3. It is noted that N/
is always smaller than or equal to N,. For SImGP, N, = N/ as no explicit attribute
selection mechanism is used. Therefore, N, represents the baseline for the natural at-
tribute selection of GP. Figure 14 shows values of N/ and (N, — N;), i.e. number of
inactive attributes, from rules evolved by the five GP methods. Although the numbers
of included attributes NN, (the red part and the blue part) of HGP variants are slightly
higher than SimGP and SimGPFS, the numbers of active attributes N, for HGP-nols
and HGP are slightly smaller (except for (tmean, 95, 4)). HGP-nofs performs poorly in
terms of the number of selected attributes. Overall, the average numbers of attributes
selected by HGP-nols and HGP are smaller than 10 in most scenarios, i.e. more than
50% of attributes are not used. Also, it is interesting that the number of included at-
tributes for HGP-nols is smaller than that of HGP although HGP-nols tends to produce
larger rules (see Figure 10 and Figure 12). A possible explanation is that HGP-nols tends
to reuse attributes (or duplicate important subtree via the subtree crossover) at differ-
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Figure 15: Selected attributes from SimGP across 30 independent runs.

ent places in the evolved rules to explore effective rules. Meanwhile, ILS in HGP tends
to maintain the main structure of the rules and combine new genetic materials with
the restricted subtree mutation (possibly with new attributes) while performing local
search.

In Figure 15 and Figure 16, we visualise the active attributes obtained by SimGP
and HGP-nols. HGP has a similar pattern with HGP-nols, and thus is not be presented
here. The row in each subplot represents active attributes for a particular run of SimGP
and HGP-nols. Each active attribute is represented by a blue cell; otherwise, the corre-
sponding cell is left empty. Ideally, we want the columns corresponding to irrelevant
attributes to be entirely empty and the columns corresponding to important attributes
to be filled.

For minimising mean tardiness, PT, RT, RO, and rDD are the most frequently in-
cluded attributes in the evolved rules, especially when the utilisation is 85%. More
global attributes such as NJIS,NJNQ, and WOR are also usually included in the evolved
rules. When the utilisation is 95%, only PT, RO, rDD, and WOR are included in most
rules. Scenarios (twt, 85,4) and (twt, 95,4) also show similar patterns and additional
emphasis on W. For (tmax, 85,4) and (tmaz, 95, 4), only due-date related attributes such
as rDD and SJ, and RT are clearly needed for all evolved rules. In (¢tmax,95,4), more
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Figure 16: Selected attributes from HGP-nols across 30 independent runs.

attributes are needed but there is no clear pattern. In general, the patterns in HGP-
nols are clearer than those in SiImGP. For (tmean, 85,4) and (tmean, 95, 4), while active
attributes in HGP-nols are quite consistent, it is not the case with SimGP. For exam-
ple, in (tmean, 85,4) and (tmean, 95,4), it seems that SimGP have troubles identifying
important attributes as the selected attributes are relatively random.

Because of the complexity of DJSS, it is not necessary to have a unique good rule
for a particular scenario. In fact, Nguyen et al. (2016) has shown that rules with very
different behaviours (ways to assign priorities) can results in similar test performance.
Thus, it is possible to have multiple “optimal” attribute subsets. As HGP performs
online attribute selection, the attribute subset can be different in different independent
runs, which explains why the patterns in Figure 15 and Figure 16 are not perfectly clear.
While the number of selected attributes in the two methods are similar, HGP-nols can
identify key attributes more effectively than SimGP.

6.4 An Example evolved rule

Figure 17 presents an example rule evolved by HGP for (twt,95,4). In the raw form,
the rule is complicated, and there is no clear pattern to explain how it can achieve
good results. To analyse the rule, we first remove some redundant components by (1)
replacing attributes with avec; = 0 by a constant “1”, and (2) performing numerical
simplification technique proposed by Nguyen et al. (2016). The simplification algo-
rithm will traverse through the tree and replaces each subtree with a constant “1”.
If the modified rule is not significantly worse than the original rule (using Wilcoxon
rank sum test), it will replace the original rule. For min, max functions in the rule,
each argument will, in turn, replace the root min, max node and the modified rule
will replace the original rule if it is not significantly worse than the original rule. The
simplification continues until no new rule is found. As shown in Figure 17, the sim-
plified rule is much smaller than the original rule. The next step is to rearrange the
expression manually. We can see that the first component of the rule is a composite
rule which combines weighted shortest processing time (WSPT), minimum slack, min-
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= rRJ, WINQ, MINPQ, and MAXWQ are not consider and rearrangement
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priority = X max(WOR, ky + min(k,, NJNQ) x rDD)

Figure 17: Selected attributes from HGP-nols across 30 independent runs.

imum remaining operations, and minimum workload of machines on the route (to be
visited). The second term is much more complicated and contains some nonsense com-
binations such as: (WOR + RO)/(WOR — PR/SJ) and W + RO. However, these
components are necessary as they cannot be eliminated through the simplification al-
gorithm. Our assumption is that they are included in the rules to create some adaptive
behaviours for the evolved rules, which are usually critical for superior rules. The
component W + RO is used in min(W + RO, NJNQ) to make the rule adapt its be-
haviour depending on NJN@ (number of jobs in the next queue). So W + RO plays
the role of a threshold. Actually when we replace W + RO with their expected value
E[W + RO] = E[W] + E[RO] = (0.2 + 0.6 + 0.2) + (2 + 14)/2 = 10.2 (see the sim-
ulation settings in Section 3), the modified rule provides similar results. Interpreting
(WOR+ RO)/(WOR — PR/SJ) is not so straightforward, but it also adapts the rule
based on two dynamic attributes WOR and SJ. In general, we can use k; and k3 as the
two adaptive parameters for the rule. In this final form, we can see that this is a clever
composite rule what combines many attributes to make scheduling decisions. Similar
to ATC or COVERT (Pinedo, 2008), some extra experiments and analyses are needed to
understand how the parameters can be set.

7 Conclusions

This paper proposed a new hybrid genetic programming for automated design of dis-
patching rules for dynamic job shop scheduling. In this method, a new representation
for dispatching rules is developed to construct effective rules and select relevant at-
tributes simultaneously. An efficient iterated local search heuristic employing a multi-
fidelity surrogate modeling approach is also developed to search for competitive rules
in the large heuristic search space. The experimental results have confirmed that the
proposed method can evolve rules that are much better than those obtained with the
simple GP methods. In some simulated scenarios, the proposed method can find rules
with the same quality as the best rules evolved by the simple GP method within the
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first few generations. Moreover, the hybrid method is also useful regarding controlling
the length of rules and selecting relevant attributes and the proposed method performs
well with more complex job shop conditions. These characteristics make the proposed
method a powerful and attractive approach for automated design of dispatching rules.

The hybrid genetic programming framework proposed in this paper can be ex-
tended to other production scheduling as well as combinatorial optimisation problems.
To successfully extend this approach to deal with a wide range of problems, it is impor-
tant to automate the whole selection process for fitness evaluators (including surrogate
models) to support the genetic operators and the local search heuristic. This can be
done in many ways such as coevolving the fitness evaluator in the evolutionary pro-
cess of genetic programming and applying machine learning method to learn efficient
and accurate fitness evaluators based on historical searching data. These will be poten-
tial research directions in the future studies.

Attribute selection is an important task in automated design of dispatching rules
and it is particularly critical when dealing with complex production systems and the
availability of a large number of attributes from jobs and machines. The proposed
method in this study tries to perform explicit attribute selection by developing a new
representation for dispatching rules. In future research, it is important to further in-
vestigate this representation, especially in terms of rule initialisation, search operators,
and related parameters. An adaptive way to evaluate programs with different attribute
vectors is also needed to improve the performance of GP. For example, automatically-
defined functions can be used to replace the irrelevant attributes decided by the at-
tribute vector. Also, our future studies will focus more on the feature selection mech-
anism to understand when it is useful and how to make it more efficient. Different
benchmark scheduling problems (with more attributes) will be needed to justify the
importance of attribute selection.

Iterated local search proposed in this study has successfully refined rules evolved
by genetic programming. Although it may increase the computational costs for evolv-
ing dispatching rules, its advantages outweigh the disadvantages. Different from other
simple local search previously used to support genetic programming, the proposed iter-
ated local search has good exploration and exploitation ability; therefore, it is not easily
be trapped at the local optima. Future studies can further investigate the behaviour of
this heuristic to reduce the number of required parameters and make it more adaptive.
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