
A Hybrid Differential Evolution Approach to
Designing Deep Convolutional Neural Networks

for Image Classification

Bin Wang, Yanan Sun, Bing Xue, and Mengjie Zhang

School of Engineering and Computer Science
Victoria University of Wellington, PO Box 600, Wellington 6140, NEW ZEALAND
wangbin@myvuw.ac.nz, {yanan.sun, bing.xue, mengjie.zhang}@ecs.vuw.ac.nz

Abstract. Convolutional Neural Networks (CNNs) have demonstrated
their superiority in image classification, and evolutionary computation
(EC) methods have recently been surging to automatically design the
architectures of CNNs to save the tedious work of manually designing
CNNs. In this paper, a new hybrid differential evolution (DE) algorithm
with a newly added crossover operator is proposed to evolve the architec-
tures of CNNs of any lengths, which is named DECNN. There are three
new ideas in the proposed DECNN method. Firstly, an existing effective
encoding scheme is refined to cater for variable-length CNN architec-
tures; Secondly, the new mutation and crossover operators are developed
for variable-length DE to optimise the hyperparameters of CNNs; Fi-
nally, the new second crossover is introduced to evolve the depth of the
CNN architectures. The proposed algorithm is tested on six widely-used
benchmark datasets and the results are compared to 12 state-of-the-art
methods, which shows the proposed method is vigorously competitive
to the state-of-the-art algorithms. Furthermore, the proposed method is
also compared with a method using particle swarm optimisation with
a similar encoding strategy named IPPSO, and the proposed DECNN
outperforms IPPSO in terms of the accuracy.

Keywords: Differential Evolution · Convolutional Neural Network · Im-
age Classification.

1 Introduction

Convolutional Neural Networks (CNNs) have proved their dominating spot in
various machine learning tasks, such as speech recognition [1], sentence classifi-
cation [6] and image classification [7]. However, from the existing efforts taken
by researchers such as LeNet [9][10], AlexNet [7], VGGNet [14] and GoogLeNet
[19], it can be found that designing CNNs for specific tasks could be extremely
complicated.

Since the difficulties of manually designing the architectures of CNNs have
been raised more frequently in recent years, exploiting evolutionary computation
(EC) algorithms to generate deep neural networks [18] has come into the spot-
light to resolve the issues. Interested researchers have accomplished promising

2 B. Wang, Y. Sun, B. Xue and M. Zhang

results on the automatic design of the architectures of CNNs by using Genetic
Programming (GP) [17] and Genetic Algorithms (GAs) [21]. However, the com-
putational cost of the existing algorithms is very expensive, so more research
tends to focus on improving the efficiency by developing new algorithms.

Deferential Evolution (DE) has been proved to be an efficient heuristic for
global optimisation over continuous spaces [16], but it has never been used to
evolve deep CNNs.The IP-Based Encoding Strategy (IPES) [20] has demon-
strated its powerfulness in particle swarm optimisation for evolving deep CNNs,
but it has a critical drawback which is that the maximum depth of the CNN ar-
chitectures has to be set before the commencement of the evolutionary process.
Therefore, the encoding strategy is refined in the proposed algorithm to break
the constraint of the predefined maximum length.

Goals:The overall goal of this paper is to explore the ability of DE for auto-
matically evolving the structures and parameters of deep CNNs. The goal will be
achieved by designing an effective encoding scheme, new mutation and crossover
operators of DE, and a second crossover operator. The proposed method named
DECNN will be examined and compared with 12 state-of-the-art methods on
six widely-used datasets of varying difficulty. The specific objectives are

– refine the existing effective encoding scheme used by IPPSO [20] to break
the constraint of predefining the maximum depth of CNNs;

– design and develop new mutation and crossover operators for the proposed
DECNN method, which can be applied on variable-length vectors to conquer
the fixed-length limitation of the traditional DE method;

– design and integrate a second crossover operator into the proposed DECNN
to produce the children in the next generation representing the architectures
of CNNs whose lengths differ from their parents.

2 Background and Related Work

2.1 CNN Architecture

A typical Convolutional Neural Network (CNN) is constituted of four types of
layers - convolution layer, pooling layer, fully-connected layer and output layer.
The output layer depends only on the specific classification problem. For the
example of image classification, the number of classes decides the size of the
output layer. Therefore, when designing an architecture of CNNs, the output
layer is fixed once the specific task is given. However, to decide the other three
types of layers, first of all, the depth of the CNN architecture has to be decided;
Then, the type of each layer needs to be chosen from convolution layer, pooling
layer and fully-connected layer; Last but no least, since there are different sets
of attributes for different types of layers - filter size, stride size and feature maps
for the convolution layer; kernel size, stride size and pooling type enclosing max-
pooling or average pooling for the pooling layer; and the number of neurons for
the fully-connected layer, the attributes of each layer have to be tuned based on
its layer type in order to accomplish a CNN architecture that can obtain good
performance.

A Hybrid DE Approach to Designing CNN for Image Classification 3

2.2 Differential Evolution

Differential Evolution (DE) is a population-based EC method which searches for
the optimal solutions of a problem. It has been proved to be a simple and efficient
heuristic method for global optimisation over continuous spaces [16]. Overall,
there are four major steps in a DE algorithm, which are initialisation, mutation,
crossover and selection [12]. First of all, a population of candidate vectors are
randomly initialised. Secondly, mutation is applied according to Formula (1),
where vi,g means the ith temporary candidate vector of the gth generation; xr0,g,
xr1,g and xr2,g indicate three randomly picked candidates of the gth generation;
and F is the differential rate, which is used to control the evolution rate. Thirdly,
the crossover is performed based on Formula (2), where uj,i,g represents the jth
dimension of the ith candidate at the gth generation. At the beginning of the
crossover process for each candidate, a random number jrand is generated, and
then for each dimension of each candidate vector, another random number randj
is generated, which then is compared with the crossover rate Cr and jrand as
shown in Formula (2) to decide whether the crossover applies on this dimension.
After applying the DE operators, a trial vector ui,g is produced, which is then
compared with the parent vector to select the one that has a better fitness.
By iterating the steps of mutation, crossover and selection until the stopping
criterion is met, the best candidate can be found.

vi,g = xr0,g + F × (xr1,g − xr2,g) (1)

uj,i,g =

{
vj,i,g if randj(0, 1) < Cr or j = jrand

xj,i,g otherwise
(2)

2.3 Related Work

Recently, more and more research has been done using EC methods to evolve the
architectures of CNNs. Genetic CNN [21] and CGP-CNN [17] are two of the most
recent proposed methods that have achieved promising results in comparison
with the state-of-the-art human-designed CNN architectures.

Genetic CNN uses a fixed-length binary string to encode the connections
of CNN architectures in a constrained case. It splits a CNN architecture into
stages. Each stage is comprised of numerous convolutional layers which may or
may not connect to each other, and pooling layers are used between stages to
connect them to construct the CNN architecture. Due to the fixed-length binary
representation, the number of stages and the number of nodes in each stage
have to be predefined, so a large fraction of network structures are not explored
by this algorithm. Other than that, the encoding scheme of Genetic CNN only
encodes the connections, i.e. whether two convolutional layers are connected or
not; while the hyperparameters of the convolutional layers, e.g. the kernel size,
the number of feature maps, and the stride size, are not encoded, so Genetic
CNN does not have the ability to optimise the hyperparameters.

CGP-CNN utilises Cartesian Genetic Programming (CGP) [11] because the
flexibility of CGP’s encoding scheme is suitable to effectively encode the complex

4 B. Wang, Y. Sun, B. Xue and M. Zhang

CNN architectures. CGP-CNN employs a matrix of Nr rows and Nc columns to
represent the layers of a CNN architecture and their connections, respectively,
so the maximum number of layers is predefined. In addition, as six types of node
functions called ConvBlock, ResBlock, max pooling, average pooling, concatena-
tion and summation are prepared, CGP-CNN is confined to explore the limited
types of layers of CNN architectures. Last but not least, from the experimen-
tal results, the computational cost of CGP-CNN is quite high because training
CNNs in fitness evaluation is time-consuming.

In summary, manually design of CNN architectures and parameters is very
challenging and time-consuming. Automatically evolving the architectures of
deep CNNs is a promising approach, but their potential has not been fully ex-
plored. DE has shown as an efficient method in global optimisation, but has not
been used to evolve deep CNNs. Therefore, we would like to investigate a new
approach using DE to automatically evolve the architectures of deep CNNs.

3 The Proposed Algorithm

The proposed DECNN method uses DE as the main evolutionary algorithm,
and a second crossover operator is proposed to generate children whose lengths
differ from their parents to fulfil the requirement of evolving variable-length
architectures of CNNs.

3.1 DECNN Algorithm Overview

The overall procedure of the proposed DECNN algorithm is written in Algorithm
1.

Algorithm 1: Framework of IPDE

P ← Initialise the population elaborated in Section 3.3;
P best← empty;
while termination criterion is not satisfied do

Apply the refined DE mutation and crossover described in Section 3.5;
Apply the proposed second crossover to produce two children, and select the
best between the two children and their parents illustrated in Section 3.6;
evaluate the fitness value of each individual;
P best← retrieve the best individual in the population;

end while

3.2 Adjusted IP-Based Encoding Strategy

The proposed IP-Based Encoding Strategy is to use one IP Address to represent
one layer of Deep Neural Networks (DNNs) and push the IP address into a
sequence of interfaces, each of which bears an IP address and its corresponding
subnet, in the same order as the order of the layers in DNNs. Taking CNNs as an
example, the typical CNNs are composed of three types of layers - convolutional
layer, pooling layer and fully-connected layer. The first step of the encoding is
to work out the range that can represent each attribute of each type of the CNN
layer. There are no specific limits for the attributes of CNN layers, but in order
to practically apply optimisation algorithms on the task, each attribute has to

A Hybrid DE Approach to Designing CNN for Image Classification 5

be given a range which has enough capacity to achieve an optimal accuracy
on the classification problems. In this paper, the constraints for each attribute
are designed to be capable of accomplishing a relatively low error rate. To be
specific, for the convolutional layer, there are three attributes, which are filter
size ranging from 1 to 8, number of feature maps from 1 up to 128, and the stride
size with the range from 1 to 4. As the three attributes need to be combined
into one number, a binary string with 12 bits can contain all the three attributes
of the convolutional layer, which are 3 bits for filter size, 7 bits for the number
of feature maps, and 2 bits for the stride size. Following the similar way, the
pooling layer and fully-connected layer can be carried in the binary strings with
5 bits and 11 bits, respectively. The details of the range of each attribute are
listed in Table 1.

Table 1. The ranges of the attributes of CNN layers - Convolutional, Pooling, Fullly-
connected layer

Layer Type Parameter Range # of Bits

Conv Filter size [1,8] 3

of feature maps [1,128] 7

Stride size [1,4] 2

Total 12

Pooling Kernel size [1,4] 2

Stride size [1,4] 2

Type: 1(maximal), 2(average) [1,2] 1

Total 5

Fully-connected # of Neurons [1,2048] 11

Total 11

Once the number of bits of the binary strings has been defined, a specific
CNN layer can be easily translated to a binary string. Suppose a convolutional
layer with the filter size of 2, the number of feature maps of 32 and the stride size
of 2 is given, the corresponding binary strings of [001], [000 1111] and [01] can
be calculated by converting the decimal numbers1 to the corresponding binary
numbers. The final binary string that stands for the given convolutional layer is
[001 000 1110 01] by joining the binary strings of the three attributes together.
The details of the example are shown in Fig. 1.

Similar like network engineering where the subnet has to be defined before
allocating an IP address to an interface, i.e. a laptop or desktop, the IP-Based
Encoding Strategy needs to design a subnet for each type of CNN layers. Since
the number of bits of each layer type decides its size of the search space, and
the pooling layer takes much fewer bits than the other two, the chances of a
pooling layer being chosen would be much smaller than the other two. In order
to balance the probability of each layer type being selected, a place-holder of 6
bits is added to the binary string of the pooling layer to make it 11 bits, which
brings the odds of picking a pooling layer the same as that of a fully-connected

1 Before the conversion, 1 is subtracted from the decimal number because the binary
string starts from 0, while the decimal value of the attributes of CNN layers begins
with 1

6 B. Wang, Y. Sun, B. Xue and M. Zhang

Fig. 1. An example of how to encode a convolutional layer using a byte array

layer. As there are three types of layers with the maximum bits of 12, a 2-byte
binary string has sufficient capacity to bear the encoded CNN layers. Starting
with the convolutional layer of 12 bits, as this is the first subnet, the 2-byte
binary representation of the starting IP address would be [0000 0000 0000 0000],
and the finishing IP address would be [0000 1111 1111 1111]; The fully-connected
layer of 11 bits starts from the binary string [0001 0000 0000 0000] by adding one
to the last IP address of the convolutional layer, and ends to [0001 0111 1111
1111]; And similarly, the IP range of the pooling layer can be derived - from
[0001 1000 0000 0000] to [0001 1111 1111 1111]. The IP ranges of the 2-byte
style for each subset are shown in Table 2, which are obtained by converting the
aforementioned binary strings to the 2-byte strings. Now it is ready to encode a
CNN layer into an IP address, and the convolutional layer detailed in Fig. 1 is
taken as an example. The binary representation of the IP address is [0000 0010
0011 1001] by summing up the binary string of the convolutional layer and the
starting IP address of the convolutional layer’s subnet, which can be converted
to a 2-byte IP address of [2.61]. Fig. 2 shows an example vector encoded from
a CNN architecture with 2 convolutional layers, 2 pooling layers and 1 fully-
connected layer.

Fig. 2. An example of the encoded vector of a CNN architecture

Table 2. Subnets distributed to the three types of CNN layers and the disabled layer
Layer type IP Range

Convolutional Layer 0.0-15.255

fully-connected layer 16.0-23.255

pooling layer 24.0-31.255

A Hybrid DE Approach to Designing CNN for Image Classification 7

3.3 Population Initialisation

As the individuals are required to be in different lengths, the population initiali-
sation starts by randomly generating the lengths of individuals. In the proposed
DECNN, the length is randomly sampled from a Gaussian distribution with a
standard deviation ρ of 1 and a centre µ of a predefined length depending on the
complexity of the classification task as shown in Equation (3). After obtaining
the candidate’s length, the layer type and the attribute values can be randomly
generated for each layer in the candidate. By repeating the process until reaching
the population size to accomplish the population initialisation.

P (x) =
1

σ
√

2π
e−(x−µ)2/2σ2

(3)

3.4 Fitness Evaluation

The fitness evaluation process is illustrated in Algorithm 2. First of all, four ar-
guments are taken in by the fitness evaluation function, which are the candidate
solution which represents an encoded CNN architecture, the training epoch num-
ber for training the model decoded from the candidate solution, the training set
which is used to train the decoded CNN architecture, and the fitness evaluation
dataset on which the trained model is tested to obtain the accuracy used as the
fitness value. Secondly, the fitness evaluation process is pretty straightforward
by using the back propagation to train the decoded CNN architecture on the
training set for a fixed number of epochs, and then obtaining the accuracy on
the fitness evaluation set, which is actually used as the fitness value. For the
purpose of reducing computational cost, the candidate CNN is only trained on
a partial dataset for a limited number of epochs, which are controlled by the
arguments of the fitness function - k, D train and D fitness.

Algorithm 2: Fitness Evaluation

Input: The candidate solution c, the training epoch number k, the training set
D train, the fitness evaluation dataset D fitness;

Output: The fitness value fitness;
Train the connection weights of the CNN represented by the candidate c on the
training set D train for k epochs;
acc← Evaluate the trained model on the fitness evaluation dataset D fitness
fitness← acc;
return fitness

3.5 DECNN DE Mutation and Crossover

The proposed DECNN operations are similar to the standard DE mutation and
crossover as described in Section 2.2, but it introduces an extra step to trim the
longer vectors before applying any operation because the DECNN candidates
have different lengths and the traditional DE operations in Equation (1) and
(2) only apply on fixed-length vectors. To be specific, the three random vectors

8 B. Wang, Y. Sun, B. Xue and M. Zhang

for the mutation are trimmed to the shortest length of them, and during the
crossover, if the trial vector generated by the mutation is longer than the parent,
it will be trimmed to the length of the parent.

3.6 DECNN second crossover

Similar as the crossover of GAs, each individual of the two parents is split into
two parts by slicing the vector at the cutting points, and swap one part with
each other. The cutting point is chosen by randomly finding a position based on
Gaussian distribution with the middle point as the centre and a hyperparameter
ρ as the standard deviation to control the variety in the population. The flow of
the second crossover is outlined in Fig. 3.

Fig. 3. second crossover of the proposed DECNN algorithm

4 Experiment design

4.1 Benchmark Datasets

In the experiments, six widely-used benchmark datasets2 [3] are chosen to ex-
amine the proposed algorithm, which are the datasets of MNIST Basic (MB),
MNIST with a black and white image as the Background Image (MBI), MNIST
Digits Rotated with a black and white image as the Background Image (MDRBI),
MNIST with a Random Background (MRB), MNIST with Rotated Digits (MRD),
and CONVEX. The MB benchmark dataset and its four variants, the MBI,
MDRBI, MRB and MRD datasets, consist of handwritten digits and the corre-
sponding labels from 0 to 9, and each of the datasets is composed of a training
set of 12,000 instances and a test set of 5,000 instances; while convex images
and non-convex images with the corresponding labels constitute the CONVEX
dataset, which is split into a training set of 8,000 examples and a test set of
5,000 examples. Each image in these benchmark datasets has 28 × 28 pixels.
The reason for picking the six aforementioned datasets is to fulfil the purpose
of thoroughly testing the proposed algorithms because both multi-class classi-
fication tasks for MB and its variants and the binary classification tasks for
CONVEX are included in the selected datasets, and the complexity of MB and

2 Download URL:http://www.iro.umontreal.ca/ lisa/twiki/bin/view.cgi/Public/MnistVariations

A Hybrid DE Approach to Designing CNN for Image Classification 9

its variants differ from each other where MB is the simplest one; while MDRBI
is the most complicated.

4.2 State-of-the-art Competitors

Six state-of-the-art methods are reported to have achieved promising results on
the aforementioned benchmark datasets in the literature [3]. Therefore, they are
picked as the peer competitors of the proposed algorithm, which are CAE-2
[13], TIRBM [15], PGBM+DN1 [5], ScatNet-2 [2], RandNet-2 [3], PCANet-2
(softmax) [3], LDANet-2 [3], SVM+RBF [8], SVM+Poly [8], NNet [8], SAA-3
[8] and DBN-3 [8].

4.3 Parameter settings of the proposed EC methods

All of the parameters are configured according to the conventions in the com-
munities of DE [4] along with taking into account a small population to safe
computation time and the complexity of the search space. For the evolutionary
process, 30 is set as the population size and 20 is used as the number of genera-
tions; In regard to the fitness evaluation, the number of training epochs is set to
5 and 10% of the training dataset is passed for evaluation; In terms of the DE
parameters, 0.6 and 0.45 are used as the differential rate and the crossover rate,
respectively; The hyperparameter ρ of second crossover is set to 2, and µ of the
population initialisation is set to 10; 30 independent runs is performed by the
proposed DECNN on each of the benchmark dataset.

5 Results and analysis

Since DE is stochastic, statistical significance test is required to make the com-
parison result more convincing. When comparing the proposed DECNN with the
state-of-the-art methods, One Sample T-Test is applied to test whether the re-
sults of DECNN is better; when the comparison of error rates between DECNN
and the peer EC competitor named IPPSO [20] is performed, Two Sample T-test
is utilised to determine whether the difference is statistically significant or not.
Table 3 shows the comparison results between the proposed DECNN and the
state-of-the-art algorithms; Table 4 compares DECNN with IPPSO.

5.1 DECNN vs. State-of-the-Art methods

The experimental results and the comparison between the proposed DECNN
and the state-of-the-art methods are shown in Table 3. In order to clearly show
the comparison results, the terms (+) and (-) are provided to indicate the result
of DECNN is better or worse than the best result obtained by the corresponding
peer competitor; The term (=) shows that the mean error rate of DECNN are
slightly better or worse than the competitor, but the difference is not significant
from the statistical point of view; The term – means there are no available results
reported from the provider or cannot be counted.

It can be observed that the proposed DECNN method achieves encourag-
ing performance in terms of the error rates shown in Table 3. To be specific,
the proposed DECNN ranks the fifth on both the CONVEX and MB bench-
mark datasets; for the MBI benchmark, DECNN beats all of the state-of-the-art

10 B. Wang, Y. Sun, B. Xue and M. Zhang

methods; for the MDRBI dataset, the mean error rate of DECNN is the fourth
best, but the P-value of One Sample T-Test between DECNN and the third best
is 0.0871, which indicates that the significance difference is not supported from
the statistical point of view, so DECNN ties the third with PGBM+DN-1; for
the MRB benchmark, the mean error rate of DECNN is smaller than all other
methods, but the difference between DECNN and the second best algorithm is
not significant given the calculated P-value of 0.1053, so DECNN ties the first
with PGBM+DN-1; for the MRD benchmark, DECNN outruns the state-of-the-
arts method apart from TIRBM. In addition, by looking at the best results of
DECNN, DECNN achieves the smallest error rates on five out of the six datasets
compared with the 12 state-of-the-art methods, which are 1.03% on MB, 5.67%
on MBI, 32.85% on MDRBI, 3.46% on MRB and 4.07% on MRD. This shows
that DECNN has the potential to improve the state-of-the-art results.

Table 3. The classification errors of DECNN against the peer competitors
classier CONVEX MB MBI MDRBI MRB MRD

CAE-2 – 2.48 (+) 15.50 (+) 45.23 (+) 10.90 (+) 9.66 (+)

TIRBM – – – 35.50 (-) – 4.20 (-)

PGBM+DN-1 – – 12.15 (+) 36.76 (=) 6.08 (=) –

ScatNet-2 6.50 (-) 1.27 (-) 18.40 (+) 50.48 (+) 12.30 (+) 7.48 (+)

RandNet-2 5.45 (-) 1.25 (-) 11.65 (+) 43.69 (+) 13.47 (+) 8.47 (+)

PCANet-2 (soft-
max)

4.19 (-) 1.40 (-) 11.55 (+) 35.86 (-) 6.85 (+) 8.52 (+)

LDANet-2 7.22 (-) 1.05 (-) 12.42 (+) 38.54 (+) 6.81 (+) 7.52 (+)

SVM+RBF 19.13 (+) 30.03 (+) 22.61 (+) 55.18 (+) 14.58 (+) 11.11 (+)

SVM+Poly 19.82 (+) 3.69 (+) 24.01 (+) 54.41 (+) 16.62 (+) 15.42 (+)

NNet 32.25 (+) 4.69 (+) 27.41 (+) 62.16 (+) 20.04 (+) 18.11 (+)

SAA-3 18.41 (+) 3.46 (+) 23 (+) 51.93 (+) 11.28 (+) 10.30 (+)

DBN-3 18.63 (+) 3.11 (+) 16.31 (+) 47.39 (+) 6.73 (+) 10.30 (+)

DECNN(best) 7.99 1.03 5.67 32.85 3.46 4.07

DECNN(mean) 11.19 1.46 8.69 37.55 5.56 5.53

DECNN(standard
deviation)

1.94 0.11 1.41 2.45 1.71 0.45

5.2 DECNN vs. IPPSO

In Table 4, it can be observed that by comparing the results between DECNN
and IPPSO, the mean error rates of DECNN are smaller across all of the six
benchmark datasets, and the standard deviations of DECNN is less than those
of IPPSO on five datasets out of the six, so the overall performance of DECNN
is superior to IPPSO. The second crossover operator improves the performance
of DECNN because it performs a kind of local search between the two children
and their parents both in terms of the depth of CNN architectures and their
parameters.

Table 4. Classification rates of DECNN and IPPSO
CONVEX MB MBI MDRBI MRB MRD

DECNN(mean) 11.19 1.46 8.69 37.55 5.56 5.53

DECNN(standard
deviation)

1.94 0.11 1.41 2.45 1.71 0.45

IPPSO(mean) 12.65 1.56 9.86 38.79 6.26 6.07

IPPSO(standard
deviation)

2.13 0.17 1.84 5.38 1.54 0.71

P-value 0.01 0.01 0.01 0.26 0.10 0.001

A Hybrid DE Approach to Designing CNN for Image Classification 11

5.3 Evolved CNN Architecture

After examining the evolved CNN architectures, it is found that DECNN demon-
strates its capability of evolving the length of the architectures. When the evolu-
tionary process starts, the lengths of individuals are around 10; while the lengths
of evolved CNN architectures drop to 3 to 5 depending on the complexity of the
datasets, which proves that DECNN has the ability of effectively evolving CNN
architectures of any lengths.

6 Conclusions and Future Work

The goal of this paper is to develop a novel DE-based algorithm to automatically
evolve the architecture of CNNs for image classification without any constraint
of the depth of CNN architectures. This has been accomplished by designing and
developing the proposed hybrid differential evolution method. More specifically,
three major contributions are made by the proposed DECNN algorithm. First
of all, the IP-Based Encoding Strategy has been improved by removing the
maximum length of the encoded vector and the unnecessary disabled layer in
order to achieve a real variable-length vector of any length; Secondly, the new
DE operations - mutation, crossover are developed, which can be applied to
candidate vectors of variable lengths; Last but not least, a novel second crossover
is designed and added to DE to produce children having different lengths from
their parents. The second crossover plays an important role to search the optimal
depth of the CNN architectures because the two children created through the
second crossover have different length from their parents - one is longer and
the other is shorter, and during the selection from the two children and the
two parents, the candidate with a better fitness survives to the next generation,
which indicates that the length of the remaining candidate tends to be better
than the other three.

The proposed DECNN has achieved encouraging performance. By comparing
the performance of DECNN with the 12 state-of-the-art competitors on the six
benchmark datasets, it can be observed that DECNN obtains a very competitive
accuracy by ranking the first on the MBI and MRB datasets, the second and the
third on the MRD and MDRBI datasets, respectively, and the fifth on the MB
and CONVEX datasets. In a further comparison with the peer EC competitor,
the best results are achieved by DECNN on five out of the six datasets.

There are a couple of potential future works that can be done based on
the proposed DECNN. As can been seen, the DECNN method gains much bet-
ter accuracy on the most complex benchmark among all of the six benchmark
datasets, which implies DECNN is very likely to perform well on large and com-
plex datasets, so it is worthy investigating the DECNN algorithm on larger and
more complex datasets in order to obtain an insight of how it will perform for
industrial usage.

References

1. Abdel-Hamid, O., Deng, L., Yu, D.: Exploring convolutional neural network struc-
tures and optimization techniques for speech recognition. In: Interspeech 2013.
ISCA (August 2013),

12 B. Wang, Y. Sun, B. Xue and M. Zhang

2. Bruna, J., Mallat, S.: Invariant scattering convolution networks. IEEE Transactions
on Pattern Analysis and Machine Intelligence 35(8), 1872–1886 (2013).

3. Chan, T.H., Jia, K., Gao, S., Lu, J., Zeng, Z., Ma, Y.: Pcanet: A simple deep
learning baseline for image classification? IEEE Transactions on Image Processing
24(12), 5017–5032 (2015).

4. Gamperle, R., D Muller, S., Koumoutsakos, A.: A parameter study for differential
evolution. NNA-FSFS-EC 2002 10, 293–298 (08 2002)

5. K., S., G., Z., C., L., H., L.: Learning and selecting features jointly with point-wise
gated boltzmann machines (June 2013),

6. Kim, Y.: Convolutional neural networks for sentence classification. Proceedings
of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP) (08 2014)

7. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. Communications of the ACM 60(6), 84–90 (2017).

8. Larochelle, H., Erhan, D., Courville, A., Bergstra, J., Bengio, Y.: An empirical eval-
uation of deep architectures on problems with many factors of variation. Proceed-
ings of the 24th international conference on Machine learning - ICML 07 (2007).

9. LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W.,
Jackel, L.D.: Backpropagation applied to handwritten zip code recognition. Neural
Computation 1(4), 541–551 (Dec 1989).

10. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proceedings of the IEEE 86(11), 2278–2324 (Nov 1998).

11. Miller, J., Turner, A.: Cartesian genetic programming. In: Proceedings of the Com-
panion Publication of the 2015 Annual Conference on Genetic and Evolutionary
Computation. pp. 179–198. GECCO Companion ’15, ACM, New York, NY, USA
(2015). ,

12. Price, K.V., Storn, R.M., Lampinen, J.A., undefined, u.u.: Differential evolution:
a practical approach to global optimization, chap. 2, pp. 37–42. Springer (2005)

13. Rifai, S., Vincent, P., Muller, X., Glorot, X., Bengio, Y.: Contractive auto-encoders:
explicit invariance during feature extraction (June 2011),

14. Simonyan, Karen, Zisserman, Andrew: Very deep convolutional networks for large-
scale image recognition (Apr 2015),

15. Sohn, Kihyuk, Lee, Honglak: Learning invariant representations with local trans-
formations (Jun 2012),

16. Storn, R., Price, K.: Differential evolution a simple and efficient heuristic for global
optimization over continuous spaces (1997),

17. Suganuma, M., Shirakawa, S., Nagao, T.: A genetic programming approach to
designing convolutional neural network architectures. CoRR abs/1704.00764
(2017),

18. Sun, Y., Yen, G.G., Yi, Z.: Evolving unsupervised deep neural networks for learn-
ing meaningful representations. IEEE Transactions on Evolutionary Computation
(2018).

19. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,
Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: 2015 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). pp. 1–9 (June
2015)

20. Wang, B., Sun, Y., Xue, B., Zhang, M.: Evolving deep convolutional neural net-
works by variable-length particle swarm optimization for image classification. IEEE
Congress on Evolutionary Computation (to appear) (July 2018),

21. Xie, L., Yuille, A.: Genetic CNN. In: 2017 IEEE International Conference on Com-
puter Vision (ICCV). pp. 1388–1397 (Oct 2017).

