
A Multitree Genetic Programming
Representation for Automatically Evolving

Texture Image Descriptors

Harith Al-Sahaf, Bing Xue, and Mengjie Zhang

School of Engineering and Computer Science,
Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand

{harith.al-sahaf,bing.xue,mengjie.zhang}@ecs.vuw.ac.nz

Abstract. Image descriptors are very important components in com-
puter vision and pattern recognition that play critical roles in a wide
range of applications. The main task of an image descriptor is to au-
tomatically detect micro-patterns in an image and generate a feature
vector. A domain expert is often needed to undertake the process of de-
veloping an image descriptor. However, such an expert, in many cases,
is difficult to find or expensive to employ. In this paper, a multitree
genetic programming representation is adopted to automatically evolve
image descriptors. Unlike existing hand-crafted image descriptors, the
proposed method does not rely on predetermined features, instead, it
automatically identifies a set of features using a few instances of each
class. The performance of the proposed method is assessed using seven
benchmark texture classification datasets and compared to seven state-
of-the-art methods. The results show that the new method has signifi-
cantly outperformed its counterpart methods in most cases.

Keywords: Multitree, image classification, feature extraction.

1 Introduction

Discriminating between texture images is highly dependent on the detected
micro-patterns, i.e., keypoints, such as lines, spots and homogeneous regions
presented in those images. Designing a method to automatically identify or de-
tect such micro-patterns is often require human intervention to carry out this
task. The detection can be performed either manually, where a domain expert
highlights the coordinates of those keypoints, or automatically by using keypoint
detectors such as corner detection [21] and local binary patterns (LBP) [18]. Over
the past 50 years, image descriptors have emerged to automatically detect a set of
predetermined micro-patterns in order to extract the feature vector for an image
[11]. The majority of those image descriptors have two limitations. Firstly, they
are designed to detect a specific set of micro-patterns such as corners; secondly,
they are hand-crafted where domain expert intervention is needed to design and
develop those descriptors.



2 H. Al-Sahaf, B. Xue, and M. Zhang

Genetic Programming (GP) is an evolutionary computation technique that
mimics the principles of natural selection and survival of the fittest, where a
population of computer programs are evolved over generations to find a solution
for a user-defined problem [10].

Conventionally, a GP individual is represented by tree structure, where the
leaf nodes are populated from the terminal set and the internal nodes are pop-
ulated from the function set. The tree-based representation is one of the most
commonly used individual representations in GP [20], but it is not the only one.
Over the past 30 years, different individual representations have been investi-
gated such as linear GP, multitree GP, and cartesian GP [20].

Automatically evolving interest point detectors by utilising GP has been
proposed in [7], and further studied by Olague and Trujillo [19].

Fu et al. [8] proposed a GP method to construct invariant features for edge
detection. In order to improve the extracted features from raw pixel values, the
distributions of the observations from GP programs are used. Their results show
that the constructed features by GP with distribution estimation have improved
the detection performance compared to the combination of linear support vector
machine and a Bayseian model.

Cordelia et al. [6] proposed a multitree based GP method for generating
prototypes in classification problems, where a dynamic representation is used
to allow each individual to have different number of trees. This dynamic repre-
sentation allows the method to cope with situation where one or more classes
comprise subclasses. Using three well-known datasets and compared to another
GP based method, their method has achieved significantly better performance
as shown in [6].

Broic and Estevez [3] utilised multitree GP and information theory to per-
form clustering. In their method, an information theory based fitness function
is developed to measure the goodness of an evolved program. Moreover, prob-
abilistic based interpretation of the trees’ output is used in order to avoid the
requirement for a conflict resolution phase. The results of their experiments
show the superiority of this method compared to k-means clustering using 10
clustering benchmark datasets.

Utilising multitree GP to automatically discover some patterns for self-
assembling swarm robots is proposed in [14]. Promising results have been
achieved by this method, which reflect its effectiveness.

Recently, Al-Sahaf et al. [1] utilised GP to automatically evolve LBP-like
rotation-invariant image descriptors using a set of arithmetic operators, first-
order statistics and a special code node. Strongly-typed GP (STGP) [16] is re-
quired in order to specify the structure of an evolved program by this method.
Their results reveal the ability of the automatically evolved descriptors to out-
perform their counterpart hand-crafted descriptors.

The proposed method in [1] represents the baseline for the newly introduced
method in this paper, where the representation of an evolved program is the
main difference between the two methods.



A Multitree GP Representation for Automatically Evolving 3

The overall goal of this study is to utilise multitree GP to the task of auto-
matically evolving rotation-invariant image descriptors. The proposed method
uses simple arithmetic operators and first-order statistics, and only two instances
per class to build a GP program that scans an image using a sliding window to
generate the feature vector. Specifically, this study aims at providing answers
for the following questions.

– How a descriptor can be represented using a multitree GP representation?
– What fitness function can be used when there are only a few instances per

class in the training set?
– Is the proposed method able to evolve image descriptors that can outperform

the hand-crafted descriptors?

2 Background

The baseline method rotation-invariant GP descriptor (GP-criptorri) [1] is dis-
cussed in this section.

GP-criptorri is a GP based method that aims at automatically evolv-
ing rotation-invariant image descriptors using only two instances per class.

GP-criptorri uses a tree based representation, where each individual is repre-
sented by a single tree. The function set comprises the four arithmetic operators
+, −, × and /, and a special code node type. Apart from code, these functions
takes two arguments and they have their corresponding arithmetic meaning. A
code node takes a predefined number of children and returns a binary code by
substituting the value returned by each of its children by 0 if it is negative, and

1 otherwise. The terminal set in GP-criptorri consists of four node types min(·),
max (·), mean(·), and stdev(·) each of which operates on a vector of values and re-
turns the minimum, maximum, mean and standard deviation, respectively. The

order-invariant property of these four operators allowed GP-criptorri to evolve
rotation-invariant image descriptors [1].

The distances of between-class and within-class are used in the fitness func-
tion of GP-criptorri in order to allow the method to cope with having a small

number of training instances. The fitness function of GP-criptorri is defined as:

fitness ′ = 1−
(

1
/(

1 + e−5(D
′
b−D

′
w)
))

(1)

where D′b and D′w are, respectively, the average distance of between-class and
the average distance of within-class. These two distances are defined as:

D′b =
1

z (z − n)

∑
u∈R

∑
v∈R\u

χ2 (u,v) , {u ∈ u,v ∈ v} (2)

D′w =
1

z (n− 1)

∑
u∈R

∑
u,v∈u

χ2 (u,v) , {u 6= v} (3)



4 H. Al-Sahaf, B. Xue, and M. Zhang

Fig. 1. The overall algorithm of the proposed method.

where z is the total number of instances in the training set, n is the number of
instances per class, and R = {(vi, `i)} is the training set. vi denotes the feature
vector of the ith instance and the corresponding class label is denoted by `i, where
vi ∈ R≥0, `i ∈ {1, 2, . . . , c}, c is the number of classes, and i ∈ {1, 2, . . . , z}. The
distance between two feature vectors is measured by the widely used Chi-square
(χ2) measure [5], which is defined as:

χ2 (u,v) =
1

2

E∑
i=1

(ui − vi)
2

(ui + vi)
(4)

where E is the number of elements, u and v are two feature vectors of the same
length, i.e., consist of equal umber of elements, and ui and vi are, respectively,
the ith element in u and v.

3 The Proposed Method

The proposed multitree GP rotation-invariant image descriptor (MGPDri
t,w)

method is explained in this section.

3.1 Overall Algorithm

Similar to other machine learning methods, the overall algorithm can be divided
into five parts as depicted in Fig. 1. In the first part (dataset preprocessing), the
system divides the dataset equally into two subsets each of which comprises 50%
of the total instances in each class. The system randomly selects two instances
of each class from the first subset to form the training set (Str); whereas the
second subset will be used for evaluating the performance of the system, i.e.,
the test set (Sts). In the second part (image descriptor evolution), the system
feeds the training set (Str) into GP to evolve an image descriptor. The evolved
descriptor is then used to transform the training and test sets, i.e., generates
the feature vector for each image in the two sets, which is the third part of the
overall algorithm (dataset transformation). The transformed training and test
sets are, respectively, denoted as R and S. The fourth part (building a classifier)
concerns with building a classifier by feeding the transformed training set (R)
into a classification algorithm. The fifth and final part of the overall algorithm
(evaluation) uses the transformed test set (S) and the built classifier in order
to assess the goodness of the evolved descriptor to generate feature vectors that
are sufficient to be classified by the built classifier. More details regarding these
five parts are provided in the following subsections.



A Multitree GP Representation for Automatically Evolving 5

(a) (b)

Fig. 2. GP individual representations (a) single tree; and (b) multitree.

3.2 Program Representation

Here, a tree-based GP representation [20] is used, where a tree is a set of con-
nected nodes. Unlike conventional GP representation where each individual is
represented by a single tree, each individual in multitree GP (MGP) [6] is rep-

resented by a set of trees as depicted in Fig. 2. Each individual in MGPDri
t,w

comprises a set of predefined number of trees (t), where the leaf nodes are drawn
from the terminal set and the internal nodes are drawn from the function set.

Similar to GP-criptorri [1], the terminal set comprises four first-order statistic
node types min(·), max (·), mean(·), and stdev(·). The aim of each of these node
types is to perform feature extraction as they aggregate a set of pixels and re-
turn a single value. The function set consists of the arithmetic operators that
are often used in GP such as +, −, ×, and protected / (returns 0 if the denom-

inator is zero). One of the main differences between MGPDri
t,w and the baseline

GP-criptorri method is that the code node type has been omitted, which repre-

sents the root node of an individual evolved by GP-criptorri. Having the code
node type requires the use of STGP in order to define restrictions on the inputs
and outputs of the different node types. Moreover, special care is required to en-
sure the closure property when applying the mutation and crossover operators.
The code node converts the output of its children to a binary code by using the

0 value as a threshold. As this node is not used in MGPDri
t,w, the system applies

the same rule, i.e., uses the 0 value as a threshold, on the output of the root node
of each tree of the individual in order to generate a binary code from the outputs
of those trees. More details on this operation are provided in Section 3.4.

3.3 Fitness Function

The fitness of an individual often reflects its ability to tackle the user-defined
problem. Hence, the design of the fitness function is highly dependent on some
factors such as the problem at hand (e.g. classification or regression) and the
restrictions (e.g. number of training examples). For classification tasks, the ac-
curacy measure, or its variations, is often used as a fitness function. However,
relying on the accuracy is inappropriate in some situations such as when there
are only a few training instances [1], or the dataset is highly imbalanced [2],
i.e., the instances of one class are outnumbered by the instances in the other



6 H. Al-Sahaf, B. Xue, and M. Zhang

classes. Similar to GP-criptorri, the fitness function in MGPDri
t,w is designed

to consider the distance between instances from different classes as well as the
distance between instances of the same class, which is defined as

fitness = α×Dw + (1− α)× (1−Db) (5)

where α is a scale factor ∈ [0, 1], and Dw and Db are, respectively, the within-
class and between-class distance components.

Unlike GP-criptorri, MGPDri
t,w does not measure the average distance be-

tween each instance and all instances from the same and other classes; instead,
the Dw component measures the average distance between each instance and
only the farthest (most dissimilar) instance from the same class and calculated
using Equation (6); whilst Db measures the average distance between each in-
stance and only the closest (most similar) instance from all other classes and
is calculated using Equation (7). This design was motivated by the concepts of
margins in support vector machines.

Dw =
1

z

∑
u∈R

∑
u∈u

max
v

χ2 (u,v) , {v ∈ u,u 6= v} (6)

Db =
1

z (c− 1)

∑
u∈R

∑
v∈R\u

min
u,v

χ2 (u,v) , {u ∈ u,v ∈ v} (7)

Here a bold letter, e.g., u and v, is used to indicate the set of all instances
belonging to one class.

In MGPDri
t,w, the aim is to minimise the fitness value, i.e., the smaller the

fitness value the better the individual. Hence, the system will try to minimise
Dw and maximise Db. It is worth noting that χ2 returns a value between 0 and
1 (inclusive), and subsequently the values for Dw and Db are ranging between
0 and 1. Ideally, the system will evolve an individual that has a fitness value
equals to 0 (i.e. 0 within-class average distance and 1 between-class average
distance); whereas an individual with a fitness value of 1 (i.e. 1 within-class and
0 between-class average distances) is considered the worst case scenario.

3.4 Feature Vector Extraction

Each individual in MGPDri
t,w is an image descriptor that operates directly on

the raw pixel values of an image and generates a feature vector. The individual
scans the image being evaluated in a pixel-by-pixel manner from left to right
and from top to bottom using a window of size w (i.e. w × w pixels). At each
pixel (window position), the system calculates the terminals required by invoking
the min, max , mean and stdev functions on the pixel values of the current
window. The calculated terminals are then fed into the trees of the individual
and recursively each tree will be evaluated from the leaf nodes to the root node.
The value obtained from each root node will be substituted by 0 if it is negative
and 1 otherwise. This will form a binary code that comprises t bits, where t
is the number of trees. The binary code is then converted to decimal and the
corresponding bin of the histogram is incremented as presented in Fig. 3.



A Multitree GP Representation for Automatically Evolving 7

Fig. 3. An example demonstrates the steps to extract the feature vector from an image.

Fig. 4. Samples from the BrNoRo dataset.

4 Experiment Design

To assess the performance of MGPDri
t,w, experiments are conducted using seven

datasets for texture image classification. This section provides details regarding
the benchmark datasets, methods for comparison, and parameter settings.

4.1 Benchmark Datasets

The proposed method is designed to handle grey-scale images, where the inten-
sity of each pixel is ranging between 0 (black) and 255 (white). Hence, seven
widely-used datasets for texture classification are selected in this study.

The first dataset in this study (BrNoRo) is formed from the widely used
Brodatz Texture1 [4] dataset. Originally, the Brodatz Texture dataset comprises
112 classes each of which consists of a single image of size 640× 640 pixels. The
single instance of 20 randomly selected classes is divided into 84 non-overlapping
tiles each of which with size 64 × 64 pixels. The second dataset (BrWiRo) is
formed by rotating the instances of BrNoRo around the centre at successive 30◦

angles, i.e., {0◦, 30◦, . . . , 330◦}. Fig. 4 presents samples from BrNoRo.
The Outex Texture Classification2 [17] test suites consist of 16 texture classi-

fication benchmark datasets that vary in illumination, rotation, spatial scale and
colour. The third (OutexTC00) and fourth (OutexTC10) datasets in this study
are formed using the instances of Outex TC 00000 and its rotated version Ou-
tex TC 00010, respectively. Each of these two datasets consist of 24 classes for
the same type of texture materials; however, the former dataset is rotation-free
and the latter dataset comprises instances that fall into 9 rotation angles: 0◦, 5◦,
10◦, 15◦, 30◦, 45◦, 60◦, 75◦ and 90◦. Fig. 5 shows examples from OutexTC00.

1 Available at: http://multibandtexture.recherche.usherbrooke.ca
2 Available at: http://www.outex.oulu.fi/index.php?page=classification

http://multibandtexture.recherche.usherbrooke.ca
http://www.outex.oulu.fi/index.php?page=classification


8 H. Al-Sahaf, B. Xue, and M. Zhang

Fig. 5. Samples from the OutexTC00 dataset.

Fig. 6. Samples from the KySinHw dataset.

The fifth dataset in this study (KySinHw) is formed using the instances
of Kylberg Sintorn Rotation3 [13], which consists of 25 classes each of
which comprises instances that were rotated at successive 40◦ angles, i.e.,
{0◦, 40◦, . . . , 320◦}. Fig. 6 shows examples from this dataset.

The Kylberg Texture4 [12] dataset comprises two groups: with rotation, and
without rotation. The two groups consist of the same number of classes (28)
and for the same type of materials as depicted in Fig. 7. The main difference
between the content of these two groups is that the instances of each class in the
former (without rotation) are all captured under the same rotation angle; whilst
the instances of each class in the latter group (with rotation) are rotated in 12
degrees at successive 30◦ angles, i.e., {0◦, 30◦, . . . , 330◦}. Fig. 8 shows an example
taken from the with rotation group rotated in 12 angles. The sixth (KyNoRo)
and seventh (KyWiRo) datasets in this study are, respectively, formed using the
instances of the without and with rotation groups.

4.2 Methods for Comparison

The MGPDri
t,w method aims at evolving dense image descriptors, therefore, six

the-state-of-the-art dense hand-crafted image descriptors are used in this study

in addition to the baseline method (GP-criptorri). The methods are uniform local
binary pattern (LBPu2

p,r) [18], uniform and rotation-invariant LBP (LBPu2ri
p,r ) [18],

completed LBP (CLBPp,r) [9], local binary count (LBCp,r) and completed LBC
(CLBCp,r) [22], and dominant rotation LBP (DRLBPp,r) [15].

4.3 Parameter Settings

Both MGPDri
t,w and GP-criptorri are evolutionary-based methods. The evolu-

tionary parameters for both methods were kept identical as summarised in Ta-
ble 1. Moreover, these methods comprise other non-evolutionary parameters. The

3 Available at: http://www.cb.uu.se/~gustaf/KylbergSintornRotation/
4 Available at: http://www.cb.uu.se/~gustaf/texture/

http://www.cb.uu.se/~gustaf/KylbergSintornRotation/
http://www.cb.uu.se/~gustaf/texture/


A Multitree GP Representation for Automatically Evolving 9

Fig. 7. Samples from the KyNoRo dataset.

0◦ 30◦ 60◦ 90◦ 120◦ 150◦ 180◦ 210◦ 240◦ 270◦ 300◦ 330◦

Fig. 8. A sample from the KyWiRo dataset presented in 12 rotation angles.

window size (w) and number of trees (t), which is also the number of children of

code in GP-criptorri, are experimentally set to 5 × 5 pixels and 9, respectively.

The value of α in the fitness function of MGPDri
t,w ranges between 0 and 1, which

specifies the importance of the within-class and between-class distance compo-
nents. Hence, 11 different values with a step of size 0.1 are used as shown in
Fig. 9. As depicted in Fig. 9, the value of α ∈ [0.0, 0.6] gives good performance;
therefore, the scale factor has been set to 0.1 in this study.

Parameters of the benchmark methods have been investigated in [1], and
therefore, they have been set at those values were observed to give the best
performance. For LBPu2ri

p,r , CLBPp,r, LBCp,r and CLBCp,r methods, the radius
(r) and number of neighbouring pixels (p) parameters have been, respectively,
set to 3 and 24, i.e., LBPu2ri

24,3, CLBP24,3, LBC24,3 and CLBC24,3; whereas LBPu2
p,r

and DRLBPp,r are set to p = 8 and r = 1, i.e., LBPu2
8,1 and DRLBP8,1.

4.4 Experiments

The main role of an image descriptor is to generate the feature vector for an
image. The classification accuracy is widely adopted to measure the goodness
of a descriptor [18]. Hence, the k-Nearest Neighbours classifier with k = 1 (1-

NN) is used in this study. Apart from GP-criptorri and MGPDri
t,w, all other

methods are deterministic that require only a single run. The run for each of the

stochastic methods, i.e., GP-criptorri and MGPDri
t,w, is repeated independently

30 times using different seed values and the average performance is reported.
The training set (Str) is formed by randomly selecting two instances from each
class (Section 3.1); therefore, the same process is further repeated 10 times and
the mean and standard deviation are reported. In total, there are 4620 runs (=
[(30 (runs)×2 (methods))+(1 (run)×6 (methods))]×10 (repeats)×7 (datasets)).

5 Results and Discussions

The results of the eight methods on the seven datasets are presented in Fig. 10.
Each block in this figure groups the results of a single dataset. To test the



10 H. Al-Sahaf, B. Xue, and M. Zhang

Table 1. The GP parameters

Parameter Value Parameter Value

Generations 50 Minimum Tree Depth 2
Population Size 300 Maximum Tree Depth 10
Crossover Rate 80% Mutation Rate 20%
Selection Type Tournament Tournament size 7
Elitism Keep the best 10 individuals Initial Population Ramped Half-and-half

Fig. 9. The sensitivity of the scale factor (α) on KyNoRo.

significance of the obtained results, Mann-Whitney-Wilcoxon Test is used with
0.05 significance level. The symbols “+”, “−” and “=” are used in Fig. 10 to
indicate that the proposed method is significantly better, significantly worse,
and not significant, respectively, compared to the corresponding method.

On the first dataset (BrNoRo), the proposed method has significantly out-
performed all the other image descriptors, and achieved on average 93.00% accu-

racy. The minimum difference between MGPDri
9,5 and the other methods ranges

between 2.08% (GP-criptorri) and 29.38% (CLBP24,3).

The results on the second dataset (BrWiRo) show that MGPDri
9,5 has

achieved the best performance (92.94%). Apart from GP-criptorri, MGPDri
9,5

has significantly outperformed the other methods.

The results on the third dataset (OutexTC00) show that MGPDri
9,5 has

achieved on average 89.75% accuracy, which is significantly better than the per-

formance of the competitor methods, apart from LBPu2
8,1 and GP-criptorri.

The results on the fourth dataset (OutexTC10) show similar pattern com-
pared to that of the rotation-free dataset (OutexTC00) with on average perfor-

mance of 87.82%, where MGPDri
9,5 has significantly outperformed five methods

and show comparable, yet better, result to CLBP24,3 and GP-criptorri.
The proposed method has achieved the second best performance (95.88%)

on the fifth dataset (KySinHw), which is significantly outperformed the other
methods apart from CLBP24,3 (97.31%).

The results on the sixth (KyNoRo) and seventh (KyWiRo) datasets show that

MGPDri
9,5 has significantly outperformed the competitor methods apart from



A Multitree GP Representation for Automatically Evolving 11

Fig. 10. The average accuracy (%) of eight image descriptors on seven texture datasets.

CLBP24,3. The proposed method has achieved on average 90.53% on KyNoRo
and 90.91% on KyWiRo.

6 Conclusions

This paper has successfully utilised multitree GP to automatically evolve
rotation-invariant image descriptors. Relying on the between-class and within-
class distances, the proposed method uses only two instances per class to evolve
a descriptor. The results of the experiments on seven texture datasets show
that the proposed method has significantly outperformed, or achieved compara-
ble performance to, six hand-crafted state-of-the-art methods and the baseline

method (GP-criptorri).

In the future, we would like to investigate the proposed method for non-
texture datasets. We also would like to further investigate the possibility of
completely or partially transfer the evolved descriptors on one dataset to a sim-
ilar domain (texture) or different, but related, domain (non-texture).

References

1. H. Al-Sahaf, A. Al-Sahaf, B. Xue, M. Johnston, and M. Zhang. Automatically
evolving rotation-invariant texture image descriptors by genetic programming.
IEEE Transactions on Evolutionary Computation, 21(1):83–101, 2017.

2. U. Bhowan, M. Johnston, M. Zhang, and X. Yao. Reusing genetic programming
for ensemble selection in classification of unbalanced data. IEEE Transactions on
Evolutionary Computation, 18(6):893–908, 2014.

3. N. Boric and P. A. Estevez. Genetic programming-based clustering using an in-
formation theoretic fitness measure. In Proceedings of the 2007 IEEE Congress on
Evolutionary Computation, pages 31–38. IEEE, 2007.

4. P. Brodatz. Textures: A Photographic Album for Artists and Designers. Dover
Publications, 1999.



12 H. Al-Sahaf, B. Xue, and M. Zhang

5. S.-H. Cha. Comprehensive survey on distance/similarity measures between proba-
bility density functions. International Journal of Mathematical Models and Meth-
ods in Applied Sciences, 1(4):300–307, 2007.

6. L. P. Cordella, C. d. Stefano, F. Fontanella, and A. Marcelli. Genetic programming
for generating prototypes in classification problems. In Proceedings of the 2005
IEEE Congress on Evolutionary Computation, pages 1149–1155. IEEE, 2005.

7. M. Ebner and A. Zell. Evolving a task specific image operator. In Evolutionary
Image Analysis, Signal Processing and Telecommunications, volume 1596 of Lecture
Notes in Computer Science, pages 74–89. Springer, 1999.

8. W. Fu, M. Johnston, and M. Zhang. Distribution-based invariant feature construc-
tion using genetic programming for edge detection. Soft Computing, 19(8):2371–
2389, 2015.

9. Z. Guo, L. Zhang, and D. Zhang. A completed modeling of local binary pat-
tern operator for texture classification. IEEE Transactions on Image Processing,
19(6):1657–1663, 2010.

10. J. R. Koza. Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, 1992.

11. S. Krig. Computer Vision Metrics: Survey, Taxonomy, and Analysis. Apress, 1st
edition, 2014.

12. G. Kylberg. The Kylberg texture dataset v. 1.0. External report (Blue series) 35,
Centre for Image Analysis, Swedish University of Agricultural Sciences and Upp-
sala University, Uppsala, Sweden, 2011.

13. G. Kylberg. Automatic Virus Identification using TEM: Image Segmentation and
Texture Analysis. PhD thesis, Division of Visual Information and Interaction,
Uppsala University, Uppsala, Sweden, 2014.

14. J.-H. Lee, C. W. Ahn, and J. An. An approach to self-assembling swarm robots
using multitree genetic programming. Scientific World Journal, 2013:1–10, 2013.

15. R. Mehta and K. Egiazarian. Dominant rotated local binary patterns (DRLBP)
for texture classification. Pattern Recognition Letters, 71(1):16–22, 2016.

16. D. J. Montana. Strongly typed genetic programming. Evolutionary Computation,
3(2):199–230, 1995.

17. T. Ojala, T. Mäenpää, M. Pietikäinen, J. Viertola, J. Kyllonen, and S. Huovinen.
Outex - new framework for empirical evaluation of texture analysis algorithms. In
Proceedings of the 16th International Conference on Pattern Recognition, volume 1,
pages 701–706. IEEE, 2002.

18. T. Ojala, M. Pietikäinen, and T. Mäenpää. Gray scale and rotation invariant
texture classification with local binary patterns. In Proceedings of the 6th Euro-
pean Conference on Computer Vision, number 1842 in Lecture Notes in Computer
Science, pages 404–420. Springer, 2000.

19. G. Olague and L. Trujillo. A genetic programming approach to the design of inter-
est point operators. In Bio-inspired Hybrid Intelligent Systems for Image Analysis
and Pattern Recognition, volume 256 of Studies in Computational Intelligence,
pages 49–65. Springer, 2009.

20. R. Poli, W. B. Langdon, and N. F. McPhee. A Field Guide to Genetic Program-
ming. Published via http://lulu.com, 2008. (with contributions by J. R. Koza).

21. A. Willis and Y. Sui. An algebraic model for fast corner detection. In Proceedings
of the 12th IEEE International Conference on Computer Vision, pages 2296–2302.
IEEE, 2009.

22. Y. Zhao, D.-S. Huang, and W. Jia. Completed local binary count for rotation invari-
ant texture classification. IEEE Transactions on Image Processing, 21(10):4492–
4497, 2012.

http://lulu.com

	A Multitree Genetic Programming Representation for Automatically Evolving Texture Image Descriptors
	Introduction
	Background
	The Proposed Method
	Overall Algorithm
	Program Representation
	Fitness Function
	Feature Vector Extraction

	Experiment Design
	Benchmark Datasets
	Methods for Comparison
	Parameter Settings
	Experiments

	Results and Discussions
	Conclusions


