
Noname manuscript No.
(will be inserted by the editor)

Genetic Programming for Production Scheduling:
A Survey with A Unified Framework

Su Nguyen · Yi Mei · Mengjie Zhang

Received: date / Accepted: date

Abstract Genetic programming has been a powerful technique for automated
design of production scheduling heuristics. Many studies have shown that
heuristics evolved by genetic programming can outperform many existing
heuristics manually designed in the literature. The flexibility of genetic pro-
gramming also allows it to discover very sophisticated heuristics to deal with
complex and dynamic production environments. However, as compared to
other applications of genetic programming or scheduling applications of other
evolutionary computation techniques, the configurations and requirements
of genetic programming for production scheduling are more complicated. In
this paper, a unified framework for automated design of production schedul-
ing heuristics with genetic programming is developed. The goal of the frame-
work is to provide the researchers with the overall picture of how genetic pro-
gramming can be applied for this task and the key components. The frame-
work is also used to facilitate our discussions and analyses of existing studies
in the field. Finally, this paper shows how knowledge from machine learning
and operations research can be employed and how the current challenges can
be addressed.

Keywords Genetic programming · job shop · production scheduling ·
hyper-heuristics

1 Introduction

Production scheduling has been one of the most popular research topics in
operations research, management science, and artificial intelligence. Because

Su Nguyen
Victoria University of Wellington
E-mail: su.nguyen@ecs.vuw.ac.nz

Yi Mei and Mengjie Zhang
Victoria University of Wellington

2 Su Nguyen et al.

of limited production resources, jobs or customer orders usually have to wait
in the shop floor significantly longer than their actual processing times. Pro-
duction scheduling is required to determine when a job needs to be pro-
cessed, which machine to process, or which priority assigned to the job. The
goal of production scheduling is to effectively utilise the available resources
to achieve some organisational objectives such as minimising average time
that jobs have to spend in the system and minimise penalties caused by late
deliveries. Over the years, new production technologies have been adopted
but production scheduling is still an essential task to help businesses coordi-
nate production activities and become more competitive.

Production scheduling has a number of challenges. For example, produc-
tion environments are dynamic and uncertain (e.g. job arrivals, job cancella-
tions, machine breakdowns), which cause computational difficulties for most
optimisation techniques. The complexity of the production systems caused
by heterogeneous production processes (e.g. batching, sequence-dependent
setup times, assembly) also makes scheduling tasks particularly hard. More-
over, production scheduling has to take into account multiple conflicting ob-
jectives in order to ensure that the obtained schedules are approved and ap-
plicable.

In the last few decades, a large number of studies in artificial intelligence
(AI) and operations research (OR) have been conducted to develop new schedul-
ing techniques for production scheduling. Many techniques to search for op-
timal solutions such as branch-and-bound and dynamic programming have
been investigated in the literature but they are mainly restricted to small and
special problems. However, these techniques are too time consuming and im-
practical to handle real-world production scheduling problems. Therefore,
heuristics have been proposed to find “good enough” and “quick’’ solutions.
Scheduling heuristics can be very simple such as simple dispatching rules
First-In-First-Out (FIFO), shortest processing time (SPT), and earliest due date
(EDD). Some heuristics also monitor the status of the shop and machine to de-
cide which dispatching rule to be applied. For example, the rule FIFO/SPT
will apply FIFO when the jobs in the queue of the considered machine have
been waiting for more than a specific time and SPT will be applied otherwise.
Heuristics can also be very sophisticated such as composite dispatching rules
(Pinedo, 2008), which are combinations of simple rules basically in the form of
sophisticated human-made priority functions of various scheduling param-
eters. Other heuristics based on understandings of problem domains have
been also proposed in the literature such as shifting bottlenecks (Applegate
and Cook, 1991b). More general techniques based on meta-heuristics such as
tabu search (Nowicki and Smutnicki, 1996) and genetic algorithm (Bierwirth
and Mattfeld, 1999) have been developed to deal with different production
scheduling problems and show promising results. However, it is noted that
designing a good heuristic is not a trivial task and it can be very time con-
suming and require a lot of problem domain knowledge.

The field of automated heuristic design or hyper-heuristics (Burke et al,
2007, 2010) has been very active recently to facilitate the design of heuristics

Title Suppressed Due to Excessive Length 3

for hard computational problems. The goal of this approach is to explore the
“heuristic search space” of the problems instead of the solution search space
in the cases of heuristics and meta-heuristics. In this survey, we focus on
hyper-heuristics for heuristic generation to fabricate a new heuristic (or meta-
heuristic) by combining various small components (normally common statis-
tics/features or operations used in pre-existing heuristics) and these heuris-
tics are trained on a training set and evolved to become more effective. The
motivation of this approach is to reduce the time needed to design heuristics
from the human experts and to increase the chance to explore a wide range
of powerful and undiscovered heuristics. In the last decade, genetic program-
ming (Koza, 1992; Banzhaf et al, 1998) has been the dominating technique for
automated design for production scheduling heuristics (Branke et al, 2016b).

As compared to other hyper-heuristics based on supervised learning such
as decision tree (Olafsson and Li, 2010; Shahzad and Mebarki, 2016), logistic
regression (Ingimundardottir and Runarsson, 2011), support vector machine
(Shiue, 2009), and artificial neural networks (Weckman et al, 2008; Eguchi
et al, 2008), genetic programming (GP) has shown a number of key advan-
tages. First, GP has flexible representations which allow various heuristics
to be represented as different computer programs. Second, GP has powerful
search mechanisms which can operate in the heuristic search space to find
optimal or near optimal scheduling heuristics. Different from the supervised
learning methods mentioned above, GP can simultaneously explore both the
structure and corresponding parameters of a heuristic without assuming any
model based on a particular distribution or domain knowledge. Moreover,
many evolutionary multi-objective optimisation (EMO) techniques are also
available in the literature to help GP design effective heuristics to deal with
multiple conflicting objectives. Finally, heuristics obtained by GP can be par-
tially interpretable and very efficient, which is a very important feature to
enhance its applicability in practice.

In the last decade, there is a growing number of articles about automated
heuristic design and its applications. In Burke et al (2009), a general genetic
programming based hyper-heuristic framework was presented and some stud-
ies were used to explain the idea. Burke et al (2013) provided a general survey
of related studies on hyper-heuristics developed to deal with a wide range
of scheduling and combinatorial optimisation problems. Both heuristic selec-
tion and heuristic generation are discussed in that survey. Brief discussions of
hyper-heuristic applications were also provided. Although there are a num-
ber survey papers for production scheduling such as Ouelhadj and Petrovic
(2008) and Hart et al (2009), they just focused on traditional meta-heuristics
to find optimal solutions for a set of static scheduling instances. Recently,
Branke et al (2016b) presented the most comprehensive survey of existing
studies on hyper-heuristics and production scheduling. In the survey, critical
design aspects such as attribute selection, representation, and fitness func-
tions are presented. However, as the survey attempts to cover all existing
hyper-heuristic approaches for production scheduling, only key general is-
sues are provided.

4 Su Nguyen et al.

GP based hyper-heuristics have been applied to many production schedul-
ing problems and many new algorithms have been developed. As compared
to other evolutionary computation techniques, GP is more sophisticated be-
cause of its variable representations and special operators. Production schedul-
ing problems themselves are also complicated and have special characteris-
tics as compared to other combinatorial optimisation problems. In order to
successfully apply genetic programming to production scheduling, researchers
will need to understand technical aspects from these two research areas. The
goal of this paper is to provide a comprehensive review of existing studies on
using GP for automated design of production scheduling heuristics. A uni-
fied framework is presented in this paper to show how GP can be applied
to design production scheduling heuristics and the key components that can
influence the performance of GPHHs for these tasks. Each key component
is described in detail and we also analyse how they are treated in the pre-
vious studies. Then we discuss the connections between GP and other AI
and OR techniques. Finally we highlight the current issues and challenges. It
is expected that the survey will help the beginning researchers have a good
overview of this emerging and interesting research area and pick up key ideas
and challenges for the future studies.

2 Background

Before moving to detailed discussions of GP for production scheduling, we
provide a brief overview of production scheduling and genetic program-
ming. This section targets researchers who are new to these two research
areas. Those who are familiar with scheduling and GP concepts can safely
skip this section.

2.1 Production scheduling

Production scheduling is about allocation of scarce manufacturing resources
to tasks over time. Depending on the nature of production processes and cus-
tomer demand, there are many different types of production environments.
In the literature, a scheduling problem is described by the triplet β|γ|δ, where
β represents the machine environment, γ provides the processing character-
istic (it may contain no entry at all or multiple entries), and δ describes the
objective to be optimised (Pinedo, 2008). The goal of production scheduling
is to determine when a job (or a customer order) should be processed and
which machine (i.e. production resource in β) is used to process that job to
optimise δ, given that all process constraints γ are satisfied. For the single ma-
chine environment, a job only needs to go through one production process to
be completed. For multi-stage (with multiple machines) environment, a job
is a sequence of operations, each of which is to be performed on a particular
machine.

Title Suppressed Due to Excessive Length 5

Studies of production scheduling literature can be classified into two main
streams. The first one focuses on static scheduling problems where informa-
tion of all jobs are available. Previously studies on static problems try to
develop efficient algorithms to find optimal solutions. Nevertheless, many
scheduling problems are proven to be NP-hard. Thus most proposed ex-
act methods such as branch-and-bound and dynamic programming fail to
find optimal solutions (or can only find optimal solutions for very small in-
stances). As a result, a large number of scheduling heuristics, e.g. NEH for
flows shop scheduling (Vazquez-Rodriguez and Ochoa, 2011), and shifiting
bottleneck (Pinedo, 2008) for job shop scheduling, are developed to search
for “good enough” solutions within a reasonable computational times. Meta-
heuristics such as tabu search (Nowicki and Smutnicki, 1996), genetic algo-
rithm (Bierwirth and Mattfeld, 1999), particle swarm optimisation (Sha and
Hsu, 2006) have also been applied extensively to solve production scheduling
problems.

For dynamic scheduling problems, jobs may arrive randomly over time
and their information is not available before their arrivals. Dispatching rules
is the most popular approach for dynamic scheduling problem. In most cases,
dispatching rules are represented by priorities functions that assign priorities
to jobs. Then the jobs with the higest priority will be processed first. Many
rules have been developed by practitioners and researchers to cope with a
wide range of production environments. Three attractive characteristics of
the dispatching rules are their efficiency, reactiveness, and interpretability.
GP plays a major role in dynamic scheduling, which is to be described below.

2.2 Genetic programming

GP (Koza, 1992) is an evolutionary computation (EC) method, inspired by bi-
ological evolution, to automatically find computer programs (i.e. scheduling
heuristics in our case) for solving a specific task. In genetic programming,
a population of computer programs (individuals) is created and these pro-
grams are evolved to gain higher fitnesses through an evolutionary process.
In each generation of the evolutionary process, each program is evaluated by
using a pre-defined fitness function, which assesses the ability of the program
to perform a specific computational task. The fitness values obtained by pro-
grams in the population decide the chance of each program to survive and
reproduce (with genetic operators) in the next generation.

Different from genetic algorithms, each individual of a GP population is
not represented by a fixed-length string of genes (bits, real numbers, or sym-
bols). Because the shape and length of the final program is normally not
known by the user, individuals in GP usually represent programs as tree
structures which are constructed by a set of terminals and a set of functions.
Basically, a GP individual is a specific combination of elements selected from
these two sets. The terminal set consists of programs’ inputs (also referred
to as features or attributes) or (ephemeral random) constants (Koza, 1992).

6 Su Nguyen et al.

Meanwhile, the function set can contain arithmetic operators, logic opera-
tors, mathematical or specialised functions used to contruct GP programs.
Other representations are also developed in grammar-based GP (Whigham,
1995), graph-based GP (Poli, 1998; Schmidt and Lipson, 2009) and linear-
based GP (Langdon and Banzhaf, 2005; Brameier and Banzhaf, 2010) and
achieve very promising results. For each representation, special genetic oper-
ators (crossover, mutation) are developed to help GP create new individuals
based on parent programs.

2.3 Genetic programming for production scheduling

GP for production scheduling has been very active in recent years. With flexi-
ble representations, GP can represent and evolve effective scheduling heuris-
tics to deal with a wide range of scheduling problems. Also, since GP does not
rely on any specific assumptions, it can be easily extended to deal with dif-
ferent production scheduling problems. Figure 1 shows the number of pub-
lished articles in this area since 2000. Miyashita (2000) is probably the first
study that used GP to evolved dispatching rules for job shop scheduling and
showed the effectiveness of evolved dispatching rules. The paper also anal-
ysed different ways dispatching rules can be learned in a general job shops.
From 2000 to 2004, there were only four papers about this topic and mainly
focused on applications of GP for classical production scheduling problems.
From 2005 to 2009, GP is applied to more production scheduling problems
and researchers become interested in improving the performance of GP. New
representations and genetic operators were proposed to cope with specific
scheduling problems (Geiger et al, 2006). Experiments to compare different
GP methods were also conducted (Jakobovic and Budin, 2006; Li et al, 2008).
Since 2010, there have been a dramatic growth in the number of studies on
this topic. These recent studies have focused on improve the effectiveness
and efficiency of GP for production scheduling by developing new represen-
tations (Nguyen et al, 2013b), new surrogate-assisted models (Hildebrandt
and Branke, 2014), local search heuristics (Nguyen et al, 2015a), and ensem-
ble methods (Park et al, 2015a; Hart and Sim, 2016). Practical issues such as
multiple conflicting objectives (Nguyen et al, 2013c; Freitag and Hildebrandt,
2016), multiple decisions (Nie et al, 2013a; Nguyen et al, 2014d), attribute se-
lection (Mei et al, 2016) are catching more attentions. Moreover, researchers
have been interested in reusability of evolved dispatching rules as well as
their interpretability (Hildebrandt et al, 2010; Nguyen et al, 2014d). Table 1
shows a list of major papers about automatic design of production schedul-
ing heuristics via GP and their focuses.

3 Unified Framework

Figure 2 shows a proposed unified framework for automated heuristic design
of production scheduling with GP. Based on the scheduling problem of inter-

Title Suppressed Due to Excessive Length 7

Table 1 Topics covered by previous studies

Paper M
et

a-
al

go
ri

th
m

R
ep

re
se

nt
at

io
n

G
en

et
ic

O
pe

ra
to

r

Se
ar

ch
M

ec
ha

ni
sm

Fi
tn

es
s

Fu
nc

ti
on

M
ul

ti
pl

e
D

ec
is

io
ns

M
ul

ti
-o

bj
ec

ti
ve

A
tt

ri
bu

te
A

na
ly

si
s

In
te

pr
ea

bi
lit

y

G
en

er
al

is
ab

ili
ty

Miyashita (2000) X
Dimopoulos and Zalzala (2001) X X
Yin et al (2003) X X X X
Ho and Tay (2005) X
Geiger et al (2006) X X
Jakobovic and Budin (2006) X X
Jakobovic et al (2007) X
Tay and Ho (2007) X
Beham et al (2008) X
Geiger and Uzsoy (2008) X X
Baykasoglu (2008) X X
Li et al (2008) X X X
Tay and Ho (2008) X X X
Yang et al (2008) X X
Mucientes et al (2008) X X
Baykasolu and Gken (2009) X
Kofler et al (2009) X
Furuholmen et al (2009) X X
Hildebrandt et al (2010) X X X X
Kuczapski et al (2010) X
Nie et al (2010) X X
Pickardt et al (2010) X
Baykasoglu et al (2010) X X X
Abednego and Hendratmo (2011) X
Nguyen et al (2011) X X X
Nie et al (2011a) X X X
Nie et al (2011b) X
Vazquez-Rodriguez and Ochoa (2011) X X X
Jakobovi and Marasovi (2012) X X
Nguyen et al (2012a) X X X X
Nguyen et al (2012b) X X
Nie et al (2012) X X
Han et al (2012) X
Nguyen et al (2013a) X X X X
Nguyen et al (2013b) X X X X X X
Nguyen et al (2013c) X X
Nguyen et al (2013d) X X
Nie et al (2013a) X X
Park et al (2013a) X X
Park et al (2013b) X X X
Pickardt et al (2013) X X X X X
Qin et al (2013) X X X
Nie et al (2013b) X
Hildebrandt and Branke (2014) X X X
Hildebrandt et al (2014) X X
Hunt et al (2014b) X
Hunt et al (2014a) X X
Nguyen et al (2014b) X X X X
Nguyen et al (2014a) X X
Nguyen et al (2014c) X X X
Nguyen et al (2014d) X X X X X X
Nguyen et al (2014e) X X X
Park et al (2014) X
Alsina et al (2015) X X
Belisrio and Pierreval (2015) X X X
Sim and Hart (2015) X X X X
Branke et al (2015) X X X X X
Hunt et al (2015b) X X
Hunt et al (2015a) X X X
Nguyen et al (2015a) X X
Nguyen et al (2015b) X X X
Park et al (2015b) X X
Park et al (2015a) X X
Shi et al (2015) X
Wang et al (2015) X
Baykasoglu and Ozbakr (2015) X X X X
Chen et al (2015) X X
Durasevic et al (2016) X X X
Freitag and Hildebrandt (2016) X X
Hart and Sim (2016) X X X X
Karunakaran et al (2016a) X X
Park et al (2016a) X X
Park et al (2016b) X X
Riley et al (2016) X X
Branke et al (2016a) X X
Mei and Zhang (2016) X
Karunakaran et al (2016b) X X
Masood et al (2016a) X X
Mei et al (2016) X X
Nguyen (2016) X X X
Nguyen et al (2016) X X X

8 Su Nguyen et al.

Year Period Genetic	Programming Topics Papers
<	2005 2000	to	2004 4 4
<	2010 2005	to	2009 18 14
>=	2010 From	2010 69 69

4

14

69

0

10

20

30

40

50

60

70

80

2000 	 TO	 2004 2005 	 TO	 2009 F ROM 	 2010

N
U
M
BE
R	
O
F	
PA

PE
RS

Applications
- Job	shop	scheduling
- Single	machine	scheduling
- Machine	breakdowns

New	Applications
- Flexible	job	shop	scheduling
- Batch	processor	scheduling
New	representations	for	GP
Specialised genetic	operators
Comparisons	of	GP	methods

Developments	of	advanced	techniques	to	
improve	efficiency	and	effectiveness:
- New	representations
- Surrogate-assisted	models
- Local	search	heuristics
- Ensemble	methods
Multi-objective	optimisation
Multiple	decisions
Attribute	selection
Resuability
Interpretability/Visualisation

Fig. 1 Published articles on GP for production scheduling since 2000.

est, the first step is to determine the meta-algorithm of scheduling heuristics,
which explains how the heuristic will work. Based on the meta-algorithm, we
need to identify which component(s) should be evolved by GP. Then the suit-
able representations, relevant features or attributes, and function sets used to
evolve heuristics are decided. The evaluation models or evaluators are also
needed help evaluate the performance of evolved heuristics during the evo-
lution process. In the lower part of Figure 2, the evolutionary process of GP is
presented. Similar to other EC techniques, GP starts with a population of ran-
domly generated heuristics (based on the representation, function sets, and
terminals set defined previously). Each generated heuristics are then eval-
uated by the evaluation model to determine their quality, i.e. fitness. After
all individuals in the GP population are evaluated, genetic operators are ap-
plied to generate new heuristics and potential heuristics are selected to form
the population for the next generation. The population will be evolved over
many generations and the evolution is stopped when the termination con-
dition is met. Post-processing routines can also be applied to simplify and
interpret the evolved heuristics. In the rest of this section, we will analyse
each key component in this framework and the related existing studies.

3.1 Production scheduling problems

GP has been applied a wide range production scheduling problems, ranging
from single machine scheduling (Dimopoulos and Zalzala, 2001; Jakobovic
and Budin, 2006; Nie et al, 2010; Yin et al, 2003; Geiger et al, 2006), parallel
machine scheduling (Jakobovic et al, 2007; Durasevic et al, 2016), to (flexi-
ble) job shop scheduling (Miyashita, 2000; Jakobovic and Budin, 2006; Tay

Title Suppressed Due to Excessive Length 9

Production Scheduling Problems

Meta-algorithm of Scheduling Heuristics

Evaluation
Models

Component(s) to be evolved

Representation(s)Selected
Attributes Function Set

Initilization
of Population

Fitness
evaluation

Reproduction
via genetic
operators

Selection

Termination ? Best
Heuristic

Post-processing

Yes

No

Fig. 2 Unified framework.

and Ho, 2008; Vazquez-Rodriguez and Ochoa, 2011; Nie et al, 2011b, 2013a;
Nguyen et al, 2013a,b, 2014d; Hunt et al, 2014b; Mei et al, 2016; Hart and Sim,
2016; Karunakaran et al, 2016a). Most machines considered in these problems
are the same in terms of capability (eligibility to handle a job) and assump-
tions (e.g. utilisation level). Although some special cases are considered in
the literature such as batching (Geiger and Uzsoy, 2008; Pickardt et al, 2013),
machine breakdowns (Yin et al, 2003), and unrelated parallel machines (Dura-
sevic et al, 2016), these are very limited. Also, most scheduling problems han-
dled by GP are dynamic problems where jobs will arrive randomly over time
and their information is only available upon their arrivals. For most of these
problems, the main concern is to find the best way to prioritise or schedule
jobs in order to optimise some objectives such as makespan, mean flowtime,
maximum flowtime, mean tardiness, and total weighted tardiness.

3.2 Meta-algorithm of scheduling heuristics

As the scheduling problems are formulated, one of the key steps is to identify
the meta-algorithm of scheduling heuristics. This step provides the basic con-
cepts of the scheduling heuristics and explains how scheduling decisions will
be made. It is expected that the meta-algorithm is general enough, ideally can
lead to optimal scheduling decisions. In this step, it is important to (1) identify

10 Su Nguyen et al.

1. Initialize P with unscheduled operations (with no precedence operation)
2. From the set of operations P, find the operation with earliest completion

time C∗, and its corresponding machine m∗

3. Find the earliest start time S∗ of operations in P that need to be processed
by m∗

4. Create the set P with all operations in P with ready time smaller than
S∗+alpha(C∗-S∗)

5. Apply a dispatching rule to find the next operation O in P to be scheduled
next on m∗

6. Remove O from P and add its successor operation (if available) to P
7. If P is not empty, return to step 2

Fig. 3 Example meta-algorithm of schedule construction heuristics.

the fixed and variable components of the meta-algorithm, and (2) understand
the complexity of the scheduling heuristics based on the meta-algorithm.

For example, Figure 3 shows a generalized schedule construction algo-
rithm (Pinedo, 2008; Bierwirth and Mattfeld, 1999; Nguyen et al, 2013b) to
construct an active schedule, a non-delay schedule or a hybrid of both active
and non-delay schedules with a specific dispatching (priority) rule. This algo-
rithm was based on the Giffler and Thompson (Giffler and Thompson, 1960)
and has been widely used in the scheduling literature to deal with different
production scheduling problems. The algorithm first identifies the machine
m∗ to be scheduled based on the earliest completion time of all available op-
erations P. Then a subset P’∈ P including candidate operations to be sched-
uled next is determined by checking if the ready times of these operations
are smaller than S∗+alpha(C∗-S∗). The parameter alpha is the non-delay
factor ∈ [0, 1] to control the look-ahead ability of the algorithm by restricting
operations included in P’ (the algorithm generates non-delay schedules if
alpha = 0 and active schedules if alpha=1). A dispatching rule is ap-
plied to determine the next operation in P’ to schedule next. It is clear that
performance of the algorithm depends on how the subset P’ is determined
and how the next operation is picked. This algorithm is very efficient be-
cause the next operation can be determined easily by calculating priorities for
jobs in P’. These two decisions are governed by the non-delay factor alpha
and the dispatching rule. In this algorithm, alpha and dispatching
rule are the two variable components and the rest are fixed. When designing
scheduling heuristics based on the algorithm in Figure 3, we need to decide
alpha and dispatching rule to apply to obtain optimal or near optimal
schedules. These two are candidate components which can be evolved by us-
ing GP.

It is noted that the above algorithm and its variants have been used in
most previous studies on automated design of production scheduling heuris-
tics. Nguyen et al (2013a) proposed iterative dispatching rules (IDR) which
are able to create multiple schedules iteratively and the new schedule is gen-
erated based on the information of the previous generated schedule (e.g.
completion times of jobs). Although their meta-algorithm is slightly differ-
ent from one in Figure 3 (only small change in step 2 and step 7), two vari-
able components to be designed are still alpha and dispatching rule. In

Title Suppressed Due to Excessive Length 11

Basic	Structure	of	Scheduling	Heuristics	(4)

Example: Variable	 neighborhood	 search	with	Iterative	Dispatching	 Rules	

15

Int J Adv Manuf Technol (2013) 67:85–100 95

Fig. 7 Representation of an
IDR-VNS

the next IDR to efficiently explore better schedules. Similar
to VNS, in order to create effective IDR-VNS, we need to
decide the following: (1) how many Fk to be used (kmax),
(2) what Fk to be used and (3) the order in which these Fk

are applied. While the first factor has to be decided experi-
mentally, the next two factors can be handled by GP. A GP
method is proposed in which a local search IDR-VNS is rep-
resented by a GP individual with multiple trees. An example
of this representation is shown in Fig. 7. By evolving these
GP individuals, GP can also helps us find the effective IDRs
and the order in which they will be applied.

5.3 Performance of the enhanced IDRs

Figure 8 shows the performance of the enhanced IDRs using
the two extensions discussed in the previous subsections. In
this figure, IDR-P is used to indicate the evolved rules using
pseudo terminals and kmax = 2 is used for IDR-VNS. It is
easy to see that the evolved IDRs dominate the evolved DRs.
For Jm||Cmax, there is no significant difference between
IDR and IDR-P. These results indicate that our heuristic to
initialise R (as described in Section 3.2) is good enough for
these problems. For Jm|| ∑ wjTj , IDR-P rules are signif-
icantly better than IDRs on the training set but there is no
significant difference between these two types of dispatch-
ing rules on the test set. One explanation for this is that the
initialisation of R can be useful when dealing with sophis-
ticated objectives such as

∑
wjTj ; however, each problem

instance may require different R0 and it is really hard to
create a general way to generate good initial R0.

IDR-VNS is the best approach in this comparison since
the average relative performance of IDR-VNS is signif-
icantly smaller than those of all the other approaches.
Obviously, the use of variable IDRs to search for good
schedules is shown to be very effective. The fact that IDR-P
has trouble improving the quality of IDRs and the success
of IDR-VNS suggests two interesting points. First, the JSS
instances in the data sets have very different characteristics,
which cannot be handled easily by a single dispatching rule,
even when the feedback from the previous schedule is used.
Second, from the optimisation search viewpoint, the search
space of JSS problems is very complicated with many local
optima. Therefore, the use of good R0 alone may not be

useful because IDRs can be easily trapped at some local
optimum. To enhance its performance, IDRs need to include
some mechanism that helps escape from the local optima.
VNS is an effective mechanism of this kind.

0.14

0.15

0.16

0.17

0.18

DR IDR IDR−P IDR−VNS

DR IDR IDR−P IDR−VNS

DR IDR IDR−P IDR−VNS

DR IDR IDR−P IDR−VNS

av
er

ag
e

re
la

tiv
e

de
vi

at
io

n
av

er
ag

e
re

la
tiv

e
de

vi
at

io
n

av
er

ag
e

re
la

tiv
e

de
vi

at
io

n
av

er
ag

e
re

la
tiv

e
de

vi
at

io
n

0.15

0.16

0.17

0.18

0.19

0.2

−0.27

−0.26

−0.25

−0.24

−0.23

−0.22

−0.21

−0.25

−0.24

−0.23

−0.22

−0.21

−0.2

−0.19

(a) Training set/Jm||Cmax

(c) Training set/Jm|| wjTjΣ

(d) Test set/Jm|| wjTjΣ

(b) Test set/Jm||Cmax

Fig. 8 Comparison between evolved DR, IDR, IDR-P and IDR-VNS

IDR_1 IDR_2 IDR_k

Fig. 4 Variable neighborhood search with IDR (Nguyen et al, 2013a) .

the variable neighborhood search with IDR (Nguyen et al, 2013a), k iterative dis-
patching rules can be used to improve the quality of the final schedule. In this
case, the variable components are the k dispatching rules and the non-delay
factor.

Usually meta-algorithms of scheduling heuristics are developed by study-
ing existing heuristics in the literature. Other meta-algorithms have also been
investigated such as beam search heuristics (Park et al, 2013b; Nguyen et al,
2014b), ensembles of heuristics (Hart and Sim, 2016), adaptive scheduling
heuristics based on bottleneck machines (Jakobovic and Budin, 2006), and
NEH heuristics (Vazquez-Rodriguez and Ochoa, 2011). These evolved heuris-
tics are very different in terms of computational costs and how they build
schedules. While the majority of scheduling heuristics investigated in the lit-
erature are construction heuristics (Burke et al, 2010), i.e. step-by-step con-
struct the schedule, some have also investigated improvement heuristics that
iteratively refine the schedule (Vazquez-Rodriguez and Ochoa, 2011; Nguyen
et al, 2013a; Park et al, 2013a; Mascia et al, 2013). One of the reasons is that
the improvement heuristics are usually much more computationally expen-
sive as compared to construction heuristics. Although improvement heuris-
tics developed by GP show very promising results, they are still restricted
to static scheduling problems. The studies of applying evolved improvement
heuristics to dynamic environments will be an interesting research topic in
future studies. When dealing with different planning and scheduling deci-
sions, different meta-algorithms can also be used (Nie et al, 2012; Nguyen
et al, 2014d).

3.3 Component(s) to be evolved

The meta-algorithms discussed above help us understand how scheduling
decisions are made and its basic (variable) components. Depending on the
production environments, one or more components will need to be designed.
Below are some popular components that have been investigated in the liter-
ature:

– Dispatching rule or priority rule: is used for sequencing tasks in a scheduling
problem. At the moments when a sequencing decision needs to be made,

12 Su Nguyen et al.

dispatching rules will prioritise the jobs in the queue of a considered ma-
chine. Then, the job with the highest priority is processed next.

– Routing rule or machine assignment rule: is used to decide which machine
from a pre-determined set of machines to process the considered opera-
tion. Routing rules are usually investigated when dealing with flexible job
shop scheduling problems.

– Due date assignment rule: is used to determine the due dates for arriving
jobs by estimating the job flowtimes (the time taken from the arrival until
the completion of a job).

– Batch formulation rule: is used to determine how to group the individual
jobs into batches. This is mainly investigated for shops with batching pro-
cesses.

– Performance/processing time estimation: a model is obtained to estimate pro-
cessing times or performance measures for planning purposes.

– Inserted idle time: a model is obtained to estimated the idle times to be
inserted into the schedule to absorb disruptions.

– Non-delay factor: is used to governed the look-ahead ability of dispatching
rules, i.e. to what extent upstream jobs will be considered when making
scheduling decisions.

– Improvement/greedy heuristics: is used to iteratively improve the quality of
schedules in static scheduling problems.

Table 2 summarises the basic components evolved by GP in the literature.
Dispatching rules are the most popular component investigated in previous
studies as sequencing and scheduling decisions are required in most produc-
tion scheduling problems. Other components are more problem-specific and
only investigated when dealing with production systems with special pro-
cesses or requirements. Because the structure of these components are usually
unknown in advance, their corresponding search spaces are large and finding
optimal or near-optimal solutions is very challenging. Moreover, evaluating
the quality of evolved heuristics is not straightforward because of the com-
plex and dynamic production environments. Thus evolving scheduling com-
ponents is challenging and time consuming. More discussions about these
challenges and proposed techniques to overcome them will provided in the
upcoming sections.

However, it is noted that we do not need to evolve all those components.
There are a number of reasons that evolving all components is not always
a good idea. First, it can be very time-consuming to evolve multiple com-
ponents at the same time because the evaluation costs (for fitness evalua-
tions) will be higher. Second, the search space of scheduling heuristics is also
much larger as evolved components can be very different and can use dif-
ferent function sets and feature sets (will be discussed more in Section 3.4).
Finally, some good alternatives are available for the variable components in
some specific cases.

Most previous studies focused on only one component and fixed all other
components in order to reduce the complexity. For example, Tay and Ho

Title Suppressed Due to Excessive Length 13

Table 2 Component(s) to be evolved by GP

Component References

Dispatching rule
or priority rule

Miyashita (2000); Dimopoulos and Zalzala (2001); Yin et al (2003); Ho and Tay
(2005); Geiger et al (2006); Jakobovic and Budin (2006); Jakobovic et al (2007);
Tay and Ho (2007); Beham et al (2008); Tay and Ho (2008); Yang et al (2008);
Baykasoglu et al (2010); Kofler et al (2009); Hildebrandt et al (2010); Kuczapski
et al (2010); Nie et al (2010); Pickardt et al (2010); Abednego and Hendratmo
(2011); Nie et al (2011b); Jakobovi and Marasovi (2012); Nguyen et al (2012a);
Nie et al (2012); Nguyen et al (2013b,c,d); Nie et al (2013b,a); Park et al (2013a,b);
Pickardt et al (2013); Qin et al (2013); Hildebrandt and Branke (2014); Hilde-
brandt et al (2014); Hunt et al (2014b,a); Nguyen et al (2014e); Park et al (2014);
Branke et al (2015); Chen et al (2015); Han et al (2012); Hunt et al (2015b,a);
Nguyen et al (2015a,b); Park et al (2015b,a); Shi et al (2015); Sim and Hart (2015);
Wang et al (2015); Branke et al (2016a); Karunakaran et al (2016b); Durasevic
et al (2016); Freitag and Hildebrandt (2016); Hart and Sim (2016); Karunakaran
et al (2016a); Masood et al (2016a); Mei et al (2016); Nguyen (2016); Nguyen
et al (2016); Park et al (2016b,a); Riley et al (2016); Mei and Zhang (2016)

Routing rule Nie et al (2012, 2013a)

Due date
assignment rule

Baykasolu and Gken (2009); Nguyen et al (2012b, 2014c,d, 2012a)

Batch
formulation rule

Geiger and Uzsoy (2008); Li et al (2016)

Performance/processing
time estimation

Baykasoglu (2008); Mucientes et al (2008)

Inserted idle time Yin et al (2003)

Non-delay factor Nguyen et al (2013a,b)

Improvement/Greedy
heuristic

Nguyen et al (2011); Vazquez-Rodriguez and Ochoa (2011); Mascia et al (2013);
Nguyen et al (2013a, 2014b,a)

Others Alsina et al (2015); Baykasoglu and Ozbakr (2015); Belisrio and Pierreval (2015);
Furuholmen et al (2009); Li et al (2008)

(2008) applied GP to evolve dispatching rules for flexible job shop scheduling
and use the least waiting time assignment (Ho and Tay, 2004) to find a suit-
able machine to process an operation. Similarly, Pickardt et al (2010) evolved
dispatching rules for semiconductor manufacturing and used two existing
heuristics, i.e. minimum batch size (MBS) and larger batches first (LBF), to
control batch formulation. Nguyen et al (2014c) used GP to evolve the due
date assignment rules while fixing the dispatching rules.

A limited number of studies focused on multiple components simultane-
ously. For example, Nie et al (2012, 2013a) considered both dispatching rules
and routing rules simultaneously when designing scheduling heuristics for
flexible job shop scheduling. Nguyen et al (2014d) developed a GP technique
to deal with both sequencing decisions and due date assignment decisions.
Yin et al (2003) aimed at designing predictive scheduling heuristics by using
GP to evolve two components, i.e. a dispatching rule and an estimation func-
tion to calculate the inserted idle time. Although the above studies showed
benefits of evolving multiple components together, it may not be always the
case. In the research on order acceptance and scheduling, Park et al (2013b)
showed that evolving both acceptance rules and dispatching rules is less ef-
fective than only focusing on dispatching rules and using a simple rule to

14 Su Nguyen et al.

reject orders. Therefore, selecting components to be evolved will be problem-
specific and depends on costs and benefits of the selection.

3.4 Representations, function sets, and terminal sets

After determining which component(s) will be evolved by GP, the next crit-
ical step is to select the suitable representation(s) for the component(s). In
this section, we describe the most popular GP representations employed in
the previous studies, especially those used to represent the dispatching rules
because they are the main focus of previous studies (as shown in Table 2).

3.4.1 Evolving priority function

The most popular representations for scheduling heuristics are those used
to evolve the priority functions. An example of this representation is pre-
sented in Figure 5. In this example, the well-known minimum slack (MS)
rule (Pinedo, 2008) is represented in the form of expression tree, i.e. a pri-
ority function. Based on the inputs (attributes of a job) such as the current
time t, the remaining processing time RT, and the due date d, the function
will calculate the priority of the corresponding job. Whenever a sequenc-
ing decision needs to be made at a machine (or in step 5 of Figure 3), this
function is applied to all jobs in the considered queue and the job with the
highest priority will be selected to process next. Although this representa-
tion is very simple, it allows GP to explore a very diverse set of scheduling
heuristics to handle different scenarios and has shown to be effective in de-
signing very competitive scheduling heuristics. In order to create heuristics,
a function set and a terminal (attribute) set need to be defined. Usually ba-
sic arithmetic operators (addition, subtraction, multiplication,
and protected division) are almost always included in the function
set. Other operators such as if, min, max are also commonly used to evolve
heuristics and have shown to be particularly useful when dealing with diffi-
cult scheduling objectives such as maximum tardiness and total weighted tar-
diness. The attributes used to construct scheduling heuristics can be classified
as job attributes, work center attributes, and global or system attributes. A
comprehensive list of attributes used in the literature can be found in Branke
et al (2016b).

The tree-based representation of the traditional GP technique (Koza, 1992;
Banzhaf et al, 1998) and the linear representation in gene expression program-
ming (GEP) (Ferreira, 2006) are usually applied in the previous studies. For
the tree-based GP, there are many genetic operators available the literature
(Koza, 1992; Banzhaf et al, 1998). Subtree crossover and subtree mutation
are commonly used to evolve scheduling heuristics. The subtree crossover
creates new individuals for the next generation by randomly recombining
subtrees from two selected parents. Meanwhile, the subtree mutation is per-

Title Suppressed Due to Excessive Length 15Representations	– Arithmetic	(priority	function)

18

-

d

RT

+

t

Priority = - [d - (t + RT)]
à Priority = -[due date –(current time + remaining

processing time)]

Fig. 5 Arithmetic representation.

formed by selecting a node of a chosen individual and replacing the subtree
rooted by that node with a newly randomly-generated subtree.

In GEP, the priority function is represented as a chromosome of one or
more genes. Each gene in the chromosome represents a fixed length symbolic
string which represents a mathematical function. A gene can be divided into
two parts: head and tail. While the head can contain both functions and termi-
nals, the tail can only contain terminals. An example GEP chromosome with
a single gene is shown in Figure 6. The gene can be translated into an expres-
sion tree by using K-expression (similar to the tree-based representation in
the traditional GP). In this example, the first element in the gene + is the root
of the tree whose arguments can be obtained from the next elements in the
gene. It is noted that the first five elements in the gene have already formed
a valid K-expression and the rest of the gene will be ignored in this case. In
order to ensure that a valid K-expression can be obtained, the length of the
gene will be set such that t = h(n− 1) + 1, where h, t, and n are respectively
the length of the head, the length of the tail, and the maximum number ar-
guments of a function. In their experiments with the dynamic single machine
scheduling problems, Nie et al (2010) showed that GEP was very competitive
as compared to tree-based GP. The genetic operators in GEP can be consid-
ered as hybrids between those of genetic algorithm (GA) and the tree-based
GP. The subtree crossover and subtree mutation mentioned above can also
be applied to GEP. However, because of the difference in data structure (lin-
ear and tree), GEP needs to explicitly transverse through elements in a gene
to identify the subtree. Because the length of a GEP gene is fixed, the same
genetic operators such as the point mutation and the one-point/two-point
crossover in GA can also be applied (Nie et al, 2012, 2013a). Special transpo-
sition operators are also employed in GEP to randomly select a fragment of
the chromosome and insert it into the head.

16 Su Nguyen et al.

Variable	length	linear	representation

20

+ x DD RT P P SL r NPT
K-expression

Non-coding region P

+

RTDD

x

Figure 4: GEP representation of the rule DD ⇥ RT + P .

of the gene will be set such that t = h(n � 1) + 1, where
h, t, and n are respectively the length of the head, the
length of the tail, and the maximum number arguments
of a function. In their experiments with the dynamic sin-
gle machine scheduling problems, Nie et al. [16] show that
GEP was very competitive as compared to TGP (better
than GP in some cases) and the rules obtained by TGP
and GEP were better than all the benchmark heuristics.

3.2.1. Genetic operators

The genetic operators in GEP can be considered as hy-
brids between those of genetic algorithm (GA) and TGP.
The subtree crossover and subtree mutation from TGP can
also be applied to GEP. However, because of the di↵erence
in data structure (linear vs tree), GEP needs to explic-
itly transverse through elements in a gene to identify the
subtree. Because the length of a GEP gene is fixed, the
same genetic operators such as the point mutation and the
one-point/two-point crossover in GA can also be applied
[48, 42]. Special transposition operators are also employed
in GEP to randomly select a fragment of the chromosome
and insert it into the head.

3.2.2. Multiple genes/chromosomes representation

Similar to the tree-based representation, the GEP rep-
resentation can also be extended to cope with multiple
scheduling decisions. Nie et al. [48, 42] develop GEP meth-
ods to deal with flexible job shop scheduling problems. In
their methods, each GEP individual contains two chromo-
somes for making sequencing and routing decisions or a
chromosome will contain two genes representing the two
scheduling rules. The results show that the new GEP
methods can evolve scheduling heuristics that outperform
heuristics in the literature and the GEP method that deals
with a single scheduling decision.

In order to evolve more sophisticated rules, multiple
genes can also be used to represent multiple functions
which can be combined by using a simple summation of
these functions [16] or explicitly using a control gene to
combine the outputs from these functions [48]. In the lat-
ter approach, the control gene is a dedicated gene which is
used to characterise the relationship between outputs ob-
tained from other genes. The control gene used the same
function set as other genes and the terminal set consisting
of outputs from other genes. While this representation can
help GEP evolve more sophisticated rules, it will also in-
crease the computational time as well as the search space
of GEP.

Start ::= <action>

<action> ::= <if> | <dispatch>

<if> ::= if <attributetype> <op> <threshold>

then <action> else <action>

<op> ::= | >

<attributetype> ::= WR | MP | DJ | CMI | CWR | BWR

<threshold> ::= 10%|20%|30%|40%|50%|60%|70%|80%|90%|100%
<dispatch> ::= assign <nondelayfactor> assign <rule>

<nondelayfactor> ::= uniform[0,1]

<rule> ::= FIFO | SPT | LPT | LSO | LRM | MWKR | SWKR |
MOPR | EDD | MS | WSPT

Dispatch

Figure 5: Grammar to construct adaptive dispatching rules [24] .

3.3. Grammar-based representation

Di↵erent from the tree-based representations which
mainly focus on evolving priority functions (dispatching
rules), grammar-based representations are usually used
to construct high-level heuristics composed of several
low-level heuristics and solution attributes. Although
grammar-based GP has been developed to evolve heuris-
tics for many hard combinatorial problems [9, 11, 50, 12],
their applications in manufacturing scheduling are still
very limited. Nguyen et al. [24] develop a grammar-based
representation for GP to evolve adaptive dispatching rules
for job shop scheduling. The heuristics evolved with this
representation is quite similar to decisions trees which try
to find out which (available) candidate dispatching rules
should be applied and what non-delay factor should be
used given some specific machine/system status. To gen-
erate such rules, a special grammar [24] as shown in Fig-
ure 5 is proposed to decide which types of nodes should
be generated based on the grammatical restrictions. An
example of a rule generated based on this grammar is “If
machine progress of the machine (MP) is less than 20%,
then apply shortest processing time (SPT) with the non-
delay factor of 0.2; else apply first-in-first-out (FIFO) with
the non-delay factor of 0.9”. The advantage of this rep-
resentation is that the obtained rules can be interpreted
easier as compared to evolved priority functions previously
discussed. Also, by using a set of candidate rules which
have been readily coded, the evaluations of these rules are
faster than those of rules with the tree-based representa-
tion. On the other hand, the disadvantage of this repre-
sentation is that it depends a lot on the available problem-
domain knowledge to choose appropriate machine/system
attributes and candidate rules. If the candidate rules can-
not cover all situations, the evolved adaptive rules may
not provide satisfactory results. In order to overcome this
issue, Nguyen et al. [24] propose a mixed representation
which combine the grammar representation (as shown in
Figure 5) and the tree-based representation for evolving
priority functions. In this case, GP will evolve new prior-
ity functions to replace the available candidate rules. The
experimental results show that the mixed representation
is more e↵ective than the original grammar-based repre-
sentation [24].

7

Fig. 6 GEP representation.Representations	– Decision	tree-like

19

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. X, NO. X, JANUARY XXXX 6

Start ::= <action>

<action> ::= <if> | <dispatch>

<if> ::= if <attributetype> <op> <threshold>

then <action> else <action>

<op> ::= ≤ | >

<attributetype> ::= WR | MP | DJ | CMI | CWR | BWR

<threshold> ::= 10%|20%|30%|40%|50%|60%|70%|80%|90%|100%
<dispatch> ::= assign <nondelayfactor> assign <rule>

<nondelayfactor> ::= uniform[0,1]

<rule> ::= FIFO | SPT | LPT | LSO | LRM | MWKR | SWKR |
MOPR | EDD | MS | WSPT

Fig. 2. Grammar for the proposed GP system with R1.

sophisticated. The rule firstly checks the workload ratio WR
(the ratio of the total processing times of jobs in the queue to
the total processing times of all jobs that have to be processed
at the machine) of the considered machine m∗; if the workload
ratio is less than or equal to 20%, dispatching rule SPT is
applied with α = 0.221; otherwise, dispatching rule FIFO is
applied with α = 0.078. This ADR can be considered as a
variant of FIFO/SPT, in which the workload of the machine
is used as the switch instead of the waiting times of jobs in
the queue. Different from other applications [44], [45] where
a single non-delay factor is evolved, the proposed GP system
using this representation allows different values of non-delay
factors to be employed based on the status of the shop.

0.084

Dispatch

SPT

(a) SPT with α =
0.084

0.221

Dispatch

SPT 0.078

Dispatch

FIFO

≤

20

I

WR

(b) If (WR ≤ 20%) then use SPT with α = 0.221
else use FIFO with α = 0.078

Fig. 3. Example program trees based on representation R1.

In this study, we will consider six attributes which indicate
the status of machines in the shop. Let Λ be the set of
operations that are planned to visit the considered machine
m∗, and K and I are the sets of all operations that have and
have not yet been processed by m∗, respectively (Λ = K∪I).
In the shop, we call a machine critical if it has the greatest
total remaining processing time

∑
σ∈I p(σ) and a machine is

called bottleneck if it has the largest workload
∑

σ∈Ω′ p(σ)
in Ω′. The following definitions of the machine and system
attributes are used in this study:

• Workload ratio, WR =
∑

σ∈Ω′ p(σ)∑
σ∈I p(σ) : indicates the work-

load in Ω′ compared to the total remaining workload that
m∗ has to process (including the operations in the queue

and operations that have not yet visited m∗).
• Machine progress, MP =

∑
σ∈K p(σ)∑
σ∈Λ p(σ) : indicates the

progress of m∗, calculated as the ratio of the total pro-
cessing time that m∗ has processed to the total processing
time of all operations in Ω′ that have to visit m∗.

• Deviation of jobs, DJ =
minσ∈Ω′ {p(σ)}
maxσ∈Ω′ {p(σ)} : is a simple ratio

of minimum processing time to the maximum processing
time of operations in Ω′.

• Critical machine idleness, CMI: is the workload ratio
WR of the critical machine.

• Critical workload ratio, CWR =
∑

σ∈Ωc p(σ)∑
σ∈Ω′ p(σ : is the ratio

of the workload of operations in Ωc to the workload in Ω′

where Ωc ⊂ Ω′ is the set of operations belonging to the
jobs that have operations that still need to be processed
at the critical machine after being processed at m∗.

• Bottleneck workload ratio, BWR =
∑

σ∈Ωb p(σ)∑
σ∈Ω′ p(σ) : is the

ratio of the workload of operations in Ωb to the workload
in Ω′ where Ωb ⊂ Ω′ is the set of operations belonging
to the jobs that have operations that still need to be
processed at the bottleneck machine after being processed
at m∗.

While the first three attributes provide the local status at
m∗, the last three attributes indicate the status of the shop with
a special focus on the critical and bottleneck machines. The
machine and system attributes here appear in the scheduling
literature in different forms. The key difference between our
attributes and the attributes used in other studies is that our at-
tributes have been scaled from 0 to 1. The scaled (normalized)
attribute values aim to enhance the generality of the evolved
rules and also make the evolved rules easier to understand.
Jakobovic and Budin [6] employed attributes similar to ours
without normalization (e.g. remaining work at the machine
is similar to workload ratio in our study). The definition of
attributes for bottleneck and critical machines are adapted
from the bottleneck concept [46] for static problems and these
attributes are used to adjust the rules to react appropriately to
the changes of the shop.

For representation R1, eleven simple dispatching rules are
considered as the candidate rules in the ADR. The aim of these
rules is to determine which operation σ in Ω′ will be processed
next. Let n(σ) be the job which operation σ belongs to, j =
n(σ) and oj,h = σ. The following are brief descriptions of the
candidate dispatching rules. Detailed discussion of these rules
can be found in [1] and [47].

• FIFO: operations are sequenced first-in-first-out.
• SPT: select the operation with the shortest processing

time p(σ).
• LPT: select the operation with the longest processing time

p(σ).
• LSO: select the operation belonging to the job that has

the longest subsequent operation p(next(σ))
• LRM: select the operation belonging to the job that has

the longest remaining processing time (excluding the
operation under consideration)

∑Nj

l=h+1 p(oj,l).
• MWKR: select the operation belonging to the job that has

the most work remaining
∑Nj

l=h p(oj,l).
• SWKR: select the operation belonging to the job that has

If (workload ratio is less than or equal to 20%)
Use the SPT rule with non-delay factor of 0.221

Else
Use the FIFO rule with non-delay factor of 0.078

Fig. 7 Decision tree-like representation.

Basically, other popular GP representations in the literature such as graph
representations in strongly typed GP (Montana, 1995), Cartesian GP (Miller
and Thomson, 2000), linear GP (Brameier and Banzhaf, 2010), and grammar
based GP (Mckay et al, 2010; Whigham, 1995) can also be applied to evolve
priority functions for scheduling heuristics. The choice of representations will
depend on the requirements of scheduling heuristics. For example, Nguyen
et al (2013b) used grammars to evolve scheduling heuristics (as shown in
Figure 7) that can select appropriate priority functions based on the shop
conditions. In this case, the proposed grammar is used to ensure that sys-
tem attributes are used to set the conditions while job and work centre at-
tributes are used to create the priority functions. Durasevic et al (2016) used
dimensionally aware genetic programming (Keijzer and Babovic, 1999) (simi-
lar to strongly typed GP) to improve the interpretability of scheduling heuris-
tics by ensuring that evolved priority functions are semantically correct (e.g.
the addition operator can be performed only on the nodes whose values are
in the same unit). Similarly, Hunt et al (2015a) designed a grammar to help
evolve dispatching rules with better understandability for dynamic job shop
scheduling.

Title Suppressed Due to Excessive Length 17
Multi-component	representation	(1)

21

Bottleneck
estimation

Priority	rule	for	
bottleneck	machine

Priority	rule	for	non-
bottleneck	machine

Domagoj Jakobovic and	Leo	Budin (2006)

Bottleneck?

No

Yes

Fig. 8 Multiple components for bottleneck-guided dispatching rules (Jakobovic and Budin,
2006).

3.4.2 Evolving multiple components

Due to the complexity of production scheduling problems, evolving a sin-
gle component may not be sufficient to generate effective and comprehensive
scheduling heuristics. Therefore, more sophisticated representations have been
developed. Geiger et al (2006) propose a multiple tree representation to evolve
different dispatching rules (trees) for different machines or groups of ma-
chines. The goal of this approach is to generate specialised rules to cope with
particular requirements of each machine.

In order to create more effective scheduling heuristics for job shops, Jakobovic
and Budin (2006) presented the GP-3 method in which three program trees
represent one discriminating function and two priority functions. The con-
ceptual illustration of this representation is shown in Figure 8. A special ter-
minal set is used to build the discriminating function which is employed to
determine whether the considered machine is bottleneck. Based on this de-
cision, one of the two priority functions (for bottleneck and non-bottleneck
machines) is applied to make scheduling decisions. Nguyen et al (2013a) rep-
resented the scheduling heuristics by two program trees. The first one is the
priority function (the same ones described in the previous section) while the
second represents the look-ahead strategy based on the Giffler and Thomp-
son algorithm (Pinedo, 2008) to decide how much idle time machines can de-
lay before jobs can be processed. The experiments show that these extended
representations can help GP evolve significantly better scheduling heuristics
as compared to those focusing only on priority functions.

Multiple tree representations are also useful for representing different schedul-
ing decisions such as acceptance/rejection (Park et al, 2013b), due date as-
signment (Nguyen et al, 2014d) and maintenance (Yin et al, 2003). Figure 9
shows the representation of scheduling policies developed by Nguyen et al
(2014d). This is motivated by the fact that scheduling and sequence decisions
are directly influenced by other related production planning and control de-
cisions such as due date assignment. The proposed representation allows the

18 Su Nguyen et al.

Multi-component	representation	(2)

22

d

Due	date	
assignment	 rule Dispatching	 rule

Due	
date

Design	 scheduling	policies	with	due	date	assignment	 and	sequencing

Fig. 9 Representation of scheduling policies (Nguyen et al, 2014d).

due date assignment rule and dispatching rules to be evolved at the same
time, which provides the chance to optimise the overall performance of the
dynamic production systems. In Yin et al (2003), a GP technique is proposed
to evolve predictive scheduling heuristics to deal with stochastic machine
breakdowns. The goal of the research is to handle job tardiness and stability.
The two GP trees are used to represent the priority function, i.e. to determine
the sequence of jobs, and to represent the idle time to be inserted before pro-
cessing a particular job.

3.5 Estimate quality of evolved scheduling heuristics

Similar to any EC methods, GP needs to estimate the quality of heuristics in
its population. Here we discuss how evolved heuristics are evaluated and
how fitnesses of heuristics are calculated. Recent developed techniques to
improve the efficiency of GP evaluations are also presented.

3.5.1 Evaluation Models

GP guides the search based on the quality of evolved scheduling heuris-
tics, i.e. fitness values. In order to calculate the fitness function, a evaluation
model or evaluator needs to be developed. Ideally, the evaluation model has
to be a good representation of the real-world problems or the environment
in which the obtained scheduling heuristics will be applied to. For static
scheduling problems, the quality of a heuristic is determined by applying
the heuristic to a set of static problem instances, obtained from real-world
situations. In the literature, instances from popular benchmark datasets, e.g.
OR-library (Beasley, 1990), or randomly generated based on some assump-
tions (Jakobovic and Budin, 2006; Tay and Ho, 2008), are usually applied to
test the quality of different GP methods.

Meanwhile, for dynamic scheduling problems, simulation models are used
to determine the steady-state performance of scheduling heuristics. Discrete
event simulation (DES) (Law and Kelton, 1999) was the main simulation tech-
nique to estimate the performance of scheduling heuristics (Holthaus and
Rajendran, 2000; Hildebrandt et al, 2010; Nguyen et al, 2014d). In previous

Title Suppressed Due to Excessive Length 19

studies, different theoretical simulation models have been employed. For ex-
ample, the ten-machine symmetrical job shop model (Holthaus and Rajen-
dran, 2000) is commonly used to evaluate performance of evolved dispatch-
ing rules. Although this model is relatively simple, it can reflect important
characteristics of job shops (which is suitable for studies on scheduling deci-
sions) and its scale is reasonable for evaluation purpose. More complex sim-
ulation models such as simulation models of semi-conductor production sys-
tems (Pickardt et al, 2013) have also been used to evaluate scheduling heuris-
tics.

To deal with real-world dynamic production systems, it is recommended
that the evaluation or simulation models should be developed by the re-
searchers after carefully investigating the real systems. Essential steps for
simulations studies can be found in Law and Kelton (1999). Before incorpo-
rating the simulation models into the GP framework (in Figure 2), following
steps (adopted from Law and Kelton (1999)) are expected to be done by the
researchers:

– Formulate the problem
– Collect data and define a model
– Check if the model assumptions are correct and complete
– Construct and verify a computer program (simulator)
– Make pilot runs and validate the programmed model

To ensure that the performance of evolved heuristics is accurately esti-
mated, the simulation model needs to be a good representation of the real
system. Otherwise, evolved rules are not applicable. Fortunately, techniques
in computer simulation has been quite mature and useful tools are available
to help researchers develop and validate their models.

Although DES has been shown to be a better way to evaluate the schedul-
ing heuristics in dynamic environments, it is computationally much more
expensive. As thousands of evolved scheduling heuristics need to be evalu-
ated by GP, time-consuming simulation will dramatically increase the run-
ning times of GP. In the next sections, we will discuss some techniques that
can be used to efficiently utilise the computational budget.

3.5.2 Fitness function

Table 3 shows some common performance measures of scheduling heuristics
in the literature. Following are the definitions of notations used in Table 3:

– rj : the release time when job j is available to be processed.
– wj : the weight of job j in the weighted tardiness objective function.
– dj : the due date assigned to job j.
– Cj : the completion time of job j.
– fj : the flowtime of job j calculated by fj = Cj − rj .
– Tj : the tardiness of job j calculated by Tj = max(Cj − dj , 0).

20 Su Nguyen et al.

Table 3 Performance measures of scheduling heuristics

Mean Flowtime F =

∑
j∈C fj
|C|

Maximum Flowtime Fmax = maxj∈C{fj}
Percentage of Tardy Jobs %T = 100× |T||C|
Mean Tardiness T =

∑
j∈T (Cj−dj)

|T|

Maximum Tardiness Tmax = maxj∈T{Cj − dj}
Makespan Cmax = maxj∈C{Cj}
Total Weighted Tardiness TWT = maxj∈T{wj × (Cj − dj)}

– C: the collection of jobs recorded to calculate the objective values. (C is all
the jobs in static JSS problem instances or a set of jobs recorded after the
warm-up period of the simulation of the dynamic job shops).

– T = {j ∈ C : Cj − dj > 0}: the collection of tardy jobs.

The quality of evolved scheduling heuristics depends on its correspond-
ing performance measure under interested shop conditions. The application
of a scheduling heuristicH to a number of training instances (static instances
or simulation replications) T = {1, 2, . . . , |T |} results in performance mea-
sures zi(H), the objective value reached by the heuristic on instance i. These
measures have to be integrated by means of a fitness function fitness(·) to
determine the overall fitness of the heuristic. The following fitness functions
have been proposed in the literature:

– Sum [or average] of objective values
fitness(H) = [1

|T |]
∑|T |

i=1 zi(H)
– Average relative objective value
fitness(H) = 1

|T |
∑|T |

i=1
zi(H)
zi(ref)

– Sum [or average] of relative deviations
fitness(H) = [1

|T |]
∑|T |

i=1
zi(H)−zi(ref)

zi(ref)

where zi(ref) denotes a reference objective value for instance i, obtained by
some other solution method. Depending on the practical requirements, the
researcher may choose the suitable fitness function. Sum (or average) of ob-
jective values concentrates on performing well on problem instances with a
large potential for improvement while largely ignoring their performance on
other instances. On the other hand, the average relative objective value or the
sum (or average) of relative deviations try to measure the quality of evolved
heuristics weighted by the difficulty of training instances. This fitness func-
tion is less opportunistic as compared to the fitness function based on sum of
objective values.

As discussed previously, the evaluations of scheduling heuristics can be
very time consuming, a full evaluation with a large number of training in-
stances to calculate the fitness function is slow. Because GP usually requires

Title Suppressed Due to Excessive Length 21

a large population (hundreds to thousands of individuals), full evaluations
for the whole population could be computationally too expensive. Therefore,
most past studies did not use full evaluations to calculate the fitness func-
tion and replaced them with much cheaper evaluations as discussed in Sec-
tion 3.5.1. Hildebrandt et al (2010) showed that it is possible to evolve effec-
tive dispatching rules for dynamic job shop by using a single simulation repli-
cation per generation. The random seed for the simulation will be changed
in each generation to improve the diversity in the population. They also gave
high penalties for heuristics causing instability in the simulated shop as they
will slow down the evaluation process and usually are bad scheduling heuris-
tics. This is particularly true in early generations of GP since the chance to
generate bad scheduling heuristics are very high.

Here are a number of techniques proposed to reduce the computational
times of GP for automated heuristic design for production scheduling:

– Early termination of the simulation: stop the simulation when the number
of jobs in the system exceed some predefined threshold (Hildebrandt et al,
2010)

– Use a small number of simulation replications but change the random
seed for each replication when moving to a new generation (Hildebrandt
et al, 2010; Nguyen et al, 2016)

– Avoid evaluating the same evolved rules (Hildebrandt and Branke, 2014)
– Surrogate models: reduce the evaluation costs caused by expensive simu-

lation (Hildebrandt and Branke, 2014; Nguyen et al, 2016)

3.5.3 Surrogate-assisted models

Recently, surrogate models have been proposed to reduce the computational
costs of GP (Hildebrandt and Branke, 2014; Nguyen et al, 2014e, 2016). These
models have reduced the evaluation costs of GP and improved its conver-
gence. Hildebrandt and Branke (2014) proposed a surrogate model based on
the phenotypic characterisation of evolved priority functions. In this tech-
nique, the phenotype of an evolved heuristic is characterised by a decision
vector with the dimension of K, where K is the number of decision situations
(each decision situation includes a number of jobs to be prioritised). Figure 10
gives an example of how decision vector is determined. First, a reference rule
(e.g. -2PT-WINQ-NPT) is selected and applied to all decision situation. The
ranks of jobs (smaller ranks for jobs with higher priorities) in each situation
determined by the reference rule are recorded. For each evolved priority func-
tion, the corresponding ranks are also determined and the decision value for
each decision situation is the rank determined by the reference rule of the job
whose rank obtained by the evolved priority function is 1. In Figure 10, the
decision vectors for rule 1 and rule 2 are 〈3, 1, . . . , 3〉 and 〈2, 2, . . . , 1〉 respec-
tively. An archive is used to store past explored rules and their decision vector
and are recorded during GP evolution. During the reproduction process, the
fitness of a new generated rule is approximated by the fitness of the closest

22 Su Nguyen et al.

Reference	Rule	
-(2PT+WINQ+NPT)

PT WINQ NPT Ranking Ranking Decision	Vector Ranking Decision	Vector
1 10 50 5 2 3 1
1 15 20 10 1 2 2
1 30 14 12 3 1 3
2 13 44 5 2 2 1
2 22 6 9 1 1 2
… … … … … … … … …
K 6 30 8 1 4 1
K 25 25 15 4 3 3
K 20 15 22 3 1 4
K 15 15 7 2 2 2

1

3

2

2

1

Rule	1	(-PT/NPT-WINQ) Rule	2	(-PT*NPT-WINQ)Decision	situation Attribute	Set

3

Fig. 10 Decision vectors used in the surrogate models (Hildebrandt and Branke, 2014).

Evaluation	Models	(5)

• Surrogate	model	based	on	simplified	simulation	model	

30

!

!′

Original	model

Simplified	model

IEEE TRANSACTIONS ON XXXXXX, VOL. X, NO. X, JANUARY XXXX 7

TABLE II
SIMPLIFIED MODELS

Model Description #Machine Max# of Operations Simulation Length Warmup Length

OriginalR1 The original model with one replication 10 14 5000 500
OriginalR1Short Similar to OriginalR1 with short simulation time 10 14 500 100
HalfShop The simplified shop is only half the scale of the original shop 5 7 500 100
MiniShop The number of machines are kept minimum 2 4 250 50

TABLE III
BENCHMARK DISPATCHING RULES

SPT shortest processing time LPT longest processing time
EDD earliest due date FDD earliest flow due date
FIFO first in first out LIFO last in first out
LWKR least work remaining MWKR most work remaining
NPT next processing time WINQ work in next queue
CR critical ratio AVPRO average processing time/operation
MOD modified due date MOPNR most operations remaining
SL negative slack Slack slack
PW process waiting time RR Raghu and Rajendran
ATC apparent tardiness cost COVERT cost over time

OPFSLK/PT operational flow slack per processing time
LWKR+SPT least work remaining plus processing time
CR+SPT critical ratio plus processing time
SPT+PW processing time plus processing wating time
SPT+PW+FDD SPT+PW plus earliest flow due date
Slack/OPN slack per remaining operations
Slack/RPT+SPT slack per remaining processing time plus processing time
PT+WINQ procesting time plus work in next queue
2PT+WINQ+NPT double processing time plus WINQ and NPT
PT+WINQ+SL processing time plus WINQ and slack
PT+WINQ+NPT+WSL PT+WINQ plus next processing time and waiting slack

Fig. 2. Rank-correlation between simplified and original simulation models.

D. Overall algorithm

Fig. 3 shows the details of the our proposed SGP algorithm.
In general, the basic components of this algorithms and the
basic SGP discussed in Section IV-A are similar. The inputs
of our models are the simulation model that we want to evolve
dispatching rules (the original model) and the simplified model
S presented in Section IV-C. Three types of fitness functions
are used in different stages of the algorithms. As described
in the previous section, the fitness f(�i) is the real fitness
(i.e. absolute performance) of evolved rules and f 0(�i) is the
estimated fitness obtained with the simplified model S . The
fitness fg(�i) is the performance of rule �i in a particular
generation (with a specific replication ⇡). Because of expen-
sive simulation costs, using a large number of replications
to obtain f(�i) is impractical; therefore, we only use one

TABLE IV
PARAMETER SETTINGS

Parameter Description

Initialisation ramped-half-and-half
Crossover/mutation/elitism rates 80%/15%/5%
Maximum depth 8
Number of generations 50
Population size 200
Size of intermediate population 200⇥5=1000
Selection tournament selection (size = 5)

replication per generation to evaluate the quality of evolved
rules fg(�i). This strategy has been shown to be useful to
improve the effectiveness of evolved rules and the diversity
in the population [27], [64]. The rule with the best fg(�i)
is then fully evaluated to obtain f(�i). After an intermediate
population generated based on the generation fitness fg(�i),
the fitnesses of newly generated rules are quickly evaluated by
using the simplified model S . The use of these three fitness
functions makes the algorithm slightly more complicated but
they allows us to utilise the computational budgets more
efficiently. The fitness f 0(�i) determines the rough quality of
generated rules and helps the algorithm produce more potential
rules. Meanwhile the fitness fg(�i) helps the algorithm iden-
tify the most potential rules for full evaluations and improve
the diversity of SGP. Other parameters for the proposed SGP
are shown in Table IV. These parameters have been used in our
previous studies [43], [64] and tested in our pilot experiments.
The intermediate population is k times larger than the original
population to increase the diversity and improve the chance
to find better rules as explained in the previous section. Three
SGP versions investigated in this paper SGP OS, SGP HS,
and SGP MINI are based on the algorithm proposed in Fig.3
and the three simplified models, OriginalR1Short, HalfShop,
and MiniShop, respectively.

V. EXPERIMENTAL RESULTS

This section presents the results from the proposed SGP
and other GP systems developed in the literature. We compare
SGP HS with SGP OS and SGP MINI to investigate whether
the theoretical prediction is consistent with the empirical
evidence. Also, we compare the proposed SGP methods with
two GP methods proposed in the literature, GP and SGP H,
to demonstrate their effectiveness. GP is the common im-
plementation for DJSS with the changing replication strategy
[27], [64], and SGP H is the surrogate assisted GP developed
by Hildebrandt and Branke [6]. The five methods are com-
pared in terms of the testing performance, the length of final
rules/programs, and the running times. Each method performs
30 independent runs and the Wilcoxon signed-rank test with
↵ = 0.05 is used for our statistical significance test.

Benchmark	rules

Fig. 11 Simplified models of the original simulated shop (Nguyen et al, 2016).

rule in the archive based on the distance between their corresponding deci-
sion vectors. This surrogate model, even though simple, can provide good
estimation of fitness and help screening out bad rules created by crossover
and mutation.

Also trying to reduce the computational times of GP for automated heuris-
tic design (Nguyen et al, 2016) proposed a new technique to estimate the
fitness of evolved rules using a simplified version of the original simulated
shop, as shown in Figure 11. Instead of evaluating evolved heuristics with the
model of the original shop which can be very large, a smaller model of the
shop is created with a smaller number of machines, smaller simulation length
while maintaining the same level of utilisaion, due date tightness, etc. A set
of benchmark rules are applied to different models and their objective val-
ues are recorded. The simplified model that has the highest rank correlation
with the original model will be used to estimate the fitness of newly gener-
ated rules. Then, only the ones with the highest estimated fitness are moved
to the next generation and estimated by the original model. The proposed GP
technique based on this simplified model showed better results as compared
to other GP techniques.

In general, full evaluations to calculate the real fitness for each evolved
scheduling heuristics are too expensive. Therefore, it is important to uitlise
evaluations efficiently within the restricted computational budget. Here are

Title Suppressed Due to Excessive Length 23Fitness	Functions	(3)

33

Fidelity

Computational	 efficiency

Adopted	from	Yaochu Jin (2011)

…
Full	evaluation

Single	replication

Simplified	model

Surrogate	model	based	on	
Phenotypic	charaterisation

1. Generate Random Rule
Population P

3. Full Fitness Evaluations

5. Produce Offspring from P in Pimd

4. Update Surrogate Model 7. Compute Phenotypic Charact.

9. Fill P with Best Rules from Pimd

8. Estimate Fitness using Surrogate
Budget left?

2. Remove Duplicates from P

6. Remove Duplicates from Pimd

[no]
[yes]

Best Rule of Run

Figure 2: General solution approach. Components of standard GP are shown as white
boxes. Additional steps related to the use of surrogates and detection/removal of phe-
notypic duplicates are shown as grey boxes.

decision
situation

attribute set s
s1 s2 s3

ranking by
reference rule

ranking by
other rule

decision
vector d

1
1

3 4 8 1 2
7 6 15 2 1 2

2 23 17 1 2 2
2 8 9 3 3 1 32 8 9 3 3 1 3
2 6 4 6 1 3

… … … ……

k 4 8 6 1 1 1
k 7 3 9 2 2

(a)

d d d fit

… ……

d1 d2 dk fitness

rule1: 2 3 1 1456

…

…
rule2: 1 2 2 1123…… ……

rulem: 1 3 1 1293…

(b)

Figure 3: Phenotypic charaterization of dispatching rules. (a) creation of a decision
vector for a certain rule given a set of k decision situations. (b) database of m rules,
their decision vectors and fitness values.

As a next step (step 9), estimated fitnesses are used to select the most promising
candidates to form a new population P for the next iteration. Step 3 starts a new iter-
ation of the main optimization loop again fully evaluating each individual in P using
the expensive fitness function.

4.2 Phenotypic Characterization of Dispatching Rules

The key to using a surrogate model with GP is to come up with a meaningful dis-
tance metric. Because this is difficult on the genotype level (trees), in the following we
propose a phenotypic characterization. The phenotypic characterization looks at the
behavior of the evolved rules, rather than their syntactic description. This is naturally
problem-dependent. In the following, we develop a phenotypic characterization for
evolving dispatching rules in job shop scheduling. However, similar phenotypic char-
acterizations can also be developed for other problem domains, and Ashlock and Lee
(2013) may serve as additional inspiration.

Dispatching rules define an ordering relation among jobs. Each time a machine

7

Static	instances

Classes of Schedules Non-delay schedule

Non-delay Schedule (3)

Classes of Schedules

Nondelay Schedules:
A feasible schedule is called a nondelay schedule if no machine
is kept idle while a job/an operation is waiting for processing

Example: P3|prec|Cmax

1
2

3

4

5

6

n = 6

Best nondelay:

1 2

3

4

5

6

1 2
3 4

5

6

M1

M2

M3

M1

M2

M3

Optimal

p = (1, 1, 2, 2, 3, 3)

Is it a non-delay schedule?

Planning and Scheduling Lecture 2 - Preliminaries January 20, 2016 20 / 29

Fig. 12 An illustration of a trade-off between fidelity (approximation accuracy) and computa-
tional cost for evaluations of scheduling heuristics (adopted from Jin (2011)).

some fitness functions (classified by their accuracy and usage) which have
been employed in the literature:

– Real fitness function: require a lot of simulation replications and it is the
most expensive fitness function. This should be used to validate the per-
formance of selected evolved heuristics.

– Generational fitness function: identify the most potential heuristics for
real fitness evaluations. The generational fitness function can use a small
number of replications to reduce the computational costs but new train-
ing instances are used for each generation to prevent GP from overfitting
and improve the diversity of the population (Hildebrandt et al, 2010).

– Fitness estimated by surrogate models: determines the rough quality of
generated heuristics. Because the likelihood to produce bad heuristics via
crossover and mutation by GP is very high, GP may waste a lot of time
evaluating bad heuristics. The fitness estimated efficiently by surrogate
models (Hildebrandt and Branke, 2014; Nguyen et al, 2016) helps the al-
gorithm screen out heuristics with poor performance and reduce the com-
putational costs as well as improve the convergence of GP.

Figure 12 illustrates the trade-offs between the accuracy and computa-
tional costs of different models used to evaluate the performance of evolved
scheduling heuristics. In this figure, full evaluations are the one with the best
accuracy and the highest computational times while evaluations with static
training instances are the most efficient ones but may cause overfitting issues
(Hildebrandt et al, 2010; Nguyen et al, 2013b). Surrogate-assisted GP can be
designed to effectively use these models in the algorithm. Currently, surro-
gate models are only used as the pre-selection strategy (Jin, 2011). Other ap-

24 Su Nguyen et al.

plications of surrogate models in GP can be also investigated in future studies
(e.g. individual-based, generation-based and population-based techniques).

3.6 Search mechanisms

Most GP techniques proposed in the literature for automated design of pro-
duction scheduling heuristics imitate Darwinian biological evolution by main-
taining and evolving a large population. Genetic operators inspired by natu-
ral evolution such as crossover, mutation, and elitism (as discussed in Sec-
tion 3.4) are used to generate new individuals. Despite its simplicity, this
mechanism is able to discover very effective scheduling heuristics. How-
ever, in order to deal with more complicated design issues such as multiple
scheduling decisions and multiple conflicting objectives, specialised search
mechanisms will be needed.

3.6.1 Evolutionary multi-objective optimisation

Multiple conflicting objectives are a natural characteristic in real world appli-
cations and the design of new scheduling heuristics also need to consider this
issue. One advantage of using GP for designing heuristics is that their search
mechanisms are very flexible and many advanced EC techniques (Coello Coello,
1999; Tan et al, 2002; Jin, 2006) have been developed to cope with multiple ob-
jectives.

Tay and Ho (2008) aimed to tackle three objectives (makespan, mean tar-
diness, and mean flowtime) when using GP to evolve dispatching rules for a
flexible job shop. In order to simplify the design problem, the three objectives
are aggregated by using the weighted sum approach with the same weight for
each objective. However, because the scale of each objective and the knowl-
edge about the objective search space may be unknown in advance, this ap-
proach can lead to unsatisfactory results. For this reason, the rules evolved by
their GP method are sometimes worse than simple rules such as FIFO (Tay
and Ho, 2008). When these evolved rules are examined in a long simulation
(Hildebrandt et al, 2010), they are only slightly better than the earliest release
date (ERD) rule and worse than the SPT rule with respect to mean tardiness.
It suggests that using the weighted aggregated objective to deal with multi-
objective design problem is not a good approach if the prior knowledge about
the individual objective is not available.

Nguyen et al (2013c) developed a multi-objective genetic programming
based hyper-heuristic (MO-GPHH) for dynamic job shop scheduling. In this
work, the goal is to evolve a set of non-dominated dispatching rules for five
common objective functions in the literature. By relying on the Pareto dom-
inance rather than any specific objective, the proposed MO-GPHH was able
to evolve very competitive rules as compared to existing benchmark rules
in the literature. Their results showed that it is very easy for MO-GPHH to
find rules that totally dominate simple rules such as FIFO and SPT regarding

Title Suppressed Due to Excessive Length 25

all five considered objectives. The proposed MO-GPHH can also find rules
that dominate more sophisticated rules such as ATC, RR, 2PT+WINQ+NPT,
and COVERT (Sels et al, 2011) in most of its runs. The experimental results
showed that the obtained Pareto front contains many dispatching rules with
good trade-offs that have not been explored earlier in the literature (e.g. per-
centage of tardy jobs %T can be reduced greatly without significantly deteri-
orating other objectives). Similar observations for a complex semiconductor
manufacturing system are found by Freitag and Hildebrandt (2016). Thus,
evolving the Pareto front is more beneficial as compared to evolving a single
rule generally. Similar methods have been applied to evolve comprehensive
scheduling policies for dynamic job shop scheduling (Nguyen et al, 2014d)
and order acceptance and scheduling (Nguyen, 2016) and showed promising
results.

Masood et al (2016a) proposed to combine the advantage of GP and NSGA-
III to evolve a set of Pareto-optimal dispatching rules for many-objective job
shop scheduling. The proposed algorithm uses the tree-based representation
and evolutionary operators of GP and the fitness assignment scheme (i.e.
non-dominated sorting and reference points) of NSGA-III. They further ex-
tended their work (Masood et al, 2016b) by taking the discrete and possibly
non-uniform Pareto front into account. To search for the non-uniform Pareto
front more efficiently, they proposed a scheme to adaptively adjust the posi-
tions of the reference points by using particle swarm optimisation.

3.6.2 Coevolution

Miyashita (2000) proposes three multi-agent learning structures based on GP
to evolve dispatching rules for dynamic job shop scheduling. The first one
is a homogeneous agent model, which is basically the same as other GP
techniques which evolve a single dispatching rule for all machines. The sec-
ond model treated each machine (resource) as a unique agent which require
distinct heuristics to prioritise jobs in the queue. In this case, each agent
has its own population to co-evolve heuristics with GP. Finally, this research
proposed a mixed agent model in which resources are grouped based on
their status. Two types of agents in this model are the bottleneck agent and
the non-bottleneck agent. Because of the strong interactions between agents,
credit assignment is difficult. Therefore, the performance of each agent is
directly measured by the quality of the entire schedule. The experimental
results show that the distinct model has better training performance com-
pared to the homogeneous model. However, the distinct model has overfit-
ting issues because of the too specialised rules (for single/local machines).
The mixed agent model shows the best performance among the three when
tested under two different shop conditions. The drawback of this model is
that it depends on some prior-knowledge (i.e. bottleneck machines) of the job
shop environment, which can be changed in dynamic situations.

To deal with multiple scheduling decisions (sequencing and due date as-
signment) in job shops, Nguyen et al (2014d) develop a GP based coopera-

26 Su Nguyen et al.

tive coevolution approach in which scheduling rules and due date assign-
ment rules are evolved in their own subpopulation. Similar to Miyashita
(2000), the fitness of each rule is measured by the overall performance ob-
tained through cooperation. Specialised crossover, archiving and representa-
tion strategies are also developed in this study to evolve the Pareto front of
non-dominated scheduling heuristics. The results show that the cooperative
coevolution approach is very competitive compared to some other evolution-
ary multi-objective optimisation approaches. The analysis also indicates that
the proposed cooperative coevolution approach can generate more diverse
sets of non-dominated scheduling heuristics.

In another study, Beham et al (2008) utilised parallel technologies to evolve
dispatching rules for a flexible job shop with a large terminal and function
sets. They developed three new GP methods based on island models and
SASEGASA (Affenzeller and Wagner, 2004) in which rules are evolved in
multiple subpopulations. The results show that the SASEGASA method can
cope better with the states of exception in the simulation than island based
methods. In a very recent study, Karunakaran et al (2016a) investigated GP
with different topologies of the island model to deal with multi-objective job
shop scheduling. Their experimental results showed that the proposed tech-
niques outperform some general-purpose multi-objective optimization meth-
ods, including NSGA-II and SPEA-2.

Park et al (2016b) proposed two GP techniques to evolve ensembles of dis-
patching rules based on Multilevel Genetic Programming (MLGP) (Wu and
Banzhaf, 2011) and cooperative coevolution (Potter and De Jong, 2000). While
MLGP aims at automatically finding a group of individuals that work to-
gether effectively, the cooperative coevolution uses decomposition approaches
to coevolve multiple subpopulations. The experimental results showed that
MLGP outperformed the simple GP technique with no significant increase in
computational times. Meanwhile, the cooperative coevolution technique are
better than MLGP in terms of performance of evolved rules but significantly
slower than MLGP.

3.6.3 Other search mechanisms

Nguyen et al (2015a) developed a new technique called automatic program-
ming via iterated local search (APRILS) to design dispatching rules for dy-
namic job shop scheduling. APRILS used tree-based representation similar
to GP but it employed iterated local search to search for the best rule in-
stead of population-based search in most studies. In the proposed algorithm,
the neighbour heuristics are created by applying subtree mutation (but only
small random subtree is generated). To help the algorithm escape from the
local optimum, subtree mutation and subtree extraction operators are used.
Given a fixed number of fitness evaluations, the experimental results showed
that APRILS is significantly better than than simple GP with the tree-based
representation in terms of performance of evolved heuristics, program lengths,
and the running times.

Title Suppressed Due to Excessive Length 27

Hart and Sim (2016) developed a hyper-heuristic based on an ensemble
method called NELLI (Sim et al, 2015). The proposed NELLI-GP extends
NELLI by evolving a set of dispatching rules represented as an expression
tree. NELLI uses a method inspired by Artificial Immune Systems (Castro
and Timmis, 2002) to evolve a set of heuristics, which are behaviourally di-
verse in the sense that each solves different subsets of a large instance set. The
three main components of NELLI-GP are: (1) a heuristic generator to generate
new scheduling heuristics, (2) sets of problem instances, and (3) a network in-
spired by the idiotypic network theory of the immune system. The key idea is
to evolve ensembles of heuristics that interact to cover a problem space. The
experiments showed that NELLI-GP can produce promising results.

Pickardt et al (2013) proposed a two-stage approach to evolving dispatch-
ing rule sets for semiconductor manufacturing. In the first stage, GP is used to
evolve general dispatching rules. The best obtained dispatching rule is com-
bined with a list of benchmark dispatching rules to generate a set of candi-
date rules. In the second stage, a µ + λ evolutionary algorithm (EA) is used
to select the most suitable dispatching rule in the set of candidate rules for
each work centre in the shop. The experiments compared the performance
of the two-stage hyper-heuristics with the pure GP and EA hyper-heuristics.
The results show that the three hyper-heuristics outperformed benchmark
dispatching rules and the two-stage hyper-heuristics produced significantly
better performance than the other two hyper-heuristics.

3.7 Post-processing

The evolved scheduling heuristics are usually large in size and it is not straight-
forward to understand how and why scheduling decisions are made. Post-
processing steps are usually included to analyse the obtained heuristics to
understand how they handle scheduling problems. Follows are some post-
processing techniques to analyse scheduling heuristics commonly used in the
recent literature:

– Simplification of obtained heuristics
– Visualisation
– Analyse feature usage within obtained heuristics
– Analyse code fragment
– Relearn obtained heuristics

Simplification is the most popular technique to remove redundant parts
of evolved heuristics, which make the heuristics smaller and easier to un-
derstand (Nguyen et al, 2013b). Manual simplification is usually applied to
the best evolved scheduling heuristics (Dimopoulos and Zalzala, 2001; Tay
and Ho, 2008). Often the length of evolved scheduling heuristics can be sig-
nificantly reduced via manual simplification since there are some parts that
make no contributions to the outputs (e.g. some conditions are always true).
Symbolic simplification function available in some mathematical softwares

28 Su Nguyen et al.

can also be used. Nguyen et al (2016) applied a numerical simplification rou-
tine that transverses the evolved tree and check if the performance of the
heuristic will be deteriorated as the considered subtree is reduced to some
constant.

Visualisation is also an attractive alternative to interpret the evolved schedul-
ing heuristics. Branke et al (2015) used contour plot to visualise priorities as
the functions of attributes. Nguyen et al (2016) used parallel coordinate plot
which is able to show how priorities changes with different combinations
of attributes. These visualisation techniques are helpful to show the general
characteristics of the evolved heuristics and the differences between differ-
ent heuristics. However, it is still hard to fully understand the complex be-
haviours of evolved scheduling heuristics.

Analysing the usages of attributes included in the evolved scheduling
heuristics has also been done in the literature to understand the contributions
of these attributes. For example, Nguyen et al (2013b) analyses the frequency
usage of attributes in the final dispatching rules evolved by GP to show what
are the most useful attributes. Branke et al (2015) analysed the importance of
each attribute by measuring the performance of the best rules when certain
attributes are not available. Their analyses show that some attributes are more
important for specific representations. Instead of independently investigate
each attribute, Hunt et al (2015a) performed fragment analyses to show the
most common fragments (with the depth of two) in the evolved scheduling
heuristics. The analyses show that some fragments representing the differ-
ences between due date, machine ready time, and current time appear most
often in the evolved heuristics. The analyses also showed that most frequent
fragments from different GP techniques can be different.

Since the evolved heuristics are usually complicated, Nguyen et al (2016)
attempted to apply supervised machine learning techniques to relearn the
scheduling heuristics obtained by GP. Random sampling are applied to ran-
domly pick pairs of jobs and decide which one has the higher priority based
on the heuristics to be relearned. From the collected data, a binary classifi-
cation problem is created. In this problem, the attributes are the relative at-
tributes of the two jobs and the label is whether or not the first job has a
higher priority than the second one. Decision tree has been applied as the ob-
tained decision tree is easy to understand and more important attributes can
be easily detected (usually in the top of the decision tree).

3.8 Evaluating GP methods

The performance of a GP method is measured by the performance of the
evolved scheduling heuristics. Similar to traditional studies in the schedul-
ing literature, scheduling heuristics are evaluated based on the quality of ob-
tained scheduling solutions (usually the average objective value from a set
of test problem instances), the robustness (i.e. the test performance in unseen
scenarios), and the computational times. Well-known benchmark instances

Title Suppressed Due to Excessive Length 29

in the scheduling literature (Lawrence, 1984; Applegate and Cook, 1991a;
Taillard, 1993; Demirkol et al, 1998) are commonly used for evaluation pur-
poses. Some random instance generators (Tay and Ho, 2008; Jakobovic and
Budin, 2006; Hart and Sim, 2016) are also applied to generate training and
test instances for GP. However these are mainly used for static production
scheduling problems. For dynamic stochastic scheduling problems, DES (as
discussed in Section 3.5.1) is typically applied. Most DES simulators are de-
veloped by researchers to cope with their GP systems and specific research
objectives. Branke et al (2016b) suggested that the publication of entire simu-
lators (e.g. Jasima from Hildebrandt (2014)) would greatly help replicability
and facilitate fair comparisons.

For a new application of GP, it is important to compare evolved schedul-
ing heuristics with the state-of-the-art heuristics in the literature to demon-
strate its effectiveness (Jakobovic and Budin, 2006; Tay and Ho, 2008; Hilde-
brandt et al, 2010; Nguyen et al, 2013b). As discussed in Section 3.6.1, these
comparisons can reveal interesting insights about evolved heuristics (Nguyen
et al, 2013c). When comparing different GP methods, the average (relative)
objective values of obtained scheduling heuristics are the primary perfor-
mance measures. The complexity of evolved heuristics, i.e. often measured in
terms of the lengths of GP individuals, is also used to compare GP methods
(Nguyen et al, 2015a, 2016). Interpretability has been recently investigated
when comparing different hyper-heuristics methods (Branke et al, 2015; Hunt
et al, 2015a). For multi-objective scheduling problems, common EMO met-
rics such as hyper-volume and inverted generational distance can be used to
measure the quality of the obtained trade-off heuristics (Nguyen et al, 2014d;
Masood et al, 2016a).

In this section, we have discussed key components for automated design
of scheduling heuristics with GP and showed how these components are con-
nected under a unified framework. For each component, the basic setting as
well as the more advanced techniques developed for complex situations have
been presented. The new techniques have been developed based on the needs
of discovering more effective and intepretable scheduling heuristics while
reducing the computational times. Although there have been many fruitful
studies in the last five years, many issues still remain unsolved and require
more studies in the future.

4 Connections with other artificial intelligence (AI) and operations
research (OR) techniques

Automated heuristic design is a relatively new area of research and has at-
tracted much attention of many researchers in AI and OR. In previous stud-
ies, both machine learning and operations research techniques have been ap-
plied within automated heuristic design. In the rest of this section, we discuss
different ways that machine learning and operations research can be used to
enhance the way GP evolve production scheduling heuristics.

30 Su Nguyen et al.

4.1 Machine learning

In most previous studies, GP is used as a unsupervised learning technique to
learn the most effective heuristics for scheduling problems. GP has to dis-
cover both the heuristic structures as well as the corresponding parameters.
From this viewpoint, automated heuristic design can be simply treated as an
optimisation problem where the objective function is the fitness function to
evaluate the quality of heuristics. As the search space of GP is very large,
searching for (near) optimal heuristics is very challenging and it is even more
difficult if there are many attributes or features to be considered (in the termi-
nal set). To deal with this issue, feature selection are needed to remove redun-
dant attributes which may influence the performance of GP. Mei et al (2016)
has shown that selecting a good feature subset can significantly improve the
performance of GP, i.e. finding better scheduling heuristics. Feature construc-
tion (Hunt, 2016) and feature extraction will be also an interesting aspects that
need to be considered in the future studies.

Supervised learning techniques such as decision tree (Olafsson and Li, 2010;
Shahzad and Mebarki, 2016), logistic regression (Ingimundardottir and Runars-
son, 2011), support vector machines (Shiue, 2009), and artificial neural net-
works (Weckman et al, 2008; Eguchi et al, 2008) have also been investigated
in literature for automated design of production scheduling heuristics. For
supervised learning, optimal decisions from solving small instances with ex-
act optimisation methods or from the historical data are needed to build
the training set. However, there are a number of challenges with supervised
learning. As scheduling decisions are highly interdependent (i.e. the decision
for an operation may influence decision of other operations), learning the op-
timal decisions for the whole schedule will not be easy. If the goal is to deter-
mine which dispatching rules to apply given a set of jobs and system status,
there is also no guarantee that the learned heuristics will actually provide the
(near) optimal solution as the available dispatching rules may not be effective
(similar to the cases when historical data is used). Nguyen et al (2014b) pro-
posed a sequential GP to learn a set of rules that can learn optimal scheduling
decisions for order acceptance and scheduling problem. The training set is a
number of decision situations which the optimal decisions obtained by ex-
act methods. The obtained heuristics are very efficient and are competitive
as compared to customised meta-heuristics developed in the literature. Com-
bining the power of advanced supervised machine learning techniques with
GP would be an interesting research direction in the future.

The scheduling literature has covered a wide range of scheduling prob-
lems. In production scheduling, many popular problems have been investi-
gated intensively such as single machine scheduling, parallel machine schedul-
ing, (flexible) flow shop scheduling, (flexible) job shop scheduling, and open
shops. There is shared knowledge between these problems which can be
used to develop different heuristics (e.g. ATC can be extend to ATCS to deal
with setup dependent scheduling problems). Clearly, transfer learning (Baxter,
1997; Feng et al, 2015) and multi-task learning (Baxter, 2000; Ong and Gupta,

Title Suppressed Due to Excessive Length 31

2016; Gupta et al, 2016) will be very useful in automated design of production
scheduling heuristics. The knowledge to solve a simple scheduling problem
can be reused to solve hard problems and scheduling jobs at different ma-
chines can be based on some common pieces of knowledge.

4.2 Operations research

Discrete event simulation (DES) has been used intensively in automated de-
sign of production scheduling heuristics and it is proven to be an effective
method to evaluate the performance of scheduling heuristics, especial in dy-
namic environments. DES is also very flexible which allows it to model a wide
range of complex real-world problems and to be embedded into GP. In terms
of simulation, many aspects should be considered to improve the evaluation
accuracy and efficiency:

– Continuous simulation: In some cases, production systems needs continu-
ous simulation method (Law and Kelton, 1999) as the states of the system
change continuously (Hmida et al, 2014) like the movement of liquids (e.g.
oil, chemical) or the steel making process. Scheduling with the continuous
production process is an interesting topic and continuous simulation or
hybrid simulation combining both DES and continuous simulation will
be useful (e.g. in food industry).

– Multi-agent simulation: To gain better understandings of the system and
investigate how individual behaviours may influence the overall perfor-
mance, multi-agent simulation, a powerful technique in OR and AI, will
be a more suitable method. Miyashita (2000) investigated different GP-
based agent models and showed interesting preliminary results. In the
future studies, different real-world aspects (e.g. human factors) should be
considered to see how GP-based agents will behave.

– Simulation optimisation: Automated design of production scheduling heuris-
tics can be treated as simulation optimisation problems as the fitness of
heuristics is stochastic. Then, many advanced techniques developed in
simulation optimisation can be applied in this case to improve the accu-
racy of fitness evaluations and improve the efficiency of GP.

Queueing theories and stochastic models of production systems have been
studied intensively in the last few decades and it would be useful to incorpo-
rate the knowledge from these research fields into the automated design pro-
cess. For an example, useful scheduling policies developed for the stochastic
environments or policies to cope with the machine breakdowns can be con-
sidered when developing the meta-algorithms of scheduling heuristics (see
Section 3.2). Similarly, to build a more competitive scheduling heuristics, the
advances in the scheduling literature and combinatorial optimisation need to
be taken into account.

32 Su Nguyen et al.

5 Current issues and challenges

There are many issues that are worth considering in the future studies. Here
we point out three key issues needed to be addressed if we want to apply
automated heuristic design in practice.

5.1 Dynamic changes

Dynamic changes are unavoidable in the real-world applications and cop-
ing with this issue is essential. Traditional optimisation methods could not
handle dynamic change well. Fortunately, scheduling heuristics evolved by
GP can cope very well with the dynamic changes. Basically, these heuris-
tics can deal easily with most dynamic changes such as dynamic job arrivals,
machine breakdowns, and stochastic processing times. However, to improve
the quality as well as the robustness of evolved heuristics, the problem do-
main knowledge is needed. Either the knowledge is provided to GP by the
researchers or automatically extracted from the environment will need fur-
ther investigation.

Strategies for dynamic scheduling in production systems (Ouelhadj and
Petrovic, 2008) can be classified as:

– Completely reactive scheduling: no schedule is generated in advance and de-
cisions are made in real time. Priority dispatching rules are the main tech-
niques for completely reactive scheduling.

– Predictive-reactive scheduling: scheduling/rescheduling is triggered by the
real-time events where both objectives of interest and stability (measured
by the deviation from original schedule) are considered.

– Robust pro-active scheduling: focus on building predictable schedules; the
key idea is to improve the predictability of the schedules in a dynamic
environment (e.g. by inserting additional time in the predictive schedule)
with minimal effects on the schedule performance.

While GP has been applied to many studies to evolve priority rules, there
is no study on predictive-reactive scheduling. Yin et al (2003) and Nguyen
et al (2014d) are the only two studies that considered pro-active scheduling
issues. Yin et al (2003) tried to evolve a scheduling heuristics that include
a priority rule to determine the job sequence and a function to estimate the
idle time needed to be inserted into the schedule to buffer against stochastic
machine breakdowns. Their objective was to minimise both the mean tardi-
ness of the schedule and the deviations between initial and final schedules. In
this case, Yin et al (2003) proposed a fitness function that is a weighted sum
of mean tardiness and mean deviations of completion times. Nguyen et al
(2014d) aimed at coevolve both the dispatching rules and due date assign-
ment rules to optimise the scheduling performance measures and minimise
the deviations between the realised completion times and assigned due dates
of jobs. Different from Yin et al (2003), Nguyen et al (2014d) used evolutionary

Title Suppressed Due to Excessive Length 33

multi-objective optimisation to evolve the set of non-dominated scheduling
policies. GP studies in this research direction are still at a very early stage and
many things will need to be done such as improving stability and predictabil-
ity of schedules, handling different sources of disturbances, and improving
the efficiency of GP and its evolved heuristics.

5.2 Multiple decisions

Previous studies on production planning and scheduling focused mainly on
scheduling or sequencing decisions and assumed that other related decisions
are fixed. For example, the due date assignment rules (e.g. total work content)
and the job release policy (e.g. immediate release) are fixed and we try to find
the best scheduling heuristics. These assumptions reduce the computational
burden of the optimisation or learning techniques, but they also restrict us
from developing an effective comprehensive systems. It should be noted that
past studies are limited by manual designs of scheduling heuristics and com-
putational power, which is not a serious issue now. The automated heuristic
design and the growing computing power provide us with the chance to con-
sider a much wider scope.

However, in order to effectively handle multiple decisions, better search
mechanisms will need to be developed. There are two common approaches
to dealing with multiple decisions. The first approach creates a sophisticated
representation that contains two or more decision rules and programs based
on this representation are evolved and reproduced based on some customised
genetic operators. The second approach is to apply cooperative coevolution
technique to coevolve multiple subpopulations for multiple decision rules. In
these two approaches, each rule is constructed based on an independent set
of terminals and functions. Since each decision rule has its own characteristic,
it is not necessary to use GP to evolve all the rules. For example, supervised
learning (e.g. regression) can be used to estimate due dates of randomly ar-
riving jobs given a fixed dispatching rule. It would be useful to investigate
how GP can be combined with other machine learning techniques to deal
with multiple decisions in production planning and scheduling.

5.3 Multiple conflicting objectives

Similar to multiple decisions, GP allows the researchers to cope with multiple
conflicting objectives in various ways. Using pure EMO search mechanisms
such as NSGA-II (Deb et al, 2002) may have troubles dealing with this de-
signing problems because of a number of reasons. First, the search space for
GP to explore can be very large because of the number of terminals, functions
sets, and the number of objectives to be optimised. Therefore, it will be much
harder for the search methods to find a good set of non-dominated heuristics.
Second, GP usually requires a large population in order to maintain a large

34 Su Nguyen et al.

and diverse genetic materials to create effective scheduling heuristics, espe-
cially when dealing with multiple conflicting objectives. As a result, more
heuristic evaluations will be needed, which significantly increases the com-
putational costs of GP. Finally, it will be more difficult to understand how
the trade-offs are achieved via the evolved heuristics (it has been already
very hard to understand scheduling heuristics in the case of optimising a sin-
gle objective). Also, how to measure the robustness of scheduling heuristics
(when they are applied to different/unseen scenarios) is still a open research
question.

Possible approaches to handle these issues are:

– Developing more specialised genetic operators and local search heuristics
to improve the search effectiveness and efficiency.

– Incorporating user’s preferences to guide the search of GP to improve the
efficiency of GP.

– Developing new surrogated assisted GP to reduce the computational costs
of GP and improve its effectiveness.

– Developing new representations to allow GP to deal with multiple objec-
tives effectiveness and improve the interpretability of evolved scheduling
heuristics.

5.4 Other challenges

Developing an efficient, effective, and scalable GP systems for evolving schedul-
ing heuristics will continue to be a major challenge for the research com-
munity. As the real world production systems can be very complicated with
many different types of resources and technical constraints, many attributes
need to be considered to construct heuristics and the search space of schedul-
ing heuristics can be very large. The key point for future research is to en-
hance the search mechanism of GP so that GP is able to evolve effective so-
phisticated structures of scheduling heuristics and optimise their related pa-
rameters for complex production environments. As mentioned earlier, trans-
fer learning can be an interesting research topic for GP to reuse the knowledge
obtained from handling different scheduling problems.

6 Conclusions

Automated design of production scheduling heuristics is an interesting and
challenging research area which has a lot of potential applications. GP has
been the most popular technique for the automated design tasks in the last
several years. Different from existing survey papers that focused on general
ideas and taxonomies, the goal of this paper is to emphasise on the techni-
cal issues when using GP to evolve production scheduling heuristics. In this
paper, we discussed the key issues related to automated design of schedul-
ing heuristics with GP including meta-algorithms of scheduling heuristics,

Title Suppressed Due to Excessive Length 35

selection of component(s) to be evolved, representations, evaluation models,
fitness functions, search mechanism and post-processing. A unified frame-
work was developed to provide beginning researchers with an overall pic-
ture of all essential steps, components, and their connections when develop-
ing a GP system for automated design of production scheduling heuristics.
Through analyses of each component, we also pointed out the strength and
weakness of each technique proposed in the literature and provided hints
for future studies. Representations, evaluation models, and post-processing
are still three main research directions to be explored as they can directly
influence the applicability of these techniques in practice. Researchers from
GP communities can develop better representations and genetic operators to
help GP discover more powerful and more interpretable scheduling heuris-
tics. Advanced knowledge from the fields of simulation and optimisation of
expensive functions can be very useful when systematically applied to GP.
For post-processing, it is a space for creativeness, in which the goal is to ex-
plain how the evolve how discovered heuristics work, its sensitivity, and the
reliability of decisions made by the heuristic.

Automated design of production scheduling heuristics is a multi-disciplinary
and inter-disciplinary research area where the knowledge from operations
research and artificial intelligence is required. Scheduling has its root from
operation research and many clever techniques have been proposed in the lit-
erature. It would be interesting to see how GP can assist to make scheduling
research more productive. For AI, automated heuristics design will greatly
enlarge the scope of machine learning applications from traditional predic-
tion tasks to making optimal decisions based on historical operational data.
Also, many aspects from supervised learning, unsupervised learning, and
transfer learning will need to be investigated in the context of automated
heuristic design.

Production environments can be complex and it is critical for GP to han-
dle key issues that commonly occur in real-world situations such as dynamic
changes, multiple decisions, and multiple conflicting objectives. Although
many issues can be handled directly by GP (e.g. reactively dealing with dy-
namic changes), some have not been investigated or have not had a satis-
factory solutions. Also, many aspects discussed here will be true for other
scheduling and combinatorial optimisation problems and we expect that more
applications will appear in the near future.

References

Abednego L, Hendratmo D (2011) Genetic programming hyper-heuristic for
solving dynamic production scheduling problem. In: IEEE 2011 Interna-
tional Conference on Electrical Engineering and Informatics (ICEEI)

Affenzeller M, Wagner S (2004) SASEGASA: A New Generic Parallel Evo-
lutionary Algorithm for Achieving Highest Quality Results. Journal of
Heuristics 10(3):243–267

36 Su Nguyen et al.

Alsina EF, Capodieci N, Cabri G, Regattieri A, Gamberi M, Pilati F, Faccio
M (2015) The Influence of the Picking Times of the Components in Time
and Space Assembly Line Balancing Problems: An Approach with Evo-
lutionary Algorithms. In: 2015 IEEE Symposium Series on Computational
Intelligence, pp 1021–1028

Applegate D, Cook W (1991a) A computational study of the job-shop
scheduling instance. ORSA Journal on Computing 3(2):149–156

Applegate D, Cook W (1991b) A computational study of the job-shop
scheduling problem. ORSA Journal on Computing 3(2):149–156

Banzhaf W, Nordin P, Keller R, Francone F (1998) Genetic Programming: An
Introduction. Morgan Kaufmann

Baxter J (1997) Theoretical models of learning to learn. In: In T. Mitchell and
S. Thrun (Eds.), Learning, Kluwer, pp 71–94

Baxter J (2000) A model of inductive bias learning. J Artif Int Res 12(1):149–
198

Baykasoglu A (2008) Gene expression programming based meta-modelling
approach to production line design. International Journal of Computer In-
tegrated Manufacturing 21

Baykasoglu A, Ozbakr L (2015) Discovering task assignment rules for assem-
bly line balancing via genetic programming. The International Journal of
Advanced Manufacturing Technology 76

Baykasoglu A, Gocken M, Ozbakir L (2010) Genetic programming based data
mining approach to dispatching rule selection in a simulated job shop. SIM-
ULATION: Transactions of the Society for Modeling and Simulation 86

Baykasolu A, Gken M (2009) Gene expression programming based due date
assignment in a simulated job shop. Expert Systems with Applications
36(10):12,143–12,150

Beasley JE (1990) Or-library: Distributing test problems by electronic mail.
The Journal of the Operational Research Society 41(11):1069–1072

Beham A, Winkler S, Wagner S, Affenzeller M (2008) A genetic programming
approach to solve scheduling problems with parallel simulation. In: Wu J,
Robert Y (eds) Proceedings of the 2008 IEEE International Parallel & Dis-
tributed Processing Symposium, IEEE Computer Society Press, Los Alami-
tos, CA, pp 1–5

Belisrio LS, Pierreval H (2015) Using genetic programming and simulation
to learn how to dynamically adapt the number of cards in reactive pull
systems. Expert Systems with Applications 42(6):3129–3141

Bierwirth C, Mattfeld DC (1999) Production Scheduling and Rescheduling
with Genetic Algorithms. Evolutionary Computation 7(1):1–17

Brameier MF, Banzhaf W (2010) Linear Genetic Programming, 1st edn.
Springer Publishing Company, Incorporated

Branke J, Hildebrandt T, Scholz-Reiter B (2015) Hyper-heuristic evolution
of dispatching rules: a comparison of rule representations. Evolutionary
Computation 23(2):249–277

Branke J, Groves MJ, Hildebrandt T (2016a) Evolving control rules for a dual-
constrained job scheduling scenario. In: Proceedings of the 2016 Winter

Title Suppressed Due to Excessive Length 37

Simulation Conference, Winter Simulation Conference
Branke J, Nguyen S, Pickardt CW, Zhang M (2016b) Automated Design of

Production Scheduling Heuristics: A Review. IEEE Transactions on Evolu-
tionary Computation 20(1):110–124

Burke EK, Hyde M, Kendall G, Woodward J (2007) Automatic heuristic gen-
eration with genetic programming: evolving a jack-of-all-trades or a master
of one. In: GECCO ’07: Proceedings of the 9th Annual Conference on Ge-
netic and Evolutionary Computation, ACM Press, New York, pp 1559–1565

Burke EK, Hyde MR, Kendall G, Ochoa G, Ozcan E, Woodward JR (2009)
Exploring Hyper-heuristic Methodologies with Genetic Programming. In:
Mumford C, Jain L (eds) Computational Intelligence, Intelligent Systems
Reference Library, vol 1, Springer Berlin Heidelberg, pp 177–201

Burke EK, Hyde M, Kendall G, Ochoa G, Ozcan E, Woodward JR (2010) A
classification of hyper-heuristic approaches. In: Handbook of Metaheuris-
tics, International Series in Operations Research & Management Science,
vol 146, Springer, pp 449–468

Burke EK, Gendreau M, Hyde M, Kendall G, Ochoa G, Ozcan E, Qu R (2013)
Hyper-heuristics: a survey of the state of the art. Journal of the Operational
Research Society 64(12):1695–1724

Castro LRd, Timmis J (2002) Artificial Immune Systems: A New Computa-
tional Intelligence Paradigm. Springer-Verlag New York, Inc., Secaucus, NJ,
USA

Chen L, Zheng H, Zheng D, Li D (2015) An ant colony optimization-based
hyper-heuristic with genetic programming approach for a hybrid flow
shop scheduling problem. In: CEC’15: IEEE Congress on Evolutionary
Computation

Coello Coello CA (1999) A comprehensive survey of evolutionary-based mul-
tiobjective optimization techniques. Knowledge and Information Systems
1(3):269–308

Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multi-
objective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary
Computation 6(2):182 –197

Demirkol E, Mehta S, Uzsoy R (1998) Benchmarks for shop scheduling prob-
lems. European Journal of Operational Research 109(1):137–141, DOI DOI:
10.1016/S0377-2217(97)00019-2

Dimopoulos C, Zalzala AMS (2001) Investigating the use of genetic program-
ming for a classic one-machine scheduling problem. Advances in Engineer-
ing Software 32(6):489–498

Durasevic M, Jakobovi D, Kneevi K (2016) Adaptive scheduling on unrelated
machines with genetic programming. Applied Soft Computing 48:419–430

Eguchi T, Oba F, Toyooka S (2008) A robust scheduling rule using a neu-
ral network in dynamically changing job-shop environments. International
Journal of Manufacturing Technology and Management 14(34):266–288

Feng L, Ong YS, Lim MH, Tsang IW (2015) Memetic Search With Interdomain
Learning: A Realization Between CVRP and CARP. IEEE Transactions on
Evolutionary Computation 19(5):644–658

38 Su Nguyen et al.

Ferreira C (2006) Gene Expression Programming: Mathematical Modeling by
an Artificial Intelligence, 2nd edn. Springer-Verlag, Germany

Freitag M, Hildebrandt T (2016) Automatic design of scheduling rules for
complex manufacturing systems by multi-objective simulation-based opti-
mization. CIRP Annals - Manufacturing Technology 65(1):433–436

Furuholmen M, Glette K, Hovin M, Torresen J (2009) Coevolving heuristics
for the Distributor’s Pallet Packing Problem. In: CEC’09: IEEE Congress on
Evolutionary Computation, pp 2810–2817

Geiger CD, Uzsoy R (2008) Learning effective dispatching rules for
batch processor scheduling. International Journal of Production Research
46(6):1431–1454

Geiger CD, Uzsoy R, Aytu H (2006) Rapid modeling and discovery of priority
dispatching rules: an autonomous learning approach. Journal of Schedul-
ing 9(1):7–34

Giffler B, Thompson GL (1960) Algorithms for solving production-scheduling
problems. Operations Research 8(4):487–503

Gupta A, Ong Y, Feng L (2016) Multifactorial evolution: Toward evolutionary
multitasking. IEEE Transactions on Evolutionary Computation 20(3):343–
357

Han S, Seo J, Park J (2012) Designing an Effective Scheduling Scheme Con-
sidering Multi-level BOM in Hybrid Job Shop. In: Proceedings of the 2012
International Conference on Industrial Engineering and Operations Man-
agement, pp 1302–1310

Hart E, Sim K (2016) A Hyper-Heuristic Ensemble Method for Static Job-shop
Scheduling. Evolutionary Computation .Doi:10.1162EVCO a 00183

Hart E, Ross P, Corne D (2009) Evolutionary Scheduling: A Review. Genetic
Programming and Evolvable Machines 6(2):191–220

Hildebrandt T (2014) jasima an efficient Java Simulator for Manufacturing
and Logistics, URL http://code.google.com/p/jasima/

Hildebrandt T, Branke J (2014) On using surrogates with genetic program-
ming. Evolutionary Computation 23(3):343–367

Hildebrandt T, Heger J, Scholz-Reiter B (2010) Towards improved dispatch-
ing rules for complex shop floor scenarios a genetic programming ap-
proach. In: Pelikan M, Branke J (eds) GECCO ’10: Proceedings of the
12th Annual Conference on Genetic and Evolutionary Computation, ACM
Press, Portland, Oregon, USA, pp 257–264

Hildebrandt T, Goswami D, Freitag M (2014) Large-scale Simulation-based
Optimization of Semiconductor Dispatching Rules. In: Proceedings of the
2014 Winter Simulation Conference, pp 2580–2590

Hmida JB, Lee J, Wang X, Boukadi F (2014) Production scheduling for contin-
uous manufacturing systems with quality constraints. Production & Man-
ufacturing Research 2(1):95–111

Ho NB, Tay JC (2004) GENACE: An efficient cultural algorithm for solv-
ing the flexible job-shop problem. In: Evolutionary Computation, 2004.
CEC2004. Congress on, IEEE, vol 2, pp 1759–1766

Title Suppressed Due to Excessive Length 39

Ho NB, Tay JC (2005) Evolving dispatching rules for solving the flexible job-
shop problem. vol 3, pp 2848–2855

Holthaus O, Rajendran C (2000) Efficient jobshop dispatching rules: further
developments. Production Planning & Control 11(2):171–178

Hunt R (2016) Genetic Programming Hyper-heuristics for Job Shop
Scheduling. PhD thesis, Victoria University of Wellington, URL
http://researcharchive.vuw.ac.nz/handle/10063/5219

Hunt R, Johnston M, Zhang M (2014a) Evolving machine-specific dispatching
rules for a two-machine job shop using genetic programming. In: Liu D,
Hussain A, Zeng Z, Zhang N (eds) 2014 IEEE Congress on Evolutionary
Computation (CEC), IEEE Press, Piscataway, NJ, pp 618–625

Hunt R, Johnston M, Zhang M (2014b) Evolving less-myopic scheduling rules
for dynamic job shop scheduling with genetic programming. In: Igel C,
Arnold DV (eds) GECCO ’14: Proceedings of the 2014 Conference on Ge-
netic and Evolutionary Computation, ACM Press, New York, pp 927–934

Hunt R, Johnston M, Zhang M (2015a) Evolving dispatching rules with
greater understandability for dynamic job shop. Tech. Rep. ECSTR15-06,
Victoria University of Wellington

Hunt R, Johnston M, Zhang M (2015b) Using Local Search to Evaluate Dis-
patching Rules in Dynamic Job Shop Scheduling. In: Ochoa G, Chicano F
(eds) Evolutionary Computation in Combinatorial Optimization, Springer
International Publishing, Lecture Notes in Computer Science, pp 222–233

Ingimundardottir H, Runarsson TP (2011) Supervised learning linear priority
dispatch rules for job-shop scheduling. In: Coello Coello CA (ed) Learning
and Intelligent Optimization, Springer, Berlin and Heidelberg, LNCS, vol
6683, pp 263–277

Jakobovic D, Budin L (2006) Dynamic scheduling with genetic programming.
In: Collet P, Tomassini M, Ebner M, Gustafson S, Ekrt A (eds) Genetic Pro-
gramming, Springer, Berlin and Heidelberg, LNCS, vol 3905, pp 73–84

Jakobovic D, Jelenkovic L, Budin L (2007) Genetic programming heuristics for
multiple machine scheduling. In: Ebner M, O’Neill M, Ekrt A, Vanneschi L,
Esparcia-Alczar AI (eds) Genetic Programming, Springer, Berlin and Hei-
delberg, LNCS, vol 4445, pp 321–330

Jakobovi D, Marasovi K (2012) Evolving priority scheduling heuristics with
genetic programming. Applied Soft Computing 12(9):2781–2789

Jin Y (2006) Multi-Objective Machine Learning (Studies in Computational In-
telligence) (Studies in Computational Intelligence). Springer-Verlag New
York, Inc., Secaucus, NJ, USA

Jin Y (2011) Surrogate-assisted evolutionary computation: Recent advances
and future challenges. Swarm and Evolutionary Computation 1(2):61–70

Karunakaran D, Chen G, Zhang M (2016a) Parallel Multi-objective Job Shop
Scheduling Using Genetic Programming. In: Ray T, Sarker R, Li X (eds)
Artificial Life and Computational Intelligence, Springer International Pub-
lishing, Lecture Notes in Computer Science, pp 234–245

Karunakaran D, Mei Y, Chen G, Zhang M (2016b) Dynamic job shop schedul-
ing under uncertainty using genetic programming. In: Asia-Pacific Sympo-

40 Su Nguyen et al.

sium on Intelligent and Evolutionary Systems (IES), (to appear)
Keijzer M, Babovic V (1999) Dimensionally aware genetic programming. In:

in Banzhaf, W. (1 st Ed.), Proceedings of the First Genetic and Evolutionary
Conference (GECCO 99, Morgan, pp 1069–1076

Kofler M, Wagner S, Beham A, Kronberger G, Affenzeller M (2009) Priority
rule generation with a genetic algorithm to minimize sequence dependent
setup costs. In: Moreno-Daz R, Pichler F, Quesada-Arencibia A (eds) Com-
puter Aided Systems Theory EUROCAST 2009, Springer, Berlin and Hei-
delberg, LNCS, vol 5717, pp 817–824

Koza JR (1992) Genetic Programming: On the Programming of Computers by
Means of Natural Selection. MIT Press, Cambridge, MA

Kuczapski AM, Micea MV, Maniu LA, Cretu VI (2010) Efficient generation of
near optimal initial populations to enhance genetic algorithms for job-shop
scheduling. Information Technology and Control 39(1):32–37

Langdon WB, Banzhaf W (2005) Repeated sequences in linear genetic pro-
gramming genomes. Complex Systems 15(4):285–306

Law AM, Kelton DM (1999) Simulation Modeling and Analysis. McGraw-
Hill Higher Education

Lawrence S (1984) Resource constrained project scheduling: An experimen-
tal investigation of heuristic scheduling techniques. PhD thesis, Gradu-
ate School of Industrial Administration, Carnegie-Mellon University, Pitts-
burgh, Pennsylvania

Li D, Zhan R, Zheng D, Li M, Kaku I (2016) A Hybrid Evolutionary
Hyper-Heuristic Approach for Intercell Scheduling Considering Trans-
portation Capacity. IEEE Transactions on Automation Science and Engi-
neering 13(2):1072–1089

Li XY, Shao XY, Gao L (2008) Optimization of flexible process planning by ge-
netic programming. The International Journal of Advanced Manufacturing
Technology 38(1-2):143–153

Mascia F, Lopez-Ibanez M, Dubois-Lacoste J, Stutzle T (2013) From gram-
mars to parameters: automatic iterated greedy design for the permutation
flow-shop problem with weighted tardiness. In: Nicosia G, Pardalos P (eds)
Learning and Intelligent Optimization, Springer, Berlin and Heidelberg,
LNCS, vol 7997, pp 321–334

Masood A, Mei Y, Chen G, Zhang M (2016a) Many-Objective Genetic Pro-
gramming for Job-Shop Scheduling. In: CEC’16: IEEE Congress on Evolu-
tionary Computation, pp 209–216

Masood A, Mei Y, Chen G, Zhang M (2016b) A pso-based reference point
adaption method for genetic programming hyper-heuristic in many-
objective job shop scheduling. In: Australasian Conference on Artificial Life
and Computational Intelligence (ACALCI), (to appear)

Mckay RI, Hoai NX, Whigham PA, Shan Y, O’Neill M (2010) Grammar-based
genetic programming: A survey. Genetic Programming and Evolvable Ma-
chines 11(3-4):365–396

Mei Y, Zhang M (2016) A comprehensive analysis on reusability of GP-
evolved job shop dispatching rules. In: WCCI-CEC’16: IEEE Congress on

Title Suppressed Due to Excessive Length 41

Evolutionary Computation
Mei Y, Zhang M, Nyugen S (2016) Feature selection in evolving job shop dis-

patching rules with genetic programming. In: Proceedings of the Genetic
and Evolutionary Computation Conference 2016, GECCO ’16, pp 365–372

Miller JF, Thomson P (2000) Cartesian genetic programming. In: European
Conference on Genetic Programming, Springer Berlin Heidelberg, pp 121–
132

Miyashita K (2000) Job-shop scheduling with genetic programming. In: Whit-
ley D, Goldberg D, Cantu-Paz E, Spector L, Parmee I, Beyer HG (eds)
GECCO 2000: Proceedings of the Genetic and Evolutionary Computation
Conference, Morgan Kaufmann, San Francisco, pp 505–512

Montana DJ (1995) Strongly typed genetic programming. Evolutionary Com-
putation 3(2):199–230

Mucientes M, Vidal JC, Bugarin A, Lama M (2008) Processing times estima-
tion in a manufacturing industry through genetic programming. In: IEEE
2008 3rd International Workshop on Genetic and Evolving Fuzzy Systems
(GEFS)

Nguyen S (2016) A learning and optimizing system for order acceptance and
scheduling. The International Journal of Advanced Manufacturing Tech-
nology DOI 10.1007/s00170-015-8321-6

Nguyen S, Zhang M, Johnston M (2011) A genetic programming based hyper-
heuristic approach for combinatorial optimisation. In: GECCO’11: Proceed-
ings of the 13th annual conference on Genetic and evolutionary computa-
tion, ACM, pp 1299–1306

Nguyen S, Zhang M, Johnston M, Tan KC (2012a) A coevolution genetic
programming method to evolve scheduling policies for dynamic multi-
objective job shop scheduling problems. In: CEC’12: IEEE Congress on Evo-
lutionary Computation (CEC), pp 1–8

Nguyen S, Zhang M, Johnston M, Tan KC (2012b) Evolving Reusable
Operation-Based Due-Date Assignment Models for Job Shop Scheduling
with Genetic Programming. In: EuroGP’12: Genetic Programming, no. 7244
in Lecture Notes in Computer Science, pp 121–133

Nguyen S, Zhang M, Johnston M, Tan K (2013a) Learning iterative dispatch-
ing rules for job shop scheduling with genetic programming. The Interna-
tional Journal of Advanced Manufacturing Technology 67(14):85–100

Nguyen S, Zhang M, Johnston M, Tan KC (2013b) A computational study of
representations in genetic programming to evolve dispatching rules for the
job shop scheduling problem. IEEE Transactions on Evolutionary Compu-
tation 17(5):621–639

Nguyen S, Zhang M, Johnston M, Tan KC (2013c) Dynamic Multi-objective
Job Shop Scheduling: A Genetic Programming Approach. In: Uyar AS, Oz-
can E, Urquhart N (eds) Automated Scheduling and Planning, no. 505 in
Studies in Computational Intelligence, Springer Berlin Heidelberg, pp 251–
282

Nguyen S, Zhang M, Johnston M, Tan KC (2013d) Learning reusable initial so-
lutions for multi-objective order acceptance and scheduling problems with

42 Su Nguyen et al.

genetic programming. In: Krawiec K, Moraglio A, Hu T, Etaner-Uyar A,
Hu B (eds) Genetic Programming, Springer, Berlin and Heidelberg, LNCS,
vol 7831, pp 157–168

Nguyen S, Zhang M, Johnston M (2014a) Enhancing Branch-and-Bound Al-
gorithms for Order Acceptance and Scheduling with Genetic Program-
ming. In: EuroGP’14: Genetic Programming, no. 8599 in Lecture Notes in
Computer Science, Springer Berlin Heidelberg, pp 124–136

Nguyen S, Zhang M, Johnston M (2014b) A sequential genetic programming
method to learn forward construction heuristics for order acceptance and
scheduling. In: Liu D, Hussain A, Zeng Z, Zhang N (eds) CEC’14: IEEE
Congress on Evolutionary Computation (CEC), IEEE Press, Piscataway, NJ,
pp 1824–1831

Nguyen S, Zhang M, Johnston M, Tan K (2014c) Genetic Programming for
Evolving Due-Date Assignment Models in Job Shop Environments. Evolu-
tionary Computation 22(1):105–138

Nguyen S, Zhang M, Johnston M, Tan KC (2014d) Automatic design of
scheduling policies for dynamic multi-objective job shop scheduling via
cooperative coevolution genetic programming. IEEE Transactions on Evo-
lutionary Computation 18(2):193–208

Nguyen S, Zhang M, Johnston M, Tan KC (2014e) Selection Schemes in
Surrogate-Assisted Genetic Programming for Job Shop Scheduling. In:
SEAL’14: Simulated Evolution and Learning, Springer International Pub-
lishing, pp 656–667

Nguyen S, Zhang M, Johnston M, Tan K (2015a) Automatic Programming via
Iterated Local Search for Dynamic Job Shop Scheduling. IEEE Transactions
on Cybernetics 45(1):1–14

Nguyen S, Zhang M, Tan KC (2015b) Enhancing genetic programming based
hyper-heuristics for dynamic multi-objective job shop scheduling prob-
lems. In: CEC’15: IEEE Congress on Evolutionary Computation (CEC), pp
2781–2788

Nguyen S, Zhang M, Tan KC (2016) Surrogate-Assisted Genetic Program-
ming With Simplified Models for Automated Design of Dispatching Rules.
IEEE Transactions on Cybernetics DOI:10.1109/TCYB.2016.2562674

Nie L, Shao X, Gao L, Li W (2010) Evolving scheduling rules with gene
expression programming for dynamic single-machine scheduling prob-
lems. The International Journal of Advanced Manufacturing Technology
50(58):729–747

Nie L, Gao L, Li P, Wang X (2011a) Multi-Objective Optimization for Dynamic
Single-Machine Scheduling. In: Tan Y, Shi Y, Chai Y, Wang G (eds) Ad-
vances in Swarm Intelligence: Second International Conference, ICSI 2011,
Chongqing, China, June 12-15, 2011, Proceedings, Part II, Springer Berlin
Heidelberg, Berlin, Heidelberg, pp 1–9

Nie L, Gao L, Li P, Zhang L (2011b) Application of gene expression program-
ming on dynamic job shop scheduling problem. In: Proceedings of the 2011
15th International Conference on Computer Supported Cooperative Work
in Design, IEEE Press, Piscataway, NJ, pp 291–295

Title Suppressed Due to Excessive Length 43

Nie L, Bai Y, Wang X, Liu K (2012) Discover scheduling strategies with gene
expression programming for dynamic flexible job shop scheduling prob-
lem. In: Tan Y, Shi Y, Ji Z (eds) Advances in Swarm Intelligence, Springer,
Berlin and Heidelberg, LNCS, vol 7332, pp 383–390

Nie L, Gao L, Li P, Li X (2013a) A GEP-based policies constructing approach
for dynamic flexible job shop scheduling problem with job release dates.
Journal of Intelligent Manufacturing 24(4):763–774

Nie L, Gao L, Li P, Shao X (2013b) Reactive scheduling in a job shop where
jobs arrive over time. Computers & Industrial Engineering 66

Nowicki E, Smutnicki C (1996) A fast taboo search algorithm for the job shop
problem. Management Science 42(6):797–813

Olafsson S, Li X (2010) Learning effective new single machine dispatching
rules from optimal scheduling data. International Journal of Production
Economics 128(1):118–126

Ong Y, Gupta A (2016) Evolutionary multitasking: A computer science view
of cognitive multitasking. Cognitive Computation 8(2):125–142

Ouelhadj D, Petrovic S (2008) A survey of dynamic scheduling in manufac-
turing systems. Journal of Scheduling 12(4):417

Park J, Nguyen S, Johnston M, Zhang M (2013a) Evolving Stochastic Dis-
patching Rules for Order Acceptance and Scheduling via Genetic Program-
ming. In: AI 2013: Advances in Artificial Intelligence, Springer Interna-
tional Publishing, Lecture Notes in Computer Science

Park J, Nguyen S, Zhang M, Johnston M (2013b) Genetic programming for
order acceptance and scheduling. In: Coello Coello CA, De la Fraga LG
(eds) 2013 IEEE Congress on Evolutionary Computation (CEC), IEEE Press,
Piscataway, NJ, pp 1005–1012

Park J, Nguyen S, Zhang M, Johnston M (2014) Enhancing Heuristics for Or-
der Acceptance and Scheduling Using Genetic Programming. In: SEAL’14:
Simulated Evolution and Learning, Springer International Publishing, pp
723–734

Park J, Nguyen S, Zhang M, Johnston M (2015a) Evolving Ensembles of Dis-
patching Rules Using Genetic Programming for Job Shop Scheduling. In:
EuroGP’15: Genetic Programming, Springer International Publishing, pp
92–104

Park J, Nguyen S, Zhang M, Johnston M (2015b) A single population genetic
programming based ensemble learning approach to job shop scheduling.
In: GECCO’15: Proceedings of the 2015 on Genetic and Evolutionary Com-
putation Conference Companion, pp 1451–1452

Park J, Mei Y, Chen G, Zhang M (2016a) Niching Genetic Programming based
Hyper-heuristic Approach to Dynamic Job Shop Scheduling: An Investiga-
tion into Distance Metrics. In: GECCO’16: Proceedings of the 2016 on Ge-
netic and Evolutionary Computation Conference Companion, pp 109–110

Park J, Mei Y, Nguyen S, Chen G, Johnston M, Zhang M (2016b) Genetic Pro-
gramming Based Hyper-heuristics for Dynamic Job Shop Scheduling: Co-
operative Coevolutionary Approaches. In: Genetic Programming, no. 9594
in Lecture Notes in Computer Science, Springer International Publishing,

44 Su Nguyen et al.

pp 115–132
Pickardt C, Branke J, Hildebrandt T, Heger J, Scholz-Reiter B (2010) Gen-

erating dispatching rules for semiconductor manufacturing to minimize
weighted tardiness. In: Johansson B, Jain S, Montoya-Torres J, Hugan J,
Ycesan E (eds) Proceedings of the 2010 Winter Simulation Conference, IEEE
Press, Piscataway, NJ, pp 2504–2515

Pickardt CW, Hildebrandt T, Branke J, Heger J, Scholz-Reiter B (2013) Evolu-
tionary generation of dispatching rule sets for complex dynamic schedul-
ing problems. International Journal of Production Economics 145(1):67–77

Pinedo ML (2008) Scheduling: Theory, Algorithms, and Systems, 3rd edn.
Springer, New York

Poli R (1998) Discovery of Symbolic, Neuro-Symbolic and Neural Networks
with Parallel Distributed Genetic Programming. In: Artificial Neural Nets
and Genetic Algorithms, pp 419–423

Potter MA, De Jong KA (2000) Cooperative coevolution: An architecture for
evolving coadapted subcomponents. Evolutionary Computation 8(1):1–29

Qin W, Zhang J, Sun Y (2013) Multiple-objective scheduling for interbay amhs
by using genetic-programming-based composite dispatching rules genera-
tor. Computers in Industry 64

Riley M, Mei Y, Zhang M (2016) Improving Job Shop Dispatching Rules
Through Terminal Weighting and Adaptive Mutation in Genetic Program-
ming. In: IEEE Congress on Evolutionary Computation, pp 3362–3369

Schmidt M, Lipson H (2009) Distilling free-form natural laws from experi-
mental data. Science 324(5923):81–85

Sels V, Gheysen N, Vanhoucke M (2011) A comparison of priority rules for
the job shop scheduling problem under different flow time- and tardiness-
related objective functions. International Journal of Production Research
50(15):4255–4270

Sha DY, Hsu CY (2006) A hybrid particle swarm optimization for job shop
scheduling problem. Computers & Industrial Engineering 51(4):791 – 808

Shahzad A, Mebarki N (2016) Learning Dispatching Rules for Schedul-
ing: A Synergistic View Comprising Decision Trees, Tabu Search and
Simulation. Computers 5(1):3, DOI 10.3390/computers5010003, URL
http://www.mdpi.com/2073-431X/5/1/3

Shi W, Song X, Sun J (2015) Automatic Heuristic Generation with Scatter Pro-
gramming to Solve the Hybrid Flow Shop Problem. Advances in Mechan-
ical Engineering 7(2):1–9

Shiue YR (2009) Data-mining-based dynamic dispatching rule selection
mechanism for shop floor control systems using a support vector machine
approach. International Journal of Production Research 47(13):3669–3690

Sim K, Hart E (2015) A novel heuristic generator for jssp using a tree-based
representation of dispatching rules. In: GECCO’15: Proceedings of the
Companion Publication of the 2015 on Genetic and Evolutionary Compu-
tation Conference

Sim K, Hart E, Paechter B (2015) A lifelong learning hyper-heuristic method
for bin packing. Evolutionary Computation 23(1):37–67

Title Suppressed Due to Excessive Length 45

Taillard E (1993) Benchmarks for basic scheduling problems. European Jour-
nal of Operational Research 64(2):278–285

Tan K, Lee T, Khor E (2002) Evolutionary algorithms for multi-objective op-
timization: Performance assessments and comparisons. Artificial Intelli-
gence Review 17(4):251–290

Tay JC, Ho NB (2007) Designing dispatching rules to minimize total tardiness.
In: Dahal KP, Tan KC, Cowling PI (eds) Evolutionary Scheduling, Studies
in Computational Intelligence, vol 49, Springer, Berlin and Heidelberg, pp
101–124

Tay JC, Ho NB (2008) Evolving dispatching rules using genetic programming
for solving multi-objective flexible job-shop problems. Computers & Indus-
trial Engineering 54(3):453–473

Vazquez-Rodriguez JA, Ochoa G (2011) On the automatic discovery of vari-
ants of the NEH procedure for flow shop scheduling using genetic pro-
gramming. Journal of the Operational Research Society 62(2):381–396

Wang X, Nie L, Bai Y (2015) Discovering scheduling rules with a machine
learning approach based on GEP and PSO for dynamic scheduling prob-
lems in shop floor. In: Computational Intelligence in Industrial Applica-
tion, pp 365–370

Weckman GR, Ganduri CV, Koonce DA (2008) A neural network job-shop
scheduler. Journal of Intelligent Manufacturing 19(2):191–201

Whigham PA (1995) Grammatically-based genetic programming. In: Rosca JP
(ed) Proceedings of the Workshop on Genetic Programming: From Theory
to Real-World Applications, pp 33–41

Wu SX, Banzhaf W (2011) Rethinking multilevel selection in genetic program-
ming. In: Proceedings of the 13th Annual Conference on Genetic and Evo-
lutionary Computation, ACM, New York, NY, USA, GECCO ’11, pp 1403–
1410

Yang JW, Cheng HC, Chiang TC, Fu LC (2008) Multiobjective lot scheduling
and dynamic OHT routing in a 300-mm wafer fab. In: 2008 IEEE Interna-
tional Conference on Systems, Man and Cybernetics, pp 1608–1613

Yin WJ, Liu M, Wu C (2003) Learning single-machine scheduling heuristics
subject to machine breakdowns with genetic programming. In: Sarker R,
Reynolds R, Abbass H, Tan KC, McKay B, Essam D, Gedeon T (eds) The
2003 Congress on Evolutionary Computation (CEC 2003), IEEE Press, Pis-
cataway, NJ, vol 2, pp 1050–1055

