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Abstract—Automated design of dispatching rules for produc-
tion systems has been an interesting research topic over the last
several years. Machine learning, especially genetic programming
(GP), has been a powerful approach to dealing with this design
problem. However, intensive computational requirements, accu-
racy and interpretability are still its limitations. This paper aims
at developing new surrogate assisted GP to help improving the
quality of the evolved rules without significant computational
costs. The experiments have verified the effectiveness and ef-
ficiency of the proposed algorithms as compared to those in
the literature. Furthermore, new simplification and visualisation
approaches have also been developed to improve the inter-
pretability of the evolved rules. These approaches have shown
great potentials and proved to be a critical part of the automated
design system.

Index Terms—scheduling, evolutionary design, hyper-heuristic,
genetic programming

I. INTRODUCTION

THe current highly competitive markets require make-
to-order companies to be flexible and adapt quickly to

changes. While technologies are one of the key competitive-
ness, they usually require large investments. Another way to
improve the productivity is to strive for better operations.
Scheduling is one of the important tasks to efficiently utilise
available manufacturing resources for better customer satis-
faction. To be more reactive, dispatching rules are commonly
used in the shop to decide processing orders of jobs. The
advantages of dispatching rules are their simplicity (i.e. require
low computational costs), ease for implementation, and under-
standability (i.e. provide good managerial insights). However,
designing effective dispatching rules is not straightforward
and usually requires many cycles of trial-and-error. In fact,
a lot of dispatching rules have been proposed for different
types of manufacturing systems and scheduling objectives.
Unfortunately, the literature has demonstrated that there are no
universal rules that are superior in all situations. Therefore, it is
important to design specialised rules for particular situations.
Computer simulation is usually used by researchers to evaluate
the effectiveness of dispatching rules before they are applied to
the real environments. Due to the complex nature of schedul-
ing problems, many attributes from jobs and systems need to
be considered; therefore, manually designing dispatching rules
is time-consuming and still mainly relies on trial-and-error.

Recently, different automated design approaches have been
proposed to generate dispatching rules [1]. Genetic program-
ming (GP) [2], [3], [4] is currently the most popular approach
for this task because of the flexibility of its representations,

powerful search ability, and acceptable interpretability of
evolved rules [5]. The basic idea of this approach is relative
simple. GP is used to represent and generate rules based on the
sets of terminals (i.e. attributes of jobs/systems) and functions
(e.g. arithmetic operators); then discrete event simulation is
automatically used to evaluate the performance of the evolved
rules. Rules with better fitness/quality are more likely to be
selected to reproduce new rules for the next generation.

Previous studies have shown the superiority of the rules
evolved by GP and further improvements on representations
and search mechanisms have also been made to enhance
the quality of the evolved rules. Although the results are
promising, the time for GP to evolve dispatching rules are
still long, especially when we deal with large manufacturing
systems (i.e. hours to days on an average computer). The
most time consuming component is fitness evaluations with
simulation. To overcome this problem, surrogate models have
been developed. Hildebrandt and Branke [6] proposed a simple
surrogate model based on historical data from GP search and
similarity measures of rules. The experimental results show
that surrogate assisted GP (SGP) outperforms the traditional
methods and GP also converges faster with the support of the
surrogate model [6]. Nevertheless, this surrogate model still
has some drawbacks: (1) the accuracy of the surrogate model
is not good enough, (2) the similarity measure can only be
applied to the simple case where only sequencing decisions are
considered, and (3) the length of rules evolved by SGP is still
significantly large. It is noted that the accuracy of the surrogate
models will influence the chance to obtain good rules. Mean-
while, the similarity measure restricted to sequencing decisions
will influence the applicability of dispatching rules in practice
(e.g. when dealing with flexible job shops, batching process).
Finally, the large evolved rules are more difficult to interpret.

In this paper, we will study different surrogate models and
analyse their advantages and disadvantages when dealing with
dynamic job shop scheduling (DJSS). In DJSS, the shop has
a set of machines and jobs will arrive randomly over time. In
this case, a job is a sequence of operations, each of which is
to be performed on a particular machine. In DJSS, the routes
of jobs are fixed, but not necessarily the same for each job.
Instead of using similarity measure to estimate fitness, we will
directly use the simulation models of a simplified shop which
is a lot more efficient than the original simulation model. The
overall goal of this study is to improve SGP to evolve more
competitive and interpretable dispatching rules. Following are
our research objectives:
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• Develop new surrogate models based on the simplified
simulation model of the shop.

• Analyse the effectiveness of new SGP methods in terms
of testing performance, program/rule length, and compu-
tational costs.

• Analyse the behaviours of SGP with different surrogate
models to gain more insights for further improvements.

• Develop new post-evolution approach to simplifying and
visualising evolved rules.

These research objectives aim to overcome the limitations of
the current SGP methods. In the next section, we will provide a
brief review of existing studies on genetic programming based
hyper-heuristics (GPHH) for scheduling problems. Section III
describes the simulation model used in this paper. Section IV
presents different surrogate models used in this study and how
they can be applied to GP. Experimental results are presented
in Section V. Section VI further analyses the evolutionary
process of proposed SGP methods to understand how effective
rules are evolved. Simplification and visualisation of obtained
rules are provided in Section VII. Conclusions and future
developments are shown in Section VIII.

II. BACKGROUND

This section will briefly review previous studies on dis-
patching rules. Then, we discuss some past studies on using
GP and machine learning techniques for discovering new
dispatching/scheduling rules in the literature. Finally, some
recent advances in this field are presented.

A. Dispatching rules for DJSS
Studies on scheduling for job shop scheduling (JSS) mainly

focus on applying mathematical programming and meta-
heuristics [7] to find the optimal or near-optimal solutions
for static instances which are the snapshots of manufacturing
systems at certain decision moments. Theoretically, these
solutions can be applied to the system given that there is
no unexpected changes in the shop, e.g. arrivals of new jobs,
machine breakdowns, and order cancellations. Unfortunately,
it is not the case in real-world scheduling applications as
disruptions are an natural feature in practice [8], [9], [10].
Moreover, the real-world scheduling problems can have a
large number of jobs which cause computational difficulty
for optimisation methods (both exact or meta-heuristics) [11],
[12]. Therefore, dispatching rules are an suitable approach
to dealing with these practical situations because they are
computationally efficient and can react quickly to dynamic
changes in the shop.

There have been hundreds of dispatching rules proposed
in the literature to deal with different types of manufacturing
environments. Normally a dispatching rule is characterised by
a priority function that determines priorities of jobs waiting
in the queue (the job with highest priority will be processed
next). Dispatching rules are usually classified based on the
information used to make scheduling decisions (e.g. static, dy-
namic, local, global) [7] and how these pieces of information
are combined. The effectiveness of a dispatching rule depends
on how it copes with the dynamic changes of the shops and
the ability to take into account different factors that can affect

the considered objective to be optimised. The comparisons
of different dispatching rules have been continuously done
in many studies [13], [14], [15]. Different from static JSS
problems where performance of proposed algorithms can be
easily examined by a set of static instances, the performance
of dispatching rules for dynamic problems has to be evaluated
based on discrete event simulation (DES) [16]. Theoretical and
practical studies of dispatching rules use DES to compare the
effectiveness and understand the behaviours the rules under
different scenarios of DJSS (i.e. different utilization, shop
configurations). Different objectives were also considered in
these studies as they are the natural requirements in real world
applications.

B. Automated design of dispatching rules
Scheduling rules and heuristics are commonly designed for

a specific problem. However, designing a sophisticated rule
requires a tedious trial-and-error process (i.e. design, test,
modify). In recent years, there is a trend to apply machine
learning and optimisation techniques to automate the design
process [17], [18], [19], [20]. The proposed methods are
commonly known as hyper-heuristics [21], which is a special
heuristic to automatically “select or generate heuristics to
solve hard computational search problems” [21], [22]. The
existing hyper-heuristics for generating scheduling rules and
heuristics can be classified based on their (1) learning methods
and (2) representations [1].

The learning methods in this case can be either supervised
or unsupervised. Supervised learning is mainly applied when
the optimal (or the best practice) solutions are known. Many
well-known machine learning techniques have been applied for
supervised learning to discover dispatching rules such as neu-
ral networks [23], logistic regression [24], decision trees [18].
The drawback of supervised learning is that the training set
(optimal solutions) may not be available as exact optimisation
methods are usually suitable for very small instances only. On
the other hand, unsupervised learning is more flexible because
we only need to know how well the obtained rules perform
on the training set (i.e. problem instances in this case) and
use this information to guide the search toward better rules in
the search space. Unsupervised learning is currently a more
popular approach to automatic design of dispatching rules.
An advantage of unsupervised learning is that different repre-
sentations (e.g. linear/parameter-based, tree-based, grammar-
based) can be employed to generate rules. Many unsupervised
methods have been developed in the literature based on genetic
algorithms [25], [26], genetic programming [5], [27], [28],
[29], [30], [31] and neural networks [32].

To generating dispatching rules, either fixed-length para-
metric representations or variable-length grammar-based rep-
resentations can be used [1]. In the first set of representations,
dispatching rules are commonly in a simple and fixed-structure
format such as weight sum (of attributes) [25], [26] and neural
networks [23]. Meanwhile, the grammar-based representations
specifies how the individual components can be assembled
to yield a valid priority function. Representations (tree-based,
linear-based, or graph-based) of GP are one of the typical
examples of grammar based representations. As compared to
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the fixed-length representations, the search based grammar-
based representations are much more complicated. For a com-
prehensive review of automated design methods for designing
production scheduling heuristics can be found in [1].

C. Genetic programming for designing dispatching rules
Recently, GP has become popular in the field of hyper-

heuristics and it is known as genetic programming based
hyper-heuristics (GPHH) [33]. Because GP is able to represent
and evolve complex programs or rules, it naturally becomes
an excellent candidate for heuristic generation. GPHH has
also been applied to evolve dispatching rules for scheduling
problems [31], [34], [35]. Several GPHH methods have also
been proposed for JSS problems. Atlan et al. [36] applied
GP for JSS problems. However, the focus of their paper
is on finding the solution for a particular problem instance.
Miyashita [28] examined three potential multi-agent models to
evolve dispatching rules in multiple machine environments: (1)
a homogeneous model where all machines share the same dis-
patching rule, (2) a distinct agent model where each machine
employs its own evolved rule, and (3) a mixed agent model
where two rules can be selected to prioritise jobs depending
on whether the machine is a bottleneck. The experiments
showed that the distinct agent model provided better results
in the training stage compared to the homogeneous model but
had some over-fitting problems. The mixed agent model was
the most robust in all the experiments but required the prior-
knowledge about the bottleneck machine, which can change in
dynamic situations. To handle this issue, Jakobovic and Budin
[37] proposed a new GP method called GP-3 to provide some
adaptive behaviour for the evolved rules. In their method, GP
is used to evolve three components of the rules including a
decision tree and two dispatching rules for bottleneck and
non-bottleneck machines. The purpose of the decision tree
is to identify whether a considered machine is a bottleneck
and decide which of the two evolved rules should be applied.
The experiments showed that this method can provide better
rules than a simple GP method. However, it is noted that the
superior performance of GP-3 will depend on the bottleneck
machines. If the load levels between machines in the shops
are rather similar (existence of multiple bottleneck machines),
the information/output from the decision tree in GP-3 may
not be very helpful. Nguyen et al. [5] investigated different
representations of dispatching rules with GP. The experiments
showed that a mixed representation based on decision-tree
like representation and arithmetic representations provided the
best the results. However, they mainly examined their rules on
static scheduling instances.

Tay and Ho [30] performed a study on using GP for multi-
objective JSS problems. In their method, three objectives are
linearly combined (with the same weights) into an aggregate
objective, which is used as the fitness function in the GP
method. The experiments showed that the evolved rules are
quite competitive as compared to simple rules but still have
trouble dominating the best rule for each single objective. In
another study, Hildebrandt et al. [27] explained that the poor
performance of the rules evolved by Tay and Ho [30] is caused
by the use of a linear combination of different objectives

and the fact that the randomly generated instances cannot
effectively represent the situations that happen in a long term
simulation. For that reason, Hildebrandt et al. [27] evolved
dispatching rules by training them on different simulation
scenarios and only minimised the mean flow time. Some
aspects of the simulation models were also discussed in their
study. The experimental results showed that the evolved rules
were quite complicated but effective as compared to other
existing rules. Moreover, these evolved rules are also robust
when tested with another environment. However, their work
did not consider how to handle multiple conflicting objectives.
Nguyen et al. [38] proposed a cooperative coevolution GPHH
for multi-objective dynamic JSS problems. In that work, the
due dates of new jobs are assumed to be assigned internally
and two scheduling rules (dispatching rule and due date assign-
ment rule) are simultaneously considered in order to develop
effective scheduling policies. While the representation of the
dispatching rules is similar to those in other GP methods, the
operation-based representation [39] is used to represent the
due date assignment rules. The results showed that the evolved
scheduling policies can outperform scheduling policies from
different combinations of existing dispatching rules and due-
date assignment rules in different simulation scenarios.

In another study, Beham et al. [40] utilise parallel tech-
nologies to evolve dispatching rules for a flexible job shop
with a large terminal and function sets. They develop three
new GP methods based on island models and SASEGASA
[41] in which rules are evolved in multiple subpopulations.
The results show that the SASEGASA method can cope better
with the states of exception in the simulation than island based
methods. Pickardt et al. [42] proposed a two-stage approach to
evolving dispatching rule sets for semiconductor manufactur-
ing. In the first stage, GP is used to evolve general dispatching
rules. The best obtained dispatching rule is combined with
a list of benchmark dispatching rules to generate a set of
candidate rules. In the second stage, a µ + � evolutionary
algorithm (EA) [42] is used to select the most suitable
dispatching rule in the set of candidate rules for each work
centre in the shop. The experiments in this paper compare
the performance of the two-stage hyper-heuristics with the
pure GP and EA hyper-heuristics. The results show that the
three hyper-heuristics outperformed benchmark dispatching
rules and the two-stage hyper-heuristics produced significantly
better performance than the other two hyper-heuristics.

To cope with expensive fitness evaluations, surrogate models
are used. Hildebrandt and Branke [6] investigated two surro-
gate models for evolving dispatching rules to minimise mean
flowtime. In their approach, a large number of individuals
are generated through genetic operations and the fitness of
these rules is approximated by using the fitness of the most
similar rules generated in the previous generations. Then,
only rules with the top approximated fitness are selected for
the next generation and receive real fitness evaluations. The
experimental results showed that surrogate-assisted GP (SGP)
is more effective than the simple GP method. Specifically, SGP
can converge to good dispatching rules faster than GP given
that the same computational budget is used.

GP has gradually proven to be a powerful approach to
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automated design of dispatching rules. However, in order
to make GP attractive in practice, more issues have to be
considered and addressed. First, the efficiency of the pro-
posed GP methods needs to be improved so that the man-
agers/researchers can easily examine their hypotheses and
conduct large experiments. Also, efficiency is important in
order to deal with large scale and complex manufacturing
systems. Second, we need to improve the accuracy of GP
algorithms to find better dispatching rules especially when
the search space is large. Finally, evolved rules have to be
understandable to the users (i.e. managers and operators).
Manual analyses are commonly used in the literature [27],
[5] but this approach is impractical when we consider a large
number of rules (e.g. investigate their trade-offs [43]). Recent
efforts have been made to tackle these issues and promising
results are shown. Branke et al. [32] visualised their priority
indices as functions of incorporated attributes. However, this
visualisation technique is only possible for a very limited
number of attributes. In general, it is important to develop
a set of new automated analysis techniques that are capable
of dealing with a large number of attributes while providing
key insights into the behaviours of the evolved rules.

D. Surrogate-assisted evolutionary algorithms
It is not uncommon for engineering applications to deal with

expensive fitness evaluations. For time-consuming simulation-
based evaluations, reduced models have been proposed to
decrease the computational times in some applications such as
simulation of wave [44], circuits and micromachined devices
[45], [46], and real-time fluids [47]. While the results are
very promising, they are mainly developed for very specialized
processes which are difficult to be generalised.

Using pure evolutionary computation (EC) approaches when
fitness evaluations are expensive is not efficient because they
usually require a large number of fitness evaluations. To cope
with this challenge, many surrogate models have been devel-
oped [48], [49] for fitness approximations. Popular models
are polynomials [50], [51], artificial neural networks [52],
[53], [54], support vector machine [55], and nearest neighbor
[56], [57]. Ensemble techniques have also been employed
to improve the accuracy of surrogate models by combining
different models or select the most suitable models based on
the evolutionary process [58], [59], [60], [61].

Jin [48] provided a comprehensive survey of surrogate-
assisted EC methods in the literature and highlights key
components in these methods. He classified surrogate methods
based on the levels of approximation (problem approxima-
tion, functional approximation, and evolutionary approxima-
tion), and incorporation mechanism (migration, initialization,
genetic operators, and fitness approximation). When using
approximate models for fitness approximation, it is important
to make sure that the algorithms can converge to the global
optimum or near-optimum (not the false optimum from the
approximate models). As a result, approximate models should
be used along with the original fitness function. To remain
efficient, model management is applied to control when to
apply approximate models and when to use the original fitness
function. Many strategies for model management can be used

such as no control, fixed evolution control, and adaptive
evolution control based on the fidelity of the approximate
models.

III. SIMULATION MODEL OF DJSS

All experiments in this paper are based on the simulation
model of a symmetrical job shop, which has been used in
previous studies on dispatching rules [14], [43], [32]. Here
are the simulation configurations:

• 10 machines
• Each job has 2 to 14 operations (re-entry is allowed)
• Processing times follow discrete uniform distribution

U [1, 99]
• Job arrivals follow Poisson process
• Due date = current time + allowance factor ⇥ total

processing time (allowance factor of 4 is used in our
experiments)

• Utilisation of the shop is 85%, 95%
• No machines break-down; preemption is not allowed
• Weights of jobs are assigned based on the 4 : 2 : 1 rule

[62], [63] (this setting was inspired by Pinedo and Singer
[63], which showed that approximately 20% of the cus-
tomers are very important, 60% are of average importance
and the remaining 20% are of less importance).

In each simulation replication, we start with an empty shop
and the interval from the beginning of the simulation until the
arrival of the 500th job is considered as the warm-up time
and the statistics from the next completed 5000 jobs [15] will
be used to calculate performance measures. Three scheduling
performance measures examined in our experiments are (1)
mean flowtime, (2) mean tardiness, (3) total weighted tardi-
ness. Although this simulation model is relatively simple, it
still reflects key issues of real manufacturing systems such as
dynamic changes and complex job flows. This section only
considers a shop with high utilisation (85% and 95%) and
tight due date (allowance factor of 4) because scheduling
in this scenario is more challenging, and therefore easier to
demonstrate the usefulness of GP. In order to reliably measure
the effectiveness of evolved rules, a large number of simulation
replications are usually needed (e.g. 30 to 50 simulation
replications are usually needed to accurately estimate the
performance of rules in the scenario described here). However,
using simulation to evaluate the fitness of the evolved rules is
also the most time-consuming part in GP for JSS. Therefore,
only a small number of replications are usually used for
fitness evaluations during the training process. As suggested
by Hildebrandt et al. [27], we will use only one replication
(corresponding to one random seed) for each fitness evalua-
tion; however, we will change the replication (use a different
random seed for simulation) when moving to a new generation.
This strategy has been shown to be beneficial to prevent GP
from overfitting to certain situations (replications). Two sets,
each with 50 simulation replications, are used for determining
full training performance and testing performance. The full
training set is used to verify effectiveness of evolved rules
and the test set is used to examine the performance of rules
on unseen situations. In this dynamic case, we cannot identify
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Fig. 1. Overall algorithm of SGP.

the best rule with the training performance or fitness functions,
because they are changing across generations and they cannot
accurately estimate the effectiveness of evolved rules.

IV. PROPOSED SGP METHODS

To handle the above issues, this paper will focus on de-
veloping new surrogate models to improve the efficiency and
effectiveness of GP. In this section, we first explain how SGP
work. Then, we develop new surrogate models and present the
new SGP algorithm.

A. Basic SGP
Fig. 1 shows how SGP can evolve dispatching rules for

a particular simulation scenario. Similar to most EC methods,
SGP starts by randomly initialising a population (ramped-half-
and-half). Each rule will be evaluated using simulation. The
fitness of an evolved rule depends on the performance measure
achieved by the rule when applied to the training replications
(e.g. mean flowtime). The rule with the best fitness will be
evaluated with the full training set (refer to [27] for detailed
discussions of this strategy). If the best rule of the generation
has better full training performance than the current best rule,
it will be assigned as the current best rule of the run. If the
stopping condition is met (i.e. maximum generation in GP),
SGP will stop; otherwise, we perform the next steps to build
the population for the next generation.

First, an intermediate population is created using genetic
operations. This intermediate population has a larger popula-
tion size as compared to the original population to increase
the diversity in the population as well as improve the chance
to find better rules. The fitness of all rules in the intermediate
population is approximated by using the surrogate model. For
example, Hildebrandt and Branke [6] proposed a surrogate
model based on a decision vector, which estimates the fitness
of an evolved rule by using the fitness of the most similar rules
generated in the previous generations. SGP in [6] used fixed
simulation replications and utilised individuals in the last two

TABLE I
TERMINAL AND FUNCTION SETS OF GP

Symbol Description
rrJ time-in-system of job (t� relesaetime)
rRJ job queuing time (t� readytime)
RO number of remaining operation within the job.
RT work remaining of the job
PT operation processing time
rDD time to due date (duedate� t)
RM machine ready time
SL slack of the job = DD � (t + RT)
WT is the current waiting time of the job = max(0, t � RJ)
# Random number from 0 to 1
NPT processing time of the next operation
WINQ work in the next queue
APR average operation processing time of jobs in the queue
Function set +,�,⇥, %, min, max
⇤t is the time when the sequencing decision is made.

generations to approximate fitness of newly generated rules.
For the surrogate model, the behaviour of an evolved rule
is characterised by a decision vector based on a reference
rule (2PT+WINQ+NPT) and the similarity of the two rules
is measured by the distance of their corresponding decision
vectors (see [6] for a detailed description). Nguyen et al.
[64] further examined this model in the case with changing
simulation replications (at each generation) and showed that
the proposed method successfully improve the quality of
evolved rules. In general, this surrogate model significantly
enhances the performance of GP, and effectively utilises the
historical search information, and the implementation is also
straightforward. One disadvantage is that the dimension of de-
cision vectors needs to be large enough to help differentiating
evolved rules. It will become more tricky when we deal with
complex manufacturing systems and special process. Also, this
approach is designed for evolving dispatching rules. Thus, if
there are more scheduling decisions taken into account (e.g.
due date assignment, routing, order release), this surrogate
model will not be suitable.

B. Representation

This paper uses the traditional GP tree to represent dis-
patching rules, the same as previous studies [5], [27], [31].
Table I shows the terminal set and function set used by GP to
construct priority functions. Most attributes in the tables have
been extensively used in the existing dispatching rules as well
as GP for DJSS. For rrJ, rRJ, and rDD, they are commonly
used in their absolute forms, i.e. release time, ready time,
and due date. However, using these attributes in their absolute
forms may cause some unexpected behaviours. For example,
�0.0001 ⇥ releasetime � PR will behave like the shortest-
processing-time rule when the release time of jobs are small
(arrive at the early stage of the simulation), but will behave
like the first-in-first-out rule when the release time increases
(in the latter stage of the simulation). Therefore, we would
like to use these attributes in their relative forms as shown in
Table I. For the function set, four basic arithmetic operators
and min /max are used to construct composite dispatching
rules (the protected division is similar to normal division but
returns a value of 1 when division by 0 is attempted).
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C. New surrogate models

In this paper, we develop a new surrogate model based on
three criteria: (1) efficiency, (2) accuracy, and (3) generalisabil-
ity. The first two criteria are to ensure that the proposed SGP
can effectively find competitive rules efficiently. Regarding
the generalisability, we expect that the proposed SGP can
cope with various complex scheduling problems with minor
modifications.

Rather than using the historical performance of evolved
rules during the search for estimation [6], the surrogate model
proposed in this study estimates fitness of the evolved rules
by using a simplified simulation model of the original shop
(see Section III). The goal here is to reduce the complexity
of the original model up to the point where the simulation
(evaluation) costs are low enough but still ensure an accept-
able accuracy level. This study will examine two strategies
for designing simplified models. First, the simplified model
can be created by reducing the warmup and running time
of the simulation [16]. This strategy does not require any
modification to the original model. However, because of the
simulation is shortened, the long term performance may not
be accurately estimated and biased by the initial state of the
system (i.e. empty shop in this case). The second strategy is
to reduce the complexity of the original model by reducing
the number of machines and the number of operations per
job. By reducing the complexity of the shop, we can also
reduce the warmup and running time of the simulation as the
transition phase [16] (before the system becomes stable) will
be shorter. Table II shows four simplified models investigated
in this paper. OriginalR1 is the original model in which the
performance of rules are evaluated based on a single simula-
tion replication. This model will be used as the fitness function
in our SGP (see Fig. 1) to reduce the computational cost as it
is shown to be helpful to improve the diversity of GP and the
quality of evolved rules [27], [64]. Nevertheless, this model
is still expensive and not suitable to be our surrogate model.
OriginalR1 is mainly considered here for reference purpose.
OriginalR1Short is similar to OriginalR1 but the simulation
length is significantly reduced as shown in Table II (the first
strategy). HalfShop and MiniShop are simplified versions (the
second strategy) of the original shop where the number of
machines/operations and simulation length is reduced (again,
only one replication is used).

To select which is the most suitable to be the surrogate
model for the scheduling problem under study, we will
check how accurately the model measures the performance
of scheduling rules. It is noted that these models cannot
provide the absolute performance (e.g. the expected total
weighted tardiness) of the original shop because they have
been simplified and not statistically accurate (caused by a
small number of replications and biases). Fortunately, what
we need is the relative performance of evolved rules, i.e.
which one is better, for genetic operations. Therefore, what
we need is simply a way to identify the relationship between
rules. Particularly, if rule a is better than rule b based on
the absolute performance, the simplified model should also
show that a is better than b. To know if the simplified model

can effectively satisfy this property, we will check the rank-
correlation between performance of rules using the original
model and the performance of rules using the simplified
model. Here is the proposed procedure:

1) Select a set of benchmark rules B = {�1,�2, . . . ,�N}
2) Apply B to the original model with a large number

of simulation replications to obtain the absolute perfor-
mance ⌥ = {f(�1), f(�2), . . . , f(�N )} and the cor-
responding rank ⌥r = {fr(�1), fr(�2), . . . , fr(�N )}
(sorted based on the descending order of f(·))

3) Apply the benchmark rules B to the simplified
model to obtain the relative performance  =
{f 0(�1), f 0(�2), . . . , f 0(�N )} and the corresponding
rank  r = {f 0

r(�1), f 0
r(�2), . . . , f 0

r(�N )} (sorted
based on the descending order of f 0(·))

4) Check the correlation between A and R, using the
correlation coefficient:

⇢ =

PN
i=1 (fr(�i)� f̄r)(f 0

r(�i)� f̄ 0
r)qPN

i=1 (fr(�i)� f̄r)
2 PN

i=1 (f
0
r(�i)� f̄ 0

r)
2

(1)
where is f̄r and f̄ 0

r are the average performance across
all benchmark rules from the original model and the
simplified model respectively.

After the rank-correlation coefficients of all simplified mod-
els are determined, the one with the highest correlation will
be used as the surrogate model for SGP. In this study, we use
the set of benchmark dispatching rules are shown in Table III.
These include various rules that are commonly found in the
literature [14], [15], [43]. After applying the above procedure
to the four models in Table II, the results are shown in Fig. 2.

It is clear that the OriginalR1 model and the original model
is well correlated. This observation is consistent with those
from Hildebrandt et al. [27] in which they showed that using
one simulation replication is sufficient for each generation of
GP. The accuracy of OriginalR1Short model is worse than
that of OriginalR1. Although the correlation coefficient is
high, the ranking of benchmark rules are very different when
OriginalR1Short model is used to determine the fitness. This is
easy to understand as there are biases caused by short warmup
phase and simulation length. The HalfShop model provides
better relative performance as compared to OriginalR1Short
given the same warmup phase and simulation length. It in-
dicates that this model can well reflect the behaviour of the
original model with lower complexity. The MiniShop model
is overly simplified in this case and cannot approximate the
fitness accurately. The results suggest that HalfShop model is
the most suitable simplified model in our study.

It is noted that the surrogate (simplified) model is developed
offline as a preprocessing step instead of online like the
surrogate model proposed by [6]. The estimated fitness will
be calculated directly from the simplified model instead of
generating decision vector and match it with ones in the
previous generations. The proposed procedure is not only
helpful to select accurate and efficient simplified model but
also general for different scheduling problems as it does not
use any specific information about the scheduling process (e.g.
the ranking of jobs).
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TABLE II
SIMPLIFIED MODELS

Model Description #Machine Max# of Operations Simulation Length Warmup Length
OriginalR1 The original model with one replication 10 14 5000 500
OriginalR1Short Similar to OriginalR1 with short simulation time 10 14 500 100
HalfShop The simplified shop is only half the scale of the original shop 5 7 500 100
MiniShop The number of machines are kept minimum 2 4 250 50

TABLE III
BENCHMARK DISPATCHING RULES

SPT shortest processing time LPT longest processing time
EDD earliest due date FDD earliest flow due date
FIFO first in first out LIFO last in first out
LWKR least work remaining MWKR most work remaining
NPT next processing time WINQ work in next queue
CR critical ratio AVPRO average processing time/operation
MOD modified due date MOPNR most operations remaining
SL negative slack Slack slack
PW process waiting time RR Raghu and Rajendran
ATC apparent tardiness cost COVERT cost over time

OPFSLK/PT operational flow slack per processing time
LWKR+SPT least work remaining plus processing time
CR+SPT critical ratio plus processing time
SPT+PW processing time plus processing wating time
SPT+PW+FDD SPT+PW plus earliest flow due date
Slack/OPN slack per remaining operations
Slack/RPT+SPT slack per remaining processing time plus processing time
PT+WINQ procesting time plus work in next queue
2PT+WINQ+NPT double processing time plus WINQ and NPT
PT+WINQ+SL processing time plus WINQ and slack
PT+WINQ+NPT+WSL PT+WINQ plus next processing time and waiting slack

Fig. 2. Rank-correlation between simplified and original simulation models.

D. Overall algorithm
Fig. 3 shows the details of the our proposed SGP algorithm.

In general, the basic components of this algorithms and the
basic SGP discussed in Section IV-A are similar. The inputs
of our models are the simulation model that we want to evolve
dispatching rules (the original model) and the simplified model
S presented in Section IV-C. Three types of fitness functions
are used in different stages of the algorithms. As described
in the previous section, the fitness f(�i) is the real fitness
(i.e. absolute performance) of evolved rules and f 0(�i) is the
estimated fitness obtained with the simplified model S . The
fitness fg(�i) is the performance of rule �i in a particular
generation (with a specific replication ⇡). Because of expen-
sive simulation costs, using a large number of replications
to obtain f(�i) is impractical; therefore, we only use one

TABLE IV
PARAMETER SETTINGS

Parameter Description
Initialisation ramped-half-and-half
Crossover/mutation/elitism rates 80%/15%/5%
Maximum depth 8
Number of generations 50
Population size 200
Size of intermediate population 200⇥5=1000
Selection tournament selection (size = 5)

replication per generation to evaluate the quality of evolved
rules fg(�i). This strategy has been shown to be useful to
improve the effectiveness of evolved rules and the diversity
in the population [27], [64]. The rule with the best fg(�i)
is then fully evaluated to obtain f(�i). After an intermediate
population generated based on the generation fitness fg(�i),
the fitnesses of newly generated rules are quickly evaluated by
using the simplified model S . The use of these three fitness
functions makes the algorithm slightly more complicated but
they allows us to utilise the computational budgets more
efficiently. The fitness f 0(�i) determines the rough quality of
generated rules and helps the algorithm produce more potential
rules. Meanwhile the fitness fg(�i) helps the algorithm iden-
tify the most potential rules for full evaluations and improve
the diversity of SGP. Other parameters for the proposed SGP
are shown in Table IV. These parameters have been used in our
previous studies [43], [64] and tested in our pilot experiments.
The intermediate population is k times larger than the original
population to increase the diversity and improve the chance
to find better rules as explained in the previous section. Three
SGP versions investigated in this paper SGP OS, SGP HS,
and SGP MINI are based on the algorithm proposed in Fig.3
and the three simplified models, OriginalR1Short, HalfShop,
and MiniShop, respectively.

V. EXPERIMENTAL RESULTS

This section presents the results from the proposed SGP
and other GP systems developed in the literature. We compare
SGP HS with SGP OS and SGP MINI to investigate whether
the theoretical prediction is consistent with the empirical
evidence. Also, we compare the proposed SGP methods with
two GP methods proposed in the literature, GP and SGP H,
to demonstrate their effectiveness. GP is the common im-
plementation for DJSS with the changing replication strategy
[27], [64], and SGP H is the surrogate assisted GP developed
by Hildebrandt and Branke [6]. The five methods are com-
pared in terms of the testing performance, the length of final
rules/programs, and the running times. Each method performs
30 independent runs and the Wilcoxon signed-rank test with
↵ = 0.05 is used for our statistical significance test.
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Inputs: simulation model of DJSS, simplified model S
Output: the best evolved rule �⇤

1: randomly initialise the population P  {�1, . . . ,�n}
2: set �⇤  null and the fitness f⇤  +1
3: setup a set of replications R for full evaluation
4: generation 0, select a replication ⇡
5: while generation  maxGeneration do
6: for all �i 2 P do
7: evaluate fg(�i) by applying a �i to ⇡
8: f⇤

g  +1 and �⇤
g  null

9: if (fg(�i) < f⇤
g ) then

10: �⇤
g  �i

11: f⇤
g  fg(�i)

12: end if
13: end for
14: obtain f(�⇤

g) by applying a �⇤
g to R

15: if (f(�⇤
g) < f⇤

g ) then
16: �⇤  �⇤

g

17: f⇤  f(�⇤
g)

18: end if
19: P 0  apply genetic operations to P †

20: for all �i 2 P 0 do
21: obtain f 0(�i) by applying a �i to S
22: end for
23: replace P with the top |P | rules �i 2 P 0

24: select a new ⇡
25: generation generation+ 1
26: end while
27: return �⇤

†|P 0| = k ⇥ |P |

Fig. 3. Proposed SGP algorithm.

The comparisons of five GP methods are shown in Fig. 4
to Fig. 9. For each figure, the first and second boxplots re-
spectively show the testing performance measures and lengths
(number of nodes) of rules obtained by the five GP methods.
For presentation purposes, the total weighted tardiness is
normalised in Figs. 8–9 and by dividing it by the number
of (recorded) jobs.

A. Testing performance

Regarding the testing performance, it is clear that SGP
methods outperform GP in all scenarios. The gaps between
GP and SGP methods are about 3–5% for minimising mean
tardiness, 5–6% for minimising maximum tardiness, and 10–
20% for minimising total weighted tardiness. It seems that the
surrogate methods are more powerful when the scheduling ob-
jectives are more complex. In general, SGP HS and SGP OS
are significantly better than SGP H in most cases except for
the scenarios with utilisation of 85% and the objective is mean
tardiness and maximum tardiness. However, this is easy to
understand as these two scenarios are not too complicated (for
tardiness related objective) and good rules can be found quite
easily with SGP methods. SGP HS and SGP OS are very
competitive and SGP HS is significantly better than SGP OS
only in the scenarios with utilisation of 95% and maximum
tardiness as the objective. SGP MINI is quite competitive as

compared to SGP H but it is outperformed by SGP HS and
SGP OS in the difficult scenarios with the utilisation of 95%.

B. Program length

In all scenarios, rules found by GP are significantly smaller
than those found by SGP methods (except for SGP MINI).
However, as SGP methods are able to find better rules, it
can be argued that the larger rules found by SGP is to help
them cope with different complex situations. As compared to
SGP H, the proposed SGP methods discover more compact
rules in most scenarios even in the cases when they outperform
SGP H in terms of testing performance. It shows that there
can be many redundant genetic materials in rules evolved
with SGP H. It is interesting that the lengths of rules found
by SGP MINI and GP are not significantly different in most
scenarios. One explanation is that the rules to dealing with the
MiniShop model are not required to be complicated. Because
genetic operations are applied based on the estimated fitness
determined by MiniShop, the complexity of evolved rules is
also controlled.

C. Running time

Comparing running times is a tricky issue for GP as
compared to other evolutionary computation techniques as the
programs/rules have variable length and the program evalu-
ation costs (and fitness evaluations) also vary. In this study,
all GP methods have the same computational budgets, i.e. the
number of simulation replications as they are considered the
most time consuming part in the algorithms. The differences
in the running times are mainly caused by the lengths of
evolved rules and the time to execute surrogate models. In all
SGP methods, SGP H and SGP MINI are the fastest and not
significantly different from GP in some scenarios. It is easy to
understand as the times to execute surrogate models in these
two methods are relatively short. SGP HS and SGP OS are
the two most time consuming algorithms here because their
surrogate models are more complicated. However, SGP HS is
significantly faster than SGP OS in some scenarios (mostly
because SGP HS has evolved smaller rules).

The experimental results have demonstrated the effective-
ness of our proposed SGP algorithms. In general, the proposed
SGP methods are able to find better rules as compared to
other methods in the literature. This suggests that the surrogate
models proposed in this paper have successfully helped SGP
identify potential rules. These results also show the importance
of surrogate models, especially when dealing with complex
scenarios. Another advantage of the proposed SGP methods
is that it can help reduce the lengths of evolved rules. This
is a crucial factor in order to make the evolved rules easy to
understand and apply. Although running times of proposed
SGP methods are longer, the facts that more compact and
powerful rules are discovered have well justified the additional
costs. Given that the real world systems can be a lot more
complicated, these additional costs may become negligible.
SGP HS and SGP OS are the two most promising methods
in the experiments. SGP HS seems to be slightly more com-
petitive in terms of testing performance and running times.
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Fig. 4. Performance of GP methods - Minimise mean tardiness - Utilisation = 85%.
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Fig. 5. Performance of GP methods - Minimise mean tardiness - Utilisation = 95%.
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Fig. 6. Performance of GP methods - Minimise maximum tardiness - Utilisation = 85%.
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Fig. 7. Performance of GP methods - Minimise maximum tardiness - Utilisation = 95%.
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Fig. 8. Performance of GP methods - Minimise total weighted tardiness - Utilisation = 85%.
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Fig. 9. Performance of GP methods - Minimise total weighted tardiness - Utilisation = 95%.

The next section will further investigate these methods to
understand how they can effectively handle the problem.

VI. FURTHER ANALYSIS

This section will look at the details during the evolution
process of SGP methods. Fig. 10 and Fig. 11 show the average
fitness f⇤(�) and the average program length from all 30
independent runs and across generations when the utilisation
is 95%.

The detailed results from Fig. 10 show that SGP methods
can find good rules much faster than GP. It is easy to see
that SGP methods only need half of the maximum generation
to find the best solution obtained by GP. As discussed in the
previous section, SGP HS and SGP OS make quite similar
progress during the evolution (except for the case with maxi-
mum tardiness). It is noted that the progress of SGP methods
is similar in the early stage of the evolution (the first ten
generations); then their gaps become clear. This observation
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Fig. 10. Fitness of rules across generations (utilisation = 95%).
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Fig. 11. Average length of rules across generations (utilisation = 95%).

is more obvious in Fig 10(b) when SGP HS proceeds much
better at the latter generations. Because the maximum tardiness
requires a long simulation run to accurately estimate, SGP OS
is not appropriate as the simulation time of its simplified
model is not long enough. This is a good example to show
that choosing a suitable model to estimate fitness is extremely
important.

SGP H performs quite well in this case but it also pro-
gresses slowly at the later generations. This problem can occur
since the surrogate model, similar to that of SGP OS, becomes
less accurate. To verify this assumption, we have compared
the fitness estimated by the simplified model HalfShop and the
absolute fitness/performance of SGP H and SGP HS. Because
this analysis requires the real fitness of all generated rules
which is very time-consuming (more than 2 days for one run),
the result is only obtained for a particular run. Fig. 12 shows
the rank-correlation between the estimated fitness and the real
fitness during the evolution. In Figs 12(a) and (b), it is clear
that the correlation coefficients in SGP HS are much higher
than those in SGP H in most cases (noted that (a) and (b)
use different scales for y axis). Actually, the correlation coef-
ficients in SGP H are low, which suggests that accuracy of its
surrogate model is not high. An interesting pattern here is that
the correlation coefficients of SGP HS have the tendency to
decrease in the early generations and go up at later generations.
One possible explanation is that GP explores the search space
intensively at the early stage and an accurate estimate will be
difficult with a high diversity in the population (mostly bad
programs/rules). In the later generations when more powerful
rules are in the population, the relative performance between
rules will be easier to determine. Figs 12(a) and (b) show the
direct comparison between fr and f 0

r in the last generation.
It is clear that SGP H fails to estimate fitness accurately in
this case (no clear correlation). SGP HS estimates the fitness

reasonably well. It explains why SGP HS is very effective in
this case.

(a) Correlation – SGP H (b) Correlation – SGP HS

(c) f vs. f 0 – SGP H (GEN50) (d) f vs. f 0 – SGP HS (GEN50)

Fig. 12. Accuracy of surrogate models - Minimise maximum tardiness.

Fig. 11 shows that the average program length grows quite
fast at the early generations and its growing rate is smaller
in the latter generations. For minimising maximum tardiness,
it is very clear that SGP H and SGP OS evolves rules much
larger than they should be, which make the fitness evaluations
slower. SGP HS performs quite well in most cases and it
is able to maintain the length of evolved rules reasonably
well. For minimising mean tardiness and maximum tardiness,
the evolved rules of SGP HS are as compact as GP. These
analyses further support the experimental results and verify
the effectiveness of the proposed SGP.



IEEE TRANSACTIONS ON XXXXXX, VOL. X, NO. X, JANUARY XXXX 11

(((((max (max ((RO  / rRJ ) , (rRJ * NPT )) , max ((rRJ - RT ) , max 
(RO  , SJ ))) - ((PR  + (PR  + 0.9297208155723722)) / W )) * (((PR  + (PR  
+ 0.9297208155723722)) / W ) + 0.9297208155723722)) + ((((max (rrJ , 
RT ) - rDD ) * ((WINQ  / W ) / max (rrJ , RT ))) - (((rDD / RO ) / RO ) + 
max (RO  , rrJ ))) * max (((rDD / RO ) + min (RO  , PR )) , (((rDD / RO 
) + max (RO  , rrJ )) / (SJ  * NPT ))))) - ((((WINQ  / (W  / max (rrJ , RT 

))) / W ) / W ) / W )) * (PR  + 0.9297208155723722))

((((1 - (2*PR) / W) * (((2*PR) / W))
+ ((((RT - rDD) * ((WINQ / W)/ RT)) - (((rDD/ RO)/ RO) + RO)) * max(((rDD/ RO) + 1), 1)))

- ((((WINQ / (W / RT)) / W) / W) / W)) * PR)

simplify

Fig. 13. Rule simplification.

VII. SIMPLIFICATION AND VISUALISATION

Previous sections have provided insights about how SGP can
evolve good rules. However, the rules evolved by proposed
SGP methods tend to be larger than other rules evolved
by standard GP. Large rules surely make the analyses and
interpretation more difficult and restrict the applicability of
SGP. In this section, we focus on gaining insights about
evolved dispatching rules via simplification and visualisation.

A. Simplification
This issue has been investigated in other studies but it was

mainly restricted to manual simplification. While this approach
can make evolved rules more compact, it is quite a tedious
process. To overcome this difficulty, we proposed here a new
simple approach for simplification of dispatching rules:

1) Transverse through the program � from the root node
2) If the subtree has more than one node, replace it with

the constant 1. If the new rule �0 is not significantly
different from (or �0 is better than) the original rule,
� �0.

3) If current node is a constant, replace it with zero. If the
new rule �0 is not significantly different from (or �0 is
better than) the original rule, � �0.

4) Transverse to the next node and go to step 2.
To test this simplification approach, we use the best evolved

rule for minimising total weighted tardiness as the example.
The original rule and the simplified rule are shown in Fig. 13.
It is obvious that the simplification process has eliminated
redundant and complex components from the original rule.
This simplification is simple and effective but it requires
intensive search through the obtained rule. Thus, it is more
suitable for the post-processing step rather than the online
application during GP evolution.

B. Visualisation
Although the simplified rule becomes more compact, it

is still difficult to fully understand its behaviours. Working
with the mathematical form of the evolved rules is tricky and
sometimes not intuitive especially when these rules are dis-
crete, non-smooth, and mutivariate. In this case, visualisation
is needed to help explain the rules’ behaviours. In this study,
we use the parallel coordinate plot to visualise dispatching
rules. To draw this plot, we will take a large sample of job
attributes and their corresponding priority determined by the

considered rule through simulation. Each attribute vector (for
a particular job) will be represented by a line connecting all
coordinates (for all attributes). The darkness of each line will
depend the priority (higher priority will lead to darker line). To
improve the readability, we normalise priorities p to [0, 1] and
the darkness will be determined by p� . When we increase �,
we will focus more on the attribute vectors with high priorities.
Using the scenario with the utilisation of 95%, Fig. 14 shows
the parallel coordinate plots of three well-known dispatch-
ing rules [7], weighted shortest processing time (WSPT1),
weighted apparent tardy cost (WATC2), 2PT+WINQ+NPT,
and the evolved rule in Fig.13 with � = 30. From the
plots, it is easy to realise that the behaviours of WSPT and
WATC are very similar even though WATC is much more
complicated. The reason is that WATC will reduce to WSPT
as the shop becomes crowded (high utilisation). In this case,
the component in the exponential function become zero. This
may not be easily observed based on the mathematical formula
of WATC but it is very clear in the parallel coordinate plot.
Similarly, the plot shows that 2PT+WINQ+NPT puts more
emphasis on jobs with low PT (processing time), NPT and
WINQ. The evolved rule is undoubtedly the most sophisticated
one among the four rules presented in Fig. 14. Jobs with
the highest priorities are the ones with low RT, RO, W and
high PR. It is a bit counterintuitive as compared to WSPT
and WATC. Late jobs (with negative rDD) are also given
high priorities by this evolve rule. This property helps the
evolved rule reduce the tardiness of jobs. However, the parallel
coordinate plot is not sufficient to show the rule’s behaviour.

To gain more insights about the rule, we will further
investigate how the rule decides which job should have higher
priorities. Using the sample in Fig. 14, we create a dataset for a
classification problem. From the above sample, we randomly
select two attribute vectors va = (rrJa, rRja, . . . ,Wa) and
vb = (rrJb, rRjb, . . . ,Wb) and their corresponding priorities
prioritya and priorityb. The features in the dataset will
include the relative values of attributes from jobs a and b,
and the label is 1 if prioritya > priorityb (0 otherwise). For
example, if Wa = 1 and Wb = 4, the relative feature value
will be 1/(1+4) = 0.2 (if the two job attributes are zero, the
relative value will be 0.5). For attributes with both positive and
negative values such as SJ , the relative feature value is 0 when
SJa < 0 and SJb � 0; or 1 when SJa � 0 and SJb < 0.
If both SJa and SJb are positive, the relative feature value is
= SJa/(SJa+SJb). If the two values are negative, the relative
feature value is = SJb/(SJa + SJb). We apply decision tree
learning to build the classifier for this dataset. The goal here
is to use decision trees for identifying key attributes in the
evolved rules and provides insights into their behaviours. The
decision trees for WATC and the evolved rule are shown in
Fig. 15 and Fig. 16 respectively. We use the maximum depth
of 5 for these rules to make them more compact.

For WATC, the decision tree achieves very high accuracy

1prioritywspt =
wi
pij

2prioritywatc = wi
pij

exp(max(
dj�t�pij�

PNi
q=j Wiq+piq

kp̄ , 0)) where
wi, pij , di, Wiq , p̄ are the weight, processing time of operation j of job
i, due date, waiting time, and average processing time respectively
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Fig. 14. Parallel coordinate plots of dispatching rules (sample size = 10000).
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Fig. 15. Decision tree based on the WATC rule. For the two jobs a and b,
the decision is 1 if a has a higher priority than b and 0 otherwise.

(about 99%). The behaviour of WSPT is also observed in
the decision tree. Generally, jobs with low PR and high W
will have higher priorities. Unfortunately, the evolved rules
are much more complex to be represented by a decision tree.
The decision tree generated with the dataset of the evolved
rule only achieve a modest accuracy of 76%. However, we
can see that the behaviour of WSPT is also partly reflected
in the decision tree. Again, we cannot understand the evolved
rule fully with the decision tree. One thing we can learn from
the decision tree is which features/attributes are more likely
to decide the priorities of jobs. For the evolved rules, they
are RT, W, PR and WINQ. Opposite to what we have seen
in Fig. 14(d), the attributes rDD are shown in the decision
tree. The reason is that rDD is not the most powerful feature
to decide which job has a higher priority (also there is no
obvious pattern for rDD in Fig. 14(d)).

Based on the knowledge obtained from the parallel coordi-
nate plot and the decision tree, we will analyse the evolved rule
closely. To make the rule easier to understand, we rearrange

the rule as in Fig.17. We see that the priority calculated by the
evolved rule are the sum of three components. The first two
components are variants of WSPT with different emphasis on
W and PR. The second component also considers WINQ and
RT and it is quite sensitive to W. The third component is the
most complicated one consisted of many attributes. As RT is
the most important attribute in the decision tree (Fig. 16), we
will interpret the rule centered around this attribute.

If RT is equal to rDD, the third component will reduce to
-(((rDD/ RO)/ RO) + RO)) * max(((rDD/ RO) + 1), 1)*PR.
Because the RT is positive, rDD will be positive and the job
is not late. Therefore the third component is negative and
behave like a variant of SPT. However, as rDD is divided by
RO2, the impact of the third component will be small and the
evolved rule will be mainly governed by the first and second
components. If WINQ is also zero, only the first component
will remain (will be similar to WSPT). If WINQ is positive,
the rule will give high priorities for jobs with low WINQ, RT
and high W. This helps the shop finish short jobs with high
weights faster. The rule will behave similarly when RT is large
and rDD is positive (but smaller than RT).

If RT is small and rDD is negative (the job is late), the third
component will be positive and this component as well as the
whole rule will be governed mainly by rDD. It means that jobs
that are behind the due date further will have higher priorities.
As W and PR are also in the third components when they are
positive, their effects are reversed as compared to WSPT (as
previously shown in Fig. 14(d)). A possible explanation is that
it will help reduce the effects of WSPT when jobs become too
late.

Our analyses have shown that the evolved rules possess
very interesting and sophisticated properties to help minimise
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Fig. 16. Decision tree based on the evolved rule. For the two jobs a and b, the decision is 1 if a has a higher priority than b and 0 otherwise.

(((((max (max ((RO  / rRJ ) , (rRJ  * NPT )) , max ((rRJ  - RT ) , max 
(RO  , SJ ))) - ((PR  + (PR  + 0.9297208155723722)) / W )) * (((PR  + (PR  
+ 0.9297208155723722)) / W ) + 0.9297208155723722)) + ((((max (rrJ  , 
RT ) - rDD ) * ((WINQ  / W ) / max (rrJ  , RT ))) - (((rDD  / RO ) / RO ) + 

max (RO  , rrJ ))) * max (((rDD  / RO ) + min (RO  , PR )) , (((rDD  / 
RO ) + max (RO  , rrJ )) / (SJ  * NPT ))))) - ((((WINQ  / (W  / max (rrJ  , 

RT ))) / W ) / W ) / W )) * (PR  + 0.9297208155723722)) 

((((1 - (2*PR) / W) * (((2*PR) / W)) 
 + ((((RT - rDD) * ((WINQ / W)/ RT)) - (((rDD/ RO)/ RO) + RO)) * max(((rDD/ RO) + 1), 1))) 

- ((((WINQ / (W / RT)) / W) / W) / W)) * PR) 

simplify 

1: - (2*PR*PR) / W * (((2*PR) / W)) 
2: - WINQ*RT*PR/W4 

3: + ((((RT - rDD) * ((WINQ / W)/ RT)) - (((rDD/ RO)/ 
RO) + RO)) * max(((rDD/ RO) + 1), 1))*PR 

Fig. 17. Rule simplification.

the total weighted tardiness. The simplification, visualisation,
and decision trees have provided useful insights to help us
interpret the rules. We believe that data analytics will play
a very important role to enhance the applicability of evolved
rules as well as GP. An automated design system should have
more analytics tools to facilitate the analyses in the future.

VIII. CONCLUSIONS

Automated design of dispatching rules for production sys-
tems is an interesting and difficult task. Although, GP has
achieved some encouraging results, building an applicable GP
system for practical problems is often challenging due to issues
such as flexibility, effectiveness, efficiency, and interpretability.
In this paper, we have successfully developed a new surrogate
assisted GP system for evolving dispatching rules. The novelty
of this system lies on the surrogate models based on simplified
simulation models of the original shop and the new SGP
algorithm that combines multiple fitness functions. We have
shown that the proposed algorithm can be extended to cope
with different scheduling problems. The experimental results
have also verified the effectiveness of our algorithms as com-
pared to other results reported in the literature. The proposed
algorithm outperforms other existing algorithms in terms of
rule performance. In some cases, lengths of the evolved rules
and running times of the algorithms are also reduced. The
analyses have also demonstrated the accuracy of the proposed
surrogate models and their behaviours through the evolution
process of GP. As compared to the existing surrogate model,
the new model based on a simplified simulation model of the
original shop gives better estimates across generations.

In future studies, we want to investigate how our surrogate
models can cope with more complex/practical environments.
Surrogate models should be still useful in these case but
they need to be used with more general and powerful search
mechanisms in GP such as coevolution [28], [38], two-stage
approach [42], and multiple-tree GP [37]. Also, surrogate
models can be used to improve the quality of EAs [48] search
so studies on these models for automated design of scheduling

rules are still important. Moreover, it is important to develop
a more general and powerful pre-processing subroutine to
help improve the automation of the model selection steps. To
improve the applicability and intepretability of GP for schedul-
ing problems, visualisation and data analytics techniques have
been applied. We have shown that these techniques are useful
for the interpretation of the evolved rules. We believe that
these techniques/tools should be part of the automated design
process and more rigorous research should be carried out in
order to develop a guideline for applying these techniques in
a systematic way in practice.
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ward, “A classification of hyper-heuristic approaches,” in Handbook of
Metaheuristics, 2nd ed., 2010, vol. 146, pp. 449–468.

[22] N. Sabar, M. Ayob, G. Kendall, and R. Qu, “A dynamic multiarmed
bandit-gene expression programming hyper-heuristic for combinatorial
optimization problems,” IEEE Transactions on Cybernetics, vol. 45,
no. 2, pp. 217–228, Feb 2015.

[23] T. Eguchi, F. Oba, and S. Toyooka, “A robust scheduling rule using
a neural network in dynamically changing job-shop environments,”
International Journal of Manufacturing Technology and Management,
vol. 14, no. 3–4, pp. 266–288, 2008.

[24] H. Ingimundardottir and T. P. Runarsson, “Supervised learning linear
priority dispatch rules for job-shop scheduling,” in Learning and Intel-
ligent Optimization, ser. LNCS, 2011, vol. 6683, pp. 263–277.

[25] M. Kapanoglu and M. Alikalfa, “Learning IF-THEN priority rules for
dynamic job shops using genetic algorithms,” Robotics and Computer-
Integrated Manufacturing, vol. 27, no. 1, pp. 47–55, 2011.

[26] M. Kofler, S. Wagner, A. Beham, G. Kronberger, and M. Affenzeller,
“Priority rule generation with a genetic algorithm to minimize sequence
dependent setup costs,” in Computer Aided Systems Theory — EURO-
CAST 2009, ser. LNCS, 2009, vol. 5717, pp. 817–824.

[27] T. Hildebrandt, J. Heger, and B. Scholz-Reiter, “Towards improved
dispatching rules for complex shop floor scenarios — a genetic pro-
gramming approach,” in GECCO’10, 2010, pp. 257–264.

[28] K. Miyashita, “Job-shop scheduling with genetic programming,” in
GECCO’00, 2000, pp. 505–512.
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