
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. XX, MARCH 2016 1

Automatically Evolving Rotation-invariant Texture
Image Descriptors by Genetic Programming

Harith Al-Sahaf, Student Member, IEEE, Ausama Al-Sahaf, Bing Xue, Member, IEEE,
Mark Johnston, Member, IEEE, and Mengjie Zhang, Senior Member, IEEE,

Abstract—In computer vision, training a model that performs
classification effectively is highly dependent on the extracted
features, and the number of training instances. Conventionally,
feature detection and extraction are performed by a domain-
expert who, in many cases, is expensive to employ and hard
to find. Therefore, image descriptors have emerged to automate
these tasks. However, designing an image descriptor still requires
domain-expert intervention. Moreover, the majority of machine
learning algorithms require a large number of training examples
to perform well. However, labelled data is not always available or
easy to acquire, and dealing with a large dataset can dramatically
slow down the training process. In this paper, we propose a
novel Genetic Programming based method that automatically
synthesises a descriptor using only two training instances per
class. The proposed method combines arithmetic operators to
evolve a model that takes an image and generates a feature
vector. The performance of the proposed method is assessed using
six datasets for texture classification with different degrees of
rotation, and is compared with seven domain-expert designed
descriptors. The results show that the proposed method is robust
to rotation, and has significantly outperformed, or achieved a
comparable performance to, the baseline methods.

Index Terms—Genetic Programming, Classification, Image
Descriptor, Keypoint detection, Feature extraction.

I. INTRODUCTION

IMAGE analysis in computer vision and pattern recognition
is an essential task in a wide variety of applications

such as cancer and fracture detection (medical), battle field
analyses (military), vegetation detection (environment), and
robot navigation (robotics) [1]–[3]. Analysing the content of
an image to detect an object or a region of interest remains a
challenging task that has attracted many researchers over many
decades. Training a model that is capable of performing the
detection or classification tasks effectively is highly dependent
on the features that are used during the training phase, and the
number of training instances. Feature design aims at defining
a set of features/keypoints that are important to locate an
object in an image (object detection) or classify an image
(image classification). Clearly, different applications require
different features. For example, the eyes, nose, and mouth can
be used to detect faces; whereas colour and texture features are
used in image segmentation to differentiate between different

H. Al-Sahaf, A. Al-Sahaf, B. Xue, and M. Zhang are with the School of En-
gineering and Computer Science, Victoria University of Wellington, PO Box
600, Wellington 6140, New Zealand. E-mail: {Harith.Al-Sahaf,Ausama.Al-
Sahaf,Bing.Xue,Mengjie.Zhang}@ecs.vuw.ac.nz.

M. Johnston is with the Institute of Science and the Environment,
University of Worcester, Worcester, WR2 6AJ, United Kingdom. E-mail:
m.johnston@worc.ac.uk.

objects or regions in an image. Feature detection aims at
finding those previously designed features; this is also known
as keypoint detection [4]. Locating corners and edges is a
typical example of keypoint detection. Feature extraction aims
at transforming raw pixel values of a detected keypoint or the
region surrounding that keypoint into a reduced domain (a
single value) [5]. Calculating the mean, standard deviation,
thickness of a line, and measuring the distance between two
pixels/positions are some examples of feature extraction. It
is important to notice that different features can be extracted
from the same region via applying different operators such
as measuring the size and angle of a detected corner, or
the homogeneity of a region. However, not all the extracted
features are important or relevant. Hence, removing irrelevant
and redundant features is an important task that is known as
feature selection [6]. In other words, feature selection aims at
selecting only a subset of the extracted features. Last but not
least, in computer vision and pattern recognition, an image
descriptor is a model that performs both keypoint detection
and feature extraction. Hence, the raw pixel values are the
input of a descriptor, whereas the output is a feature vector.

In this paper, the term keypoint is used to refer to a region
of interest (e.g. corner, line, or spot); whilst the term feature is
used to refer to a property extracted from a region (keypoint).

Tuytelaars and Mikolajczyk [7] have classified image key-
points into local and global. The former (local) is concerned
with detecting image patterns that are distinct from their
adjacent neighbourhood. Examples of local keypoints are
texture, colour, shape, and intensity. Local keypoints can have
a specific semantic interpretation in different applications, for
example using edge detection techniques to detect roads in
aerial images [7]. The robustness to image deformations in
representing objects in an image is a key characteristic of local
keypoints [8], and thus it has been used by researchers in many
applications. Global keypoints are concerned with detecting
a representative keypoint for an image in its entirety and do
not discriminate between the background and foreground. The
colour histogram is a typical example of a global keypoint and
is very popular in image indexing and retrieval [9].

Conventionally, the process of detecting and extracting a
reliable set of features is performed by a domain-expert.
However, this process suffers from three potential difficulties.
First, domain knowledge of the task at hand is required in order
to detect important and effective keypoints. Second, domain-
experts are not always available and are very expensive to
employ. Third, extracting features from those detected key-
points needs to be carefully handled to ensure the robustness

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. XX, MARCH 2016 2

of these features to image deformations. These difficulties
have attracted increasing attention and many methods have
been introduced in the literature to automate keypoint detec-
tion and feature extraction in order to mitigate or overcome
those difficulties [10]–[19]. Therefore, image descriptors have
emerged that aim at detecting keypoints and extracting image
features, which play vital roles in computer vision and pattern
recognition.

Similar to other fields of machine learning, the success in
performing many tasks in computer vision can be subject to,
and highly dependent on, the goodness of the features. Hence,
due to the ability of image descriptors to detect and extract
useful information, i.e., keypoints and features, they have been
widely deployed in computer vision as a prior step in object
detection [20], [21], object recognition [22], image classifi-
cation [23], image registration [24], and image segmentation
[25]. Some typical examples of such descriptors are Haralick
texture features [10], Local Binary Pattern (LBP) [11], Scale-
Invariant Feature Transform (SIFT) [12], Speeded-Up Robust
Features (SURF) [13], Fast Retina Keypoint (FREAK) [17],
and KAZE features [18]. However, the majority of currently
existing image descriptors have four major limitations. First,
the process of designing image descriptors requires domain-
expert intervention to select some prominent keypoints that are
intended to provide useful information such as corners, edges,
gradients and gradient directions, spots, and line segments.
Second, altering a component of an image descriptor, e.g., the
window size and number of neighbouring pixels, can be very
challenging and an expert is almost always required to perform
this task. Third, major changes are required in order to utilise
a descriptor to handle different image deformations such as
rotation and scale. Fourth, the majority of these descriptors
perform multiple operations, e.g., compute the derivatives,
apply Gaussian smoothing via convolution, and calculate the
Histogram of Gradients (HoG) in SIFT, before a feature vector
for an instance can be generated; this potentially increases the
complexity and slows down the overall process.

Since the late 1990s, Genetic Programming (GP) [26]
has been used to automatically evolve/extract/construct image
keypoints and features [5], [27]–[35], showing good potential
in this direction. The method proposed by Ebner and Zell [36]
is one of the earliest works employing GP to automatically
evolve an interest point detector. Similarly, Trujillo and Olague
[37] have used GP to synthesise an interest point detector.
They extended this work in [38] to improve the performance of
the evolved points detector taking into consideration the global
separability and geometric stability of the detected points.
Olague and Trujillo [39] used GP to evolve image operators for
detecting interest points in an image. Motivated by the success
of [37], [39], Perez et al. [40] proposed several methods, where
GP is used as a strategy to evolve image descriptors for object
detection tasks. The main focus of Liu et al. [41] is on evolving
a spatio-temporal descriptor for human action recognition by
employing GP techniques. Shao et al. [42] proposed a multi-
objective GP methodology for the task of feature learning in
image classification.

Most of the aforementioned GP-based methods combine
image processing operators such as convolution, derivatives

and filtering, to detect a specific type of keypoint such as
a corner. Having a system that is capable of detecting other
types of keypoints (e.g. line ends, spots, line segments) similar
to LBP, and automatically constructing models to synthesise
image descriptors could be more effective at generating useful
information. Moreover, it will be more efficient if the system is
capable of automatically identifying keypoints without domain
knowledge.

On the other hand, having too many instances in the training
set imposes a heavy load on any algorithm to iterate over those
instances and can dramatically slow down the training process.
Ideally, all instances of one class must share a distinctive set of
attribute values compared to instances from all other classes.
For example, regardless of the gender of a person, almost all
human faces have two eyes, one nose, and one mouth, and
these features have been widely used for face detection tasks.
Hence, if the system can automatically detect those features or
even better ones [43] using a small number of instances, the
learning process will speed-up. Motivated by this idea, in [44]
GP has been used to automatically evolve an LBP-like image
descriptor (GP-criptor) using the raw pixel values and only two
instances per class. Moreover, promising results were achieved
for texture classification as highlighted in [44]. However,
the evaluation of GP-criptor is rather limited since only two
datasets are used and the images to be classified are rotation
free. Testing the method on images with rotations has revealed
the inability of this method to evolve a rotation-invariant model
and poor performance was observed. Therefore, the proposed
method in this study is specifically designed to tackle the
rotation problem and evolve a rotation-invariant descriptor by
replacing the terminal set of GP-criptor with a set of rotation-
invariant feature extraction functions.

A. Goals
The aim of this paper is to develop a new GP approach to

automatically constructing rotation-invariant image descriptors
that can detect good keypoints and extract informative features
simultaneously for texture image classification. Instead of
using a large number of instances to train/learn a classifier as
in most existing supervised approaches, the proposed approach
will use only two instances per class in the training set.
To achieve automatic construction of rotation-invariant image
descriptors, new terminal and function sets, and a fitness
function need to be developed. The new image descriptors
automatically constructed by GP will be examined and com-
pared with seven state-of-the-art domain-expert designed im-
age descriptors on ten commonly used learning/classification
methods on six texture image datasets of varying difficulty
with different rotations. Specifically, we will investigate the
following objectives:
• Develop a new terminal set and a new function set to

allow the proposed GP system to handle the rotation
variation in texture images for texture classification and
automatically evolve/construct image descriptors from a
set of training instances;

• Develop a new fitness function that can effectively use
only two labelled instances per class to evolve image
descriptors and extract features for texture classification;

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. XX, MARCH 2016 3

• Investigate whether the GP-evolved image descriptors
can achieve similar or even better performance than
the seven state-of-the-art domain-expert designed image
descriptors;

• Investigate whether the image features evolved/generated
by the proposed GP method can improve the performance
of different types of learning/classification methods; and

• Investigate to what extent the evolved image descrip-
tors/genetic programs can be interpreted by humans.

Note that the proposed method represents a substantial
extension to a recent work [44] (CEC 2015 Best Overall
Paper Award). Compared with [44], the proposed method in
this paper can effectively deal with image rotations. Due to
the increased difficulty of the task, the terminal/function sets,
the fitness measures, and experiment design have been newly
developed and/or substantially extended. An interpretation of
the evolved programs is also provided in this paper.

B. Organisation

The remainder of the paper is organised as follows. A brief
background and a survey of related work are presented in
Section II. The proposed method is discussed in Section III.
The experiment design is explained in Section IV. The results
are presented and discussed in Section V. To provide some in-
depth analysis, an example program evolved by the proposed
method is extensively examined in Section VI. The conclu-
sions of this study and some recommendations for future work
are presented in Section VII.

II. LITERATURE SURVEY

This section comprises two parts. A brief background on
the methods directly related to this study is provided in the
first part. The second part discusses GP systems for image-
related work including feature detection, feature extraction,
and classification.

A. Background

Here, a brief background on some of the work most directly
related to this study in the literature is provided.

1) Local Binary Pattern (LBP): In computer vision and
pattern recognition, local binary pattern (LBP) [11] is one of
the most widely used descriptors for detecting and extracting
image features. LBP aims at detecting image keypoints, and
generates a histogram (feature vector) that corresponds to
the distribution of those keypoints [45]. Conventional LBP
operates by scanning the pixels of the image using a sliding
window and generates a binary code based on the differences
between the central pixel of the window and its circular
equidistant neighbours. The distance is specified by the radius
parameter (r), whereas the number of considered neighbours
within the window is controlled by the pixel parameter (p)

(a) (b) (c) (d) (e)

Fig. 1. Illustration of the LBP parameters (a) LBP4,1, (b) LBP8,1, (c) LBP4,2,
(d) LBP8,2, and (e) LBP16,2.

Fig. 2. Illustration of the LBP main steps.

as depicted in Fig. 1. The formal representation of the LBP
operator is defined as follows:

LBPp,r =

p−1∑
i=0

s(gi − gc)2i, s (x) =

{
0, x < 0

1, otherwise
(1)

gi = I (xi,yi) (2)

xi = xc + r cos
(
2πi
/
p
)

(3)

yi = yc − r sin
(
2πi
/
p
)

(4)

where I (xi,yi) is the ith pixel at the (xi,yi) coordinate of
image I , the coordinate of the central pixel of the current win-
dow is denoted by I (xc,yc), and gc and gi are, respectively,
the value/intensity of the central and ith neighbouring pixels.

The process comprises four steps at each position of the
sliding window as presented in Fig. 2. First, the value of each
neighbouring pixel is subtracted from that of the central pixel.
Second, each negative value is substituted with a 0, otherwise a
1 is substituted. The combination of these two steps represents
a thresholding operator where the value of the central pixel is
used as the threshold. Third, the values (0s and 1s) are used
to form a binary code. Fourth, the binary code is converted
into a decimal value, and the count of the corresponding bin
in the histogram is incremented by 1.

Ojala et al. [46], [47] have classified LBP codes into
uniform and non-uniform. A code is designated as uniform
(LBPu2p,r) if circularly it has no more than two bitwise tran-
sitions from 1 to 0 and vice versa as shown in Fig. 3. The
following formula is used to calculate the number of bitwise
transitions in a code:

U (LBPp,r) = |s (gp−1 − gc)− s (g0 − gc)|+
p−1∑
i=1

|s (gi − gc)− s (gi−1 − gc)| (5)

where a code is said to be uniform if U(·) ≤ 2. Considering
only uniform codes reduces the length of the feature vector
from 2p to p(p − 1) + 3 bins. Formally, the value of the bth

bin in a histogram (feature vector) is calculated as:

H (b) =

M−1∑
i=0

N−1∑
j=0

δ
(
LBPu2p,r (i, j) , b

)
, b ∈ [0, B] (6)

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. XX, MARCH 2016 4

0 0 0 0 0 0 1 1

(a)

1 0 0 0 1 1 1 1

(b)

0 0 0 0 1 1 0 1

(c)

0 1 1 0 0 1 1 0

(d)

Fig. 3. Examples of (a) and (b) uniform codes, and (c) and (d) non-
uniform codes. The values of the uniformity measure are, correspondingly,
U (00000011) = 2, U (10001111) = 2, U (00001101) = 4, and
U (11100110) = 4.

δ (α, β) =

{
1, α = β

0, otherwise
(7)

where M and N are, respectively, the width and height of the
image, B is the maximum number of bins in the histogram,
and LBPu2p,r (i, j) is the LBP code generated from positioning
the sliding window at pixel coordinates (i, j).

To tackle rotations variation, a rotation-invariant LBP
(LBPrip,r) is also introduced by Ojala et al. [47]. The idea is
to circularly rotate the code until the smallest value is found
as presented in Equation (8).

LBPrip,r = min (ROR (LBPp,r , x)) , x = 0, . . . , p− 1 (8)

Here, the ROR (·, ·) function performs a bitwise right shift
operation on the first argument (binary code) equal to the
number specified by the second argument.

Then LBPrip,r is combined with LBPu2p,r to generate a po-
tentially more powerful feature vector than that generated by
conventional LBPp,r, which is indicated as LBPriu2p,r and the
formal definition is as presented in Equation (9).

LBPriu2p,r =

{∑p−1
i=0 s (gi − gc) , U (LBPp,r) ≤ 2

p+ 1, otherwise
(9)

As discussed above, the two parameters r (radius) and p
(number of considered neighbouring pixels) can significantly
affect the design of LBP. Altering the number of considered
neighbouring pixels, or the formula to generate the code,
requires human intervention that in many cases can be a
very difficult task. Moreover, making the descriptor robust to
rotation makes the task even more difficult. Hence, the method
proposed in this study is designed to address these difficulties
by automatically synthesising a set of suitable formulas, with-
out any human intervention or background knowledge, to form
a rotation-invariant image descriptor.

2) Completed Local Binary Pattern (CLBP): Typically,
only the sign is considered to generate the histogram in LBP
as discussed above. Guo et al. [48] showed that additional
discriminant power is achieved by utilising the magnitude
(CLBP M) and the value of the central pixel (CLBP C) along
with the sign (CLBP S), and hence, they proposed three
operators:

CLBP Sp,r =

p−1∑
i=0

s(gi − gc)2i, s (x) =

{
0, x < 0

1, otherwise

(10)

CLBP Mp,r =

p−1∑
i=0

s(mi − gc)2i, mi = |gi − gc| (11)

CLBP Cp,r = s(gc − cI) (12)

where mi is the magnitude of the ith pixel, which represents
the absolute difference between the intensity of that ith

pixel (gi) and the central pixel intensity (gc), and cI is the
average intensity, i.e., grey level, of the entire image. Clearly,
CLBP Sp,r is equivalent to conventional LBPp,r.

3) Local Binary Count (LBC): Inspired by LBP, Zhao et
al. [49] proposed the local binary count (LBC) descriptor.
The main difference between LBP and LBC is that the code
generated at each pixel (i.e. window position) is encoded into
a decimal value in LBP, whereas merely the number of 1’s are
counted in LBC. Hence, formally LBC is defined as:

LBCp,r =

p−1∑
i=0

s (gi − gc) , s (x) =

{
0, x < 0

1, otherwise
(13)

where, p, r, gi, gc, and s (·) have their corresponding meanings
to those symbols in LBPp,r.

Another core difference between LBP and LBC is that the
local structure information of the pattern is maintained in
LBP which is not the case in LBC due to the fact that only
the number of counted bits is considered while the position
information is discarded.

4) Completed Local Binary Count (CLBC): A completed
local binary count (CLBC) is proposed in [49] to mimic
CLBP. Hence, the magnitude (CLBC Mp,r) and centre pixel
(CLBC Cp,r) are also considered in addition to the sign
(CLBC Sp,r). Formally, these three operators are defined as:

CLBC Sp,r =

p−1∑
i=0

s (gi − gc) , s (x) =

{
0, x < 0

1, otherwise

(14)

CLBC Mp,r =

p−1∑
i=0

s (mi − gc) , mi = |gi − gc| (15)

CLBC Cp,r = s (gc − cI) (16)

5) Haralick Texture Features: Haralick et al. [10] proposed
a set of operators based on the grey-level co-occurrence
matrix (GLCM) that have been widely adopted by researchers
in pattern recognition and computer vision. Each matrix in
GLCM has size L × L, where L is the number of grey
levels, and is generated by considering the occurrences of the
adjacent pixels in predefined offset (τ) and angle (θ). Then
a set of features are calculated from those matrices that were
designed to detect the structure characterised by the keypoints.
Following are some of those broadly used features.

Contrast =
L−1∑
i=0

L−1∑
j=0

(i− j)2 f (i, j) (17)

Homogeneity =

L−1∑
i=0

L−1∑
j=0

f (i, j)

1 + |i− j|
(18)

Energy =

L−1∑
i=0

L−1∑
j=0

f (i, j)
2 (19)

Dissimilarity =

L−1∑
i=0

L−1∑
j=0

|i− j| f (i, j) (20)

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. XX, MARCH 2016 5

(a) (b) (c)
Fig. 4. Three schemes to divide an image in DIF (a) rectilinear, (b) circular,
and (c) pixel features [5].

TABLE I
PIXEL STATISTICS OF THE RECTILINEAR METHOD.

Regions of interest Features Regions of interest Features

µ σ µ σ

Square A1B1C1D1 F1 F2 Square A2B2C2D2 F11 F12

Quadrant A1E1OH1 F3 F4 Horizontal line H1F1 F13 F14

Quadrant E1B1F1O F5 F6 Horizontal line H2F2 F15 F16

Quadrant H1OG1D1 F7 F8 Vertical line E1G1 F17 F18

Quadrant OF1C1G1 F9 F10 Vertical line E2G2 F19 F20

Entropy =

L−1∑
i=0

L−1∑
j=0

f (i, j) [− log2 f (i, j)] (21)

Correlation =

L−1∑
i=0

L−1∑
j=0

(i− µi) (j − µj) f (i, j)
σiσj

(22)

Here, the function f (·, ·) returns the value of the specified cell
from the matrix, and the mean and standard deviation of the ith

row are, respectively, denoted as µi and σi. Similarly, µj and
σj denote, correspondingly, the mean and standard deviation
of the jth column.

6) Domain-Independent Features: In 2003, Zhang et al. [5]
proposed domain-independent features (DIF). The core idea of
DIF is to extract a set of first order statistics, e.g., mean and
standard deviation, from predefined image regions. Although
only three schemes (rectilinear, circular, and pixel) of dividing
the image are presented in their work as depicted in Fig. 4,
this method is not limited and numerous schemes can be used.
The features of the rectilinear method are shown in Table I.

7) GP Descriptor: Recently, we have proposed Genetic
Programming Image Descriptor (GP-criptor) [44] where GP is
utilised to automatically evolve an image descriptor using the
raw pixel values. GP-criptor is inspired by LBP and operates
a similar scheme. However it automatically evolves a set of
formulas to replace the expert-designed ones. Thus, the GP
tree representation of an evolved program, virtually, comprises
three parts as presented in Fig. 5. The first part is represented
by the leaves, i.e., terminal nodes, of the tree that are taken
from the pixels of the sliding window. Hence, each leaf node
represents an index of a cell in the flattened (i.e. converting
the 2D window into a single vector) sliding window such that
the ith index is indicated by Pi. The second part consists of
a set of sub-trees each of which contains arithmetic operators
(+, −, ×, and /). The third part resides at the top (the root) of
the program and consists of a single node called code, which
converts the output of its children into a binary code.

The work in [44] is limited since GP-criptor has only been
tested using two datasets, and compared to LBP, GLCM, and
DIF features. Although the results achieved are promising, GP-

Fig. 5. An example of a program evolved by GP-criptor.

criptor was not designed to handle image rotations and further
tests have revealed its inability to evolve rotation-invariant
descriptors.

B. Related Work

GP has attracted many researchers over the last few decades
to tackle image-related problems, e.g., keypoint detection,
feature extraction, feature selection, and classification, in a
wide variety of applications.

Song et al. [50], [51] proposed two GP representations
for texture classification using the raw pixel values. Their
methods perform multi-class classification by adopting the
Static Range Selection (SRS) [52], [53] and Dynamic Range
Selection (DRS) [54] approaches. In [50], the authors evalu-
ated their methods using four classes from the commonly used
Brodatz Textures [55] dataset and promising results have been
observed.

Smart and Zhang [56] proposed a GP based approach to
multi-class object classification tasks relying on the Cen-
tered Dynamic Range Selection (CDRS) and Slotted Dynamic
Range Selection (SDRS) strategies. Comparing with static
range selection methods by using five datasets for image clas-
sification of increasing difficulty, these two dynamic methods
have outperformed the competitors especially on the more
difficult problems. However, these methods were designed to
evolve a classifier rather than a descriptor. Moreover, these
methods require a large number of training instances to achieve
a suitable level of performance.

To improve the GP search for object detection, Zhang et
al. [57] proposed a two-phase approach that uses a sample
(subset) of the training instances and a simplified fitness
function in the first phase to evolve initial solutions; whereas
those initial solutions, the entire set of training instances, and
a complete fitness function are used in the second phase. The
program size is added to the fitness function with the aim
to have smaller and easier to interpret programs. Compared
to conventional Artificial Neural Networks (ANN) on three
datasets of increasing difficulty, their results show that the
innovations introduced have improved the performance of GP
in terms of effectiveness and efficiency, and the GP approach
has outperformed the ANN approach. Similar to [56], the focus
of [57] is on evolving a classifier rather than a descriptor and
also in this case a large number of instances are required.
Moreover, their method is a multi-phase approach where the
output of the first phase is needed in order to start the second
phase, which increases the complexity of the overall system.

A modified GP representation for multi-class object classi-
fication is proposed by Zhang and Johnston [58]. The main

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. XX, MARCH 2016 6

idea is to evolve a program that produces multiple values,
i.e., one for each class label, instead of the single value of the
conventional GP individual. This approach was assessed using
four multi-class object classification datasets, and the results
showed it has outperformed the standard GP approach. This
method tackles multi-class classification and does not operate
directly on the raw pixel values; human intervention is required
to perform keypoint detection and feature extraction.

Atkins et al. [59] proposed a three tier GP (3T-GP) program
representation for image classification. The lower tier performs
image filtering, with feature extraction in the middle tier,
and classification in the upper tier. The 3T-GP achieved a
comparable performance to that of the domain-specific hand-
crafted features.

Motivated by the promising results of the 3T-GP method,
Al-Sahaf et al. [43] have further studied this multi-tier ap-
proach and concluded that better performance can be achieved
by removing the filtering tier. Hence, their two-tier GP (2T-
GP) approach is quite similar to the 3T-GP approach but with
more terminals and functions added [30], [43]. The 2T-GP
has been tested using datasets for different applications and
it was shown to outperform the competitor methods [43].
Moreover, using the features extracted by 2T-GP improved
the performance of the different classifiers compared to the
use of domain-specific hand-crafted features [30].

Both the 3T-GP and 2T-GP methods are closely related to
the method proposed in this study, as they automatically detect
prominent regions (keypoints) and extract different features
from those detected regions. Moreover, in [30] it was shown
that feeding the features extracted by 2T-GP to a variety of
classifiers significantly improved the performance of those
classifiers compared to domain-specific features. However,
both 3T-GP and 2T-GP require a large number of training
instances [60], and extending those methods to handle multi-
class classification tasks requires substantial changes.

Fu et al. [61], [62] used GP for edge detection. The
edge represents an important feature which many algorithms
in computer vision rely on, when performing detection and
segmentation. Their results show that cleaner and more edges
of interest were detected compared to well-known algorithms
such as Sobel and Canny [63]. Those methods (i.e. [61],
[62]) are closely related to the proposed method in this paper;
however, our new method is not limited to detecting only a
specific type of feature.

Albukhanajer et al. [31] proposed a multi-objective ap-
proach to extracting image features that are robust to noise
and invariant to geometric deformations, e.g., illumination,
rotation, and scale, by optimizing the functionals in the trace
transform1. In this method, the system automatically combines
different trace, diametric, and “circus functionals” in order to
minimise the within-class variance and maximise the between-
class variance. Their experiments on two datasets showed that
the method is robust to noise and geometric deformations.

In summary, most of the existing methods in the literature
involve human intervention, i.e., they need human experts to

1Trace transform is a general representation of the Radon transform, which
uses straight lines to calculate the image functionals [64].

design the keypoints and manually write programs to extract
features from those keypoints. They typically perform keypoint
detection and feature extraction separately, and if some impor-
tant keypoints/regions are missed in the first stage, it would
be almost impossible to extract good features from the missed
keypoints or regions. In most image classification systems, a
large number of training examples/instances are required to
build or train a good classifier. Many of the existing methods
or image descriptors cannot effectively classify images with
different rotations. This paper will develop a new approach
using GP to tackle these issues. The next section will describe
the new method.

III. THE PROPOSED METHOD

This section provides a detailed discussion on the proposed
rotation-invariant GP-criptor (GP-criptorri) method. The sec-
tion starts by presenting an overview of the algorithm to evolve
a program in order to highlight the key components of GP-
criptorri , and how the evolved program is evaluated. Then
the program structure, i.e., terminal and function sets, fitness
measure, and feature vector extraction process are discussed.

The proposed method operates directly on the raw pixel
values, and therefore it does not require human intervention to
provide a set of predefined/extracted features. Unlike methods
designed by domain experts, the proposed method does not use
domain knowledge to detect a specific set of keypoints such
as lines, corners, spots, or homogeneous regions. Instead, GP-
criptorri automatically discovers good keypoints that vary in
their frequency of appearance between the instances of the
different classes. Moreover, GP-criptorri does not require hu-
man intervention to manually combine the detected keypoints
(like in LBP and GLCM) and design them to be rotation-
invariant. Instead, this method automatically synthesises a set
of mathematical formulas to accomplish this task. Another
key feature of the proposed method is that it does not need
a large number of training instances to evolve a descriptor,
which makes it suitable for applications where the labelled
data is limited. In fact, being capable of operating on just a
few instances has a large impact on reducing the training costs,
i.e., memory and CPU time.

A. The Overall Algorithm

Fig. 6 presents an overview of the overall algorithm. The
system divides the total number of instances of each class
equally between the training and test sets. Note that only two
instances per class are randomly selected from the training set
and fed to the GP system to evolve the programs (i.e. descrip-
tors), whereas the rest of the training samples are discarded.
From the diagram presented in Fig. 6, we can see that, at the
end of the evolutionary process, the system returns the best
evolved program which represents an automatically evolved
image descriptor. The instances that were used during the
evolutionary process (i.e. the two randomly selected instances
per class) are fed to the evolved descriptor to generate a special
set called the knowledge-base (D). This set is the transformed
training subset and will be used to train a classifier. In other
words, the two instances per class randomly selected to form

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. XX, MARCH 2016 7

Fig. 6. An overview of the overall algorithm.

Fig. 7. The program representation of an individual evolved by GP-criptorri .

the training set are used to evolve an individual and later
to train a classifier. The evolved descriptor is then used
to generate the feature vectors (transformed dataset) for the
unseen (test) data. These feature vectors are fed to a trained
classifier (using D as training set) in order to assess the
performance of the evolved descriptor on the unseen data.

B. Program Representation

In GP, the individual programs are constructed from ele-
ments of the terminal and function sets. In this study, tree
based GP [26] is used to represent an individual (i.e. image
descriptor) evolved by GP-criptorri , where the terminal nodes,
i.e., leaves, are taken from the terminal set, and all non-
terminal nodes are drawn from the function set. Fig. 7 depicts
an example of a GP-criptorri evolved individual. Moreover,
strongly-typed GP (STGP) [65] is used to introduce restrictions
on the nodes. Each individual is a set of synthesised formulas
that are used to extract the feature vector (more details in
Section III-D).

The terminal set consists of four nodes: min (~x), max (~x),
mean (~x), and stdev (~x), which are functions that respectively
return the minimum, maximum, mean, and standard deviation
values of the elements of a vector. The intuition behind
choosing these functions is their order-independent property
when extracting features. In other words, shuffling the values
of the vector will not affect the results returned by those
functions. This is very important to handle the rotation variants
of the pixels. The terminal nodes take a vector of integer
values, and return a single floating point value.

The terminal set is a key difference between GP-criptor
and GP-criptorri . In GP-criptor, the leaf nodes of an evolved
program are the original pixel values in a randomly selected
index of the sliding window as presented in Fig. 5; whereas
the leaf nodes in GP-criptorri are calculated statistics of the
pixel values of the sliding window as shown in Fig. 7.

Fig. 8. An example demonstrates the process of converting an instance to a
feature vector.

The function set is made up of five nodes: code and the four
arithmetic operators +, −, /, and ×. The arithmetic operators
have their regular meaning, however / is protected so that it
returns zero if the denominator is zero in order to avoid the
“division by zero” problem. Apart from code, those functions
take two input arguments and return a single output. Moreover,
the input and output types are floating-point values, and hence,
the output of one node can be an input of another node.
More operators can be used such as trigonometric functions
and logical operators, which represents another key benefit of
the GP-criptorri : it has more flexibility than those descriptors
designed by domain-experts. The code node code, on the
other hand, takes a predefined number (specified by the user)
of arguments and returns a binary code. This node cannot
appear as a child of any other node due to the type mismatch
between its output and the output of other function nodes.
The code node resides at the root of the individual tree, and
each individual has only one code node. This node converts its
inputs into binary by using 0 as a threshold as demonstrated in
Fig. 8. The generated codes are used to construct the feature
vector (more details in Section III-D).

C. Fitness Measure

Typically, the classification accuracy is used as the fitness
measure to gauge the performance of the individual to dis-
criminate between instances of different classes. Accuracy is
defined as the ratio between the number of correctly classified
instances and the total number of instances. The use of accu-
racy to measure the fitness is inappropriate when there are only
a few examples in the training set as the algorithm will simply
memorise those examples, which can increase the possibility
of “over-fitting” occurring and affect the generalisability of
the evolved program on the unseen data. Therefore, a different
measure is needed to cope with the problem of having only a
limited number of training instances. Clearly, we need a fitness
function that can detect as many representative keypoints as
possible that reliably separate the instances of different classes
farther apart, and keeps the distances between instances of a
particular class as close to each other as possible [66]. Hence,
the fitness measure that is used in this study is defined as:

fitness = 1−
(

1

1 + e−5(Db−Dw)

)
(23)

where Db is the average distance of between-class instances
calculated using Equation (24), and Dw is the average distance

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. XX, MARCH 2016 8

(a) (b)
Fig. 9. Logistic function (a) f (t) = 1

1+e−t
, and (b) f (t) = 1

1+e−5t .

of within-class instances calculated using Equation (25).

Db =
1

z (z − n)
∑

uα,vβ∈Str

∀~u∈uα
∀~v∈vβ

χ2 (~u,~v) , α, β ∈ [1, c] ,α 6= β

(24)

Dw =
1

z (n− 1)

∑
uα,vα∈Str

∀~u∈uα
∀~v∈vα

χ2 (~u,~v) , α ∈ [1, c] (25)

Here, Str = {(~xi, yi)} is the training set, where ~xi ∈ R≥0 is
the feature vector, yi is the class label, and i ∈ {1, . . . , z};
c and n are, respectively, the total number of classes and
the number of instances per class; z is the total number
of instances in the training set (i.e. c × n), and xα is the
set of all instances of the αth class in Str. The widely
used χ2 (·, ·) function measures the distance between two
normalised vectors of the same length as:

χ2 (~u,~v) =
1

2

∑
i

(ui − vi)2

ui + vi
(26)

where ui and vi are the ith element in the ~u and ~v vectors,
respectively. When the denominator of Equation (26) for an
index i, i.e., ui+vi, is zero, the function returns zero in order
to prevent the division by zero issue [67].

This fitness measure (Equation (23)) returns 1 and 0,
respectively, in the worst and best case scenarios. Moreover,
the second part of Equation (23) is a modified version of the
conventional sigmoid function as presented in Fig. 9(a). The
value 5 is included in the exponent to scale down the input
range from approximately [−5,+5] to approximately [−1,+1]
as depicted in Fig. 9(b). The motivation behind making the
effective input range narrow is mainly because the χ2 (·, ·)
function returns values in the interval [0, 1]. Therefore, using
the conventional sigmoid function the results of f (t) will be
approximately in the interval [0.27, 0.73]. Therefore, including
5 is to scale the output interval to be approximately [0, 1].

D. Feature Vector Extraction

A core task of an individual evolved by GP-criptorri is
to automatically detect keypoints and extract a feature vector
from an instance, i.e., an image, being evaluated using a sliding
window of predetermined size. The length of the feature vector
depends on the number of children of the code node (the root
of the individual tree). If there are q nodes in the children

list of code, then the resulting vector for each instance is of
length 2q . As demonstrated in Fig. 8, the instance undergoes
five steps at each position of the sliding window traversing
the instance pixel-by-pixel row-wise starting from the top-left
corner and ending at the bottom-right corner.
Step 1: The minimum, maximum, mean, and standard devi-

ation values of the current window pixels are calcu-
lated.

Step 2: Those calculated values are fed to the terminal nodes
of the individual.

Step 3: The internal (non-terminal) nodes, apart from the root
node, are evaluated starting from those near the leaves
by applying the corresponding operator to the list of
arguments, i.e., children.

Step 4: The root node (i.e. code) returns a binary code by
converting each of its arguments to 0 if it is negative
and 1 otherwise.

Step 5: The generated binary code is converted to decimal,
and the corresponding bin of the feature vector (his-
togram) is incremented by 1.

Clearly the code node in this context mimics the thresh-
olding step of the conventional LBP descriptor. However, the
latter uses the central pixel’s value as a threshold; whilst 0 is
used as a threshold value in the former.

IV. EXPERIMENT DESIGN

The aim and design of the experiments are discussed in this
section. The discussion also includes the datasets, methods for
comparison, and parameter settings.

A. Data Sets

The proposed method is evaluated using six image datasets
for texture classification. The instances of all those image
datasets are grey-scale images, i.e., each pixel carries only
brightness/intensity information that can be white at the
strongest intensity or black at the weakest intensity [68].
Therefore, the pixel values are ranging between 0 (black) and
255 (white).

The first and second datasets in our experiments are drawn
from the widely used Brodatz Texture2 [55] dataset. Originally,
this dataset consisted of 112 classes, each of which comprises
a single 640×640 pixels grey-scale image. We have randomly
selected 20 classes out of the 112, and re-sampled the original
image into 84 non-overlapping tiles, i.e., sub-images, of size
64× 64 pixels. Therefore, the first dataset in our experiments
Brodatz without rotation (BrNoRo) consists of 1, 680 instances
in total. To test the ability of the proposed method to handle
rotation, we have rotated those original images around the
centre through 360◦ and re-sampled every 30◦ giving 1, 008
instances in total (12 angles × 84 tiles) in each class that
are used to form the second dataset Brodatz with rotation
(BrWiRo) in this study.

Similarly, the third and fourth datasets are taken from the
popular Kylberg Texture3 [69] dataset. The Kylberg dataset

2Available at: http://multibandtexture.recherche.usherbrooke.ca/original
brodatz.html

3Available at: http://www.cb.uu.se/∼gustaf/texture/

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. XX, MARCH 2016 9

TABLE II
A SUMMARY OF THE DATASETS.

Dimensions

Data set Nclasses Ninstances Nrotation w h

BrNoRo 20 1, 680 0 64 64
BrWiRo 20 20, 160 12 64 64
KyNoRo 28 4, 480 0 115 15
KyWiRo 28 53, 760 12 115 115
OutexTC00 24 480 0 128 128
OutexTC10 24 4, 320 9 128 128

comprises 28 classes of different material textures, and its
instances come in two flavours: without- and with-rotation.
The former category forms the third dataset in this study
(KyNoRo), whereas the latter category is used to form the
fourth dataset (KyWiRo). Each instance in the Kylberg dataset
is of size 576× 576 pixels. Handling large images can easily
consume the computer’s physical memory and can be very
time consuming to operate on; hence, in our experiments those
instances have been sampled to 115× 115 pixels each. There
are 160 instances in each class of the without-rotation category,
whereas each class of the with-rotation category consists of
1, 920 instances. The instances of the with-rotation category
are the same as those of the without-rotation rotated around
the centre in 12 angles (160 × 12 = 1, 920) between 0◦ and
330◦ with a step of size 30◦.

The Outex Texture Classification4 dataset [70] comprises
16 sets each of which consists of a different number and type
of texture. The content of Outex TC 00000 is used to form
the fifth dataset (OutexTC00) in this study. Meanwhile, the
sixth dataset (OutexTC10) is formed using Outex TC 00010.
Each of these sets is made up of 24 classes. OutexTC00 has
20 instances in each class and is fixed in terms of rotation,
whereas OutexTC10 has 180 instances in each class which
fall into 9 subsets of different angles between 0◦ and 90◦ (0◦,
5◦, 10◦, 15◦, 30◦, 45◦, 60◦, 75◦, and 90◦). The instances of
both sets are grey-scale and with size 128× 128 pixels.

Table II summarises the number of classes (Nclasses), in-
stances (Ninstances) and rotations (Nrotation) in each dataset,
and the dimensions (w = width, and h = height) of each
instance. All instances of these datasets are grey-level with 256
intensity values. Some samples of those datasets are presented
in Figs. 10–12.

B. Methods for Comparison

In order to investigate the effectiveness of the proposed
method, its performance is compared to the performance of
the common state-of-the-art descriptors DIF, GLCM, LBPu2p,r,
LBPriu2p,r , CLBPp,r, LBCp,r, and CLBCp,r. Image descriptors
are used as pre-processing methods to convert an instance from
raw pixel values into a feature vector after detecting some
keypoints. Hence, researchers broadly rely on classification or
recognition to assess the goodness of a descriptor [11]–[13],
[71]. In this study, we also used the classification performance
to assess whether the proposed method is capable of evolving
good descriptors. We have intentionally selected classifiers of

4Available at: http://www.outex.oulu.fi/index.php?page=classification

Fig. 10. Samples of the Brodatz dataset.

Fig. 11. Samples of the Kylberg dataset.

different types in this study to ensure that the new method
is not biased towards a specific classifier or type of classi-
fier. Those classifiers are Support Vector Machines (SVM),
Naı̈ve Bayes (NB), Adaptive Boosting (AdaBoost), Decision
Trees (J48), Random Forest (RF), Naı̈ve Bayes/Decision Tree
(NBTree), KStar (K∗), Non-Nested generalised (NNge), and
Multilayer Perceptron (MLP). The implementations of these
classifiers are taken from the commonly used Waikato Envi-
ronment for Knowledge Analysis (WEKA) [72] software. For
more details regarding these methods, see [73].

C. Experiments

The aim of the proposed method is to automatically evolve
an image descriptor that generates distinctive feature vectors
for instances belonging to different classes. Therefore, two
experiments are designed each of which aims at investigating
a specific aspect. On each dataset, the proposed method is
executed 30 times using different random seeds, and the
performance of the best evolved program at each run is
recorded. Then the average performance (mean ± standard
deviation) of those 30 best programs is calculated. The train-
ing instances (2 instances per class) are randomly selected,
hence using different instances could give different results.
Therefore, the process of 30 runs is repeated 10 times using

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. XX, MARCH 2016 10

Fig. 12. Samples of the Outex TC dataset.

different instances for training each time. The experiments
have been executed on the grid-computing facility provided
by Victoria University of Wellington. This grid runs under the
Sun Grid Engine (SGE) control, and consists of a large number
of machines that are running Linux version 3.7.5-1-ARCH
operating system with an Intel(R) Core(TM) i7-3770 CPU @
3.40GHz and a 8GByte of memory each. It is important to
notice that the measured time in all our experiments was the
CPU time and not the wall-clock time. The first experiment
can be considered as a parameter-tuning phase, where in total
we have 9 combinations of different window sizes and code
lengths (details are below). Hence, we have 16, 200 runs in
total, i.e., 6 (datasets) × 9 (combinations) × 10 (repetitions)
× 30 (runs). Using one more window size or code length will
require 900 runs to be added, which is a very time consuming
process.

1) Window size and code length: In the first experiment,
the impacts of changing the window size and the code length
on the performance of GP-criptorri are studied. Changing
the sliding window size allows a different number of pixels
to contribute towards calculating the code at each position.
Therefore, three window sizes are tested: 3 × 3, 5 × 5, and
7× 7.

The number of bits of the binary code, on the other hand,
is the only factor that specifies the feature vector length (2q

where q is the number of bits), therefore, the length is doubled
for each extra bit added to the code. We have experimented
with three code lengths: 7, 8, and 9.

2) Image classification: The second experiment is designed
to test whether using a simple instance-based classifier, i.e.,
the k-Nearest Neighbour (kNN with k set to 1), with only
a few learning examples can achieve comparable or even
better performance than using LBPu2, LBPriu2, CLBP, LBC,
CLPC, DIF, and GLCM with more powerful classifiers such
as SVM, K∗, RF, AdaBoost, NNge, NB, NBTree, J48, and
MLP. The proposed method heavily relies on the between-
class and within-class distances as the main criteria to evolve
a good descriptor. Hence, the impact of the features generated
by the proposed method on the performance of each of the
aforementioned nine classifiers is also studied. This will help
in identifying whether those features are biased toward a
specific type (i.e. instance-based or kNN-like) of classifiers
or not.

D. Parameter Settings

The methods used for comparison in this study as well as
the proposed method contain a number of parameters that need

TABLE III
THE GP PARAMETERS

Parameter Value Parameter Value

Generations 50 Crossover Rate 0.80
Population Size 200 Mutation Rate 0.20
Minimum Depth 2 Maximum Depth 10
Selection Type Tournament Reproduction Keep the best
Tournament size 5 Initial Population Half-and-half

to be set. The parameter settings of the proposed method are
discussed first, followed by a discussion on setting those of
the other methods.

1) Evolutionary parameters of the proposed method: The
GP evolutionary parameters are summarised in Table III.
Dealing with images, in general, is an expensive task in terms
of the required physical memory and processing time. This
will become more problematic when multiple images need to
be processed again and again (as many individuals are in each
population), and over multiple generations. Hence, the number
of individuals per population is relatively small (200) in order
to reduce the costs, while still having a diverse population.
The evolutionary process is terminated if an ideal individual
(fitness value equal 0) is found, or the maximum number
of 50 generations is reached. The probability of performing
crossover is set to 80%, whereas the mutation operation
is performed 20% of the time to maintain the population
diversity. The best evolved program will be kept to prevent
the performance of the subsequent generation from degrading.
The minimum and maximum depth of an evolved program is
restricted to be, respectively, 2 and 10. The commonly used
ramped half-and-half method is used to generate the initial
population. Selecting individuals for the mating process is
handled using tournament selection with a tournament of size
5. These are commonly used settings in the literature [59].

2) Parameters of the baseline methods: Based on the
observations of [49] and [74], the radius (r) and the number
of neighbouring pixels (p) for LBP, CLBP, LBC and CLBC
have been, respectively, set to 3 and 24. This combination has
shown very good performance in most cases in both studies.
Hence, we have also used the same settings in our experiments.
For the LBPu2p,r method, on the other hand, our experiments
show that this method has achieved good performance when
r is set to 1 and p to 8.

3) Parameters of the classifiers: In WEKA, most of the
implemented algorithms have a predefined set of default
parameters that in most cases are not the optimal ones to
use. Hence, some parameter tuning and optimisation, based
on either the literature or via experiments, have been applied
to most of the other methods, i.e., classifiers, in this study.

In the instance-based methods, i.e., K∗ and NNge, the
number of neighbours is set to 1 (the closest neighbour) as
there are only two instances per class in the training set in
our experiments. Meanwhile, the guidelines of Trenn [75] are
considered to specify the network structure of MLP.

Keerthi and Lin [76] have studied the impact of using
linear and non-linear kernels on the performance of SVM, and
concluded that a non-linear kernel has the potential to improve
SVM performance in many cases over a linear kernel. Hence,

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. XX, MARCH 2016 11

we have used a Radial Basis Function (RBF) kernel in our
experiments.

AdaBoost works in conjunction with another classifier [77].
Using DecisionStump, the default classifier in WEKA for
AdaBoost, did not achieve good results; therefore, it has
been replaced by a muLti-class Alternating Decision Trees
(LADTree) classifier [78] in our experiments.

V. RESULTS AND DISCUSSIONS

The results of the experiments are presented and discussed
in this section.

A. Window Size and Code Length

Due to the effect of the correlation between the size of the
sliding window and the code length on the performance, the
results of these two factors are combined into a single set. The
results of each dataset are presented in a single 3D bar chart,
where the x-axis is the code length (number of bits), y-axis
is the window size, and z-axis is the accuracy (%) as shown
in Fig. 13.

The proposed method has achieved on average the minimum
of 88.35% and 89.88% accuracy on the BrNoRo and BrWiRo
datasets, respectively, using the combination of window size
7×7 and code length 7-bits as depicted in Fig. 13(a),(b). The
maximum average accuracies on these datasets were achieved
when the window size is set to 5×5 and a 9-bits code length,
which are 90.92% and 92.49% respectively.

Similarly, using a window of size 7 × 7 pixels and a code
of length 7-bits, GP-criptorri on the KyNoRo and KyWiRo
datasets has achieved the lowest average performance that are,
respectively, 85.05% and 85.96% as shown in Fig. 13(c),(d).
The best average performances are scored on these two
datasets when the code length is increased to 9-bits and the
window size is reduced to 5 × 5 pixels, which are 86.66%
(KyNoRo) and 88.51% (KyWiRo).

While the results of the OutexTC00 dataset show a similar
pattern to that of the previous four where a minimum average
performance (86.19%) is achieved with a window of size
7 × 7 pixels and code length 7-bits, the OutexTC10 dataset
results show a different pattern as the minimum performance
was achieved with a window of size 3 × 3 and 7-bits code
length as, respectively, presented in Fig. 13(e),(f). However,
the combination of a 5 × 5 pixels window and 9-bits code
length still gives the best average accuracies 87.68% and
86.82%, respectively.

In summary, the six datasets show a similar pattern, that
is, a better performance has been achieved with a code of
length 9-bits than that of length 7- and 8-bits as depicted in
Fig. 13(a)–(f). Similarly, the proposed method has achieved
slightly better performance when the window size is 5 × 5
pixels than the other two experimented sizes, i.e., 3 × 3 and
7 × 7 pixels. Hence, in our subsequent experiments we have
used the combination of window size 5×5 and code length 9-
bits as it has been shown to give the best average performance.

B. Image Classification
The results for the second experiment on the six texture

datasets are presented in Table IV. Vertically, this table
comprises blocks that each correspond to one dataset, whilst
horizontally this table is made up of 11 columns (one to list the
descriptors and 10 for the different classifiers). The values in
this table are the average accuracy percentage ± the standard
deviation resulting from using a classifier (column) with an
image descriptor (row).

Selecting the right statistical test is very important in order
to correctly test the significance of the obtained results. As the
normality test showed that the results are mostly skewed, the
use of a non-parametric test is more appropriate than applying
a parametric test [79]. Hence, these results are statistically
tested using the Wilcoxon signed-rank test [80], [81] with a
significance level of 5%. The statistical test has been applied
twice, first, to check whether the proposed method with a
simple classifier (1NN) can compete with the baseline methods
(i.e. descriptors) with more powerful classifiers; and second,
to test whether the new method can compete with the baseline
methods using the same classifier. The symbols “∗” and “−”
are used to, respectively, represent significantly better and
significantly worse in the first test, whereas significantly better
and significantly worse in the second test are indicated by
“↑” and “↓”, respectively. For each dataset, the corresponding
method with best performance for each classifier is made
bold; whilst the best performance amongst all methods and
classifiers is underlined.

The code length is set to 9-bits and a window of size 5× 5
pixels is used as the majority of these datasets have performed
well with this combination in preliminary testing.

1) BrNoRo: On the BrNoRo dataset, the proposed method
with 1NN has achieved on average 90.9% accuracy which
is significantly better than all other methods as presented
in the first block of Table IV. Meanwhile, those features
extracted by the proposed method have positive influence on
the performance of all other classifiers, apart from MLP with
CLBP24,3, compared to the performances achieved using the
baseline methods.

2) BrWiRo: The second block of Table IV shows the
results of the BrWiRo dataset which is the rotated version
of BrNoRo. The proposed method with 1NN has achieved
the best performance over all other methods with more so-
phisticated classifiers. On average, the new method has scored
92.5% which is comparable to the performance on the without-
rotation version, i.e., BrNoRo, of this dataset. This reveals
the ability of the new method to handle rotations. Although
the new method has slightly degraded the performance of
MLP and SVM with CLBP24,3, using the extracted features
by GP-criptorri with the other classifiers shows a significant
improvement in their performances compared to other image
descriptors.

3) KyNoRo: The results presented in the third block of
Table IV correspond to the KyNoRo dataset. The proposed
method shows on average 86.7% accuracy on the unseen
data of KyNoRo. Meanwhile, both CLBP24,3 and CLBC24,3

have significantly outperformed the new method by scoring
on average 90.3% and 91.1%, respectively. The same also

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. XX, MARCH 2016 12

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 13. The results of the first experiment, which presents the impact of the window size and code length on the performance on the (a) BrNoRo, (b)
BrWiRo, (c) KyNoRo, (d) KyWiRo, (e) OutexTC00, and (f) OutexTC10 datasets.

happened when the features extracted by GP-criptorri are used
with MLP, NNge, and SVM. In all other cases, the impact
of the GP-criptorri features either significantly improved the
performance or achieved a comparable level, i.e., best or in the
top-three ranked performances, to that of the expert designed
methods.

4) KyWiRo: The results of the experiments on the rotated
version of KyNoRo (KyWiRo) are listed in the fourth block
of Table IV. The results on this dataset are quite similar to
those that have been observed on KyNoRo. The performance
achieved by any classifier using the proposed method’s fea-
tures is either the first or in the top-three best performances
compared to the use of hand-crafted descriptors.

5) OutexTC00: The results on OutexTC00 are presented
in the fifth block of Table IV. The proposed method has
scored the second overall best performance (the first is LBPu28,1
with NNge) with 87.7% accuracy on this dataset, and has
outperformed all the competitor methods.

6) OutexTC10: On the OutexTC10 dataset, the proposed
method has achieved the best performance with 86.8% ac-
curacy on average over all the baseline methods as shown
in the sixth block of Table IV. Furthermore, 7 out of 10
classifiers, i.e., 1NN, AdaBoost, J48, K∗, NB, NBTree, and RF,
are ranked number one when GP-criptorri features are used.
The differences are also significant in most of these cases.

C. Summary

From the results above, the following observations can be
deduced.

• The proposed method has the ability to automatically
evolve an image descriptor using the raw pixel values
and without human intervention;

• The system uses only two instances of each class and
yet it has been shown to outperform most domain-expert
designed descriptors;

• The evolved descriptors do not solely detect a specific and
predetermined set of keypoints, e.g., lines, corners, and
spots; rather, it automatically detects a set of informative
keypoints;

• The features of the new method have, in the majority
of the cases, positive influence on the performance of
classifiers of different types;

• Unlike domain-expert designed descriptors, the proposed
method evolves a rotation-invariant descriptor that does
not require human intervention to handle this issue;

• It is easy to change the parameters, e.g., the window
size and the number of bits in the code, in the proposed
method since they are handled automatically without
human intervention, while domain-expert involvement is
required to alter these parameters in other methods; and

• The program structure of the proposed method is flexible
and allows different types of functions to be used for
feature extraction.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. XX, MARCH 2016 13

TABLE IV
ACCURACY (%) OF 10 CLASSIFIERS USING 8 IMAGE DESCRIPTORS ON THE 6 TEXTURE IMAGE DATASETS (MEAN ± STANDARD DEVIATION).

1NN AdaBoost J48 K∗ MLP NB NBTree NNge RF SVM

BrNoRo
DIF 36.8 ± 2.7∗ 18.0 ± 3.6∗↑ 28.5 ± 4.9∗↑ 36.4 ± 3.2∗↑ 35.3 ± 2.5∗↑ 21.0 ± 6.4∗↑ 33.4 ± 4.7∗↑ 34.3 ± 3.5∗↑ 31.7 ± 3.5∗↑ 33.5 ± 2.8∗↑
LBPu28,1 68.9 ± 3.8∗ 37.2 ± 5.9∗↑ 25.4 ± 3.9∗↑ 61.9 ± 5.3∗↑ 69.7 ± 2.5∗↑ 52.1 ± 8.4∗↑ 64.0 ± 7.7∗↑ 71.9 ± 3.3∗↑ 51.9 ± 3.6∗↑ 60.2 ± 4.4∗↑
GLCM 51.5 ± 7.3∗ 17.0 ± 8.6∗↑ 33.6 ± 6.1∗↑ 48.9 ± 7.7∗↑ 53.6 ± 7.0∗↑ 38.7 ± 6.5∗↑ 44.6 ± 6.3∗↑ 48.0 ± 5.1∗↑ 43.9 ± 6.2∗↑ 47.3 ± 6.3∗↑
LBPriu224,3 66.7 ± 2.2∗ 22.0 ± 6.6∗↑ 37.4 ± 2.8∗↑ 60.9 ± 2.3∗↑ 69.6 ± 2.8∗↑ 36.8 ± 2.8∗↑ 46.2 ± 4.2∗↑ 65.0 ± 3.0∗↑ 48.4 ± 2.7∗↑ 61.7 ± 3.2∗↑
CLBP24,3 83.7 ± 3.7∗ 36.5 ± 4.9∗↑ 33.7 ± 3.8∗↑ 79.5 ± 3.6∗↑ 83.6 ± 3.2∗ 69.7 ± 5.8∗↑ 76.6 ± 3.6∗↑ 84.1 ± 4.0∗ 60.9 ± 1.8∗↑ 69.0 ± 5.1∗
LBC24,3 64.1 ± 3.0∗ 22.6 ± 6.1∗↑ 36.2 ± 3.7∗↑ 58.2 ± 2.4∗↑ 67.7 ± 2.7∗↑ 33.4 ± 6.1∗↑ 41.6 ± 5.5∗↑ 60.8 ± 2.6∗↑ 46.6 ± 1.9∗↑ 60.3 ± 4.1∗↑
CLBC24,3 78.6 ± 4.0∗ 35.4 ± 3.0∗↑ 34.9 ± 5.0∗↑ 78.1 ± 3.8∗↑ 79.4 ± 4.4∗↑ 66.9 ± 7.0∗↑ 74.9 ± 3.2∗↑ 79.4 ± 4.0∗↑ 59.3 ± 1.5∗↑ 60.1 ± 5.8∗↑
GP-criptorri 90.9 ± 1.9 60.9 ± 3.1∗ 50.6 ± 1.2∗ 85.4 ± 1.4∗ 82.4 ± 1.9∗ 79.9 ± 2.6∗ 82.2 ± 1.4∗ 85.7 ± 1.5∗ 69.9 ± 1.7∗ 70.5 ± 2.3∗

BrWiRo
DIF 36.5 ± 2.9∗ 14.8 ± 4.1∗↑ 30.9 ± 4.1∗↑ 34.9 ± 2.5∗↑ 32.5 ± 2.4∗↑ 21.2 ± 5.8∗↑ 34.1 ± 4.1∗↑ 34.2 ± 4.3∗↑ 34.1 ± 3.6∗↑ 34.1 ± 3.4∗↑
LBPu28,1 37.6 ± 1.4∗ 23.7 ± 2.3∗↑ 18.9 ± 3.0∗↑ 31.1 ± 1.5∗↑ 36.3 ± 1.9∗↑ 24.6 ± 4.8∗↑ 37.7 ± 5.0∗↑ 40.6 ± 1.9∗↑ 30.1 ± 1.8∗↑ 33.5 ± 3.0∗↑
GLCM 41.1 ± 6.4∗ 13.9 ± 5.3∗↑ 27.8 ± 4.7∗↑ 39.9 ± 7.3∗↑ 38.7 ± 4.6∗↑ 29.1 ± 5.6∗↑ 39.6 ± 4.6∗↑ 37.9 ± 5.0∗↑ 35.3 ± 4.5∗↑ 38.2 ± 6.0∗↑
LBPriu224,3 68.3 ± 3.4∗ 21.8 ± 9.5∗↑ 41.4 ± 2.3∗↑ 62.7 ± 3.6∗↑ 68.5 ± 2.7∗↑ 40.1 ± 4.9∗↑ 50.8 ± 3.4∗↑ 66.6 ± 1.9∗↑ 51.5 ± 1.8∗↑ 62.2 ± 4.3∗↑
CLBP24,3 86.1 ± 3.1∗ 38.6 ± 4.3∗↑ 33.8 ± 3.8∗↑ 78.9 ± 3.5∗↑ 86.3 ± 3.3∗ 73.9 ± 2.5∗↑ 79.4 ± 2.8∗↑ 85.3 ± 2.8∗ 62.1 ± 1.6∗↑ 72.4 ± 6.1∗
LBC24,3 64.0 ± 3.5∗ 22.7 ± 8.3∗↑ 36.9 ± 3.9∗↑ 59.5 ± 4.0∗↑ 65.1 ± 2.3∗↑ 35.3 ± 4.3∗↑ 47.0 ± 2.3∗↑ 62.5 ± 2.5∗↑ 48.0 ± 1.9∗↑ 57.7 ± 3.3∗↑
CLBC24,3 84.9 ± 2.7∗ 36.5 ± 6.4∗↑ 36.7 ± 4.1∗↑ 82.9 ± 3.0∗↑ 84.6 ± 2.4∗ 75.0 ± 3.4∗↑ 78.7 ± 3.7∗↑ 84.1 ± 2.1∗↑ 62.3 ± 1.2∗↑ 68.7 ± 6.3∗
GP-criptorri 92.5 ± 1.1 59.7 ± 3.4∗ 48.9 ± 0.9∗ 86.7 ± 1.5∗ 83.7 ± 1.4∗ 81.1 ± 3.0∗ 83.2 ± 0.9∗ 86.5 ± 2.0∗ 69.6 ± 1.2∗ 71.3 ± 1.8∗

KyNoRo
DIF 22.2 ± 1.7∗ 10.5 ± 2.7∗↑ 28.4 ± 1.8∗↑ 18.7 ± 1.1∗↑ 23.0 ± 2.0∗↑ 19.4 ± 2.8∗↑ 20.0 ± 2.6∗↑ 27.1 ± 2.5∗↑ 22.4 ± 0.9∗↑ 21.1 ± 1.8∗↑
LBPu28,1 62.9 ± 4.2∗ 31.1 ± 7.4∗↑ 29.2 ± 3.3∗↑ 67.2 ± 4.0∗↑ 63.8 ± 3.2∗↑ 62.3 ± 4.0∗↑ 61.6 ± 4.3∗↑ 65.0 ± 3.5∗↑ 54.8 ± 1.6∗↑ 57.8 ± 4.1∗↑
GLCM 68.0 ± 3.0∗ 18.2 ± 3.9∗↑ 44.5 ± 5.0∗ 68.9 ± 1.8∗↑ 64.5 ± 3.7∗↑ 48.1 ± 5.7∗↑ 55.1 ± 3.1∗↑ 65.7 ± 3.8∗↑ 56.0 ± 2.1∗↑ 67.0 ± 2.8∗
LBPriu224,3 68.2 ± 2.7∗ 21.5 ± 4.7∗↑ 43.5 ± 2.7∗↓ 67.0 ± 2.5∗↑ 67.9 ± 2.0∗↑ 40.9 ± 4.1∗↑ 51.6 ± 3.0∗↑ 65.3 ± 3.2∗↑ 55.1 ± 2.2∗↑ 65.9 ± 2.1∗
CLBP24,3 90.3 ± 0.7− 43.5 ± 1.9∗↑ 34.9 ± 3.1∗↑ 40.1 ± 2.8∗↑ 90.3 ± 1.2−↓ 66.6 ± 14.4∗ 78.7 ± 3.3∗↓ 90.1 ± 1.4−↓ 63.7 ± 0.8∗ 78.5 ± 4.5∗↓
LBC24,3 67.5 ± 3.0∗ 17.8 ± 2.7∗↑ 41.0 ± 4.1∗ 65.4 ± 2.8∗↑ 69.2 ± 2.7∗↑ 44.5 ± 4.1∗↑ 53.0 ± 3.6∗↑ 65.6 ± 2.9∗↑ 53.5 ± 1.7∗↑ 64.8 ± 3.4∗
CLBC24,3 91.1 ± 1.1− 41.4 ± 3.0∗↑ 36.3 ± 4.2∗↑ 72.0 ± 2.7∗↑ 90.7 ± 1.3−↓ 66.8 ± 14.3∗ 76.3 ± 3.4∗ 91.1 ± 1.3−↓ 64.5 ± 1.3∗ 79.2 ± 3.7∗↓
GP-criptorri 86.7 ± 1.8 56.8 ± 2.5∗ 41.1 ± 1.3∗ 82.7 ± 1.8∗ 78.8 ± 1.7∗ 70.7 ± 4.2∗ 75.1 ± 1.6∗ 82.6 ± 2.1∗ 64.4 ± 1.2∗ 66.9 ± 1.7∗

KyWiRo
DIF 23.0 ± 0.9∗ 12.8 ± 2.3∗↑ 28.5 ± 2.9∗↑ 19.8 ± 0.9∗↑ 20.0 ± 1.6∗↑ 21.9 ± 0.9∗↑ 22.1 ± 1.4∗↑ 22.0 ± 0.1∗↑ 23.3 ± 0.5∗↑ 17.7 ± 2.7∗↑
LBPu28,1 41.0 ± 0.6∗ 21.2 ± 1.9∗↑ 23.7 ± 2.2∗↑ 37.7 ± 0.6∗↑ 36.3 ± 1.1∗↑ 44.1 ± 1.9∗↑ 46.4 ± 3.8∗↑ 40.7 ± 1.4∗↑ 37.2 ± 0.4∗↑ 32.5 ± 1.3∗↑
GLCM 49.0 ± 0.4∗ 16.7 ± 2.8∗↑ 32.8 ± 2.1∗↑ 49.8 ± 0.7∗↑ 47.3 ± 0.3∗↑ 33.8 ± 2.8∗↑ 41.8 ± 2.0∗↑ 46.1 ± 0.4∗↑ 40.0 ± 0.9∗↑ 47.0 ± 1.1∗↑
LBPriu224,3 69.1 ± 2.2∗ 25.0 ± 7.3∗↑ 43.3 ± 4.8∗ 66.4 ± 2.6∗↑ 67.1 ± 2.8∗↑ 42.9 ± 7.4∗↑ 51.6 ± 3.9∗↑ 67.2 ± 3.0∗↑ 54.7 ± 2.5∗↑ 66.9 ± 3.5∗
CLBP24,3 90.6 ± 2.2− 38.9 ± 2.1∗↑ 34.2 ± 2.6∗↑ 39.2 ± 2.3∗↑ 91.4 ± 1.9−↓ 72.4 ± 5.1∗ 77.8 ± 6.5∗ 90.6 ± 2.4−↓ 62.2 ± 1.1∗↑ 77.9 ± 5.4∗↓
LBC24,3 68.2 ± 1.9∗ 17.7 ± 3.4∗↑ 39.2 ± 4.0∗ 65.1 ± 2.4∗↑ 65.9 ± 3.0∗↑ 42.7 ± 6.8∗↑ 50.7 ± 3.6∗↑ 66.2 ± 2.7∗↑ 53.0 ± 2.0∗↑ 65.6 ± 2.7∗↑
CLBC24,3 91.0 ± 2.1− 37.9 ± 4.9∗↑ 36.3 ± 4.8∗↑ 71.4 ± 3.4∗↑ 91.2 ± 2.2−↓ 73.1 ± 4.5∗ 78.6 ± 5.3∗ 91.2 ± 2.7−↓ 63.8 ± 1.3∗↑ 79.9 ± 4.1∗↓
GP-criptorri 88.5 ± 1.4 56.2 ± 1.4∗ 41.1 ± 1.7∗ 84.4 ± 1.8∗ 80.5 ± 1.2∗ 72.7 ± 3.8∗ 76.3 ± 1.6∗ 84.0 ± 1.4∗ 65.3 ± 1.1∗ 68.3 ± 1.8∗

OutexTC00
DIF 17.4 ± 1.7∗ 9.0 ± 3.3∗↑ 13.2 ± 4.7∗↑ 14.0 ± 3.0∗↑ 15.4 ± 2.1∗↑ 11.1 ± 2.8∗↑ 12.3 ± 4.1∗↑ 15.7 ± 2.2∗↑ 13.0 ± 1.5∗↑ 14.7 ± 2.9∗↑
LBPu28,1 87.6 ± 3.3 45.5 ± 8.7∗↑ 33.1 ± 8.8∗↑ 85.5 ± 2.5∗ 84.9 ± 3.0∗ 75.8 ± 5.8∗ 76.1 ± 4.2∗↑ 89.3 ± 1.6 ↓ 65.5 ± 6.2∗↑ 80.3 ± 7.2∗↓
GLCM 70.5 ± 2.4∗ 20.6 ± 7.2∗↑ 35.9 ± 7.4∗↑ 59.8 ± 5.6∗↑ 65.7 ± 4.8∗↑ 39.5 ± 13.0∗↑ 50.8 ± 7.6∗↑ 69.0 ± 3.1∗↑ 49.1 ± 5.5∗↑ 69.9 ± 2.8∗↑
LBP24,3 69.3 ± 3.6∗ 29.4 ± 9.8∗↑ 39.3 ± 4.4∗↑ 66.5 ± 4.1∗↑ 64.9 ± 2.6∗↑ 39.0 ± 5.1∗↑ 50.7 ± 3.9∗↑ 66.7 ± 4.3∗↑ 52.2 ± 2.1∗↑ 68.9 ± 2.7∗↑
CLBP24,3 79.3 ± 2.9∗ 42.8 ± 5.9∗↑ 26.5 ± 3.4∗↑ 27.8 ± 1.5∗↑ 81.3 ± 1.9∗↑ 63.8 ± 5.2∗↑ 67.5 ± 3.7∗↑ 80.3 ± 2.0∗↑ 55.7 ± 1.4∗↑ 69.4 ± 3.3∗↑
LBC24,3 67.8 ± 3.0∗ 22.3 ± 5.0∗↑ 34.8 ± 5.8∗↑ 66.1 ± 3.0∗↑ 63.6 ± 3.1∗↑ 37.5 ± 7.6∗↑ 46.2 ± 5.0∗↑ 65.4 ± 3.5∗↑ 49.9 ± 2.0∗↑ 66.5 ± 2.0∗↑
CLBC24,3 77.9 ± 2.5∗ 34.5 ± 12.1∗↑ 27.7 ± 2.8∗↑ 62.5 ± 2.1∗↑ 79.6 ± 1.8∗↑ 65.5 ± 3.7∗↑ 65.6 ± 4.3∗↑ 78.5 ± 1.3∗↑ 57.4 ± 1.4∗↑ 71.3 ± 4.2∗
GP-criptorri 87.7 ± 1.9 57.1 ± 2.7∗ 47.3 ± 2.2∗ 87.6 ± 2.4 83.8 ± 1.3∗ 72.0 ± 3.8∗ 79.9 ± 1.4∗ 85.4 ± 2.2∗ 72.6 ± 1.1∗ 73.9 ± 1.6∗

OutexTC10
DIF 8.2 ± 0.7∗ 6.6 ± 1.5∗↑ 11.4 ± 2.1∗↑ 7.4 ± 0.7∗↑ 8.4 ± 0.7∗↑ 7.5 ± 1.6∗↑ 7.7 ± 1.7∗↑ 9.4 ± 0.7∗↑ 9.1 ± 0.8∗↑ 7.8 ± 1.2∗↑
LBPu28,1 37.4 ± 2.3∗ 18.9 ± 3.0∗↑ 27.6 ± 4.0∗↑ 34.3 ± 1.7∗↑ 34.4 ± 2.9∗↑ 31.6 ± 3.1∗↑ 42.1 ± 3.9∗↑ 36.1 ± 2.4∗↑ 27.4 ± 0.8∗↑ 32.7 ± 2.6∗↑
GLCM 43.8 ± 2.5∗ 17.3 ± 4.8∗↑ 26.4 ± 6.5∗↑ 41.2 ± 6.2∗↑ 36.5 ± 3.3∗↑ 28.0 ± 4.9∗↑ 38.0 ± 3.8∗↑ 43.3 ± 3.6∗↑ 34.4 ± 3.9∗↑ 44.2 ± 3.8∗↑
LBPriu224,3 67.6 ± 2.0∗ 21.9 ± 6.9∗↑ 36.4 ± 3.9∗↑ 66.4 ± 1.1∗↑ 66.0 ± 2.5∗↑ 38.8 ± 6.1∗↑ 49.8 ± 2.7∗↑ 63.6 ± 4.0∗↑ 48.2 ± 2.1∗↑ 64.1 ± 2.4∗↑
CLBP24,3 85.4 ± 2.2 34.1 ± 7.1∗↑ 26.6 ± 4.7∗↑ 15.5 ± 2.3∗↑ 85.8 ± 2.0 ↓ 58.1 ± 10.0∗↑ 72.0 ± 6.2∗↑ 85.4 ± 2.3 58.2 ± 1.2∗↑ 72.2 ± 4.0∗
LBC24,3 63.8 ± 2.0∗ 19.6 ± 4.4∗↑ 34.7 ± 3.8∗↑ 62.6 ± 2.0∗↑ 60.9 ± 2.9∗↑ 37.6 ± 6.3∗↑ 47.0 ± 3.3∗↑ 58.9 ± 4.1∗↑ 46.1 ± 1.3∗↑ 59.0 ± 1.5∗↑
CLBC24,3 86.2 ± 2.1 40.9 ± 6.1∗↑ 28.2 ± 4.6∗↑ 70.4 ± 2.3∗↑ 86.8 ± 1.8 ↓ 63.5 ± 7.1∗↑ 74.3 ± 3.5∗↑ 86.4 ± 2.2 61.1 ± 1.2∗↑ 77.2 ± 5.2∗↓
GP-criptorri 86.8 ± 1.9 51.2 ± 3.1∗ 41.5 ± 2.0∗ 86.2 ± 1.6 83.4 ± 1.5∗ 70.5 ± 4.6∗ 78.1 ± 1.9∗ 85.6 ± 2.1 68.6 ± 1.7∗ 72.2 ± 1.1∗

VI. FURTHER ANALYSIS

In this section, a comparison of the robustness of GP-
criptor (the baseline method) and GP-criptorri (the newly pro-
posed method) to evolve rotation-invariant image descriptors
is discussed first. Then an individual program evolved by
GP-criptorri is analysed and discussed in order to provide
more understanding on why and how the proposed method
can perform well.

A. Comparison between GP-criptor and GP-criptorri

To support our hypothesis of the inability of GP-criptor
[44] (the baseline method) to handle the rotation variance, we

have experimented with this method using the same six texture
image datasets discussed in Section IV-A. The results of the
non-rotated and rotated versions for each dataset (Brodatz,
Kylberg and OutexTC) are grouped in a single table in this
section. A bold face font is used in those tables to present the
results of statistical testing (significantly better).

The results of using the 10 previously used classification
methods (Section V) with GP-criptor and GP-criptorri evolved
descriptors on the BrNoRo and BrWiRo datasets are presented
in Table V. Apart from AdaBoost and J48, all other classifiers
have achieved significantly better performance on BrNoRo
(fixed in terms of rotation) using the descriptors evolved

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. XX, MARCH 2016 14

TABLE V
ACCURACY (%) OF 10 CLASSIFIERS USING GP-CRIPTOR AND

GP-CRIPTORri EVOLVED IMAGE DESCRIPTORS ON THE BRNORO AND
BRWIRO DATASETS (MEAN ± STANDARD DEVIATION).

BrNoRo BrWiRo

GP-criptor GP-criptorri GP-criptor GP-criptorri

1NN 96.3 ± 0.8 90.9 ± 1.9 60.3 ± 1.7 92.5 ± 1.1
AdaBoost 48.9 ± 2.7 60.9 ± 3.1 26.7 ± 0.8 59.7 ± 3.4
J48 39.1 ± 1.0 50.6 ± 1.2 25.9 ± 1.3 48.9 ± 0.9
K∗ 95.1 ± 0.4 85.4 ± 1.4 51.8 ± 1.9 86.7 ± 1.5
MLP 94.4 ± 0.9 82.4 ± 1.9 52.6 ± 2.1 83.7 ± 1.4
NB 89.3 ± 1.1 79.9 ± 2.6 44.1 ± 3.7 81.1 ± 3.0
NBTree 84.5 ± 1.0 82.2 ± 1.4 50.4 ± 2.0 83.2 ± 0.9
NNge 95.1 ± 0.7 85.7 ± 1.5 56.3 ± 2.4 86.5 ± 2.0
RF 71.1 ± 2.0 69.9 ± 1.7 39.9 ± 0.9 69.6 ± 1.2
SVM 81.0 ± 1.2 70.5 ± 2.3 42.9 ± 2.1 71.3 ± 1.8

TABLE VI
ACCURACY (%) OF 10 CLASSIFIERS USING GP-CRIPTOR AND

GP-CRIPTORri EVOLVED IMAGE DESCRIPTORS ON THE KYNORO AND
KYWIRO DATASETS (MEAN ± STANDARD DEVIATION).

KyNoRo KyWiRo

GP-criptor GP-criptorri GP-criptor GP-criptorri

1NN 89.5 ± 1.3 86.7 ± 1.8 56.3 ± 2.4 88.5 ± 1.4
AdaBoost 44.0 ± 1.2 56.8 ± 2.5 23.5 ± 1.1 56.2 ± 1.4
J48 33.9 ± 1.1 41.1 ± 1.3 25.1 ± 1.6 41.1 ± 1.7
K∗ 85.9 ± 1.5 82.7 ± 1.8 50.5 ± 2.0 84.4 ± 1.8
MLP 82.5 ± 2.0 78.8 ± 1.7 43.1 ± 1.5 80.5 ± 1.2
NB 72.9 ± 5.4 70.7 ± 4.2 38.4 ± 2.2 72.7 ± 3.8
NBTree 75.8 ± 1.7 75.1 ± 1.6 46.7 ± 1.7 76.3 ± 1.6
NNge 85.4 ± 1.7 82.6 ± 2.1 49.4 ± 2.1 84.0 ± 1.4
RF 64.5 ± 1.4 64.4 ± 1.2 38.7 ± 1.1 65.3 ± 1.1
SVM 70.5 ± 2.0 66.9 ± 1.7 37.0 ± 1.4 68.3 ± 1.8

by the baseline method than those were evolved by GP-
criptorri . However, AdaBoost and J48 show, respectively, 12%
and 11.5% improvement using GP-criptorri descriptors. More
importantly the proposed method shows significantly positive
influence on the performances of all the 10 classifiers on
BrWiRo (with rotation) compared to the baseline method,
where the improvement is ranging on average between 37%
(NB) and 23% (J48).

Table VI presents the results of these two methods’ (GR-
criptor and GP-criptorri) evolved descriptors for the 10 clas-
sification methods on the KyNoRo and KyWiRo datasets.
Although the classifiers showed better performance on the
non-rotated version of the Kylberg dataset (KyNoRo) using
the features extracted by the baseline method descriptors, GP-
criptorri has achieved comparable performance and the gap is
only 3.7% in the worst case (MLP). Noticeably, GP-criptorri

has improved the performances of AdaBoost and J48 by 12.8%
and 7.2%, respectively. The results on the rotated version of
Kylberg (KyWiRo) show the ability of the new method to
handle the rotation variance where the baseline method has
struggled to preserve the same level of performance on the
rotation-free version of this dataset.

Finally, the results presented in Table VII are obtained
on the OutexTC00 and OutexTC10 datasets. The pattern of
the results on these two datasets is very similar to that
previously observed on the Kylberg and Brodatz datasets. The
baseline method shows significantly better performance than
that achieved by the new method on the rotation-free version
of OutexTC (OutexTC00), whereas the new method shows

TABLE VII
ACCURACY (%) OF 10 CLASSIFIERS USING GP-CRIPTOR AND

GP-CRIPTORri EVOLVED IMAGE DESCRIPTORS ON THE OUTEXTC00 AND
OUTEXTC10 DATASETS (MEAN ± STANDARD DEVIATION).

OutexTC00 OutexTC10

GP-criptor GP-criptorri GP-criptor GP-criptorri

1NN 95.9 ± 2.0 87.7 ± 1.9 69.3 ± 2.7 86.8 ± 1.9
AdaBoost 55.5 ± 1.2 57.1 ± 2.7 30.5 ± 1.0 51.2 ± 3.1
J48 45.9 ± 2.9 47.3 ± 2.2 29.4 ± 2.2 41.5 ± 2.0
K∗ 93.4 ± 2.4 87.6 ± 2.4 65.5 ± 2.8 86.2 ± 1.6
MLP 95.8 ± 1.5 83.8 ± 1.3 66.5 ± 3.1 83.4 ± 1.5
NB 86.7 ± 3.0 72.0 ± 3.8 48.2 ± 2.9 70.5 ± 4.6
NBTree 85.7 ± 2.0 79.9 ± 1.4 58.2 ± 2.4 78.1 ± 1.9
NNge 95.4 ± 2.4 85.4 ± 2.2 66.8 ± 2.9 85.6 ± 2.1
RF 78.4 ± 1.1 72.6 ± 1.1 47.4 ± 2.4 68.6 ± 1.7
SVM 84.8 ± 1.6 73.9 ± 1.6 54.9 ± 1.9 72.2 ± 1.1

significantly better performance on the rotated version, reveal-
ing the robustness of this method to evolve rotation-invariant
image descriptor. The differences between the performances of
the two methods are ranging between 22.3% (NB) and 12.1%
(J48).

In summary, the following observations can be made:
• Although the baseline method has better performance on

the rotation-free datasets, the new method has achieved
comparable performance to GP-criptor and still outper-
formed the other image descriptors studied in Section V;

• The new method has the potential to handle the rotation
variance, whilst the baseline method struggled to preserve
a satisfactory level of performance when the dataset has
rotated instances;

• The proposed method achieved more stable or consistent
results between the rotated and rotation-free datasets,
compared to those results achieved by the baseline
method as the drop in performance was significant on
the rotated images; and

• The proposed method has a noticeable positive influence
on improving the performances of AdaBoost and J48
classification methods.

B. Analysis of a GP-criptorri evolved descriptor

Here, we have chosen an individual that has been evolved
on the BrWiRo dataset. The tree representation of the pro-
gram is depicted in Fig. 14. This program uses a 7-bit code
length and a sliding window of size 5 × 5 pixels. Overall,
there are 106 nodes in this program with 56 terminals and
50 functions. Hence, this program performs on average 7
operations ((50− 1 (code)) /7 = 7) to calculate the value
of each bit. Most of these tree branches can be interpreted
easily such as the second (min + 2 (mean−max)), third
(mean2− ((min×max))), fourth ((2×mean)−max), and
the simplified sixth (min2−stdev) bit branches; whereas other
branches are more complicated.

In terms of accuracy, this program has achieved 94.6%
accuracy on the unseen data; the confusion matrix (where the
row indices represent the actual classes, while column indices
the predicted classes) is presented in Table VIII. The program
has successfully classified all instances (100%) of 6 out of the
20 classes, over 90% accuracy on the other 11 classes, and
only 3 classes are below 80%.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. XX, MARCH 2016 15

Fig. 14. The tree representation of a program evolved on the BrWiRo dataset.

TABLE VIII
THE CONFUSION MATRIX FOR THE PROGRAM PRESENTED IN FIG. 14

D01 D03 D04 D05 D06 D09 D11 D14 D15 D16 D17 D18 D20 D21 D24 D34 D37 D46 D47 D49
D01 504 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100.0
D03 0 466 0 0 0 0 0 0 14 0 0 0 0 0 24 0 0 0 0 0 92.5
D04 0 0 389 0 0 63 52 0 0 0 0 0 0 0 0 0 0 0 0 0 77.2
D05 0 0 1 493 0 0 0 0 5 0 0 5 0 0 0 0 0 0 0 0 97.8
D06 0 0 0 0 504 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100.0
D09 0 0 87 0 0 385 3 0 7 0 1 0 0 0 21 0 0 0 0 0 76.4
D11 0 0 18 0 0 4 482 0 0 0 0 0 0 0 0 0 0 0 0 0 95.6
D14 0 0 0 0 0 0 0 501 1 0 0 0 0 0 2 0 0 0 0 0 99.4
D15 0 21 10 2 0 6 0 0 451 0 0 0 0 0 14 0 0 0 0 0 89.5
D16 0 0 0 0 0 0 2 0 0 489 13 0 0 0 0 0 0 0 0 0 97.0
D17 0 0 2 0 0 0 0 0 0 0 502 0 0 0 0 0 0 0 0 0 99.6
D18 0 0 0 109 0 0 0 0 0 0 0 395 0 0 0 0 0 0 0 0 78.4
D20 0 0 0 0 0 0 0 0 0 0 0 0 504 0 0 0 0 0 0 0 100.0
D21 0 0 0 0 0 0 0 0 0 0 5 0 0 499 0 0 0 0 0 0 99.0
D24 0 3 1 0 0 2 0 0 0 0 0 0 0 0 498 0 0 0 0 0 98.8
D34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 504 0 0 0 0 100.0
D37 2 0 2 0 0 0 1 0 0 0 0 20 0 0 0 0 478 0 1 0 94.8
D46 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 504 0 0 100.0
D47 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 504 0 100.0
D49 0 12 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 488 96.8

Fig. 15. The average fitness value per generation.

The average fitness value at each generation of the 30 runs,
using the same training set that was used to evolve the program
in Fig. 14, is presented in Fig. 15. Clearly, the system has made
fast jumps in the fitness values over the first 16 generations
as the fitness value has decreased from approximately 0.2 to
approximately 0.089; while the progress after that was slower
and the fitness value dropped to approximately 0.067 over the
remaining 34 generations.

In order to shed light on the time required to evolve a
descriptor by GP-criptorri , the CPU time for each evolutionary
run has been measured from the beginning of generating the
initial population to the end when a stopping criterion is met.
Fig. 16 presents the average time required to evolve an image

Fig. 16. The average time in hours required to evolve a descriptor.

descriptor by GP-criptorri for different window sizes and code
lengths. As expected, the larger the window size, the longer
time that is needed to obtain a good descriptor.

A stacked representation of the resulting feature vectors by
this program for 40 instances, 2 from each class, that were
randomly drawn from the BrWiRo dataset is presented in
Fig. 17. The class labels for those instances are printed on the
horizontal axis, whereas the vertical axis shows the relative
frequency. The aim of this figure is to show that a program
evolved by GP-criptorri is responding in a similar way to
those instances belonging to the same class, and differently
to those instances belonging to other classes. Each feature
vector comprises 128 values (27), each of which has been
represented with a different colour in the bars of Fig. 17.
Hence, each colour indicates the same exact feature across
those bars. A closer inspection of this figure reveals how those
feature vectors belonging to the same class are similar and
have, to some extent, a distinctive fingerprint. Some typical
examples are D09, D17, D24, and D49 as they are visually
easier to compare than others. The figure also shows two
important facts: firstly, the system has detected some keypoints
that appeared in one class but not, or very seldom, in the other
classes; and secondly, the system is able to find keypoints
that are shared between all those classes but appear more
frequently in one class than in the other classes. An example
of the former case is the feature indicated in dark-blue at the
middle part of class D34, whereas the features indicated by

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. XX, MARCH 2016 16

light-blue and light-green of, respectively, classes D21 and
D49 are examples of the latter case.

Further to our earlier discussion on the number of training
instances (Section I), and from the example studied in this
section, it becomes evident that the system did not stop
the evolutionary process when only one or a few distinctive
keypoints have been detected. Instead, the proposed method
continued the process of evolving a better program that can
capture as many prominent keypoints as possible. The main
idea of using only a few instances matches reasonably well
the process of how humans teach young children to identify
different objects. There are three amazing facts in this learning
process: (1) humans do not need to use thousands or hundreds
of images where only one or a few are enough; (2) different
children may detect or use different characteristics to identify
the object of each category, e.g., some may focus on the body
shape while others may focus on the head/face characteristics
in the case of discriminating between cow and horse examples;
and (3) humans do not specify keypoints for objects of
different categories and teach the children to use them to
perform the categorisation task, instead, the children identify
those keypoints themselves. Fig. 17 shows that the evolved
program (presented in Fig. 14) captured and extracted similar
patterns for the two instances of each class at the end of the
evolutionary process, but the patterns for different classes are
distinguished. This shows that this method is very good at
distinguishing examples in different classes.

VII. CONCLUSIONS

In this paper, a GP approach was proposed to automatically
evolve rotation-invariant image descriptors to detect good
keypoints and extract informative features simultaneously for
texture image classification. Different from existing methods,
the proposed GP approach does not require any human in-
tervention, needs only two instances per class, and aims to
tackle rotation (in)variance by using simple rotation-invariant
features in the terminal set. This method is suitable for
problems where only a small number of labelled instances
are available, and for the situations that cannot afford a
long time for training. To examine the performance of the
proposed GP approach, a large number of experiments have
been conducted on six texture image classification datasets
of varying difficulty, with different degrees of rotations. The
performance of the GP approach is compared with seven
state-of-the-art domain-expert designed image descriptors and
ten well-known classifiers are used in the experiments. The
results show that the proposed GP method, using only two
instances per class, performed comparably or significantly
outperformed the other methods in most cases. Furthermore,
the GP approach is robust in handling different degrees of
rotations, and the evolved GP tree, i.e., image descriptor, is
understandable and interpretable by humans, although it is
automatically constructed without human intervention.

A. Major Contributions

This paper brings the following major contributions. Firstly,
it shows that, by carefully designing the program structure, GP

can automatically detect good keypoints and extract informa-
tive features simultaneously in a single process for texture im-
age classification. By using simple pixel statistics, such as min,
max, mean, standard deviation and simple arithmetic operators
as terminals and functions in the program representation, the
proposed GP system can effectively solve texture classification
tasks with different rotations/orientations. Secondly, this paper
shows how GP can effectively construct and generate good
image descriptors using only two instances per class in the
training set as inputs. Rather than using the classification
accuracy or error rate that are commonly used in GP and many
other learning systems for classification, this paper develops a
new measure that can effectively use only two instances per
class to evolve good image descriptors. The image descriptors
automatically constructed by GP outperform state-of-the-art
image descriptors carefully designed by domain-experts on
six image datasets with different rotations. Thirdly, the pro-
posed GP method can automatically extract more informative
features than those obtained from domain-expert designed
descriptors; the extracted features are not biased to any specific
classifier and can be used as inputs to different types of
learning/classification methods, achieving good performance.

B. Future Work
Although the proposed method has been shown to be a

promising alternative to those domain-expert designed meth-
ods, it has some limitations that we intend to address in
the future. For example, the window size and code length
parameters are currently required to be empirically determined.
This could be tackled via changing the program representation
to handle those parameters side-by-side with the process of
evolving a descriptor. Moreover, the method has been assessed
using only texture image datasets. Hence, in the future we
would like to investigate the ability of the proposed method
for more complex classification tasks, e.g., involving general
or real-life, non-texture images. Performing classification on
real-life image problems is difficult as it is more likely that
the object of a category will appear on different backgrounds,
which may require adding more instances during the learning
phase. Transfer learning [82], [83], where examples of a
related (source) domain can be used to evolve a model that
can be adopted to the target domain, can be applied where
only a few instances are available. Dealing with scale variation
is a more challenging task and we would like to extend
the proposed method to handle this challenge in the future.
Another important factor that we would like to study is the
influence of using more than two instances per class on the
performance of the proposed method.

REFERENCES

[1] B. Bhanu, L. Yingqiang, and K. Krawiec, Evolutionary Synthesis of
Pattern Recognition Systems, ser. Monographs in Computer Science.
Springer, 2006.

[2] L. Wang, B. Yang, S. Wang, and Z. Liang, “Building image feature
kinetics for cement hydration using gene expression programming
with similarity weight tournament selection,” IEEE Transactions on
Evolutionary Computation, vol. 19, no. 5, pp. 679–693, 2015.

[3] G. Karafotias, M. Hoogendoorn, and A. Eiben, “Parameter control in
evolutionary algorithms: Trends and challenges,” IEEE Transactions on
Evolutionary Computation, vol. 19, no. 2, pp. 167–187, 2015.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. XX, MARCH 2016 17

Fig. 17. A stacked representation of the resulting feature vectors by the program shown in Fig. 14 for 40 instances (2 from each class) drawn from the
BrWiRo. The same features are indicated using the same colours to highlight the similarities/differences between instances of the same/different class(es).

[4] C. Harris and M. Stephens, “A combined corner and edge detector,” in
Proceedings of the 4th Alvey Vision Conference. Alvey Vision Club,
1988, pp. 147–151.

[5] M. Zhang, V. Ciesielski, and P. Andreae, “A domain-independent
window approach to multiclass object detection using genetic program-
ming,” EURASIP Journal on Advances in Signal Processing, vol. 2003,
no. 8, pp. 841–859, 2003.

[6] G. James, D. Witten, T. Hastie, and R. Tibshirani, An Introduction to
Statistical Learning: With Applications in R. Springer, 2014.

[7] T. Tuytelaars and K. Mikolajczyk, “Local invariant feature detectors:
A survey,” Foundations and Trends in Computer Graphics and Vision,
vol. 3, no. 3, pp. 177–280, 2008.

[8] G. Carneiro and A. Jepson, “The distinctiveness, detectability, and
robustness of local image features,” in Proceedings of 2005 IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition,
vol. 2. IEEE, 2005, pp. 296–301.

[9] K. Juneja, A. Verma, and S. Goel, “A survey on recent image index-
ing and retrieval techniques for low-level feature extraction in CBIR
systems,” in Proceedings of 2015 IEEE International Conference on
Computational Intelligence Communication Technology. IEEE, 2015,
pp. 67–72.

[10] R. Haralick, K. Shanmugam, and I. Dinstein, “Textural features for im-
age classification,” IEEE Transactions on Systems, Man and Cybernetics,
vol. SMC-3, no. 6, pp. 610–621, 1973.

[11] T. Ojala, M. Pietikäinen, and D. Harwood, “Performance evaluation of
texture measures with classification based on Kullback discrimination
of distributions,” in Proceedings of the 12th International Conference
on Pattern Recognition, vol. 1. IEEE, 1994, pp. 582–585.

[12] D. G. Lowe, “Object recognition from local scale-invariant features,”
in Proceedings of the International Conference on Computer Vision.
IEEE, 1999, pp. 1150–1157.

[13] H. Bay, A. Ess, T. Tuytelaars, and L. van Gool, “Speeded-up robust
features (SURF),” Computer Vision and Image Understanding, vol. 110,
no. 3, pp. 346–359, 2008.

[14] J. Chen, S. Shan, C. He, G. Zhao, M. Pietikäinen, X. Chen, and W. Gao,
“WLD: A robust local image descriptor,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 32, no. 9, pp. 1705–1720, 2010.

[15] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “ORB: An efficient
alternative to SIFT or SURF,” in Proceedings of 2011 IEEE Interna-
tional Conference on Computer Vision. IEEE, 2011, pp. 2564–2571.

[16] M. Calonder, V. Lepetit, M. Ozuysal, T. Trzcinski, C. Strecha, and
P. Fua, “BRIEF: Computing a local binary descriptor very fast,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 34,
no. 7, pp. 1281–1298, 2012.

[17] R. Ortiz, “FREAK: Fast retina keypoint,” in Proceedings of the 2012
IEEE Conference on Computer Vision and Pattern Recognition. IEEE
Computer Society, 2012, pp. 510–517.

[18] P. F. Alcantarilla, A. Bartoli, and A. J. Davison, “KAZE features,” in
Proceedings of the 12th European Conference on Computer Vision -
Volume Part VI. Springer, 2012, pp. 214–227.

[19] B. Yang and S. Chen, “A comparative study on local binary pattern
(LBP) based face recognition: LBP histogram versus LBP image,”
Neurocomputing, vol. 120, pp. 365–379, 2013.

[20] M. Lopez-de-la Calleja, T. Nagai, M. Attamimi, M. Nakano-Miyatake,
and H. Perez-Meana, “Object detection using SURF and superpixels,”
Journal of Software Engineering and Applications, vol. 6, no. 9, pp.
511–518, 2013.

[21] A. Satpathy, X. Jiang, and H.-L. Eng, “LBP-based edge-texture features
for object recognition,” IEEE Transactions on Image Processing, vol. 23,
no. 5, pp. 1953–1964, 2014.

[22] A. Bouganis and M. Shanahan, “Flexible object recognition in cluttered
scenes using relative point distribution models,” in Proceedings of the
19th International Conference on Pattern Recognition. IEEE, 2008,
pp. 1–5.

[23] S. Ramamoorthy, R. Kirubakaran, and R. Subramanian, “Texture feature
extraction using MGRLBP method for medical image classification,”
in Artificial Intelligence and Evolutionary Algorithms in Engineering
Systems, ser. Advances in Intelligent Systems and Computing. Springer,
2015, vol. 324, pp. 747–753.

[24] S. Saxena and R. K. Singh, “A survey of recent and classical image
registration methods,” International Journal of Signal Processing, Image
Processing and Pattern Recognition, vol. 7, no. 4, pp. 167–176, 2014.

[25] M.-H. Tsai, Y.-K. Chan, A.-M. Hsu, C.-Y. Chuang, C.-M. Wang, and
P.-W. Huang, “Feature-based image segmentation,” Journal of Imaging
Science and Technology, vol. 57, no. 1, pp. 1–12, 2013.

[26] J. R. Koza, Genetic Programming: On the Programming of Computers
by Means of Natural Selection. MIT Press, 1992.

[27] R. Poli and S. Cagnoni, “Genetic programming with user-driven se-
lection: Experiments on the evolution of algorithms for image enhance-
ment,” in Genetic Programming 1997: Proceedings of the Second Annual
Conference. Morgan Kaufmann, 1997, pp. 269–277.

[28] C. Downey and M. Zhang, “Multiclass object classification for computer
vision using linear genetic programming,” in Proceedings of the 24th
International Conference on Image and Vision Computing New Zealand.
IEEE, 2009, pp. 73–78.

[29] F. Abdulhamid, K. Neshatian, and M. Zhang, “Image recognition using
genetic programming with loop structures,” in Proceedings of the 26th
International Conference on Image and Vision Computing New Zealand,
vol. 29, 2011, pp. 553–558.

[30] H. Al-Sahaf, A. Song, K. Neshatian, and M. Zhang, “Extracting image
features for classification by two-tier genetic programming,” in Proceed-
ings of the IEEE Congress on Evolutionary Computation. IEEE, 2012,
pp. 1–8.

[31] W. Albukhanajer, J. Briffa, and Y. Jin, “Evolutionary multiobjective
image feature extraction in the presence of noise,” IEEE Transactions
on Cybernetics, vol. 45, no. 9, pp. 1757–1768, 2015.

[32] A. Song and V. Ciesielski, “Texture segmentation by genetic program-
ming,” Evolutionary Computation, vol. 16, no. 4, pp. 461–481, 2008.

[33] Y. Liang, M. Zhang, and W. Browne, “Image segmentation: A survey
of methods based on evolutionary computation,” in Simulated Evolution
and Learning, ser. Lecture Notes in Computer Science. Springer, 2014,
vol. 8886, pp. 847–859.

[34] ——, “A supervised figure-ground segmentation method using genetic
programming,” in Proceedings of the 18th European Conference on
the Applications of Evolutionary Computation, ser. Lecture Notes in
Computer Science, vol. 9028. Springer, 2015, pp. 491–503.

[35] S. Chicotay, O. David, and N. Netanyahu, “Image registration of very
large images via genetic programming,” in Proceedings of the 2014 IEEE
Conference on Computer Vision and Pattern Recognition Workshops.
IEEE, 2014, pp. 329–334.

[36] M. Ebner and A. Zell, “Evolving a task specific image operator,” in Evo-
lutionary Image Analysis, Signal Processing and Telecommunications,
ser. Lecture Notes in Computer Science. Springer, 1999, vol. 1596, pp.
74–89.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. XX, MARCH 2016 18

[37] L. Trujillo and G. Olague, “Synthesis of interest point detectors through
genetic programming,” in Proceedings of the 8th Annual Conference on
Genetic and Evolutionary Computation. ACM, 2006, pp. 887–894.

[38] ——, “Automated design of image operators that detect interest points,”
Evolutionary Computation, vol. 16, no. 4, pp. 483–507, 2008.

[39] G. Olague and L. Trujillo, “A genetic programming approach to the
design of interest point operators,” in Bio-inspired Hybrid Intelligent
Systems for Image Analysis and Pattern Recognition, ser. Studies in
Computational Intelligence. Springer, 2009, vol. 256, pp. 49–65.

[40] C. B. Perez and G. Olague, “Evolutionary learning of local descriptor
operators for object recognition,” in Proceedings of the 11th Annual
Conference on Genetic and Evolutionary Computation. ACM, 2009,
pp. 1051–1058.

[41] L. Liu, L. Shao, X. Li, and K. Lu, “Learning spatio-temporal repre-
sentations for action recognition: A genetic programming approach,”
IEEE Transactions on Cybernetics, vol. PP, no. 99, pp. 1–12, 2015,
doi:10.1109/TCYB.2015.2399172.

[42] L. Shao, L. Liu, and X. Li, “Feature learning for image classification
via multiobjective genetic programming,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 25, no. 7, pp. 1359–1371, 2014.

[43] H. Al-Sahaf, A. Song, K. Neshatian, and M. Zhang, “Two-tier genetic
programming: Towards raw pixel-based image classification,” Expert
Systems with Applications, vol. 39, no. 16, pp. 12 291–12 301, 2012.

[44] H. Al-Sahaf, M. Zhang, M. Johnston, and B. Verma, “Image descriptor:
A genetic programming approach to multiclass texture classification,”
in Proceedings of 2015 IEEE Congress on Evolutionary Computation.
IEEE, 2015, pp. 2460–2467.

[45] L. Nanni, S. Brahnam, and A. Lumini, “A simple method for improving
local binary patterns by considering non-uniform patterns,” Pattern
Recognition, vol. 45, no. 10, pp. 3844–3852, 2012.

[46] T. Ojala, M. Pietikäinen, and T. Mäenpää, “Gray scale and rotation
invariant texture classification with local binary patterns,” in Proceedings
of the 6th European Conference on Computer Vision, ser. Lecture Notes
in Computer Science. Springer, 2000, no. 1842, pp. 404–420.

[47] ——, “Multiresolution gray-scale and rotation invariant texture classifi-
cation with local binary patterns,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 24, no. 7, pp. 971–987, 2002.

[48] Z. Guo, L. Zhang, and D. Zhang, “A completed modeling of local binary
pattern operator for texture classification,” IEEE Transactions on Image
Processing, vol. 19, no. 6, pp. 1657–1663, 2010.

[49] Y. Zhao, D.-S. Huang, and W. Jia, “Completed local binary count for
rotation invariant texture classification,” IEEE Transactions on Image
Processing, vol. 21, no. 10, pp. 4492–4497, 2012.

[50] A. Song, T. Loveard, and V. Ciesielski, “Towards genetic programming
for texture classification,” in Proceedings of the 14th Australian Joint
Conference on Artificial Intelligence, ser. Lecture Notes in Computer
Science, vol. 2256. Springer, 2001, pp. 461–472.

[51] A. Song and V. Ciesielski, “Texture analysis by genetic programming,”
in Proceedings of the IEEE Congress on Evolutionary Computation.
IEEE Press, 2004, pp. 2092–2099.

[52] W. A. Tackett, “Genetic programming for feature discovery and image
discrimination,” in Proceedings of the 5th International Conference on
Genetic Algorithms, 1993, pp. 303–311.

[53] M. Zhang and V. Ciesielski, “Genetic programming for multiple class
object detection,” in Proceedings of the 12th Australian Joint Conference
on Artificial Intelligence, ser. Lecture Notes in Computer Science, vol.
1747. Springer, 1999, pp. 180–192.

[54] T. Loveard and V. Ciesielski, “Representing classification problems
in genetic programming,” in Proceedings of the IEEE Congress on
Evolutionary Computation, vol. 2. IEEE, 2001, pp. 1070–1077.

[55] P. Brodatz, Textures: A Photographic Album for Artists and Designers.
Dover Publications, 1999.

[56] W. R. Smart and M. Zhang, “Classification strategies for image classifi-
cation in genetic programming,” in Proceedings of the 18th International
Conference on Image and Vision Computing New Zealand. Massey
University, 2003, pp. 402–407.

[57] M. Zhang, U. Bhowan, and B. Ny, “Genetic programming for object
detection: A two-phase approach with an improved fitness function,”
Electronic Letters on Computer Vision and Image Analysis, vol. 6, no. 1,
pp. 27–43, 2007.

[58] M. Zhang and M. Johnston, “A variant program structure in tree-
based genetic programming for multiclass object classification,” in
Evolutionary Image Analysis and Signal Processing, ser. Studies in
Computational Intelligence. Springer, 2009, vol. 213, pp. 55–72.

[59] D. L. Atkins, K. Neshatian, and M. Zhang, “A domain independent
genetic programming approach to automatic feature extraction for image

classification,” in Proceedings of the IEEE Congress on Evolutionary
Computation. IEEE, 2011, pp. 238–245.

[60] H. Al-Sahaf, M. Zhang, and M. Johnston, “Genetic programming
evolved filters from a small number of instances for multiclass texture
classification,” in Proceedings of the 29th International Conference on
Image and Vision Computing New Zealand. ACM, 2014, pp. 84–89.

[61] W. Fu, M. Johnston, and M. Zhang, “Automatic construction of invariant
features using genetic programming for edge detection,” in AI 2012:
Advances in Artificial Intelligence, ser. Lecture Notes in Computer
Science. Springer, 2012, vol. 7691, pp. 144–155.

[62] ——, “Distribution-based invariant feature construction using genetic
programming for edge detection,” Soft Computing, vol. 19, no. 8, pp.
2371–2389, 2015.

[63] J. Canny, “A computational approach to edge detection,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 8, no. 6, pp.
679–698, 1986.

[64] A. Kadyrov and M. Petrou, “The trace transform and its applica-
tions,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 23, no. 8, pp. 811–828, 2001.

[65] D. J. Montana, “Strongly typed genetic programming,” Evolutionary
Computation, vol. 3, no. 2, pp. 199–230, 1995.

[66] G. J. Mclachlan, Discriminant Analysis and Statistical Pattern Recog-
nition. Wiley, 2004.

[67] S.-H. Cha, “Comprehensive survey on distance/similarity measures
between probability density functions,” International Journal of Math-
ematical Models and Methods in Applied Sciences, vol. 1, no. 4, pp.
300–307, 2007.

[68] S. Johnson, Stephen Johnson on Digital Photography. O’Reilly Media,
Incorporated, 2006.

[69] G. Kylberg, “The Kylberg texture dataset v. 1.0,” Centre for Image
Analysis, Swedish University of Agricultural Sciences and Uppsala
University, Uppsala, Sweden, External report (Blue series) 35, 2011.

[70] T. Ojala, T. Mäenpää, M. Pietikäinen, J. Viertola, J. Kyllonen, and
S. Huovinen, “Outex - new framework for empirical evaluation of
texture analysis algorithms,” in Proceedings of the 16th International
Conference on Pattern Recognition, vol. 1. IEEE, 2002, pp. 701–706.

[71] T. Ahonen, A. Hadid, and M. Pietikäinen, “Face recognition with local
binary patterns,” in Proceedings of the 8th European Conference on
Computer Vision, ser. Lecture Notes in Computer Science, T. Pajdla
and J. Matas, Eds., vol. 3021. Springer, 2004, pp. 469–481.

[72] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and
I. H. Witten, “The WEKA data mining software: An update,” SIGKDD
Explorations Newsletter, vol. 11, no. 1, pp. 10–18, 2009.

[73] I. H. Witten and E. Frank, Data Mining: Practical Machine Learning
Tools and Techniques, 2nd ed. Morgan Kaufmann, 2005.

[74] T. Rassem and B. E. Khoo, “Completed local ternary pattern for rotation
invariant texture classification,” The Scientific World Journal, vol. 2014,
pp. 1–10, 2014.

[75] S. Trenn, “Multilayer perceptrons: Approximation order and necessary
number of hidden units,” IEEE Transactions on Neural Networks,
vol. 19, no. 5, pp. 836–844, 2008.

[76] S. Keerthi and C.-J. Lin, “Asymptotic behaviors of support vector
machines with gaussian kernel,” Neural Computation, vol. 15, no. 7,
pp. 1667–1689, 2003.

[77] Y. Freund and R. E. Schapire, “Experiments with a new boosting
algorithm,” in Proceedings of the 13th International Conference on
Machine Learning. Morgan Kaufmann, 1996, pp. 148–156.

[78] G. Holmes, B. Pfahringer, R. Kirkby, E. Frank, and M. Hall, “Multi-
class alternating decision trees,” in Proceedings of the 13th European
Conference on Machine Learning. Springer, 2002, pp. 161–172.

[79] J. Derrac, S. Garcı́a, D. Molina, and F. Herrera, “A practical tutorial
on the use of nonparametric statistical tests as a methodology for
comparing evolutionary and swarm intelligence algorithms,” Swarm and
Evolutionary Computation, vol. 1, no. 1, pp. 3–18, 2011.

[80] F. Wilcoxon, “Individual comparisons by ranking methods,” Biometrics
Bulletin, vol. 1, no. 6, pp. 80–83, 1945.

[81] J. Demšar, “Statistical comparisons of classifiers over multiple data sets,”
Journal of Machine Learning Research, vol. 7, pp. 1–30, 2006.

[82] T. Tommasi and B. Caputo, “The more you know, the less you learn:
From knowledge transfer to one-shot learning of object categories,” in
Proceedings of the British Machine Vision Conference. British Machine
Vision Association, 2009, pp. 1–11.

[83] K. R. Canini, M. M. Shashkov, and T. L. Griffiths, “Modeling transfer
learning in human categorization with the hierarchical Dirichlet pro-
cess,” in Proceedings of the 27th International Conference on Machine
Learning, J. Fürnkranz and T. Joachims, Eds. Omnipress, 2010, pp.
151–158.

