
IE
EE

Pr
oo
f

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 1

Automated Design of Production Scheduling
Heuristics: A Review

Jürgen Branke, Member, IEEE, Su Nguyen, Member, IEEE, Christoph W. Pickardt,
and Mengjie Zhang, Senior Member, IEEE

Abstract—Hyper-heuristics have recently emerged as a power-1

ful approach to automate the design of heuristics for a number2

of different problems. Production scheduling is a particularly3

popular application area for which a number of different hyper-4

heuristics have been developed and are shown to be effective,5

efficient, easy to implement, and reusable in different shop con-6

ditions. In particular, they seem to be a promising way to tackle7

highly dynamic and stochastic scheduling problems, an aspect8

that is specifically emphasized in this survey. Despite their success9

and the substantial number of papers in this area, there is cur-10

rently no systematic discussion of the design choices and critical11

issues involved in the process of developing such approaches. This12

paper strives to fill this gap by summarizing the state-of-the-art13

approaches, suggesting a taxonomy, and providing the inter-14

ested researchers and practitioners with guidelines for the design15

of hyper-heuristics in production scheduling. This paper also16

identifies challenges and open questions and highlights various17

directions for future work.18

Index Terms—Evolutionary design, genetic programming (GP),19

hyper-heuristic, scheduling.20

I. INTRODUCTION21

SCHEDULING is concerned with the allocation of limited22

resources to tasks over time, with the basic aim to ensure23

an effective and efficient use of the available resources. A clas-24

sic problem area is the scheduling of manufacturing systems,25

in which machines (the resources) have to be allocated to jobs26

(the tasks) in the best possible way (minimizing or maximizing27

some objective function). Some of the costs that are typically28

affected by a production schedule are the holding costs of29

in-process inventory, contractual penalties for late deliveries,30

setup costs, and the costs of scrap and rework, which illustrate31

the importance of production scheduling to manufacturers in32

their endeavor to become and remain competitive.33

A number of exact solution methods that solve deter-34

ministic scheduling problems optimally have been proposed35

in [1]. However, due to the high complexity of most schedul-36

ing problems of interest, exact methods are usually unable37

to solve large instances within a reasonable computational38

time. Moreover, many problems are stochastic and dynamic,39

Manuscript received July 21, 2014; revised December 8, 2014 and
March 23, 2015; accepted April 22, 2015. This work was supported by the
Marsden Fund of New Zealand Government under Contract VUW1209.

J. Branke and C. W. Pickardt are with Warwick Business School, University
of Warwick, Coventry CV4 7AL, U.K.

S. Nguyen and M. Zhang are with the Evolutionary Computation Research
Group, Victoria University of Wellington, Wellington 6140, New Zealand
(e-mail: su.nguyen@ecs.vuw.ac.nz).

Digital Object Identifier 10.1109/TEVC.2015.2429314

i.e., they are subject to change over time due to random, 40

stochastic events such as new job arrivals, stochastic pro- 41

cessing times, or machine breakdowns. Consequently, many 42

researchers and practitioners have turned to heuristics, which 43

deliver acceptable, but not necessarily optimal, solutions in a 44

short computational time. 45

In general, heuristics are problem-specific solution meth- 46

ods and have to be designed for the problem at hand. 47

Unfortunately, the design of sophisticated heuristics is usu- 48

ally a tedious trial-and-error process, with candidate heuristics 49

tested on some instances of the considered problem, modified, 50

and retested until they meet the demands for actual imple- 51

mentation, which requires a significant amount of expertise, 52

time, and coding effort. To handle this issue, various meth- 53

ods to (partially) automate the design of heuristics have been 54

proposed in the literature, also known as hyper-heuristics. 55

In [2], hyper-heuristics are defined as “an automated 56

methodology for selecting or generating heuristics to solve 57

hard computational search problems.” In other words, hyper- 58

heuristics explore a search space of heuristics to discover those 59

that work effectively. In this survey, we use fitness to denote 60

the effectiveness of heuristics (discussed in Section III-E), 61

whereas the objective value or function denotes the quality 62

of a schedule. 63

Burke et al. [2] classified hyper-heuristics with respect to 64

the nature of their process, i.e., whether they select or gen- 65

erate heuristics. Moreover, they distinguish hyper-heuristics 66

that learn online, i.e., while solving a problem instance, from 67

those that learn offline, i.e., that gather reusable knowledge 68

from a set of training instances. Burke et al. [3] provided 69

a general overview of the state-of-the-art of hyper-heuristic 70

design, covering all categories of hyper-heuristics. The scope 71

of this survey is on (offline) hyper-heuristics for the gen- 72

eration of a reusable heuristic, which can be applied to 73

quickly solve new problem instances once it has been gen- 74

erated. We deliberately do not cover hyper-heuristics that 75

select a heuristic for every decision point of a particular 76

problem instance (see [4]–[6]), as the generated sequence 77

of heuristics can generally not be reused, nor do we cover 78

hyper-heuristics that learn to select heuristics for a given 79

problem instance (see [7]–[9]), as this is problem clas- 80

sification rather than heuristic generation. Hyper-heuristics 81

for the generation of heuristics have also been developed 82

for other problem areas, including bin packing [10]–[12], 83

vehicle routing [13]–[15], timetabling [16], [17], air traffic 84

control [18], [19], and project scheduling [20]. 85

1089-778X c© 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto:su.nguyen@ecs.vuw.ac.nz
http://www.ieee.org/publications_standards/publications/rights/index.html

IE
EE

Pr
oo
f

2 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

TABLE I
SCHEDULING PROBLEMS ADDRESSED BY HEURISTIC GENERATION HYPER-HEURISTICS

This paper presents a comprehensive review of the literature86

on hyper-heuristics for the design of construction heuristics87

in production scheduling with the aim to guide the inter-88

ested researcher and practitioner through the key issues in89

developing such hyper-heuristics. The remainder of this paper90

is organized as follows. Section II describes the schedul-91

ing problems addressed and heuristics generated by means92

of hyper-heuristics. Section III reviews the design of hyper-93

heuristics, with a particular focus on the representation and94

evaluation of candidate heuristics. Some potential issues and95

challenges with specific suggestions for future work are dis-96

cussed in Section IV, followed by a short summary of this97

paper and a more general outlook on future research.98

II. SCHEDULING ENVIRONMENTS AND HEURISTICS99

In general, heuristics are designed to be effective for a100

specific problem or class of problems. Production schedul-101

ing problems can be categorized by various properties, two102

important ones being the shop configuration and the objective.103

The simplest “shop” configuration is a single machine that is104

responsible for processing all jobs. If there is more than one105

machine available to process a job, this is called a parallel106

machine environment. Multistage problems, which are gener-107

ally NP-hard [68], are characterized by jobs that consist of a108

number of processing steps, or operations, that need to be per-109

formed on distinct machines in a specified order. Depending110

on whether all jobs share the same processing order or not, the111

configuration is called a flow shop or job shop. Flow shops112

and job shops are further called flexible, if they contain at least113

one work center that consists of parallel machines [1, Ch. 2].114

Objectives can be broadly classified as completion time based,115

with a focus on the efficiency of the manufacturing system,116

and due date based, with a focus on adherence to promised117

delivery dates. Table I provides a summary of the scheduling118

problems that have been addressed in the literature by means119

of a hyper-heuristic.120

In most cases, the heuristics generated by the respec-121

tive hyper-heuristic belong to the class of dispatching122

rules. Dispatching rules are a particularly simple type of123

scheduling heuristic, which progressively construct solutions 124

by scheduling one operation at a time. Whenever a machine 125

is available and there are jobs waiting to be processed on 126

that machine, dispatching rules compute a priority index for 127

each eligible job as a function of some job attributes (e.g., 128

its processing time or due date), and shop attributes (e.g., 129

the average processing time in the queue of the considered 130

work center), and schedule only the imminent operation of 131

the job with the highest priority. Due to their locally restricted 132

horizon, dispatching rules have very low computational and 133

information requirements, irrespective of the complexity of 134

the overall problem. Moreover, because each scheduling deci- 135

sion is made at the latest possible moment, i.e., immediately 136

before its implementation, dispatching rules naturally possess 137

the ability to quickly react to unexpected changes, which 138

makes them particularly suited for stochastic and dynamic 139

scheduling problems (for a list of papers explicitly addressing 140

stochastic dynamic environments, see Table I). These prop- 141

erties, together with their simple and intuitive nature, their 142

ease of implementation and their flexibility to incorporate 143

domain knowledge and expertise [69] explain the wide usage 144

of dispatching rules in practice [70] and the ongoing research 145

on the development of new, more effective dispatching 146

rules (see [71]–[73]). 147

While dispatching rules that have been trained on a 148

set of static, deterministic problem instances could, in 149

principle, be applied to dynamic, stochastic problems, 150

Hildebrandt et al. [44] and Nguyen et al. [49] showed that this 151

does not necessarily lead to good results, and that it is bet- 152

ter to use dynamic, stochastic problems also during training. 153

In terms of hyper-heuristic design, there are some minor differ- 154

ences between using deterministic or stochastic problems for 155

training, which will be discussed in the corresponding sections. 156

In particular, other attributes may be needed (Section III-B), 157

and the fitness function becomes stochastic (Section III-E), 158

which in turn raises issues such as the determination of an 159

appropriate run length of the simulation (Section III-E2). 160

Moreover, the definition of stochastic benchmark problems is 161

also more difficult (Section IV-D). 162

IE
EE

Pr
oo
f

BRANKE et al.: AUTOMATED DESIGN OF PRODUCTION SCHEDULING HEURISTICS: A REVIEW 3

TABLE II
CLASSIFICATION OF HYPER-HEURISTICS FOR THE GENERATION OF PRODUCTION

SCHEDULING HEURISTICS BY LEARNING METHOD AND REPRESENTATION

In the literature, dispatching rules are typically designed for163

and tested on a (flexible) job shop problem, which is reflected164

in Table I by the relatively large number of studies deal-165

ing with this shop configuration. In general, hyper-heuristics166

have been used to evolve dispatching rules for a variety of167

scheduling problems with various objective functions and pro-168

cessing characteristics. Also, some recent work has focussed169

on the development of hyper-heuristics that can evolve a set of170

Pareto-optimal dispatching rules for multiobjective problems.171

A general conclusion of these studies is that hyper-heuristics172

are able to generate dispatching rules that outperform manually173

designed benchmark rules.174

A few researchers have used hyper-heuristics for the gen-175

eration of other types of scheduling heuristics. Yin et al. [23]176

evolved the so-called predictive heuristics, which aim to con-177

struct schedules that are robust to unpredictable breakdowns178

of machines and are shown to outperform a benchmark heuris-179

tic from the literature. Vázquez-Rodríguez and Ochoa [66]180

evolved variants of the iterative Nawaz, Enscore, and181

Ham (NEH) heuristic [74] for a number of permutation flow182

shop problems, which are significantly better than the original183

NEH heuristic and a randomized version. Mascia et al. [67],184

also generated iterative heuristics for a permutation flow shop185

problem. Park et al. [33] and Nguyen et al. [50] employed186

a hyper-heuristic for the generation of iterative dispatching187

rules and variants of a size limited beam search heuristic.188

These iterative scheduling heuristics evaluate (partial) can-189

didate solutions, and are thus restricted to static and deter-190

ministic problems. As in the case of dispatching rules, a key191

component of the above scheduling heuristics is their prior-192

ity function (or index), which is generally the part that is193

evolved by the hyper-heuristic. Hence, the subsequent dis-194

cussion will focus on the evolution of dispatching rules, and195

priority functions in particular.196

III. HYPER-HEURISTIC DESIGN CHOICES197

Fig. 1 shows a simplified outline of the procedure of a198

hyper-heuristic for the generation of heuristics. The main199

components in the design of such a hyper-heuristic concern200

the encoding or representation of candidate heuristics, which201

defines the search space, the optimization algorithm to explore202

this search space, and the fitness function to determine the203

quality of candidate heuristics. In this survey, we classify the204

existing hyper-heuristics according to the learning method they205

Fig. 1. Basic procedure of a hyper-heuristic for the generation of heuristics.

adopt (supervised or unsupervised) and their representation of 206

candidate heuristics (parametric or grammar based), as shown 207

in Table II. 208

Section III-A discusses the two types of learning methods 209

used within hyper-heuristics, followed by a discussion of the 210

selection of attributes to be provided to the hyper-heuristic in 211

Section III-B. The different representations of priority func- 212

tions are presented in Section III-C together with suitable 213

optimization algorithms as they are closely tied to the cho- 214

sen representation. Section III-D discusses the definition of 215

the eligible job set, and Section III-E discusses appropriate 216

fitness functions for the evaluation of candidate heuristics. 217

A. Learning Method 218

All hyper-heuristics generate new heuristics by learning 219

from a set of training instances. This learning can be super- 220

vised or unsupervised. The basic idea of hyper-heuristics using 221

supervised learning in scheduling is to supply the hyper- 222

heuristic with a number of very good (preferably optimal) 223

schedules that it uses to derive a priority function that repro- 224

duces these schedules as closely as possible. These priority 225

functions can then be used as part of a heuristic, e.g., a 226

dispatching rule, to solve other problem instances. 227

A variety of such supervised hyper-heuristics have 228

been proposed in the literature. El-Bouri et al. [21] 229

and Eguchi et al. [38] developed hyper-heuristics that 230

operate on a neural network representation and use a 231

back-propagation optimization algorithm to learn from 232

IE
EE

Pr
oo
f

4 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

optimal schedules. Ingimundardottir and Runarsson [46] fol-233

lowed the same approach but use logistic regression.234

Weckman et al. [42], also proposed a neural network235

hyper-heuristic, based on a variant of the back-propagation236

algorithm, but learn from solutions generated by an evolution-237

ary algorithm (EA) instead of optimal solutions. Similarly,238

Koonce and Tsai [39] employed attribute-oriented induction239

to derive decision rules that reproduce the sequences gener-240

ated by an EA. Li and Olafsson [24] and Olafsson and Li [30]241

developed a hyper-heuristic that generates priority functions in242

the form of decision trees. However, they only learn from solu-243

tions obtained by some simple dispatching rules, which often244

generate solutions far from optimal.245

While some of the above studies report promising results,246

a major drawback of the supervised learning approach is247

that good global schedules can only be obtained for static248

problems of relatively small size and low complexity, which249

limits the applicability of these hyper-heuristics. In contrast,250

hyper-heuristics using unsupervised learning generate effective251

scheduling heuristics by simply applying candidate heuristics252

to a set of problem instances (the training instances), measur-253

ing their performance, and using this feedback to guide the254

search toward promising areas of the search space. Hence,255

unsupervised hyper-heuristics can be applied with relative256

ease to any scheduling problem that can be simulated, which257

makes them more practical in general. This is also reflected by258

the fact that most studies in the area of production schedul-259

ing develop hyper-heuristics that are based on unsupervised260

learning (see Table II), and the subsequent discussion hence261

concentrates on those.262

B. Attributes263

Irrespective of the representation used, an important design264

decision concerns the selection of adequate job and shop265

attributes that form the components of the priority functions266

that can be evolved. To distinguish jobs from each other and267

be able to prioritize one over another, it is obviously necessary268

to include some job attributes, whereas the inclusion of shop269

attributes allows for the generation of rules that can adapt to270

changing shop conditions. Moreover, in the special case of271

evolving iterative scheduling heuristics that make use of the272

characteristics of candidate solutions in solving a problem,273

as proposed by Park et al. [33] and Nguyen et al. [49], the274

hyper-heuristic has to be provided with some attributes related275

to the current candidate solution, e.g., the realized completion276

time of a job. In general, the challenge is to select all the277

relevant attributes while keeping the search space as small as278

possible. Table III lists a number of promising attributes that279

have been commonly used in the development of effective280

dispatching rules in the literature, where shop attributes are281

divided into attributes that concern the work center for which282

a dispatching decision is being made and global attributes.283

Attributes should be carefully chosen in consideration of the284

given scheduling problem, e.g., there is no benefit in providing285

the hyper-heuristic with due date attributes when the objective286

function is not due date based (see [44]), and certain attributes287

do not make sense in a dynamic scheduling environment with288

new jobs arriving all the time (e.g., sum of all processing 289

times). 290

An important question regarding the selection of attributes 291

is whether to include attributes in their most basic 292

or in some aggregate form. To illustrate, a number 293

of researchers provide their hyper-heuristics with the 294

job due date dj and the current time t as separate 295

attributes [23], [25], [31], [32], [40], [62], [64]. However, it 296

could be argued that due dates are more meaningful if they 297

are expressed relative to the current time, i.e., dj − t, and 298

that integrating the absolute due date with other job attributes 299

directly will often lead to rules that change their behavior over 300

time, which is generally questionable and particularly unsuit- 301

able for long dynamic scheduling problems. In fact, the term 302

dj − t appears in many effective manually developed dispatch- 303

ing rules [75]–[77] and several studies on hyper-heuristics 304

have resorted to including due dates (and also release dates 305

and arrival times) in the set of attributes in their relative 306

form [35], [36], [44], [65]. It may make sense to aggregate 307

attributes even further, e.g., to define the non-negative slack 308

max(dj − t − pr
j, 0) [29], [31], [41] or the non-negative time 309

to arrival max(ri
j − t, 0) [29], [31] as one attribute to distin- 310

guish jobs on schedule from late jobs and jobs arriving in the 311

future from waiting jobs, respectively, where ri
j denotes the 312

arrival time of job j to the work center required for its immi- 313

nent operation. Kuczapski et al. [45] and Baek and Yoon [58] 314

selected a number of composite priority indices of dispatching 315

rules from the literature as attributes for their hyper-heuristics. 316

However, these priority indices may integrate attributes in a 317

suboptimal manner and restrict the hyper-heuristic in its search 318

for a better priority function. Overall, it appears that it is best 319

to provide a hyper-heuristic with attributes in their most basic 320

form and let the hyper-heuristic search for good combinations 321

unless there is a good theoretical foundation for an aggregate 322

attribute, as in the cases above. 323

Another question related to the selection of attributes 324

is whether or not to normalize them to a similar scale. 325

In some cases, this may be necessary to fit a certain 326

representation, e.g., the grammar-based representation by 327

Nguyen et al. [49] or the neural network representa- 328

tion by Branke et al. [52]. Hershauer and Ebert [35], 329

Eguchi et al. [41], and Baek and Yoon [58] also scaled 330

the attributes to a similar range. In a recent study, 331

Branke et al. [52] tested two hyper-heuristics for the gen- 332

eration of dispatching rules (one operating on a parametric, 333

the other on a grammar-based representation of priority func- 334

tions) with and without normalized attributes. They find that 335

normalizing the attributes improves the performance of both 336

hyper-heuristics, especially when the original attributes differ 337

largely in scale. The following sections describe different rep- 338

resentations of priority functions used within hyper-heuristics 339

to combine the individual attributes. 340

C. Representations of Priority Functions 341

The choice of representation is very important as it deter- 342

mines the range and complexity of the priority functions 343

(or indices) that can be generated by the hyper-heuristic. 344

IE
EE

Pr
oo
f

BRANKE et al.: AUTOMATED DESIGN OF PRODUCTION SCHEDULING HEURISTICS: A REVIEW 5

TABLE III
PROMISING ATTRIBUTES FOR THE GENERATION OF PRIORITY FUNCTIONS

For ease of presentation, priority indices in this paper are345

defined so that a higher index Ij corresponds to a higher prior-346

ity of a job j. To illustrate, the priority index of the well-known347

minimum slack (MS) rule is given by 348

IMS
j = −

(
dj − t − pr

j

)
(1) 349

IE
EE

Pr
oo
f

6 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

where dj denotes the due date of job j, pr
j the processing time350

of the remaining operations of job j, and t refers to the cur-351

rent time. Sections III-C1 and III-C2 discuss parametric and352

grammar-based representations of priority functions, respec-353

tively. Examples of these two representations are compared354

empirically in [52].355

1) Fixed-Length Parametric Representations: One356

approach to encoding priority functions is to predefine their357

basic format and parameterize it. Then, a priority function358

can be represented by a vector of (real valued) parameter359

values. A simple and commonly used format is that of the360

weighted sum [35], [36], [45], [57], that is361

Ij =
a∑

y=1

wyxy,j (2)362

where xy,j denotes one of the a attributes of job j provided to363

the hyper-heuristic, and wy refers to the corresponding weight.364

To illustrate, if the weighted sum were used as the prede-365

fined format of priority functions and x1,j = dj, x2,j = t,366

and x3,j = pr
j , the priority function of the MS rule would be367

encoded by the parameter vector w = (−1,+1,+1). Other368

simple formats based on if-then-else rules have also been369

proposed in [47] and [59].370

Clearly, a representation based on a simple format such371

as the weighted sum is often too restrictive to allow for the372

discovery of the most effective priority functions (see [52]),373

which motivates the use of more complex representations,374

e.g., based on artificial neural networks [41], [52]. On the375

other hand, such representations lead to a significantly larger376

search space, and also to priority functions that are so com-377

plex that they defy interpretation. The challenge is to choose378

a format that is as simple as possible without compromising379

the ability of the hyper-heuristic to generate effective prior-380

ity functions, which is difficult as the complexity required for381

a given problem is normally unknown in advance. One study382

that examines the impact of the flexibility of the representation383

on the results is [52].384

One advantage of a parametric representation is that search385

spaces of real-valued vectors are relatively common, implying386

the availability of a number of suitable optimization algo-387

rithms. In fact, Hooke–Jeeves pattern search [35], [36], simu-388

lated annealing [41], and EAs [45], [47], [52], [58], [59] have389

all been successfully used for the generation of scheduling390

heuristics based on parametric representations.391

2) Variable-Length Grammar-Based Representations: An392

alternative way of defining the search space of priority func-393

tions is by means of a grammar that specifies how the394

individual components can be assembled to yield a valid pri-395

ority function. Fig. 2 gives an example of a grammar for the396

generation of priority functions, where the expressions on the397

left-hand side can be replaced by any of the expressions on398

the right-hand side (alternative options are separated by the399

“|” symbol). A specific priority function can then be repre-400

sented by an expression tree, which is a popular representation401

in the literature (see [27], [29], [31], [37]). Expression trees402

are composed of leaf nodes, representing terminals such as403

the attributes in this case, and internal nodes, representing the404

Fig. 2. Simple grammar for the construction of priority functions.

Fig. 3. Expression tree representing the priority function of the MS rule.

functions to combine the terminals with each other. Fig. 3 405

shows an expression tree that could be generated with the 406

grammar from Fig. 2, which encodes the MS priority func- 407

tion, where expression trees are decoded recursively, starting 408

from the root node, and from left to right. 409

The main reason for the popularity of grammar-based rep- 410

resentations is that they allow for the generation of priority 411

functions of variable format and length without the require- 412

ment to define a basic format in advance. Apart from the 413

attribute (terminal) set, the only input that has to be provided 414

to the hyper-heuristic is a set of suitable functions that it can 415

use to combine the attributes. 416

Table IV lists the functions that have been used within 417

hyper-heuristics. It shows that the four basic arithmetic 418

operators are included in the function set in every of the 419

reviewed papers, with the division either implemented as pro- 420

tected (returns 1 if divisor is 0) or unprotected (returns a 421

very large number if divisor is 0). These operators allow 422

for the reconstruction of many priority functions of the 423

most effective manually designed rules, which justifies their 424

selection. The function set is further often supplemented 425

with a ternary or quaternary if-then-else (ifte) operator, 426

defined as 427

ifte(x1, x2, x3) =
{

x2 if x1 ≥ 0
x3 otherwise

(3) 428

and 429

ifte(x1, x2, x3, x4) =
{

x3 if x1 ≥ x2
x4 otherwise

(4) 430

and/or some common mathematical functions such as max or 431

min. As in the case of the attribute set, a larger function set 432

increases the size of the search space and the aim should thus 433

be to select only the most relevant functions. Against this 434

background, the value of including more complex functions 435

such as cos, sin, exp, log, pow, or sqrt that generally do not 436

occur in priority functions of effective rules from the literature, 437

and for which there is no theoretical justification, is question- 438

able. Moreover, some of the above functions can be expressed 439

IE
EE

Pr
oo
f

BRANKE et al.: AUTOMATED DESIGN OF PRODUCTION SCHEDULING HEURISTICS: A REVIEW 7

TABLE IV
FUNCTIONS USED WITHIN HYPER-HEURISTICS OPERATING ON A GRAMMAR-BASED REPRESENTATION OF PRIORITY FUNCTIONS

by means of other functions, e.g., max(x1, x2) = ifte(x1 −440

x2, x1, x2), min(x1, x2) = ifte(x2−x1, x1, x2), neg(x1) = 0−x1,441

abs(x1) = max(x1, neg(x1)), raising the question of whether442

those functions should be directly provided or whether it443

should be left to the hyper-heuristic to reconstruct them in444

case they are beneficial.445

Although one advantage of the grammar-based representa-446

tion is that the complexity of the resulting priority indices447

is potentially unbounded, in practice many researchers have448

bounded the complexity and search space by limiting the449

maximum tree depth. Unfortunately, there are no theoreti-450

cal guidelines on the determination of an adequate maximum451

tree depth for the evolution of priority functions. If it is452

chosen too small, some high quality heuristics might not453

be representable and thus the quality of the solutions the454

algorithm can find is limited. On the other hand, if it is455

chosen too large, the hyper-heuristic may get lost in the456

vast search space. The depth used in previous studies varies457

between 6 and 17 [22], [34], [40], [48], [49], [62], [65].458

Jakobović and Marasović [31] tested their hyper-heuristic with459

values ranging from 9 to 17 and find that a maximum tree460

depth of 14 leads to the best results. However, the best value is461

likely to depend on the given problem as well as the employed462

optimization algorithm in general.463

In addition to job and shop attributes, many researchers have464

included some (random) constants in the terminal set of their465

hyper-heuristics [23], [25], [33], [37], [44], [56], [65], [66].466

This enables the hyper-heuristic to weigh attributes differently,467

especially since the latter have different units and can be of468

different magnitude.469

Search spaces of expression trees are typically explored by470

means of genetic programming (GP), which is also the pre-471

dominant optimization algorithm employed in the literature472

for the evolution of scheduling heuristics (see [25], [49]). An473

exception by Nie et al. [29], [48], [64], who used gene expres-474

sion programming (GEP) instead. In [29], they compare their475

GEP hyper-heuristic to a GP hyper-heuristic and report that476

the former generates slightly better priority functions in most 477

cases, and in much less time. Moreover, the priority func- 478

tions evolved by GEP are shown to be relatively simple and 479

easy to understand, whereas GP has the tendency to evolve 480

unnecessarily large expression trees (see [22], [44], [51], [61]). 481

This phenomenon, also referred to as bloating, is generally 482

undesired as it increases the runtime of GP and leads to prior- 483

ity functions that are more complex but not necessarily more 484

effective. 485

D. Set of Eligible Jobs 486

In general, a dispatching rule does not only specify a pri- 487

ority function but also the eligible job set, i.e., the jobs from 488

which the next job to be scheduled can be selected. Most dis- 489

patching rules only consider jobs eligible for scheduling that 490

are already waiting at the given work center. This implies that 491

a machine is never left idle if there are jobs waiting to be 492

scheduled, which is also referred to as nondelay scheduling. 493

While nondelay scheduling is generally effective, as it mini- 494

mizes delays due to idle times, it is not necessarily optimal. In 495

fact, it can be beneficial to leave a machine idle in some situa- 496

tions, e.g., in anticipation of a high priority job arriving in the 497

near future that should be processed without delay. In order 498

for dispatching rules to be able to take such a decision, the 499

eligible job set has to be extended to include also jobs arriving 500

in the future. 501

In most of the hyper-heuristics designed to evolve dis- 502

patching rules the eligible job set is restricted to wait- 503

ing jobs [25], [35], [36], [40], [41], [51], [62], [65]. Another 504

common setting is to also include future jobs that are expected 505

to arrive before the shortest operation of waiting jobs can be 506

completed [29], [31], [37], [45], which is in the spirit of the 507

Giffler and Thompson algorithm [78]. Hildebrandt et al. [44] 508

tested their hyper-heuristic with and without inclusion of 509

future jobs in the set of eligible jobs and find that the best 510

rule evolved with the extended job set outperforms the best 511

IE
EE

Pr
oo
f

8 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

evolved nondelay rule. On the other hand, the performance of512

the hyper-heuristic is shown to vary a lot from run-to-run with513

the extended job set, which indicates that it is more difficult to514

generate effective dispatching rules that take future jobs into515

account and allow for decisions to leave a machine idle.516

Instead of providing a hyper-heuristic with a fixed definition517

of the eligible job set, the latter can also be optimized by518

the hyper-heuristic itself. Nguyen et al. [49] let their hyper-519

heuristic optimize a parameter called the nondelay factor that520

controls the extent to which future jobs are included in the521

eligible job set. In another paper, Nguyen et al. [50] designed522

a hyper-heuristic that evolves a separate function (of some523

shop attributes) for the nondelay factor, which can then adapt524

to changing shop conditions.525

E. Evaluation of Candidate Heuristics526

In order to know whether a candidate heuristic is effec-527

tive or not, unsupervised hyper-heuristics need to obtain an528

estimate of the performance of that heuristic by applying529

it to some training instances. The quality of the solutions530

generated by the heuristic for these instances then deter-531

mines its fitness, which in turn governs the search behavior532

of the hyper-heuristic. Hence, in evaluating candidate heuris-533

tics, two important decisions to be made concern the selection534

of training instances and the definition of the fitness func-535

tion, which are discussed in Sections III-E1 and III-E2,536

respectively.537

1) Training Instances: For reasons of simplicity, a training538

instance is defined in this paper as an instance that pro-539

vides a measure of performance for a given heuristic. This540

includes static problem instances as well as runs of a stochas-541

tic simulation. Clearly, whether to use static instances or542

stochastic simulation for the evaluation of candidate heuris-543

tics depends on which problems the heuristic is supposed544

to solve once it has been generated. This is illustrated by545

Hildebrandt et al. [44], who tested the dispatching rules from546

Tay and Ho [62], which have been trained on and shown to547

be effective for static instances, in a long-term simulation548

with dynamic job arrivals and find that they perform poorly.549

Nguyen et al. [49], also examined the effectiveness of dis-550

patching rules that have been evolved using static instances551

in a long-term simulation. They report that the evolved rules552

perform well if the shop utilization is equal or less than 80%553

but become worse than some benchmark rules as utilization554

increases beyond that value. They attribute this to the fact that555

static instances reflect conditions of low utilization, in which556

few new jobs arrive over time. Furthermore, the relative per-557

formance of evolved scheduling heuristics has been shown to558

deteriorate with an increasing deviation between the test and559

training instances in terms of job processing orders [37], num-560

ber of jobs [22], and due date setting [32], [33], [65]. These561

results emphasize the importance of using a set of training562

instances that reflect the problems the heuristics are likely to563

encounter in their future use.564

Another important factor with regard to the training set565

is its size, i.e., the number of training instances. If a small566

training set is chosen, the evolved heuristics are likely to567

overfit the training instances and not perform well on the 568

unseen test instances, which implies that their reusability 569

is very limited. On the other hand, a larger training set 570

increases the runtime of the hyper-heuristic, without nec- 571

essarily leading to better heuristics. Geiger and Uzsoy [27] 572

reported that the performance of their hyper-heuristic improves 573

as the number of training instances approaches 10 but does 574

not improve further with a larger training set. In contrast, 575

Jakobović and Marasović [31] found that their hyper-heuristic 576

performs best with the largest of the tested settings (100 train- 577

ing instances), which indicates that the best training set size 578

is highly problem-specific and has to be determined through 579

pilot experiments. 580

Some researchers have argued that a hyper-heuristic can 581

either be used to generate a heuristic that performs reason- 582

ably well for a number of related problems or one that is 583

very effective for the specific problem it has been tailored to, 584

and ineffective otherwise [66], [79]. This argument cannot be 585

supported from a theoretical perspective, as there is no rea- 586

son why two specialized heuristics could not be combined 587

by a hyper-heuristic into one heuristic that analyzes the char- 588

acteristics of a given problem and applies the (specialized) 589

heuristic that is most suitable for it. On the other hand, the 590

generation of more sophisticated heuristics certainly poses a 591

challenge to hyper-heuristics up to an extent where the under- 592

lying relations are merely too complex to be discovered by the 593

hyper-heuristic. In any case, the generation of heuristics that is 594

supposed to perform well on a wider range of problems cer- 595

tainly requires a larger and more heterogeneous training set 596

that covers this problem range, which in turn increases the 597

runtime of the hyper-heuristic. 598

Note that, if the set of problem instances is very large 599

or randomly generated (as is usually the case if a stochas- 600

tic simulation is used for evaluating a dynamic problem) then 601

computational limitations make it necessary to restrict evalu- 602

ation to a subset (sample) of all possible training instances. 603

Effectively, due to the sampling, the fitness function then 604

becomes stochastic. In such cases, to reduce the sampling 605

variance, it has been recommended to evaluate all solutions 606

competing for survival within a generation by the same sub- 607

set of problem instances, while changing the subset from 608

iteration to iteration to make sure individuals that survive 609

several generations are tested on a large variety of problem 610

instances [23], [44], [65]. Furthermore, if the problem used 611

for evaluation consists of a sequence of random jobs dynam- 612

ically generated over time, at least in principle there are two 613

ways to improve the accuracy of evaluation: by increasing 614

the number of problem instances tested, or the number of 615

jobs considered in each problem instance. In such cases, to 616

get a proper estimate of the steady-state behavior of a solu- 617

tion, it is also necessary to discard the first jobs as warm-up 618

period. 619

2) Fitness Function: The application of a scheduling 620

heuristic H to a number of training instances T = 621

{1, 2, . . . , |T|} results in performance measures zi(H), the 622

objective value reached by the heuristic on instance i. These 623

measures have to be integrated by means of a fitness func- 624

tion f (.) to determine the overall fitness of the heuristic. 625

IE
EE

Pr
oo
f

BRANKE et al.: AUTOMATED DESIGN OF PRODUCTION SCHEDULING HEURISTICS: A REVIEW 9

The following fitness functions have been proposed in the626

literature.627

1) Sum [or average] of objective values [22], [23], [31],628

[32], [41], [48], [52]629

f (H) =
[

1
|T|

] |T|∑

i=1

zi(H).630

2) Average relative objective value [44]631

f (H) = 1
|T|

|T|∑

i=1

zi(H)

zi(ref)
.632

3) Sum [or average] of relative deviations [33], [49], [66]633

f (H) =
[

1
|T|

] |T|∑

i=1

zi(H) − zi(ref)
zi(ref)

634

where zi(ref) denotes a reference objective value for635

instance i, obtained by some other solution method.636

Which fitness aggregation is most desirable depends637

very much on the intentions of the designer of the638

algorithm.639

The sum (or average) of objective values concentrates on640

performing well on problem instances with a large potential641

for improvement. To illustrate this, consider a problem where642

the objective is to minimize the mean tardiness of all jobs so643

that the fitness is computed as the sum of mean tardiness val-644

ues obtained from all training instances. If there is one training645

instance in the set with a very tight due date setting, the tar-646

diness of this instance will be much higher than that of other647

training instances and therefore strongly correlate with the fit-648

ness value. In consequence, the hyper-heuristic will focus its649

search on heuristics that can solve well this particular instance650

while largely ignoring their performance on other instances.651

Alternatively, one can use the average relative objective652

value or the sum (or average) of relative deviations as the653

fitness function, which are equivalent for hyper-heuristics654

that operate on the ranks of fitness values rather than the655

values itself. These fitness functions reduce the weight of656

difficult training instances by relating the objective value of657

each instance to a reference value before combining them.658

Their disadvantage is that they require good reference values,659

which are generally only available for well-studied benchmark660

instances from the literature for which (near)-optimal solu-661

tions are known. In all other cases, reference values have to662

be obtained, typically by applying some benchmark heuris-663

tic(s) to the problem [44], [49], [66], which may or may not664

yield good results.665

Another issue that arises only if candidate heuristics are666

evaluated with long simulation runs is that some heuristics,667

which may be present particularly at the start of the run of668

the hyper-heuristic, can lead to an unstable system, i.e., the669

number of jobs in the shop grows steadily. The fitness of these670

inferior heuristics may then be never obtained and excessive671

time wasted in the attempt. To prevent this from happening,672

Hildebrandt et al. [44] proposed to monitor the number of jobs673

in the shop during a simulation run and abort the run if a preset674

threshold value for the number of jobs is exceeded. The fitness675

of these heuristics is then largely reduced by a penalty, which 676

ensures that they are quickly discarded. In a follow-up paper, 677

Branke et al. [52] showed that this measure reliably detects the 678

inferior heuristics without prematurely stopping the evaluation 679

of good heuristics. 680

IV. ISSUES AND CHALLENGES 681

The research on hyper-heuristics for the automated design 682

of scheduling heuristics is still in an early stage and there 683

remain a number of open questions and challenges. The fol- 684

lowing sections discuss some of the main issues that future 685

work should focus on. 686

A. Evolving Sets of Heuristics 687

A common theme of the existing studies on hyper-heuristics 688

is that they predominantly address simple scheduling envi- 689

ronments and/or employ a hyper-heuristic to evolve a single 690

scheduling heuristic. However, in more complex scheduling 691

environments, there may be a number of interrelated deci- 692

sion problems that have to be resolved, e.g., the formation 693

and scheduling of batches in the presence of batch process- 694

ing machines, the assignment of operations to machines and 695

scheduling of these machines in parallel machine environ- 696

ments, or the coordination of resources in environments with 697

multiple resource constraints. This raises the question of how 698

to best deal with such more complex scenarios. 699

The most straightforward approach seems to be to design a 700

set of heuristics, one for each decision, and to simply encode 701

the set of heuristics as one individual. This approach is fol- 702

lowed by Nie et al. [64], who developed a hyper-heuristic for 703

flexible job shop problems that operates on a search space 704

in which each individual consists of two functions, one for 705

routing, i.e., assigning operations to machines, the other for 706

sequencing, i.e., scheduling the machines. Their results show 707

that this hyper-heuristic can evolve sets of heuristics that 708

outperform the single sequencing heuristics evolved by a con- 709

ventional hyper-heuristic (and combined with some benchmark 710

routing heuristic). On the other hand, the drawback of encod- 711

ing multiple heuristics as one individual is that the search 712

space of the hyper-heuristic grows exponentially in the num- 713

ber of heuristics, which limits the approach to the generation 714

of small sets of heuristics. 715

One possible solution to overcome the issue of search space 716

size may be the use of coevolution, which implies a division 717

of the search space into several sub-spaces handled separately 718

by different subpopulations. Nguyen et al. [56] designed a 719

coevolutionary hyper-heuristic, in which a subpopulation of 720

priority functions used for dispatching is coevolved with a 721

separate subpopulation of functions for due date assignment. 722

The hyper-heuristic is shown to be very competitive to some 723

other hyper-heuristics, in which the two functions are repre- 724

sented by a single individual. Another option is to generate 725

heuristics sequentially, in a similar way as proposed in [57]. 726

However, such hyper-heuristics implicitly assume that the rel- 727

ative effectiveness of candidate heuristics at one stage is more 728

or less independent of the heuristics to be evolved in subse- 729

quent stages, and thus cannot be expected to perform very well 730

IE
EE

Pr
oo
f

10 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

if there are strong interdependencies between the subprob-731

lems. On the other hand, it may be sufficient to resolve several732

subproblems using the same heuristic in some situations. To733

illustrate, Park et al. [33] addressed an order acceptance and734

scheduling problem with a hyper-heuristic that evolves two735

separate functions for the acceptance and dispatching of jobs.736

They compare its performance to a hyper-heuristic evolving a737

single function to handle both decisions and find that the latter738

is more effective, indicating that there is no need for a separate739

heuristic to deal with the acceptance of jobs, possibly due to740

the strong correlation underlying the two decisions. Hence, it741

is important to carefully assess the interrelations between the742

subproblems to be solved prior to designing a hyper-heuristic.743

In multimachine problems, it has been found beneficial to744

use different dispatching rules at different machines if the lat-745

ter vary with respect to their positions in the shop [80]–[83]746

and/or workload [84]–[86]. Consequently, some researchers747

have developed hyper-heuristics that generate sets of machine-748

specific rules by selecting a (potentially) different rule for each749

work center from a number of given rules [65], [87], [88]750

or by evolving several composite rules, where each rule is751

tailored to a certain work center [25], [55], [57], [58]. The752

search space then grows exponentially in the number of753

work centers or machines, which can be very large in shops754

of realistic size, requiring some specific measures in addi-755

tion to the above techniques to deal with this problem.756

Miyashita [40] proposed a hyper-heuristic that is based on757

a predetermined classification of machines into bottlenecks758

and nonbottlenecks and evolves one rule for each class of759

machines. Similarly, Jakobović and Budin [26] designed a760

hyper-heuristic that optimizes the classification of machines761

while searching for good dispatching rules for each class.762

More specifically, each individual consists of three functions,763

where one of them is a discriminating function of attributes764

relating to the workload of a machine that determines which of765

the two dispatching rules, encoded by the other two (priority)766

functions, to apply. The best rule sets evolved by these hyper-767

heuristics are generally shown to outperform single benchmark768

rules. However, the results of the study by Nguyen et al. [50],769

who examined the performance of the three-function hyper-770

heuristic by Jakobović and Budin [26] more closely, show that771

the effectiveness among the evolved rule sets varies a lot more772

than that among the single rules evolved by a conventional773

hyper-heuristic. This indicates that the former struggles with774

the more complex search space. In summary, there appears775

to be some potential for future work on intelligent designs of776

hyper-heuristics for more complex scheduling environments.777

B. Attribute Selection and Construction778

As discussed in Section III-B, a main challenge in designing779

an effective hyper-heuristic is to provide it with all the relevant780

problem attributes while excluding any redundant or irrele-781

vant attributes. Otherwise, the search space could be either782

too restrictive or unnecessarily large, which both hinder the783

hyper-heuristic in its ability to generate effective heuristics.784

A few studies have performed some analysis of the best785

evolved heuristics in order to identify important attributes.786

Branke et al. [52] leaved out each of the attributes present in 787

the priority functions of their evolved dispatching rules one- 788

by-one and examine the performance of these rules without the 789

respective attribute. Their analysis shows that some attributes, 790

specifically, those that also appear in the most effective rules 791

from the literature, are substantially more important for the 792

performance of the evolved rules than others. Eguchi et al. [41] 793

examined the first-order correlation between attribute values 794

and priority values (applying the best evolved dispatching rule) 795

to determine the relevance of attributes, and eliminate ineffec- 796

tive attributes in this way. Nguyen et al. [49] conducted a 797

high-level analysis of the occurrence frequency of attributes 798

in the priority functions of the best dispatching rules evolved. 799

They find that the relevance of attributes is problem-specific 800

to some extent though some seem to be generally more impor- 801

tant than others. This highlights a major drawback of any 802

post-generation analysis, which is that the gained insights may 803

only be applicable to the given problem (class), for which an 804

effective heuristic has already been generated, and therefore, 805

be of limited value. Instead, future hyper-heuristics should 806

be designed to perform the tasks of selecting and construct- 807

ing suitable attributes automatically and simultaneously to the 808

optimization. 809

C. Interpretability and Trust 810

The interpretability of evolved heuristics is a crucial aspect 811

to gain the trust of users, i.e., operators or managers, par- 812

ticularly since hyper-heuristics are black box optimizers. 813

Unfortunately, there is some evidence that more complex 814

scheduling environments (for which the use of hyper-heuristics 815

is most promising) often require heuristics of a certain com- 816

plexity so that simply choosing an easy-to-interpret representa- 817

tion will result in heuristics of comparatively low quality [52]. 818

On the other hand, it may be possible to allow for open- 819

ended evolution and still search for the simplest representation 820

of a well-performing heuristic, or to generate good tradeoffs 821

between quality and interpretability, by means of multiobjec- 822

tive methods, with heuristic complexity being one objective to 823

be minimized. Online rule simplification techniques [89]–[91] 824

can also be applied to improve the readability of evolved 825

heuristics. 826

In many cases, it may be possible to simplify heuristics after 827

they have been generated without significantly compromis- 828

ing their performance. This is particularly true for heuristics 829

evolved on the basis of a grammar-based representation, 830

which typically contain redundant components, e.g., if-then- 831

else operators where the condition is always true or false. The 832

following simplication, these heuristics may then be analyzed 833

manually and linked to some human-designed heuristics to 834

facilitate interpretation [25], [27], [49], [56], [66]. However, 835

fully understanding evolved heuristics is still a challenging 836

task, especially when dealing with complex environments, 837

which stresses the need for some methodological support. 838

In the literature, a few tools and methods to understand 839

the behavior of scheduling heuristics, specifically dispatching 840

rules, have been developed and used. Branke et al. [52] ana- 841

lyzed dispatching rules by visualizing their priority indices 842

IE
EE

Pr
oo
f

BRANKE et al.: AUTOMATED DESIGN OF PRODUCTION SCHEDULING HEURISTICS: A REVIEW 11

as functions of the attributes they incorporate. Clearly, such843

a visualization is only possible for a very limited number of844

attributes. Branke and Pickardt [92] proposed a method that845

identifies weaknesses in the decision logic of a given dis-846

patching rule. All in all, future research on hyper-heuristics847

should place more emphasis on the issue of interpretability of848

heuristics and controlling or reducing their complexity.849

D. Comparison of Algorithms850

In order to give recommendations on when it is ben-851

eficial to use a hyper-heuristic and how to design it,852

extensive and meaningful performance comparisons of853

evolved heuristics with more sophisticated (global) solu-854

tion algorithms as well as between different hyper-855

heuristics are needed. So far, such comparisons have856

been rather limited (see [28], [32], [33], [45], [49], [56] and857

[29], [43], [45], [49], [52], respectively). Intuitively, hyper-858

heuristic approaches have strengths compared to global opti-859

mization approaches in particular in dynamic and stochastic860

environments where a quick reaction is important. But as861

observed in [93], they also become more competitive as862

the problem size (and thus the search space for the global863

optimizer) increases.864

One reason for the limited number of comparisons may be865

that hyper-heuristics possess several properties that make a fair866

comparison particularly difficult. For example, not only are the867

hyper-heuristics stochastic algorithms with many parameters868

to tune, but also is the evaluation function often a stochas-869

tic simulation, resulting in stochastic fitness values. Also, the870

running time for the simulations can be quite substantial, and,871

to make things worse, the running time to evaluate a particu-872

lar dispatching rule strongly depends on the rule itself, as the873

time to calculate the priority value and the number of jobs874

in the system depends on the rule itself. This implies that a875

comparison of hyper-heuristics based on the same number of876

function evaluations has limited validity.877

Irrespective of the challenges faced, an important pre-878

requisite for systematic algorithm comparisons is the avail-879

ability of suitable benchmark problems and algorithms. For880

reusable heuristics, it is further important to clearly dis-881

tinguish between training and test problem instances—the882

hyper-heuristic may use the training instances during opti-883

mization, while the generated heuristics have to be tested884

on a separate, previously unseen set of test instances. While885

libraries exist for static, deterministic scheduling problem886

instances, e.g., the OR-Library [94] (which has also been887

used to test hyper-heuristics [33], [50]), the most promising888

applications for hyper-heuristics seem to be in the area of889

dynamic, stochastic problems, which are much more diffi-890

cult to define. A possible benchmark are the dynamic job and891

flow shop problems designed by Rajendran and Holthaus [95]892

and Holthaus and Rajendran [96] for the purpose of compar-893

ing dispatching rules from the literature. We have used these894

problems in several hyper-heuristic studies [44], [51]–[53],895

and have published some results online [97]. Still, especially896

for more complex dynamic scheduling problems, the publica-897

tion of entire simulators (see jasima [97]) would greatly help898

replicability and facilitate fair comparisons. Also, the gener- 899

ated heuristics should be published in addition to the obtained 900

results, ideally in a format that can be directly plugged into a 901

simulator. 902

E. Computational Time 903

A major drawback of hyper-heuristics based on unsuper- 904

vised learning is their high computational requirements. Even 905

though the obtained heuristics typically can be executed very 906

fast, a run of the hyper-heuristic itself can last many hours, 907

especially if the evaluation of the many candidate heuris- 908

tics, evolved during the search, involves extensive simulation 909

runs. Measures to reduce the computational time of unsuper- 910

vised hyper-heuristics should consequently focus on the fitness 911

evaluations, which usually take up the most time by far. 912

Some approaches have been proposed to reduce the time 913

spent on evaluations. References [44], [52], and [65] equipped 914

their hyper-heuristic with a mechanism that monitors the num- 915

ber of jobs in the shop to detect heuristics that cause an 916

unstable system (see Section III-E2) and terminates the eval- 917

uation of heuristics once a preset threshold value is exceeded. 918

This idea could be extended to save time on the evaluation 919

of other inferior candidate heuristics by monitoring similar 920

values, e.g., the objective value after a predefined number of 921

completed jobs. Branke et al. [52] suggested a duplicate detec- 922

tion technique to avoid evaluating the same candidate heuristic 923

twice. Thereby, two priority functions are considered equiv- 924

alent if they provide the same ranking on a set of randomly 925

generated “dummy” operations. Hildebrandt and Branke [53] 926

investigated the use of surrogate models to approximate the 927

fitness of candidate heuristics, i.e., dispatching rules, in a GP 928

hyper-heuristic. By employing a distance measure based on 929

the behaviors of rules, the proposed surrogate-supported GP 930

hyper-heuristic can reduce the computational cost and improve 931

the convergence speed, which indicates that the development 932

of surrogate models is a promising direction for future work. 933

As previously discussed, another aspect that influences the 934

computational time is the complexity of candidate heuristics. 935

It is well-known that optimization algorithms that operate on 936

a variable-length grammar-based representation, such as GP, 937

are liable to bloating [98], i.e., they gradually evolve larger 938

and more complex individuals that are not necessarily better, 939

but require more time to be evaluated. Thus, controlling or 940

reducing the complexity of the heuristics that are evolved is 941

also important for efficiency reasons, and the development of 942

effective bloating control [99], [100] and online program sim- 943

plication techniques [89]–[91] should also be of concern to 944

hyper-heuristic research in the future. 945

F. Overfitting and Robustness 946

Given the high computational requirements of unsuper- 947

vised hyper-heuristics, it is highly desirable that the resulting 948

heuristics are reusable. However, like other forms of machine 949

learning, hyper-heuristics carry the risk of generating heuris- 950

tics that overfit the problem instances used in the training 951

stage and perform poorly on all other instances, limiting their 952

reusability. In fact, overfitting has been observed in connection 953

IE
EE

Pr
oo
f

12 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

with hyper-heuristics by several researchers, in particular when954

more complex representations [40], [49] and/or small sets of955

training instances [33] are used. Hence, this issue should be956

taken into account when designing a hyper-heuristic.957

A concept closely related to overfitting is that of the958

robustness of heuristics, i.e., their ability to cope with unfore-959

seen changes in the scheduling environment. Clearly, if the960

performance of the heuristics evolved was to strongly dete-961

riorate in the event of a minor change, e.g., in the job962

arrival pattern, this would question the practicality of the963

approach. So far, a few studies have examined the robust-964

ness of dispatching rules evolved by various hyper-heuristics.965

Their results can be summarized in that evolved rules show966

to be reasonably robust, including to changes in the num-967

ber of machines [44], processing time distribution [44], [51],968

job arrival pattern [44], [65], shop utilization [51], [52], [65],969

and due date setting [51], [65]. These studies can be fur-970

ther extended, e.g., by examining the limits of the robustness971

of evolved heuristics, i.e., when they become worse than972

benchmark heuristics. On the other hand, if the changes973

to the scheduling environment are more pronounced, there974

is always the option to simply rerun the hyper-heuristic to975

generate a new heuristic for the altered problem. How to976

determine the point at which rerunning the hyper-heuristic977

becomes beneficial is another challenging question to be978

investigated.979

V. CONCLUSION980

In recent years, hyper-heuristics have demonstrated their981

ability to automatically generate very competitive heuris-982

tics for a wide range of problems. Because hyper-heuristics983

generate heuristics automatically, it becomes feasible to tai-984

lor heuristics to the specific production environment, and to985

change them quickly whenever the environment changes. In986

this sense, hyper-heuristics have the potential to revolutionize987

production scheduling as they allow problem-specific heuris-988

tics to be applied successfully in settings where the traditional989

way of a human expert designing heuristics would be too990

expensive, or simply too time consuming.991

This paper constitutes the first comprehensive review992

of hyper-heuristics for the automated design of produc-993

tion scheduling heuristics, providing a simple taxonomy and994

focussing on key design choices such as the learning method,995

attributes, representation, and fitness evaluation. Moreover, a996

number of the issues and challenges that should be addressed997

in the future have been discussed, including the generation998

of rule sets, algorithm comparison, interpretability of the999

resulting heuristics, computational time, and overfitting and1000

robustness.1001

The review is aimed for researchers as well as practition-1002

ers. Researchers who aim to further advance the technique1003

of hyper-heuristic scheduling are provided with a compre-1004

hensive review of the state-of-the-art and a discussion of1005

the open issues suitable for future work. Also, we have1006

established a website that may serve as a starting point for1007

future algorithm comparisons on dynamic, stochastic bench-1008

mark problems. Practitioners in scheduling, on the other hand,1009

can use this paper to compose a suitable hyper-heuristic and 1010

make the appropriate design choices for their particular appli- 1011

cation. This paper contains guidelines, for example, on how 1012

to select attributes, what fitness function to choose, and what 1013

representation might be the most appropriate. 1014

Currently, the vast majority of papers fall into the category 1015

of unsupervised learning with open-ended grammar-based 1016

evolution. Clearly, some of the less explored areas may deserve 1017

more attention, and the work reviewed here may benefit from 1018

cross-fertilization also with other hyper-heuristic concepts, 1019

such as hyper-heuristics for heuristic selection [3]. Whereas 1020

the approaches to select dispatching rules mostly use machine 1021

learning algorithms such as artificial neural networks, deci- 1022

sion trees or support vector machines, heuristic generation 1023

approaches mostly apply heuristic search methods such as EAs 1024

or tabu search, and so far there is very little overlap between 1025

the two areas. A first example that combines heuristic gener- 1026

ation and heuristic selection (but both based on EAs) can be 1027

found in [65]. Another promising direction may be to auto- 1028

matically gear metaheuristics to a particular problem domain, 1029

such as in [101]. 1030

Finally, our review has focussed on the generation of 1031

reusable heuristics for production scheduling. The research in 1032

this area may benefit from ideas developed for hyper-heuristics 1033

in related problem domains like timetabling [16], [17] or 1034

project scheduling [20]. Given their potential and the various 1035

open problems, research on hyper-heuristics for the design of 1036

production scheduling heuristics is likely to continue yet for 1037

some time. 1038

REFERENCES 1039

[1] M. L. Pinedo, Scheduling: Theory, Algorithms, and Systems, 3rd ed. 1040

New York, NY, USA: Springer, 2008. 1041

[2] E. K. Burke et al., “A classification of hyper-heuristic approaches,” 1042

in Handbook of Metaheuristics (International Series in Operations 1043

Research & Management Science), vol. 146, 2nd ed., M. Gendreau and 1044

J.-Y. Potvin, Eds. New York, NY, USA: Springer, 2010, pp. 449–468. 1045

[3] E. K. Burke et al., “Hyper-heuristics: A survey of the state of the art,” 1046

J. Oper. Res. Soc., vol. 64, no. 12, pp. 1695–1724, 2013. 1047

[4] H. Fisher and G. L. Thompson, “Probabilistic learning combinations of 1048

local job-shop scheduling rules,” in Industrial Scheduling, J. F. Muth 1049

and G. L. Thompson, Eds. Englewood Cliffs, NJ, USA: Prentice-Hall, 1050

1963, pp. 225–251. 1051

[5] R. H. Storer, S. D. Wu, and R. Vaccari, “New search spaces for 1052

sequencing problems with application to job shop scheduling,” Manage. 1053

Sci., vol. 38, no. 10, pp. 1495–1509, 1992. 1054

[6] U. Dorndorf and E. Pesch, “Evolution based learning in a job shop 1055

scheduling environment,” Comput. Oper. Res., vol. 22, no. 1, pp. 25–40, 1056

1995. 1057

[7] M. J. Shaw, “A pattern-directed approach to flexible manufactur- 1058

ing: A framework for intelligent scheduling, learning, and control,” 1059

Int. J. Flex. Manuf. Syst., vol. 2, no. 2, pp. 121–144, 1989. 1060

[8] S. Nakasuka and T. Yoshida, “Dynamic scheduling system utilizing 1061

machine learning as a knowledge acquisition tool,” Int. J. Prod. Res., 1062

vol. 30, no. 2, pp. 411–431, 1992. 1063

[9] W. Mouelhi-Chibani and H. Pierreval, “Training a neural network to 1064

select dispatching rules in real time,” Comput. Ind. Eng., vol. 58, no. 2, 1065

pp. 249–256, 2010. 1066

[10] R. Kumar, A. H. Joshi, K. K. Banka, and P. I. Rockett, “Evolution of 1067

hyperheuristics for the biobjective 0/1 knapsack problem by multiob- 1068

jective genetic programming,” in Proc. 10th Annu. Conf. Genet. Evol. 1069

Comput. (GECCO), Atlanta, GA, USA, 2008, pp. 1227–1234. 1070

[11] E. Özcan and A. J. Parkes, “Policy matrix evolution for generation of 1071

heuristics,” in Proc. 13th Annu. Conf. Genet. Evol. Comput. (GECCO), 1072

Dublin, Ireland, 2011, pp. 2011–2018. 1073

IE
EE

Pr
oo
f

BRANKE et al.: AUTOMATED DESIGN OF PRODUCTION SCHEDULING HEURISTICS: A REVIEW 13

[12] E. K. Burke, M. R. Hyde, G. Kendall, and J. Woodward, “Automating1074

the packing heuristic design process with genetic programming,”1075

Evol. Comput., vol. 20, no. 1, pp. 63–89, 2012.1076

[13] M. Oltean and D. Dumitrescu, “Evolving TSP heuristics using multi1077

expression programming,” in Computational Science—ICCS (LNCS1078

3037), M. Bubak, G. D. van Albada, P. M. A. Sloot, and J. Dongarra,1079

Eds. Berlin, Germany: Springer, 2004, pp. 670–673.1080

[14] A. Beham, M. Kofler, S. Wagner, and M. Affenzeller, “Agent-based1081

simulation of dispatching rules in dynamic pickup and delivery prob-1082

lems,” in Proc. 2nd Int. Symp. Logist. Ind. Informat., Linz, Austria,1083

2009, pp. 1–6.1084

[15] S. Vonolfen, A. Beham, M. Kommenda, and M. Affenzeller, “Structural1085

synthesis of dispatching rules for dynamic dial-a-ride problems,”1086

in Computer Aided Systems Theory—EUROCAST (LNCS 8111),1087

R. Moreno-Díaz, F. Pichler, and A. Quesada-Arencibia, Eds. Berlin,1088

Germany: Springer, 2013, pp. 276–283.1089

[16] M. Bader-El-Den, R. Poli, and S. Fatima, “Evolving timetabling1090

heuristics using a grammar-based genetic programming hyper-heuristic1091

framework,” Memet. Comput., vol. 1, no. 3, pp. 205–219, 2009.1092

[17] N. Pillay, “Evolving hyper-heuristics for the uncapacitated examination1093

timetabling problem,” J. Oper. Res. Soc., vol. 63, no. 1, pp. 47–58,1094

2012.1095

[18] V. H. L. Cheng, L. S. Crawford, and P. K. Menon, “Air traffic control1096

using genetic search techniques,” in Proc. IEEE Int. Conf. Control1097

Appl., vol. 1. Kohala Coast, HI, USA, 1999, pp. 249–254.1098

[19] J. V. Hansen, “Genetic search methods in air traffic control,” Comput.1099

Oper. Res., vol. 31, no. 3, pp. 445–459, 2004.1100

[20] T. Frankola, M. Golub, and D. Jakobovic, “Evolutionary algorithms for1101

the resource constrained scheduling problem,” in Proc. 30th Int. Conf.1102

Inf. Technol. Interf. (ITI), Dubrovnik, Croatia, 2008, pp. 715–722.1103

[21] A. El-Bouri, S. Balakrishnan, and N. Popplewell, “Sequencing jobs1104

on a single machine: A neural network approach,” Eur. J. Oper. Res.,1105

vol. 126, no. 3, pp. 474–490, 2000.1106

[22] C. Dimopoulos and A. M. S. Zalzala, “Investigating the use of genetic1107

programming for a classic one-machine scheduling problem,” Adv. Eng.1108

Softw., vol. 32, no. 6, pp. 489–498, 2001.1109

[23] W.-J. Yin, M. Liu, and C. Wu, “Learning single-machine scheduling1110

heuristics subject to machine breakdowns with genetic programming,”1111

in Proc. Congr. Evol. Comput. (CEC), vol. 2. Canberra, ACT, Australia,1112

2003, pp. 1050–1055.1113

[24] X. Li and S. Olafsson, “Discovering dispatching rules using data1114

mining,” J. Schedul., vol. 8, no. 6, pp. 515–527, 2005.1115

[25] C. D. Geiger, R. Uzsoy, and H. Aytuğ, “Rapid modeling and discov-1116

ery of priority dispatching rules: An autonomous learning approach,”1117

J. Schedul., vol. 9, no. 1, pp. 7–34, 2006.1118

[26] D. Jakobović and L. Budin, “Dynamic scheduling with genetic1119

programming,” in Genetic Programming (LNCS 3905), P. Collet,1120

M. Tomassini, M. Ebner, S. Gustafson, and A. Ekárt, Eds. Berlin,1121

Germany: Springer, 2006, pp. 73–84.1122

[27] C. D. Geiger and R. Uzsoy, “Learning effective dispatching rules1123

for batch processor scheduling,” Int. J. Prod. Res., vol. 46, no. 6,1124

pp. 1431–1454, 2008.1125

[28] M. Kofler, S. Wagner, A. Beham, G. Kronberger, and M. Affenzeller,1126

“Priority rule generation with a genetic algorithm to minimize1127

sequence dependent setup costs,” in Computer Aided Systems1128

Theory—EUROCAST (LNCS 5717), R. Moreno-Díaz, F. Pichler,1129

and A. Quesada-Arencibia, Eds. Berlin, Germany: Springer, 2009,1130

pp. 817–824.1131

[29] L. Nie, X. Shao, L. Gao, and W. Li, “Evolving scheduling rules with1132

gene expression programming for dynamic single-machine scheduling1133

problems,” Int. J. Adv. Manuf. Technol., vol. 50, nos. 5–8, pp. 729–747,1134

2010.1135

[30] S. Olafsson and X. Li, “Learning effective new single machine dis-1136

patching rules from optimal scheduling data,” Int. J. Prod. Econ.,1137

vol. 128, no. 1, pp. 118–126, 2010.1138

[31] D. Jakobović and K. Marasović, “Evolving priority scheduling heuris-1139

tics with genetic programming,” Appl. Soft Comput., vol. 12, no. 9,1140

pp. 2781–2789, 2012.1141

[32] S. Nguyen, M. Zhang, M. Johnston, and K. C. Tan, “Learning reusable1142

initial solutions for multi-objective order acceptance and scheduling1143

problems with genetic programming,” in Genetic Programming (LNCS1144

7831), K. Krawiec, A. Moraglio, T. Hu, A. Ş. Etaner-Uyar, and B. Hu,1145

Eds. Berlin, Germany: Springer, 2013, pp. 157–168.1146

[33] J. Park, S. Nguyen, M. Zhang, and M. Johnston, “Genetic program-1147

ming for order acceptance and scheduling,” in Proc. IEEE Congr. Evol.1148

Comput. (CEC), Cancún, Mexico, 2013, pp. 1005–1012.1149

[34] D. Jakobović, L. Jelenković, and L. Budin, “Genetic programming 1150

heuristics for multiple machine scheduling,” in Genetic Programming 1151

(LNCS 4445), M. Ebner, M. O’Neill, A. Ekárt, L. Vanneschi, 1152

and A. I. Esparcia-Alcázar, Eds. Berlin, Germany: Springer, 2007, 1153

pp. 321–330. 1154

[35] J. C. Hershauer and R. J. Ebert, “Search and simulation selection of a 1155

job-shop sequencing rule,” Manage. Sci., vol. 21, no. 7, pp. 833–843, 1156

1975. 1157

[36] P. J. O’Grady and C. Harrison, “Search-based job shop scheduling and 1158

sequencing: Extensions to the search sequencing rule,” Math. Comput. 1159

Model., vol. 13, no. 3, pp. 13–27, 1990. 1160

[37] L. Atlan, J. Bonnet, and M. Naillon, “Learning distributed reactive 1161

strategies by genetic programming for the general job shop problem,” 1162

in Proc. 7th Florida Artif. Intell. Res. Symp., Pensacola, FL, USA, 1163

1994, pp. 1–11. 1164

[38] T. Eguchi, F. Oba, and T. Hirai, “A neural network approach to dynamic 1165

job shop scheduling,” in Global Production Management (IFIP— 1166

The International Federation for Information Processing), vol. 24, 1167

K. Mertins, O. Krause, and B. Schallock, Eds. New York, NY, USA: 1168

Springer, 1999, pp. 152–159. 1169

[39] D. A. Koonce and S.-C. Tsai, “Using data mining to find patterns in 1170

genetic algorithm solutions to a job shop schedule,” Comput. Ind. Eng., 1171

vol. 38, no. 3, pp. 361–374, 2000. 1172

[40] K. Miyashita, “Job-shop scheduling with genetic programming,” in 1173

Proc. Genet. Evol. Comput. Conf. (GECCO), Las Vegas, NV, USA, 1174

2000, pp. 505–512. 1175

[41] T. Eguchi, F. Oba, and S. Toyooka, “A robust scheduling rule using 1176

a neural network in dynamically changing job-shop environments,” 1177

Int. J. Manuf. Technol. Manage., vol. 14, nos. 3–4, pp. 266–288, 1178

2008. 1179

[42] G. R. Weckman, C. V. Ganduri, and D. A. Koonce, “A neural network 1180

job-shop scheduler,” J. Intell. Manuf., vol. 19, no. 2, pp. 191–201, 2008. 1181

[43] M. Kofler, A. Beham, S. Wagner, and M. Affenzeller, “Evaluation of 1182

dispatching strategies for the optimization of a real-world production 1183

plant,” in Proc. 2nd Int. Symp. Logist. Ind. Informat., Linz, Austria, 1184

2009, pp. 25–30. 1185

[44] T. Hildebrandt, J. Heger, and B. Scholz-Reiter, “Towards improved 1186

dispatching rules for complex shop floor scenarios—A genetic pro- 1187

gramming approach,” in Proc. 12th Annu. Conf. Genet. Evol. Comput. 1188

(GECCO), Portland, OR, USA, 2010, pp. 257–264. 1189

[45] A. M. Kuczapski, M. V. Micea, L. A. Maniu, and V. I. Cretu, “Efficient 1190

generation of near optimal initial populations to enhance genetic algo- 1191

rithms for job-shop scheduling,” Inf. Technol. Control, vol. 39, no. 1, 1192

pp. 32–37, 2010. 1193

[46] H. Ingimundardottir and T. P. Runarsson, “Supervised learning lin- 1194

ear priority dispatch rules for job-shop scheduling,” in Learning and 1195

Intelligent Optimization (LNCS 6683), C. A. C. Coello, Ed. Berlin, 1196

Germany: Springer, 2011, pp. 263–277. 1197

[47] M. Kapanoglu and M. Alikalfa, “Learning IF–THEN priority rules for 1198

dynamic job shops using genetic algorithms,” Robot. Comput.-Integr. 1199

Manuf., vol. 27, no. 1, pp. 47–55, 2011. 1200

[48] L. Nie, L. Gao, P. Li, and L. Zhang, “Application of gene expres- 1201

sion programming on dynamic job shop scheduling problem,” in Proc. 1202

15th Int. Conf. Comput. Support. Cooper. Work Design, Lausanne, 1203

Switzerland, 2011, pp. 291–295. 1204

[49] S. Nguyen, M. Zhang, M. Johnston, and K. C. Tan, “A computational 1205

study of representations in genetic programming to evolve dispatching 1206

rules for the job shop scheduling problem,” IEEE Trans. Evol. Comput., 1207

vol. 17, no. 5, pp. 621–639, Oct. 2013. 1208

[50] S. Nguyen, M. Zhang, M. Johnston, and K. Tan, “Learning iterative 1209

dispatching rules for job shop scheduling with genetic programming,” 1210

Int. J. Adv. Manuf. Technol., vol. 67, nos. 1–4, pp. 85–100, 2013. 1211

[51] S. Nguyen, M. Zhang, M. Johnston, and K. C. Tan, “Dynamic multi- 1212

objective job shop scheduling: A genetic programming approach,” 1213

in Automated Scheduling and Planning (Studies in Computational 1214

Intelligence), vol. 505, A. Ş. Etaner-Uyar, E. Özcan, and N. Urquhart, 1215

Eds. Berlin, Germany: Springer, 2013, pp. 251–282. 1216

[52] J. Branke, T. Hildebrandt, and B. Scholz-Reiter, “Hyper-heuristic evo- 1217

lution of dispatching rules: A comparison of rule representations,” Evol. 1218

Comput., to be published. AQ11219

[53] T. Hildebrandt and J. Branke, “On using surrogates with genetic 1220

programming,” Evol. Comput., to be published. 1221

[54] R. Hunt, M. Johnston, and M. Zhang, “Evolving ‘less-myopic’ schedul- 1222

ing rules for dynamic job shop scheduling with genetic programming,” 1223

in Proc. Conf. Genet. Evol. Comput. (GECCO), Vancouver, BC, 1224

Canada, 2014, pp. 927–934. 1225

sunguyen

sunguyen

IE
EE

Pr
oo
f

14 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

[55] R. Hunt, M. Johnston, and M. Zhang, “Evolving machine-specific dis-1226

patching rules for a two-machine job shop using genetic programming,”1227

in Proc. IEEE Congr. Evol. Comput. (CEC), Beijing, China, 2014,1228

pp. 618–625.1229

[56] S. Nguyen, M. Zhang, M. Johnston, and K. C. Tan, “Automatic design1230

of scheduling policies for dynamic multi-objective job shop scheduling1231

via cooperative coevolution genetic programming,” IEEE Trans. Evol.1232

Comput., vol. 18, no. 2, pp. 193–208, Apr. 2014.1233

[57] D. H. Baek, W. C. Yoon, and S. C. Park, “A spatial rule adaptation1234

procedure for reliable production control in a wafer fabrication system,”1235

Int. J. Prod. Res., vol. 36, no. 6, pp. 1475–1491, 1998.1236

[58] D. H. Baek and W. C. Yoon, “Co-evolutionary genetic algorithm for1237

multi-machine scheduling: Coping with high performance variability,”1238

Int. J. Prod. Res., vol. 40, no. 1, pp. 239–254, 2002.1239

[59] H. Tamaki, K. Sakakibara, H. Murao, and S. Kitamura, “Rule acqui-1240

sition for production scheduling: A genetics-based machine learning1241

approach to flexible shop scheduling,” in Proc. Annu. Conf. SICE,1242

vol. 3. Fukui, Japan, 2003, pp. 2762–2767.1243

[60] J. C. Tay and N. B. Ho, “Designing dispatching rules to minimize1244

total tardiness,” in Evolutionary Scheduling (Studies in Computational1245

Intelligence), vol. 49, K. P. Dahal, K. C. Tan, and P. I. Cowling, Eds.1246

Berlin, Germany: Springer, 2007, pp. 101–124.1247

[61] A. Beham, S. Winkler, S. Wagner, and M. Affenzeller, “A genetic1248

programming approach to solve scheduling problems with parallel sim-1249

ulation,” in Proc. IEEE Int. Parallel Distrib. Process. Symp., Miami,1250

FL, USA, 2008, pp. 1–5.1251

[62] J. C. Tay and N. B. Ho, “Evolving dispatching rules using genetic1252

programming for solving multi-objective flexible job-shop problems,”1253

Comput. Ind. Eng., vol. 54, no. 3, pp. 453–473, 2008.1254

[63] E. Pitzer, A. Beham, M. Affenzeller, H. Heiss, and M. Vorderwinkler,1255

“Production fine planning using a solution archive of priority rules,”1256

in Proc. 3rd IEEE Int. Symp. Logist. Ind. Informat., Budapest, Hungary,1257

2011, pp. 111–116.1258

[64] L. Nie, L. Gao, P. Li, and X. Li, “A GEP-based reactive scheduling1259

policies constructing approach for dynamic flexible job shop schedul-1260

ing problem with job release dates,” J. Intell. Manuf., vol. 24, no. 4,1261

pp. 763–774, 2013.1262

[65] C. W. Pickardt, T. Hildebrandt, J. Branke, J. Heger, and1263

B. Scholz-Reiter, “Evolutionary generation of dispatching rule sets for1264

complex dynamic scheduling problems,” Int. J. Prod. Econ., vol. 145,1265

no. 1, pp. 67–77, 2013.1266

[66] J. A. Vázquez-Rodríguez and G. Ochoa, “On the automatic discovery of1267

variants of the NEH procedure for flow shop scheduling using genetic1268

programming,” J. Oper. Res. Soc., vol. 62, no. 2, pp. 381–396, 2011.1269

[67] F. Mascia, M. López-Ibáñez, J. Dubois-Lacoste, and T. Stützle, “From1270

grammars to parameters: Automatic iterated greedy design for the per-1271

mutation flow-shop problem with weighted tardiness,” in Learning and1272

Intelligent Optimization (LNCS 7997), G. Nicosia and P. Pardalos, Eds.1273

Berlin, Germany: Springer, 2013, pp. 321–334.1274

[68] M. R. Garey, D. S. Johnson, and R. Sethi, “The complexity of flowshop1275

and jobshop scheduling,” Math. Oper. Res., vol. 1, no. 2, pp. 117–129,1276

1976.1277

[69] H. Aytug, M. A. Lawley, K. McKay, S. Mohan, and R. Uzsoy,1278

“Executing production schedules in the face of uncertainties: A review1279

and some future directions,” Eur. J. Oper. Res., vol. 161, no. 1,1280

pp. 86–110, 2005.1281

[70] M. E. Pfund, S. J. Mason, and J. W. Fowler, “Semiconductor manu-1282

facturing scheduling and dispatching: State of the art and survey of1283

needs,” in Handbook of Production Scheduling (International Series in1284

Operations Research & Management Science), vol. 89, J. W. Herrmann,1285

Ed. New York, NY, USA: Springer, 2006, pp. 213–241.1286

[71] V. Sels, N. Gheysen, and M. Vanhoucke, “A comparison of priority1287

rules for the job shop scheduling problem under different flow time-1288

and tardiness-related objective functions,” Int. J. Prod. Res., vol. 50,1289

no. 15, pp. 4255–4270, 2011.1290

[72] A. El-Bouri, “A cooperative dispatching approach for minimizing mean1291

tardiness in a dynamic flowshop,” Comput. Oper. Res., vol. 39, no. 7,1292

pp. 1305–1314, 2012.1293

[73] A. Otto and C. Otto, “How to design effective priority rules: Example of1294

simple assembly line balancing,” Comput. Ind. Eng., vol. 69, pp. 43–52,1295

Mar. 2014.1296

[74] M. Nawaz, E. E. Enscore, Jr., and I. Ham, “A heuristic algorithm1297

for the m-machine, n-job flow-shop sequencing problem,” Omega Int.1298

J. Manage. Sci., vol. 11, no. 1, pp. 91–95, 1983.1299

[75] E. J. Anderson and J. C. Nyirenda, “Two new rules to minimize tardi-1300

ness in a job shop,” Int. J. Prod. Res., vol. 28, no. 12, pp. 2277–2292,1301

1990.1302

[76] E. Kutanoglu and I. Sabuncuoglu, “An analysis of heuristics in a 1303

dynamic job shop with weighted tardiness objectives,” Int. J. Prod. 1304

Res., vol. 37, no. 1, pp. 165–187, 1999. 1305

[77] J. J. Kanet and X. Li, “A weighted modified due date rule for 1306

sequencing to minimize weighted tardiness,” J. Schedul., vol. 7, no. 4, 1307

pp. 261–276, 2004. 1308

[78] B. Giffler and G. L. Thompson, “Algorithms for solving production- 1309

scheduling problems,” Oper. Res., vol. 8, no. 4, pp. 487–503, 1960. 1310

[79] E. K. Burke, M. Hyde, G. Kendall, and J. Woodward, “Automatic 1311

heuristic generation with genetic programming: Evolving a jack-of- 1312

all-trades or a master of one,” in Proc. 9th Annu. Conf. Genet. Evol. 1313

Comput. (GECCO), London, U.K., 2007, pp. 1559–1565. 1314

[80] R. T. Barrett and S. Barman, “A SLAM II simulation study of a 1315

simplified flow shop,” Simulation, vol. 47, no. 5, pp. 181–189, 1986. 1316

[81] F. Mahmoodi, C. T. Mosier, and R. E. Guerin, “The effect of combining 1317

simple priority heuristics in flow-dominant shops,” Int. J. Prod. Res., 1318

vol. 34, no. 3, pp. 819–839, 1996. 1319

[82] H. Sarper and M. C. Henry, “Combinatorial evaluation of six dispatch- 1320

ing rules in a dynamic two-machine flow shop,” Omega Int. J. Manage. 1321

Sci., vol. 24, no. 1, pp. 73–81, 1996. 1322

[83] S. Barman, “Simple priority rule combinations: An approach to 1323

improve both flow time and tardiness,” Int. J. Prod. Res., vol. 35, no. 10, 1324

pp. 2857–2870, 1997. 1325

[84] N. Raman, F. B. Talbot, and R. V. Rachamadugu, “Due date based 1326

scheduling in a general flexible manufacturing system,” J. Oper. 1327

Manage., vol. 8, no. 2, pp. 115–132, 1989. 1328

[85] R. A. Ruben and F. Mahmoodi, “Lot splitting in unbalanced production 1329

systems,” Decis. Sci., vol. 29, no. 4, pp. 921–949, 1998. 1330

[86] J. A. C. Bokhorst, G. Nomden, and J. Slomp, “Performance evaluation 1331

of family-based dispatching in small manufacturing cells,” Int. J. Prod. 1332

Res., vol. 46, no. 22, pp. 6305–6321, 2008. 1333

[87] N. Ishii and J. J. Talavage, “A mixed dispatching rule approach in 1334

FMS scheduling,” Int. J. Flex. Manuf. Syst., vol. 6, no. 1, pp. 69–87, 1335

1994. 1336

[88] T. Yang, Y. Kuo, and C. Cho, “A genetic algorithms simula- 1337

tion approach for the multi-attribute combinatorial dispatching deci- 1338

sion problem,” Eur. J. Oper. Res., vol. 176, no. 3, pp. 1859–1873, 1339

2007. 1340

[89] P. Wong and M. Zhang, “Algebraic simplification of GP programs 1341

during evolution,” in Proc. 8th Annu. Conf. Genet. Evol. Comput. 1342

(GECCO), Seattle, WA, USA, 2006, pp. 927–934. 1343

[90] D. Kinzett, M. Johnston, and M. Zhang, “Numerical simplification for 1344

bloat control and analysis of building blocks in genetic programming,” 1345

Evol. Intell., vol. 2, no. 4, pp. 151–168, 2009. 1346

[91] M. Johnston, T. Liddle, and M. Zhang, “A relaxed approach to sim- 1347

plification in genetic programming,” in Genetic Programming (LNCS 1348

6021), A. I. Esparcia-Alcázar, A. Ekárt, S. Silva, S. Dignum, and 1349

A. Ş. Uyar, Eds. Berlin, Germany: Springer, 2010, pp. 110–121. 1350

[92] J. Branke and C. W. Pickardt, “Evolutionary search for difficult prob- 1351

lem instances to support the design of job shop dispatching rules,” 1352

Eur. J. Oper. Res., vol. 212, no. 1, pp. 22–32, 2011. 1353

[93] S. Nguyen, M. Zhang, and M. Johnston, “A sequential genetic program- 1354

ming method to learn forward construction heuristics for order accep- 1355

tance and scheduling,” in Proc. IEEE Congr. Evol. Comput. (CEC), 1356

Beijing, China, 2014, pp. 1824–1831. 1357

[94] J. E. Beasley, “OR-Library: Distributing test problems by electronic 1358

mail,” J. Oper. Res. Soc., vol. 41, no. 11, pp. 1069–1072, 1990. 1359

[95] C. Rajendran and O. Holthaus, “A comparative study of dispatching 1360

rules in dynamic flowshops and jobshops,” Eur. J. Oper. Res., vol. 116, 1361

no. 1, pp. 156–170, 1999. 1362

[96] O. Holthaus and C. Rajendran, “Efficient jobshop dispatching 1363

rules: Further developments,” Prod. Plan. Control, vol. 11, no. 2, 1364

pp. 171–178, 2000. 1365

[97] T. Hildebrandt. Jasima—An Efficient Java Simulator for Manufacturing 1366

and Logistics. [Online]. Available: http://code.google.com/p/jasima/ AQ21367

[98] J. R. Koza, Genetic Programming: On the Programming of Computers 1368

by Means of Natural Selection. Cambridge, MA, USA: MIT Press, 1369

1992. 1370

[99] S. Luke and L. Panait, “A comparison of bloat control methods for 1371

genetic programming,” Evol. Comput., vol. 14, no. 3, pp. 309–344, 1372

2006. 1373

[100] P. A. Whigham and G. Dick, “Implicitly controlling bloat in genetic 1374

programming,” IEEE Trans. Evol. Comput., vol. 14, no. 2, pp. 173–190, 1375

Apr. 2010. 1376

[101] M. Samorani and M. Laguna, “Data-mining-driven neighborhood 1377

search,” INFORMS J. Comput., vol. 24, no. 2, pp. 210–227, 2012. 1378

http://code.google.com/p/jasima/

IE
EE

Pr
oo
f

BRANKE et al.: AUTOMATED DESIGN OF PRODUCTION SCHEDULING HEURISTICS: A REVIEW 15

Jürgen Branken (M’99) received the Ph.D. degree1379

from University of Karlsruhe, Karlsruhe, Germany,1380

in 2000.1381

Since 1994, he has been an Active Researcher1382

of the area of nature-inspired optimization with1383

University of Karlsruhe. He is a Professor of1384

Operational Research and Systems with Warwick1385

Business School, University of Warwick, Coventry,1386

U.K. He has published over 150 articles in inter-1387

national journals and conferences on various topics1388

such as multiobjective optimization, handling of1389

uncertainty in optimization, dynamically changing optimization problems, and1390

the design of complex systems.1391

Prof. Branke is an Associate Editor of Evolutionary Computation Journal1392

and an Area Editor of Journal of Heuristics.1393

Su Nguyen (M’13) received the B.E. degree in1394

industrial and systems engineering from Ho Chi1395

Minh City University of Technology, Ho Chi Minh1396

City, Vietnam, in 2006; the M.E. degree in industrial1397

engineering and management from Asian Institute1398

of Technology (AIT), Bangkok, Thailand, in 2008;1399

and the Ph.D. degree in evolutionary computation1400

from Victoria University of Wellington (VUW),1401

Wellington, New Zealand, in 2013.1402

He was a Research Associate with the Department1403

of Industrial and Manufacturing Engineering, School1404

of Engineering and Technology, AIT. He is currently a Research Fellow with1405

the Evolutionary Computation Research Group, VUW. His research inter-1406

ests include evolutionary computation, discrete-event simulation, and their1407

applications in operations planning and scheduling.1408

Christoph W. Pickardt received the degree AQ3from 1409

Warwick Business AQ4School, University of Warwick, 1410

Coventry, U.K.; the M.Sc. degree in industrial 1411

engineering and management from University of 1412

Karlsruhe, Karlsruhe, Germany; the Master of 1413

Engineering degree from University of Auckland, 1414

Auckland, New Zealand; and the Ph.D. degree from 1415

Warwick Business School, University of Warwick, 1416

in 2014. 1417

He is an IT/SCM Consultant with Bayer Business 1418

Services, Leverkusen, Germany. His research inter- 1419

ests include metaheuristics, simulation optimization, and manufacturing 1420

logistics. 1421

Mengjie Zhang (M’04–SM’10) received the B.E. 1422

and M.E. degrees from the Artificial Intelligence 1423

Research Center, Agricultural University of Hebei, 1424

Baoding, China, in 1989 and 1992, respectively, and 1425

the Ph.D. degree in computer science AQ5from RMIT 1426

University, Melbourne, VIC, Australia, in 2000. 1427

Since 2000, he has been with Victoria University 1428

of Wellington, Wellington, New Zealand, where he 1429

is currently a Professor of Computer Science, the 1430

Head of Evolutionary Computation Research Group, 1431

and an Associate Dean (Research and Innovation) in 1432

the Faculty of Engineering. His research interests include evolutionary com- 1433

putation, particularly genetic programming, particle swarm optimization, and 1434

learning classifier systems with application areas of image analysis, multi- 1435

objective optimization, classification with unbalanced data, feature selection 1436

and reduction, and job shop scheduling. He has published over 350 academic 1437

papers in refereed international journals and conferences. He has supervised 1438

over 50 postgraduate research students. 1439

Prof. Zhang is an Associated Editor or an Editorial Board Member for five 1440

international journals, including IEEE TRANSACTIONS ON EVOLUTIONARY 1441

COMPUTATION and Evolutionary Computation Journal, and is a Reviewer 1442

for over 20 international journals. He is a Steering Committee Member and 1443

a Program Committee Member for over 80 international conferences. He is 1444

the Chair of the IEEE Computational Intelligence Society (CIS) Evolutionary 1445

Computation Technical Committee, a member of the IEEE CIS Intelligent 1446

Systems and Applications Technical Committee and the IEEE CIS Task 1447

Force of Hyper-Heuristics, the Vice-Chair of the IEEE CIS Task Force on 1448

Evolutionary Computer Vision and Image Processing and the IEEE CIS Task 1449

Force on Evolutionary Computation for Feature Selection and Construction, 1450

and the Founding Chair for the IEEE Computational Intelligence Chapter in 1451

New Zealand. 1452

View publication statsView publication stats

https://www.researchgate.net/publication/275713028

