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Abstract
In the Computer Vision and Pattern Recognition fields, image classification represents
an important, yet difficult, task to perform. The remarkable ability of the human visual
system, which relies on only one or a few instances to learn a completely new class or
an object of a class, is a challenge to build effective computer models to replicate this
ability. Recently, we have proposed two Genetic Programming (GP) based methods,
One-shot GP and Compound-GP, that aim to evolve a program for the task of binary
classification in images. The two methods are designed to use only one or a few in-
stances per class to evolve the model. In this study, we investigate these two methods
in terms of performance, robustness, and complexity of the evolved programs. Ten
data sets that vary in difficulty have been used to evaluate these two methods. We
also compare them with two other GP and six non-GP methods. The results show that
One-shot GP and Compound-GP outperform or achieve comparable results to other
competitor methods. Moreover, the features extracted by these two methods improve
the performance of other classifiers with handcrafted features and those extracted by
a recently developed GP-based method in most cases.
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1 Introduction

Image classification represents a cornerstone in a broad range of domains such as Com-
puter Vision and Pattern Recognition. Mainly, image classification aims at categorising
images into different groups based on their contents. This task has received a lot of
attention over the last few decades due to its importance and difficulty. Hence, a large
number of methods have been proposed in the literature that aim at tackling different
aspects of the image classification task. Some of those methods aim at addressing the
accuracy problem (Lu and Weng, 2007), whilst others try to speed-up the training pro-
cess (Fan et al., 2004). Moreover, some methods have been proposed to tackle different
variations that can occur on instances of the same group such as illumination, rotation,
and noise (Ojala et al., 2000; Guo et al., 2010).
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The majority of those methods were not designed to build a model using a limited
or small number of labelled instances. In other words, those methods were designed
based on the assumption of having an abundant (to some extent) number of instances in
order to build a model that can sufficiently generalise to unseen data. However, it is not
always easy, feasible, or even possible to acquire a large number of labelled instances.
Therefore, the limitation of having a few labelled instances to build or estimate the set
of parameters of a given model needs to be addressed.

Jain and Chandrasekaran (1982) have partially investigated the problem of build-
ing or training a model using a few instances. Later, Raudys and Jain (1991) have
studied this problem, and provided a list of recommendations and guidelines for prac-
titioners: (1) the design parameters should be carefully selected when the number of
instances is small, an example is the number of neighbours in the k-nearest neighbour
(kNN) algorithm; (2) using powerful machines (e.g. a computer with a large amount
of memory and a high processing speed), it is highly recommended to try a variety of
feature extraction and selection methods and test their impact on different classification
approaches; (3) in order to estimate the classification error, a sufficient number of in-
stances is required in the test set; (4) the use of distinct instances in the training and test
sets; (5) identifying and mitigating the problem of high error rate which can be due to
the large number of features, the small number of training instances, the complexity of
the model, inappropriate kernel width of nonparametric models, or the presence of the
outliers in the case of parametric models; and (6) for feature selection, special attention
should be given to selecting a good or the best subset of features.

Genetic Programming (GP) (Koza, 1992) is a well-known Evolutionary Computa-
tion (EC) algorithm inspired by the Darwinian principles of the natural selection and
the concept of “survival of the fittest”. GP aims at automatically exploring the solu-
tion space in order to evolve a computer program (solution) for a user-defined problem
(Koza, 1992). GP has been widely used to tackle the problems of image classification
(Smart and Zhang, 2003; Zhang and Smart, 2004; Zhang and Johnston, 2009; Downey
and Zhang, 2009; Atkins et al., 2011; Abdulhamid et al., 2011; Al-Sahaf et al., 2014b,a),
object detection (Zhang and Ciesielski, 1999; Zhang et al., 2004; Liddle et al., 2010),
edge detection (Fu et al., 2011, 2012), and image descriptor (Perez and Olague, 2009;
Hindmarsh et al., 2012; Olague and Trujillo, 2011; Albukhanajer et al., 2014). A large
number of the GP-based methods operate in two stages where feature detection and
extraction is performed first, and evolving a classifier takes place second. The process
of designing a good set of features requires background knowledge from the domain.
For example, discriminating between images of benign and malignant tumor cells needs
to be carried out under the guidance of an expert in this domain. Other GP-based
methods are capable of performing image classification using raw pixel values as input
rather than pre-extracted features (Song and Ciesielski, 2004; Al-Sahaf et al., 2012b).
However, neither the methods of the first category, nor those of the second category
were designed to evolve a classifier using a few labelled instances.

Recently, we have proposed two GP-based methods for the task of binary classi-
fication in images namely One-shot GP (Al-Sahaf et al., 2013b) and Compound-GP (Al-
Sahaf et al., 2013a). Those two methods use only one or a few labelled instances of each
class to evolve computer programs that are capable of generalising to the unseen data.

To tackle the problem of having a limited number of labelled instances, some meth-
ods based on the concepts of learning by knowledge transfer have been proposed and this
approach has been termed as one-shot learning. The aim is to use a large number of
available instances of a related domain (the source domain) to the target domain, and
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only one or a few labelled instances per class of the target domain, to build a model
(Fei-Fei et al., 2006; Ishikawa and Mogi, 2011; Salakhutdinov et al., 2012).

Fei-Fei et al. (2006) proposed a Bayesian-based model for the problem of object
recognition. In their system, general knowledge is extracted from previously learnt
groups of objects using abundant instances, which is then used to form a prior probabil-
ity density function. A posterior density is then produced by updating this knowledge
given a small set of training instances in the target domain. The system was tested
using a data set consisting of instances that fall into 101 different classes, and com-
pared against two commonly used methods: maximum likelihood (ML), and maximum a
posteriori (MAP). The results of their experiments show that their system significantly
outperformed the other methods when the number of training instances is relatively
small. Moreover, they investigated the effectiveness of using the knowledge extracted
by their method on the performances of the two other methods. The results of the in-
vestigation suggested that a better performance has been achieved when both of the
ML and MAP methods used the knowledge extracted by the new method.

Deformation matrices were used by Miller et al. (2000) for the problem of object
classification. The system is trained using a large number of instances of a character
(e.g. letter “A”) and then try to make the system learn a different object (e.g. number
“4”) using a single (or few) instance. To achieve this goal, two learning scenarios were
combined under a single framework: adopting the transfer learning by model parameters
approach in order to use a reduced number of instances in the target domain; and fre-
quently updating the system as more training images become available. The method
is tested on binary image classification using two different training set sizes: 1000 in-
stances; and only one instance. The results of their experiment show that, unlike other
comparative methods, the performance did not drop significantly after reducing the
number of training instances of the target domain from 1, 000 to 1.

Rodner and Denzler (2011) have modified the Randomised Decision Trees (RDF)
(Liu et al., 2005; Dhurandhar and Dobra, 2008) learning algorithm in order to build
a classifier using very few instances. Similar object classes are used to learn a prior
distribution, which is then reused (transferred) to maximise a posteriori estimation of
the model parameters. Evaluating the method on three data sets shows that a signifi-
cant performance improvement have been achieved over RDF classifier of Geurts et al.
(2006).

The task of detecting and extracting a set of good features is usually carried out by
a domain-expert who in many cases is either hard to find or can be very costly. Feature
descriptors or image descriptors play an essential role to detect and extract informative
features such as shape, texture, scale or size, rotation, and colour (Szeliski, 2010).

The local binary patterns (LBP) (Ojala et al., 1996) are one of the well-known fea-
ture descriptors. This descriptor represents an essential part of the One-shot GP and
Compound-GP methods. Therefore, LBP is discussed more in the next section.

Goals

Motivated by the remarkable ability of the human’s brain to learn a new object from
only one or a few examples, two new GP-based methods have been developed for the
task of binary classification in image. We are precisely interested in addressing the
following objectives.

• Comparing the performances of those two methods against both GP and non-GP
methods using domain-specific handcrafted features;
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• Investigating the capability of the evolved programs by those two methods to han-
dle the rotation variation;
• Studying the goodness of the detected and extracted features by the evolved pro-

grams by those two methods via testing the impact of these features on the perfor-
mance of different types of classifiers;
• Investigating the efficiency of the two methods by analysing the average time re-

quired to evolve a program, average time to evaluate an instance, and the program
size; and
• Investigating the interpretability of the evolved programs by those two methods.

The rest of the paper is organised as follows. The concepts of LBP is reviewed
in Section 2. Section 3 describes the One-shot GP and Compound-GP methods. The
experiment settings, data sets, and baseline methods are discussed in Section 4. The re-
sults of the experiments are presented in Section 5. Section 6 provides an interpretation
of some programs that were evolved by the One-shot GP and Compound-GP methods.
Section 7 concludes this paper and recommends some future work directions.

2 Background

This section provides a brief introduction for the local binary patterns, which is a key
component of the One-shot GP and Compound-GP methods.

2.1 Local Binary Patterns

Motivated by the method of Wang and He (1990), Ojala et al. (1994) proposed a simple
dense feature descriptor called local binary patterns (LBP) that calculates a binary code
for each pixel of an image based on the intensity value of the neighbouring pixels.
Similar to any dense descriptor, LBP scans the image in a pixel-by-pixel basis, and a
code of a specific length is generated based on the variation in the intensity level of
equally spaced pixels located on the boundary of a circle centred on the current pixel.
This operator is formally defined as:

LBPP,R (xc, yc) =

P−1∑
p=0

s (vp − vc) 2p s(a) =

{
1 if a ≥ 0

0 otherwise
(1)

vp = I (xp, yp) (2)

xp = xc +R cos
(
2πp

/
P
)

(3)

yp = yc −R sin
(
2πp

/
P
)

(4)

where (xc, yc) are the coordinates of the central pixel of the current window, P is the
number of neighbouring pixels, R is the radius of the circle (distance between the cen-
tral pixel and any of the neighbouring pixels), and vp and vc are the intensity of the pth

neighbouring and central pixels respectively. The s(·) is a thresholding function that
returns 1 if the argument is positive or zero, and 0 otherwise. Originally, LBP was de-
signed to operate in a 3 × 3 window and denoted as LBP8,1; therefore, the resulting
binary code is of length 8 bits as demonstrated in Figure 1.

Despite the cost that results from scanning the image pixel-by-pixel, the LBP op-
erator has been shown to be a powerful feature descriptor in a large number of studies
in the Computer Vision and Pattern Recognition fields (Liu et al., 2012; Nguyen et al.,
2013; Yang and Chen, 2013). As this operator attracted a large number of researchers
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Figure 1: An example shows the required steps to generate the LBP code of a pixel.

Figure 2: Demonstration of the circular local neighbouring pixel with different P (num-
ber of neighbours) andR (radius) settings. From left to right, LBP8,1, LBP8,2, LBP16,2,
LBP8,3, and LBP16,3.

over the last decade, it has received a lot of attention and numerous variants have been
proposed (Pietikäinen et al., 2011), e.g., the size of the window, the method of thresh-
olding the neighbouring pixels, and the length of the resulting code. Figure 2 shows
five different LBP examples that vary in size (R) or number of neighbouring pixels (P ).

2.2 Uniform Local Binary Patterns

The introduction of uniform LBP, denoted asLBPu
P,R, represents a substantial restriction

of the basic LBP operator (Ojala et al., 1996, 2002). The LBP code is called uniform
when it has no more than two circular bitwise transforms, i.e., changing from 1 to 0 or
from 0 to 1, which is determined using Equation (5). For example, patterns 11100111,
00111100, 11111110, and 00001110 are uniform; whereas patterns 10010111, 11100101,
and 00011010 are not uniform.

LBPP,R (xc, yc) is


uniform

if
(
|s (vP−1 − vc)− s (v0 − vc)|

+
P−1∑
p=1
|s (vp − vc)− s (vp−1 − vc)|

)
≤ 2

non-uniform otherwise

(5)

Therefore, uniform patterns represent a subset of the overall space of an LBP code.
It has been observed that over 85% of the LBP codes of an image are uniform (Ojala
et al., 2002; Ahonen et al., 2006). There are two reasons to prefer uniform codes over
basic LBPs: (1) omitting non-uniform codes can significantly reduce the number of
possible patterns, which has large impact on reducing the length of the feature vector
(more details in the following subsection); and (2) a variety of texture primitives can
be detected using uniform codes such as line ends, edges, corners, and spots. Figure 3
presents some of these texture primitives, where 0 and 1 are these pixels having lower
and higher values than the center pixel respectively.

2.3 Local Binary Patterns Histogram

The generated LBP codes of an image are used to form a frequency or spectrum his-
togram (Ojala et al., 2002) known as local binary patterns histogram (LBPh

P,R). Each
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Figure 3: Some texture primitives that can be detected using uniform LBP codes.

bin of the LBPh
P,R accumulates the frequency of a single code. Therefore, the length

of the LBPh
P,R depends on the total number of codes that can be represented, i.e., 2P

where P represents the number of neighbouring pixels (i.e. number of bits in the code).
For example, if the LBP code is of length 8-bits and a unit radius (LBP8,1), then 28 dif-
ferent codes can be represented starting at 0 = 00000000 and ending at 255 = 11111111;
thus, the length of the LBPh

8,1 in this case is 256 bins. LBPh
P,R is formally defined as:

LBPh
P,R(b) =

∑M−1
i=1

∑N−1
j=1 δ (LBPP,R (xi, yj) , b) b = 0, 1, . . . , B − 1 (6)

where M and N are the width and height of the image respectively, (xi, yj) is the pixel
at the (i, j) coordinates, and b and B are the bth bin of the histogram and the total
number of bins respectively. The δ (x, y) function, returns 1 if x = y, and 0 otherwise.
The pixel at top-left corner of the image has the coordinates (0, 0), whilst the pixel at
the bottom-right corner of the image has the coordinates (M − 1, N − 1). Moreover, the
border pixels of the image are cropped to ensure that the sampling window does not
exceed the image boundaries.

The LBPh
P,R is a feature vector of an image. The histogram can be either global

(Chang et al., 2012) or a concatenation of local histograms (Ahonen et al., 2006; Tan
et al., 2006; Pietikäinen et al., 2011). The former approach produces one histogram
that consists of 2P bins for each image as shown in Figure 4(a). The latter generates a
number of sub-histograms that are computed from a specific (mostly non-overlapping)
regions of the image, and concatenate those histograms to form the final feature vector.
Therefore, the resulted feature vector of the second approach is of length G× 2P where
G is the number of regions as presented in Figure 4(b).

As mentioned earlier, omitting non-uniform codes has significant impact on the
length of the resulted feature vector. The 8-bits length code produces a histogram con-
sists of 256 bins; however, there will be only 58 bins if we consider only uniform codes
(more details in (Ojala et al., 2000)). In order to also take non-uniform in to consider-
ation, Ojala et al. (2002) have suggested to add an extra bin for all non-uniform codes.
Therefore, the total number of bins of a 8-bit length code is 59, which means around
76% shorter histogram than the original case (256-bin).

3 Proposed Methods

The structure of the One-shot GP and Compound-GP methods1, including the function
and terminal sets, and the main components are explained in this section. This sec-

1The initial versions of the two methods have been presented in (Al-Sahaf et al., 2013b) and (Al-Sahaf
et al., 2013a) with very limited investigations. This paper extend them with completely new results and
thorough investigations.
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(a) (b)

Figure 4: Examples of local binary patterns histograms generated from two different
approaches: (a) one histogram per image; and (b) one histogram per region then con-
catenated.

Figure 5: The general structure of a program evolved by the One-shot GP method.

tion also highlights the major similarities and differences between those two methods.
In each method, the function and terminal sets are explained, followed by the fitness
measure, training and testing/evaluation procedures.

3.1 One-shot GP

The program evolved by this method has a static structure (e.g. type and number of
nodes); however, it is dynamic in terms of the position and size of the detected regions.
Figure 5 shows a general structure of a program evolved by the One-shot GP method.

3.1.1 Function Set
In this method, the evolved program is made up of three non-terminal types of nodes
of which each has its own restrictions and performs a distinct task. The first type is the
Controller node, which only occurs at the root of the evolved program. Thus, each pro-
gram has only one node of this type. The Controller node is responsible for predicting
the class label of the instance being evaluated based on the results of its children. The
second type is the Histogram node, which represents the type of the child nodes of Con-
troller. The Histogram nodes are responsible for accumulating the results of its children
to form a single LBPh

P,R feature vector. Each Histogram node corresponds to a single
class, i.e., the number of this type of node depends on the total number of classes. The
third and last type of the non-terminal node is the Area node. As the name suggests,
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each Area node corresponds to a region of the instance being evaluated (the image),
that is specified by the values of its children. The Area nodes represent the children
of the Histogram nodes, and are responsible for performing the feature extraction task.
Similar to the Histogram nodes, the number of the Area nodes is predefined; however,
this number is not restricted by the number of the classes. In other words, this number
is set experimentally and in our experiments, this number has been set to four.

3.1.2 Terminal Set
Similarly, the terminal set consists of three types of node which are the children of the
Area nodes as shown in Figure 5. These nodes are x-coordinate (x for short), y-coordinate
(y for short), and window-size (size for short), which are all of type integer. The values
of those nodes are randomly generated and represent a square-shaped window of size
equals to size and centered at a pixel of the coordinates (x, y). Therefore, this part of the
evolved program tree is dynamic as the values of those nodes are randomly generated.
The value of the x and y coordinates cannot be negative or greater than the image width
and height respectively, i.e., 0 ≤ x < M − 1 and 0 ≤ y < N − 1 where M and N are,
respectively, the width and height of the image. Moreover, the size has been limited
to be between 3 (i.e. 3 × 3 window) and min (M,N) /2, where min (·, ·) returns the
minimum value of the arguments. The sampling windows are truncated if they exceed
the boundaries of the image.

3.1.3 Fitness Measure
The fitness measure of the One-shot GP method aims at maximising the between-class
distance, minimising the within-class distance, maximising the accuracy, and minimis-
ing the overlapping ratio of the detected regions to ensure the distinction of those re-
gions, as shown in Equation (7).

Fitness1 =
DW + OVR

DB +ACC1
(7)

ACC1 =
Γ

|SN|
(8)

OVR =
1∑G

i=1 ϕi

G−1∑
i=1

G∑
j=i+1

⋂
(ϕi, ϕj) (9)

DW =
∑

i∈SN

∑
j∈SR

η (hist (i) , hist (j)) {∀i, j | class (i) = class (j)} (10)

DB =
∑

i∈SN

∑
j∈SR

η (hist (i) , hist (j)) {∀i, j | class (i) 6= class (j)} (11)

Here ACC1 is the performance (accuracy) of the wrapped kNN classifier, where Γ
is the number of correctly classified instances and |SN| is the total number of non-
representative instances. OVR is the overlapping ratio between the detected regions,
and DW and DB are, respectively, the within-class and between-class distances. Fur-
thermore, SR and SN are the set of representative and non-representative (discussed
below) instances respectively, G is the total number of regions, and the function

⋂
(·, ·)

returns the overlapping or intersection (the number of shared pixels) between the ar-
guments (i.e. regions). The hist (i) and class(i) functions are, respectively, returning
the histogram and actual class label of the ith instance. In order to prevent division by
zero, the denominator of the fitness function is set to a very small value (0.0001) when
both of the between-class distance and the accuracy of the wrapped classifier are zero.
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The η(·, ·) function calculates the distance between two histograms, which is defined as
shown in Equation (12).

η (A,Q) =

(
µ (A)− µ (Q)

)2
σ (A) + σ (Q)

(12)

µ (V) =
1

|V|
∑
v∈V

v (13)

σ (V) =

√
1

|V| − 1

∑
v∈V

(
v − µ (V)

)2
(14)

Here A and Q are the two histograms (e.g. sets of values), and µ(·) and σ(·) return the
mean and standard deviation of a histogram respectively.

The One-shot GP method uses some of the training set instances to be the ba-
sis for comparison and decision making, denoted as representative instances (SR). Each
representative instance is randomly selected from the training set; however, only one
instance of each class is selected. The number of the representative instances is equal
to the total number of classes. Each of the representative instances is assigned to one
of the Controller node children (i.e. the Histogram nodes). The aim behind assigning an
instance to a Histogram node is to make this node responsible for identifying instances
of only one class (i.e. identifying instances having class label similar to that of the rep-
resentative instance), which can be seen as a one-verses-all (Rifkin and Klautau, 2004)
approach. The rest of the training set instances form the non-representative set (SN) that
is used to measure the performance of the evolved program during the training phase.

The training process consists of four steps. In the first step, the system is iterat-
ing over the list of the representative instances to extract the representative histograms,
i.e., each Histogram node generates a single LBP histogram relying on the detected re-
gions by the Area nodes and the assigned representative instance. The distance between
the representative instances (DB) is calculated using the generated representative his-
tograms. In the second step, the overlapping ratio (OVR) of the detected regions is cal-
culated using Equation (9). Third, the system uses the content of the non-representative
set to measure the performance of the wrapped classifier (ACC1), and calculates the
within-class distance (DW). To accomplish this third step, the system generates a set
of histograms for each instance (one from each of the Histogram nodes), calculates the
distance between each of the generated histograms and the corresponding representa-
tive histograms, and predicts a class label similar to that of the closest representative
instance, i.e, the-Nearest Neighbour (1-NN) algorithm (Fix and Hodges, 1951). The fourth
step, is to measure the goodness of the evolved program, which is achieved via passing
the calculated distances (DB and DW), overlapping ratio (OVR), and accuracy (ACC1)
to the fitness function. It is important to notice that at least two instances of each class
are required to evolve the model, where one of them is used as a representative instance
and one (or more) is used to populate the non-representative set.

3.1.4 The Test/Evaluation Procedure
The testing phase is handled differently from the training phase. The main concern of
the evaluation phase is to test the generalisation ability of the best evolved program on
unseen (i.e. test set) data. Therefore, the proportion of the correctly classified instances
to the total number of instances represents the final result of this phase.

Evolutionary Computation Volume x, Number x 9
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Figure 6: The general structure of a program evolved by the Compound-GP method.

In order to classify an instance, the system generates one histogram from each of
the Histogram nodes based on the specified region by this node’s Area nodes. Then
the distances between the generated histograms and the corresponding representative
histograms are calculated. The class label is predicted based on 1-NN. In other words,
the class label of the closest representative histogram is assigned to the instance being
evaluated.

3.2 Compound-GP

Figure 6 shows a general structure of an evolved program by Compound-GP.

3.2.1 Function Set
Similar to One-shot GP, the tree evolved by the Compound-GP method consists of three
types of non-terminal nodes as presented in Figure 6. The first is the Special node that
represents the root node similar to the Controller node of the One-shot GP method. The
main roles of this node are to generate and save a number of patch objects based on the
results of its children, and use the generated patch objects to train a number of wrapped
classifiers. The patch object is made up of the mean and standard deviation values of
a histogram generated from the instances being evaluated, along with the actual class
label of the instance being evaluated. Unlike the Controller node of the One-shot GP
method, the number of children of the Special node is predefined and has no relation
with the number of the classes. Moreover, the children can be of different types such as
Expander and Area. The evolved program by the One-shot GP method consists of only
one wrapped classifier, whilst the evolved program by Compound-GP consists of four
classifiers of two types for each child node (branch). The second type is the Expander
node, which is responsible for allowing the system to evolve programs of different sizes
by having chains of this node. An example is presented in Figure 6, where the Special
node has three children that each has different tree size. The Expander node does not
alter the results of its children, and only passes these results to its parent node. Hence,
the appearance of this node in the program tree is optional. The third type of function
is the Area node. Similar to the Area node of the One-shot GP method, this node resides
near the leaves of the program tree. Each Area node represents a detected region of the
image. However, the number of children of this node is different in One-shot GP and
Compound-GP. In the former, this node has three children (x, y, and size); while it has
four children (rectangle) in the case of the latter method.

3.2.2 Terminal Set
The terminal set consists of four integer-valued nodes: (1) x-coordinate (x for short); (2)
y-coordinate (y for short); (3) window-width (w for short); and (4) window-height (h for
short). Those four nodes represent a rectangular window of size w × h and centred at
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a pixel with coordinates (x, y). The values of those four nodes are positive (including
zero) and randomly selected from an associated predefined interval for each of them.
The intervals of the x and y coordinates are [0,M − 1] and [0, N − 1] respectively; where
M andN are the image width and height respectively. On the other hand, the values of
w and h are selected from [3,M ] and [3, N ] respectively. Like One-shot GP, the sampling
windows are truncated if they exceed the boundaries of the image.

3.2.3 Fitness Measure
The fitness function of Compoun-GP is composed of three main components as shown
in Equation (15).

Fitness2 =
p-value + OVR

ACC2
(15)

ACC2 =

C∑
i=1

(
SVM S

i + SVM L
i

)
(16)

Here p-value is the between groups difference that is calculated using the one-way
analysis of variance (ANOVA), OVR is the overlapping ratio between the detected re-
gions of the image using Equation (9), and ACC2 is the total performance (accuracy) of
the wrapped support vector machines (SVM) classifiers (Cortes and Vapnik, 1995) on the
training set (more details below). C is the total number of children of the Special node,
which is a fixed predefined value that was empirically set to 3 in our experiments. The
SVM S

i and SVM L
i are the ith SVM classifier that is trained using the list of single and

multi-patch objects respectively.
The training process of the Compound-GP method is more complicated than that

of the One-shot GP method. The process consists of eight steps as depicted in Figure
8. In the first step, the system iterates over the set of the detected regions (Area nodes)
and calculates the ratio of overlapping (OVR) between those regions. Iterating over
the instances of the training set and generating a number of LBP histograms for each
instance (one from each Area node), represents the second step. Each of those his-
tograms is generated from an Area node based on the specified region by the values of
the four children (x, y, w and h) of that node. In the third step, the statistics, i.e., mean
and standard deviation, of each of those histograms are calculated, used along with the
actual class label of the instance being evaluated to construct a patch object, and store
this patch object in the list of multiples that is denoted as L as demonstrated in Figure
7. In the fourth step, those histograms (generated from different Area nodes) are con-
catenated with each other, the statistics of the resulted joined histogram are calculated,
and a patch object is extracted using these statistics along with the actual class label of
the instance being evaluated as shown in Figure 7. The patch object constructed in this
fourth step is stored in the list of singles that is denoted as S. Therefore, the result of the
third and fourth steps isG+1 patch objects for each instance, whereG is the total num-
ber of detected regions. Thus, the total number of patch objects in L is the total number
of training instances × the number of Area nodes. Meanwhile, the L list consists of an
equal number of patch objects to the number of instances in the training set (one object
per instances). The use of both local and global features has been shown to have po-
tential on improving the classifier performance (Lisin et al., 2005; Lim and Galoogahi,
2010). Therefore, in this study features generated from each of the detected regions (i.e.
the L list) as well as those resulted from the combination of multiple regions (i.e. the S
list) are used.
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Figure 7: How the detected regions of an image are used to extract three patch objects
and add each of them to the list of multiples, and to extract only one patch object from
the concatenated histograms and add it to the list of singles.

It is important to notice that the patch objects that were generated from each of the
Special node children are grouped together to form the L and S lists. In other word,
each of the Special node children has one of each of those two lists (C children× 2 lists).
Moreover, each of the Special node children has four classifiers of two types: (1) two
SVM classifiers; and (2) two kNN (k=1) classifiers. Only the SVM classifiers are used
during the training process, because the system is designed to evolve a program even
when there is only one instance per class. The first SVM classifier is trained using the
patch objects of the S list and denoted as SVM S. The second SVM classifier is trained
using the objects of the L list and denoted as SVM L. Training those SVM classifiers
represents the fifth step of the training procedure. In the sixth step, the performance of
those SVM classifiers (ACC2) that were trained using the lists of patches of the corre-
sponding branch is measured using the patch objects resulted from other branches. In
the seventh step, the system measures the distinction of the detected regions (p-value)
via using the ANOVA test on the content (i.e. the mean and standard deviation values)
of all L lists. The last step of the training process is to calculate the fitness function
value using the results of the first, sixth, and seventh steps.

In summary, the results of the training phase are two trained SVM classifiers and
two lists of patches for each sub-tree (branch) of the Special node. The lists of patches
will be used as the knowledge base for the two kNN classifiers of each sub-tree. Figure
8 demonstrates the process of calculating the fitness function components of an evolved
program during the training phase.

3.2.4 The Test/Evaluation Procedure
The test phase is quite different and less complicated than the training phase. In order
to test an instance, the system fed this instance to each sub-tree of the Special node and
performs the following steps. First, the system generates an LBP histogram from each
of the detect regions and uses it to construct a patch object. Second, the constructed
patch objects are then fed to SVM and kNN classifiers that were trained using the L
list and the predicted class label of each of them is reported. Third, the generated
histograms in the first step are then concatenated and used to produce a single patch
object, which is then fed to SVM and kNN classifiers that were trained using the S list
and the predicted class labels are also reported.

After repeating the above three steps for each sub-tree of the Special node, the sys-
tem will report C × 4 class labels, where C represents the total number of children of
the Special node, and 4 as there are four classifiers (two SVM and two kNN) associated
with each child node. Via adopting the voting approach, the system will predict the
class label that has the majority of the votes. However, having an even number of clas-
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Figure 8: The process of calculating the fitness value of an evolved program by the
Compound-GP method during the training phase.

sifiers may result in a situation where the votes are equally divided between the two
classes. Hence, such a situation has been handled by relying on the closest instances
(e.g. the smallest distance measured by all kNN classifiers).

4 Experimental Settings

In order to test the performance of the One-shot GP and Compound-GP methods, a
series of experiments have been conducted that aim at investigating different aspects.
Generally, those experiments can be divided into four groups: (1) comparing the per-
formance of the One-shot GP and Compound-GP methods with the performance of
the baseline methods; (2) checking the impact of the features extracted by each of the
two methods (One-shot GP and Compound-GP) on the performance of a number of
classifiers compared to the use of handcrafted and Two-tier GP extracted features; (3)
investigating the ability of the two methods to handle the rotation variation; and (4)
investigating the ability of the two methods to handle the scale variation.

This section provides more in-depth explanation of the above experiments. More-
over, the properties of the data sets that were used, parameter settings, baseline meth-
ods, and software characteristics are also discussed in this section.

4.1 Data Sets

The performance of the One-shot GP and Compound-GP methods has been evaluated
using different types of data sets. The data sets can be categorised into four groups
where three of them are textures and the fourth is object classification. Each data set in
each group consists of only two classes (binary classification) of gray-scale images. The
following subsections provide detailed discussion of each of those four groups.

4.1.1 Group A
The instances of the first group were taken from the Kylberg Texture data set (Kylberg,
2011). The Kylberg Texture data set consists of 28 classes as shown in Figure 9. This data
set comes in two flavours: (1) without rotation; and (2) with rotation. The instances of
both groups are gray-scale each of size 576× 576 pixels.

Each class of the without rotation group consists of 160 unique instances. We have
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Figure 9: One sample of each of the 28 classes of the Kylberg Texture data set.

Figure 10: One sample of each class of the KTH-TIPS data set.

selected eight visually-close classes of this group (textures without rotation) to form
four data sets for binary classification. Textures-1 is the first set, made up of the stones-
lab1 and wall1 classes. Textures-2 is the second set, made up of the rice2 and sesameseeds1
classes. The blanket1 and canvas1 classes are selected to form the third set Textures-3.
The fourth set is Textures-4, consists of the linseds1 and pearlsugar1 classes.

4.1.2 Group B
The data set of this group was taken from the KTH-Textures under varying Illumination,
Pose, and Scale (KTH-TIPS) image data set (Bratko et al., 2006). The KTH-TIPS image
data set consists of ten classes as depicted in Figure 10, where each consists of 81 in-
stances of size 200× 200 pixels.

We have selected only two classes that are visually-close to form the Textures-5 data
set in our experiments. This data set is more challenging than other texture data sets
that were used in this study due to the scale variation of its instances which impose
more difficulties on the model to handle.

4.1.3 Group C
The instances of the third group were also taken from the Kylberg Texture data set.
However, the aim of this group’s data sets is to test whether the One-shot GP and
Compound-GP methods are invariant to rotation or not. Therefore, the classes of this
group data sets were drawn from the textures with rotation classes of Kylberg Texture.
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Figure 11: One sample from the rice2 class of the Kylberg Texture data set rotated about
the center in 12 different angles taken from the textures with rotation group.

Each class of the textures with rotation group, consists of 1, 920 instances that are the
same 160 instances of the without rotation group rotated about the center in 12 different
angles (160 × 12 = 1, 920). The instances are rotated between 0 and 330 degrees incre-
ments by 30 degrees. An example of an instance of the rice2 class rotated at different
angles is presented in Figure 11. For comparison purposes, the same images that were
selected from the without rotation group of the Kylberg Texture data set to form Textures-
1, Textures-2, Textures-3, and Textures-4, have been selected from the with rotation group
to form Textures-6, Textures-7, Textures-8, and Textures-9 data sets respectively.

4.1.4 Group D
Similar to Group B, this group consists of only one data set which is the CBCL Faces
data set (Heisele et al., 2000). Unlike the data sets of the previous groups, Faces is
not texture-based and the task is to discriminate between face and non-face instances.
Therefore, the use of this data set will allow us to test the ability of the One-shot GP
and Compound-GP methods to handle a different task other than texture classification.

Each instance of the CBCL Faces data set is of size 19 × 19 pixels, where the face
instances were hand-aligned to be relatively in the center of the example. Originally,
there are 2, 429 face and 4, 548 non-face instances in the training set, and 472 face and
23, 573 non-face instances in the test set. Clearly, the number of instances of the two
classes is highly unbalanced; hence, we did not use the original division of the data
and instead a nearly equal number of instances of each class has been selected. In other
words, 6, 000 instances in total have been selected from the two classes that are 2, 901
faces and 3, 099 non-faces to form the Faces data set in our experiments.

4.2 Data Sets Preparation

Applying different image processing techniques as a preprocessing step can signifi-
cantly affect the performance of the used model. Some of the well-known operations
are the histogram equalisation, quantisation, and convolution operators such as Gaus-
sian blurring. However, different data sets require different processing schemes, and
can be even harder if the instances of the same data set were captured in an uncon-
trolled environment.

The total number of instances of each class has been divided equally between the
training and test sets. Moreover, the original instances were used without applying
any image preprocessing in order to investigate the ability of the One-shot GP and
Compound-GP methods to handle the shifting of pixel values. However, each instance
of the Kylberg Texture database was re-sampled (resized) to 57× 57 pixels in our exper-
iments in order to reduce the computational costs.

Apart from the Conventional-GP method, all other GP methods operate on raw
pixel values, and automatically detect and extract features. However, Conventional-GP
and all the non-GP methods require a prior step to detect and extract feature vectors,
which needs to be handled by a domain-expert in order to design highly discrimina-
tive features. Thus, the features of all texture-based data sets were extracted from ten
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(a) (b)

Figure 12: The regions of extracted features of the (a) texture, and (b) faces data sets.

regions (Zhang et al., 2003) as shown in Figure 12(a). The mean and standard deviation
statistics of each of the four quadrants (AEQH, EBFQ, HQGD, and QFCG), the central
quarter (IJKL), the horizontal lines (HF, and PN), the vertical lines (EG, and MO), and
the entire image (ABCD) have been calculated to form a feature vector that consists of
20 values. Similarly, the mean and standard deviation of the eyes (LMFD), nose (JKON),
mouth (PQSR), and the four quadrants (ABED, BCFE, DEHG, and EFIH) regions have
been calculated for each of the Faces data set instances to construct a feature vector that
consists of 14 values. The regions of the faces data set were designed based on the work
of Bhowan et al. (2009) as shown in Figure 12(b).

4.3 Baseline Methods

In order to check the effectiveness of the proposed methods, a number of GP and non-
GP methods have been evaluated on the used data sets.

4.3.1 GP-based methods
The One-shot GP and Compound-GP methods have been compared with two GP-
based methods. The Conventional-GP is the first method that has a function set made
up of the four arithmetic operators +,−,×, and ÷. Those operators have their regular
meaning apart from the ÷ operator, which is protected that returns zero if the second
variable (dominator) is zero. The terminal set, on the other hand, consists of randwhich
is a randomly generated double-precision float value between −1 and +1 (inclusive),
and Fi where i represents the index of the feature. As mentioned earlier, this method re-
lies on domain-specific handcrafted features. The fitness measure of Conventional-GP
in both of the training and test phases is the accuracy that is formally defined as:

Accuracy =
TP + TN

TP + TN + FP + FN
(17)

where TP, TN,FP, and FN are the number of true positives, true negatives, false pos-
itives, and false negatives respectively.

The Two-tier GP (Al-Sahaf et al., 2012b) method is made up of two tiers that each
has been specified to perform a specific task. The upper part of the program’s tree
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(first tier) represents the classification part that consists of the four arithmetic operators
(similar to Conventional-GP) and If-Then-Else. Unlike other operators, the If-Then-Else
operation has three children, which returns the value of the second child if the value of
the first child is negative, and the value of the third child otherwise. The second tier,
which occupies the lower part of the evolved program’s tree, represents the aggregation
part that consists of special nodes to perform the feature extraction task. Unlike the
Conventional-GP method, the Two-tier GP method operates directly on the image raw
pixel values and no preprocessing is required.

In both of the Conventional-GP and Two-tier GP methods, the program output
space is divided into two parts that each corresponds to a group of instances of the
same class label: negative; and positive including the zero value. Therefore, an instance
is classified as belonging to a group (e.g. foreground) if the value of the root node is
negative; otherwise, it is classified as belonging to another group (e.g. background).

4.3.2 Non-GP methods
The developed methods are compared to six non-GP methods.

• Naı̈ve Bayes (NB) (John and Langley, 1995): a probabilistic classifier that designed
based on the use of Bayes’ theorem.

• Support Vector Machines (SVM) (Cortes and Vapnik, 1995): trained using the
sequential minimal optimisation (SOM) algorithm that was invented by John Platt
(Platt, 1999).

• Naı̈ve Bayes/Decision Trees (NBTree) (Kohavi, 1996): a hybridised method that
combines Decision Trees with Naive Bayes classifier. The latter represents the
leaves of the tree.

• Adaptive Boosting M1 (AdaBoostM1) (Freund and Schapire, 1996): an adaptive
method that relies on misclassified instances by previous classifiers to improve the
subsequent ones.

• K∗ (KStar) (Cleary and Trigg, 1995): an instance-based method that uses an
entropy-based distance measure to predict the class label of an instance based upon
the similar instances of the training set.

• Non-Nested generalized (NNge) (Martin, 1995): an instance-based classifier that
uses a non-nested exemplar, which works in a similar way to the nearest-
neighbour method.

4.4 Evaluation

To evaluate each of the four GP-based methods (Conventional-GP, Two-tier GP, One-
shot GP and Compound-GP), a specified number of instances of each class are ran-
domly selected from the total number of instances available in the training set. The best
evolved program using the selected instances at the end of the run is tested against the
unseen data (test set). Due to the stochastic nature of GP, the same process has been
independently executed 50 times using different starting point (seed value) each time,
and only the average performance is reported. The non-GP methods on the other hand,
have been trained using the exact same instances, but without repeating the execution
multiple times (deterministic methods).

Moreover, due to the impact of the selected instances on the performance of the
evolved classifier, the 50 runs of each GP-based method and the single execution of
the non-GP methods, have been repeated 20 times using different instances each time.
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Therefore, the total number of independent runs on a single data set is [4 GP methods
× 50 runs× 20 repetitions] + [6 non-GP methods× 1 run× 20 repetitions] = 4, 120. The
standard deviation over the 20 repetitions (i.e. 20 average performances) is reported.

The above procedure has further been repeated ten times using training sets of
different sizes that starts from the minimum number (only one instance per class) and
increases by one instance every time (the largest is ten instances per class). However,
the smallest number of instances per class that can be used to evolve a program by the
One-shot GP method is two (one representative and one or more non-representative);
therefore, in the case of this method the above process has been repeated nine times
instead of ten. This ten repetitions makes the total number of executions on each data
set is [[1, 000 runs × 3 methods × 10 sets] + [1, 000 runs × 1 method × 9 sets] GP
methods + [120 run × 10 sets] non-GP methods] = 40, 200.

4.5 Feature Extraction

The two new GP methods have their own mechanisms to perform feature extraction;
hence, these methods can also be used for automatic feature extraction. The impact
of the detected and extracted features by each of the One-shot GP and Compound-GP
methods on the performance of six different classifiers is also investigated in this study.
The classifiers are the non-GP baseline methods that were discussed in Section 4.3. To
measure the goodness of the extracted features by each of those two methods (One-
shot GP and Compound-GP), the handcrafted features (as discussed in Section 4.2) and
those extracted by Two-tier GP (as discussed in (Al-Sahaf et al., 2012a)) are used.

In the case of the One-shot GP method, the mean and standard deviation values are
calculated for each LBP histogram resulted from each Histogram node. As discussed
in Section 3.1, each evolved program has two Histogram nodes; therefore, the feature
vector of each instance consists of four values.

Similarly, the features extracted by the Compound-GP method represents the cal-
culated statistics (mean and standard deviation) of the resulted LBP histograms. How-
ever, the program evolved by Compound-GP generates a number of histograms for
each instance. Moreover, some histograms are generated from the Area nodes; whilst
others result from the concatenation of histograms as described in Section 3.2. In other
words, the patch objects of the S (list of singles) and L (list of multiples) are used as the
extracted features. As it is hard to guess which of the two lists is better than the other,
we decided to use each of them in isolation of the other, as well as the combination of
the two.

4.6 Parameter Settings

In this study, four GP methods have been used. For comparison purposes, the settings
of those methods’ parameters are kept identical in all of the experiments as listed in
Table 1. It is very important to notice that some of the parameters are not applicable in
the case of One-shot GP due to the restrictions of the evolved program by this method.

4.7 Implementation

The GP-based methods have been implemented using the platform provided by the
Evolutionary Computation Java-based (ECJ) package (Luke, 2013). The implementation of
the non-GP methods on the other hand, have been taken from the Waikato Environment
for Knowledge Analysis (WEKA) package (Hall et al., 2009).
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Table 1: The GP Parameters of all experiments

Parameter Value Conventional-GP Two-tier GP One-shot GP Compound-GP

Crossover Rate 0.80 3 3 3 3
Mutation Rate 0.19 3 3 3 3
Elitism Rate 0.01 3 3 3 3
Population size 200 3 3 3 3
Generations 20 3 3 3 3
Tree depth 2-10 3 3 7 3
Selection Type Tournament 3 3 3 3
Tournament Size 7 3 3 3 3
Initial Population Ramped half-and-half 3 3 7 3

5 Results and Discussions

The results of the experiments are reported and discussed in this section. This section
is divided into four subsections that describe different aspects of the obtained results.
The performances of the One-shot GP, Compound-GP, and all the baseline methods in
terms of accuracy are presented in the first subsection. The goodness of the features
extracted by each of the One-shot GP and Compound-GP methods are compared to the
handcrafted areas and those extracted by the Two-tier GP in the second subsection. The
third subsection, provides discussion on both of the training and test time of the four
GP-based methods that are used in this study. Meanwhile, the fourth subsection shows
the complexity of the evolved program in terms of the average size per generation of
the four GP-based methods.

5.1 Accuracy

In order to check if the average performances of One-shot GP and Compound-GP are
statistically significant compared to the performance of each of the baseline methods,
a Wilcoxon signed-ranks test (Wilcoxon, 1945; Demšar, 2006) is used in this study. The
methods are compared in pairs, and the significance level of the test was set to 5%. The ↓
and ↑ symbols indicate that the performance of the One-shot GP method compared to
that of the other method is significantly worse and better respectively. Meanwhile, the
⇓ and ⇑ symbols appear if the performance of the Compound-GP method compared
to that of the other method is significantly worse and better respectively. The method
with the highest performance amongst all other comparative methods has its result
made bold. However, in the case of having more than one method that have achieved
100% accuracy, we did not made any of those methods bold.

The results of this experiment are presented in tables in this section. Each table
aggregates the results of data sets of one group. The first column of each table shows
the name of the data set, and the total number of instances per class that were used in
the training set are listed in the second column. Horizontally, each table is divided into
two parts: the first lists the results of the non-GP methods; whilst the results of the GP-
based methods are listed under the second part. The result of the One-shot GP method
is missing from the first row of all tables (indicated by N/A symbol), as the minimum
number of instances required by this method is two of each class.

5.1.1 Group A Data Sets
The results of the data sets of this group are presented in Table 2, which consists of the
Textures-1, Textures-2, Textures-3, and Textures-4 data sets.

The first block of Table 2 shows the results of the methods on the Textures-1 data
set. Compound-GP has scored second best performance on this data set after the Ad-
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aBoostM1 method. The One-shot GP method is also showing good performance and
scores third when the number of instances is less than six.

The results of Textures-2 data set are presented in the second block of Table 2.
This data set represents one of the easiest; that most of the methods, apart from
Conventional-GP and Two-tier GP, have scored above 99% when there were four or
more instances of each class in the training set. However, the use of only one instance
was enough to achieve 100.0% accuracy by the Compound-GP method, and 99.9% us-
ing two instances in the case of One-shot GP.

For Textures-3, all of the methods, apart from Two-tier GP, have achieved reason-
ably good accuracy above 80% when there were three or more instances of each class
in the training set as shown in the third block of Table 2. Moreover, the Compound-GP
method shows either the highest or in the top three ranked performance amongst other
methods. Although the One-shot GP shows the second lowest performance amongst
the comparative methods on this data set, the result shows that this method has
achieved on average 79.3% accuracy using only two instances per class.

The results on Textures-4 data set are presented in the last block of Table 2. Apart
from KStar, Conventional-GP, and Two-tier GP, all other methods have achieved on av-
erage over 80% accuracy. Moreover, the Compound-GP method has significantly out-
performed all other methods on this data set. The Compound-GP method has achieved
95.1% accuracy using only one instance per class, which is significantly better than the
highest achieved results by other methods even when there were 10 instances per class
in the training set (NNge = 90.8%).

5.1.2 Group B Data Set
The results of the Textures-5 data set are presented in Table 3. This data set represents a
more challenging task compared to all other texture-based data sets due to the variation
in illumination, scale, and pose of its instances. The results show that One-shot GP
and Compound-GP have significantly outperformed all other methods on this data set.
Moreover, these two methods have achieved on average over 90% accuracy even when
there is two instances in the training set. This show that the evolved programs by the
two new methods are invariant (to some extent) to those variations.

5.1.3 Group C Data Sets
Table 4 presents the results on data sets of the third group, which consists of Textures-6,
Textures-7, Textures-8, and Textures-9 data sets.

The results of Textures-6 data set (which represents the rotated version of Textures-
1) show that Compound-GP and One-shot GP have respectively scored the first and
third best performance as shown in the first block of Table 4. The two new methods
have significantly outperformed all other methods, apart from AdaBoostM1 compared
to One-shot GP, on this data set. Moreover, apart from KStar, all comparative methods
show a significant drop in their performances compared to Textures-1; whilst the two
new methods show nearly consistent performance on the two data sets.

Apart from AdaBoostM1, most of the methods have achieved similar accuracy on
Textures-7 to Textures-2 as presented in the second block of Table 4. The One-shot GP
and Compound-GP methods have achieved 100% accuracy even when the number of
available instances is relatively small (less than three instances per class).

Similarly, the comparative methods show nearly consistent or slightly dropped
performance on the rotated version Textures-8 of the Textures-3 data set as presented
in the third block of Table 4.

The last block of Table 4 shows the results of Textures-9, which represents the ro-
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Table 2: Results of the Group A data sets.

Non-GP Methods GP-based Methods

Size ABoostM1 KStar NB NBTree NNge SVM Conven. Two-tier One-shot Compound

Te
xt

ur
es

-1

1 99.4 ± 0.5 ⇓ 61.1 ± 7.1 ⇑ 57.0 ± 5.8 ⇑ 63.7 ± 8.3 ⇑ 52.5 ± 6.9 ⇑ 52.5 ± 6.9 ⇑ 54.1 ± 3.5 ⇑ 51.0 ± 0.8 ⇑ N/A 96.5 ± 1.7
2 99.4 ± 0.3↓⇓ 67.3 ± 12.6↑⇑68.7 ± 15.1↑⇑61.3 ± 12.2↑⇑63.4 ± 11.5↑⇑62.6 ± 11.4↑⇑55.4 ± 3.8↑⇑51.9 ± 1.1↑⇑90.7 ± 1.3 97.1 ± 1.0
3 99.4 ± 0.3↓⇓ 71.1 ± 12.3↑⇑75.8 ± 17.7↑⇑68.0 ± 18.2↑⇑74.0 ± 15.8↑⇑73.0 ± 14.4↑⇑57.1 ± 3.7↑⇑52.4 ± 1.1↑⇑90.6 ± 1.1 97.5 ± 0.6
4 99.4 ± 0.3↓⇓ 70.0 ± 11.0↑⇑82.2 ± 17.6↑⇑79.5 ± 19.6↑⇑83.3 ± 16.3↑⇑80.0 ± 12.7↑⇑58.3 ± 3.9↑⇑53.2 ± 1.4↑⇑91.0 ± 0.8 97.6 ± 0.4
5 99.4 ± 0.3↓⇓ 70.0 ± 8.2 ↑⇑86.5 ± 15.8↑⇑77.7 ± 17.4↑⇑89.3 ± 14.9↑⇑86.4 ± 11.8↑⇑59.1 ± 3.8↑⇑53.4 ± 1.2↑⇑92.1 ± 0.5 97.6 ± 0.4
6 99.4 ± 0.3↓⇓ 69.0 ± 6.4 ↑⇑90.8 ± 12.8↑⇑90.1 ± 12.8↑⇑94.5 ± 9.7 ↓⇑89.8 ± 8.2 ↑⇑60.2 ± 3.6↑⇑53.2 ± 1.2↑⇑92.9 ± 0.4 97.6 ± 0.3
7 99.4 ± 0.2↓⇓ 68.9 ± 5.1 ↑⇑95.0 ± 7.9 ↓⇑89.8 ± 9.0 ↑⇑97.7 ± 2.6 ↓ 94.0 ± 4.6 ↓⇑60.7 ± 3.3↑⇑53.7 ± 1.2↑⇑93.2 ± 0.6 97.7 ± 0.2
8 99.4 ± 0.1↓⇓ 69.0 ± 4.4 ↑⇑97.5 ± 1.6 ↓ 88.0 ± 8.1 ↑⇑98.9 ± 1.3 ↓⇓94.7 ± 3.7 ↓⇑61.2 ± 2.5↑⇑53.9 ± 1.2↑⇑93.4 ± 0.5 97.7 ± 0.2
9 99.4 ± 0.1↓⇓ 69.3 ± 4.2 ↑⇑97.2 ± 1.8 ↓⇑88.0 ± 9.6 ↑⇑99.1 ± 0.9 ↓⇓93.9 ± 4.4 ⇑ 61.1 ± 2.3↑⇑54.5 ± 0.9↑⇑93.7 ± 0.5 97.7 ± 0.1
10 99.4 ± 0.1↓⇓ 70.8 ± 4.6 ↑⇑96.3 ± 3.3 ↓⇓88.4 ± 8.8 ↑⇑99.1 ± 0.8 ↓⇓94.4 ± 3.9 ↓⇑61.1 ± 2.9↑⇑54.5 ± 1.1↑⇑94.0 ± 0.4 97.7 ± 0.1
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1 52.3 ± 11.3 ⇑ 97.4 ± 1.9 ⇑ 74.7 ± 7.8 ⇑ 96.3 ± 2.9 ⇑ 69.7 ± 9.8 ⇑ 69.7 ± 9.8 ⇑ 53.8 ± 2.2 ⇑ 50.3 ± 0.6 ⇑ N/A 100.0 ± 0.0
2 79.6 ± 25.6↑⇑98.2 ± 2.2↑⇑ 92.1 ± 9.6↑⇑ 99.8 ± 0.6↑⇑ 95.0 ± 9.5↑⇑ 95.6 ± 6.9↑⇑ 59.7 ± 4.0↑⇑51.1 ± 0.8↑⇑100.0 ± 0.0100.0 ± 0.0
3 92.3 ± 18.9↑⇑99.8 ± 0.3↑⇑ 95.9 ± 6.6↑⇑ 100.0 ± 0.0↓ 99.1 ± 2.2↑⇑ 98.8 ± 1.3↑⇑ 65.6 ± 5.7↑⇑51.7 ± 0.9↑⇑100.0 ± 0.0100.0 ± 0.0
4 100.0 ± 0.0 ↓ 100.0 ± 0.1 ⇑ 99.1 ± 2.0↑⇑ 100.0 ± 0.1 ⇑ 99.9 ± 0.2↑⇑ 99.5 ± 1.1↑⇑ 70.1 ± 5.7↑⇑52.2 ± 0.7↑⇑100.0 ± 0.0100.0 ± 0.0
5 100.0 ± 0.0 ↓ 100.0 ± 0.1 ⇑ 99.3 ± 2.5↑⇑ 100.0 ± 0.0↓ 100.0 ± 0.0↓ 99.8 ± 0.4↑⇑ 73.0 ± 5.0↑⇑52.3 ± 0.7↑⇑100.0 ± 0.0100.0 ± 0.0
6 100.0 ± 0.0 ↓ 100.0 ± 0.1 ⇑ 99.8 ± 0.6↑⇑ 100.0 ± 0.0↓ 100.0 ± 0.0↓ 99.9 ± 0.3↑⇑ 74.7 ± 4.3↑⇑52.4 ± 0.9↑⇑100.0 ± 0.0100.0 ± 0.0
7 100.0 ± 0.0 ↓ 100.0 ± 0.0↓ 99.4 ± 2.0↑⇑ 100.0 ± 0.0↓ 100.0 ± 0.0↓ 99.9 ± 0.3↑⇑ 77.5 ± 3.3↑⇑52.6 ± 1.1↑⇑100.0 ± 0.0100.0 ± 0.0
8 100.0 ± 0.0 ↓ 100.0 ± 0.0↓ 99.5 ± 1.7↑⇑ 100.0 ± 0.0↓ 100.0 ± 0.0↓ 99.9 ± 0.2↑⇑ 78.0 ± 3.6↑⇑53.0 ± 1.0↑⇑100.0 ± 0.0100.0 ± 0.0
9 100.0 ± 0.0 ↓ 100.0 ± 0.0↓ 99.7 ± 0.7↑⇑ 100.0 ± 0.0↓ 100.0 ± 0.0↓ 100.0 ± 0.1 ⇑ 78.1 ± 3.2↑⇑53.0 ± 0.9↑⇑100.0 ± 0.0100.0 ± 0.0
10 100.0 ± 0.0 ↓ 100.0 ± 0.0↓ 99.9 ± 0.2↑⇑ 100.0 ± 0.0↓ 100.0 ± 0.0↓ 100.0 ± 0.0↓ 78.7 ± 3.8↑⇑53.6 ± 0.8↑⇑100.0 ± 0.0100.0 ± 0.0
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1 57.7 ± 24.9 ⇑ 90.8 ± 4.2 74.8 ± 9.8 ⇑ 90.8 ± 4.5 66.3 ± 14.2 ⇑ 66.3 ± 14.2 ⇑ 67.4 ± 4.5 ⇑ 51.0 ± 1.1 ⇑ N/A 89.4 ± 8.7
2 83.6 ± 16.7↓⇑90.8 ± 4.8↓⇑ 85.3 ± 9.7↓⇑ 91.9 ± 3.5↓ 90.3 ± 8.1 ↓⇑87.7 ± 10.3↓⇑80.4 ± 4.9 ⇑ 53.0 ± 1.2↑⇑79.3 ± 3.1 92.0 ± 2.3
3 89.0 ± 4.6 ↓⇑93.0 ± 3.4↓ 87.2 ± 7.5↓⇑ 91.5 ± 3.1↓ 93.3 ± 3.5 ↓⇓92.8 ± 4.9 ↓ 87.0 ± 2.7↓⇑54.7 ± 1.6↑⇑79.3 ± 2.4 92.2 ± 2.3
4 90.3 ± 2.1 ↓⇑93.0 ± 2.9↓ 89.1 ± 6.3↓⇑ 92.1 ± 2.1↓ 93.0 ± 3.3 ↓ 94.3 ± 3.3 ↓⇓89.2 ± 1.6↓⇑55.8 ± 1.7↑⇑80.4 ± 2.1 92.2 ± 2.1
5 90.3 ± 2.2 ↓⇑93.0 ± 3.0↓ 89.4 ± 4.6↓⇑ 92.3 ± 2.4↓ 92.3 ± 2.7 ↓ 94.8 ± 2.1 ↓⇓90.5 ± 0.9↓⇑56.7 ± 1.8↑⇑81.9 ± 1.7 92.4 ± 1.8
6 90.4 ± 2.2 ↓⇑93.6 ± 2.2↓⇓ 89.2 ± 4.1↓⇑ 91.6 ± 2.6↓ 92.2 ± 2.8 ↓ 94.5 ± 2.3 ↓⇓90.7 ± 0.9↓⇑58.1 ± 1.4↑⇑82.8 ± 1.2 92.3 ± 1.8
7 90.3 ± 2.3 ↓⇑93.8 ± 1.8↓⇓ 88.0 ± 4.4↓⇑ 91.7 ± 2.5↓ 92.0 ± 2.6 ↓ 94.1 ± 2.6 ↓⇓91.0 ± 0.9↓⇑58.7 ± 1.5↑⇑84.1 ± 1.4 92.4 ± 1.7
8 90.5 ± 2.5 ↓⇑93.8 ± 1.9↓⇓ 88.9 ± 3.5↓⇑ 92.4 ± 2.3↓ 91.9 ± 2.5 ↓ 93.8 ± 2.3 ↓⇓91.2 ± 1.1↓⇑59.1 ± 1.4↑⇑84.1 ± 1.3 92.4 ± 1.6
9 90.7 ± 2.6 ↓⇑93.8 ± 2.0↓⇓ 89.1 ± 3.6↓⇑ 92.3 ± 2.2↓ 91.9 ± 2.1 ↓ 93.6 ± 2.2 ↓⇓91.4 ± 1.1↓⇑60.1 ± 1.1↑⇑84.6 ± 1.5 92.5 ± 1.6
10 90.6 ± 2.6 ↓⇑93.6 ± 2.0↓⇓ 89.6 ± 3.2↓⇑ 92.4 ± 2.4↓ 92.0 ± 2.0 ↓⇑93.0 ± 2.6 ↓ 91.4 ± 1.1↓⇑60.7 ± 1.0↑⇑85.0 ± 1.6 92.8 ± 1.4
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1 53.7 ± 7.0 ⇑ 72.2 ± 7.5 ⇑ 67.3 ± 7.0 ⇑ 73.3 ± 7.2 ⇑ 57.7 ± 16.6 ⇑ 57.7 ± 16.6 ⇑ 50.4 ± 1.3 ⇑ 50.0 ± 0.5 ⇑ N/A 95.1 ± 3.2
2 79.1 ± 13.6↑⇑74.3 ± 7.4↑⇑ 66.8 ± 8.4↑⇑ 80.5 ± 6.6 ⇑ 78.8 ± 8.0 ↑⇑76.9 ± 8.2 ↑⇑51.5 ± 1.6↑⇑50.3 ± 0.5↑⇑81.9 ± 4.1 95.7 ± 2.3
3 87.6 ± 8.5 ↓⇑76.0 ± 5.9↑⇑ 74.8 ± 7.1↑⇑ 84.0 ± 6.8 ↓⇑81.2 ± 7.5 ⇑ 81.2 ± 7.6 ⇑ 52.0 ± 1.7↑⇑50.5 ± 0.5↑⇑79.6 ± 5.4 96.0 ± 2.4
4 87.5 ± 8.1 ↓⇑77.2 ± 6.1↑⇑ 79.6 ± 7.9 ⇑ 76.4 ± 13.3↑⇑84.0 ± 7.2 ↓⇑82.6 ± 6.8 ↓⇑52.5 ± 1.6↑⇑50.4 ± 0.6↑⇑79.6 ± 5.3 96.1 ± 2.1
5 87.5 ± 8.7 ↓⇑76.8 ± 6.1↑⇑ 83.8 ± 6.5↓⇑ 84.2 ± 5.1 ↓⇑85.5 ± 6.1 ↓⇑85.5 ± 5.7 ↓⇑52.7 ± 1.6↑⇑50.3 ± 0.4↑⇑81.7 ± 3.6 97.1 ± 1.2
6 87.8 ± 6.5 ↓⇑77.5 ± 6.4↑⇑ 83.2 ± 6.3 ⇑ 80.8 ± 12.0↑⇑87.0 ± 5.8 ↓⇑86.6 ± 4.8 ↓⇑53.5 ± 1.7↑⇑50.6 ± 0.5↑⇑82.9 ± 3.7 97.3 ± 0.9
7 87.5 ± 5.5 ↓⇑77.6 ± 6.3↑⇑ 83.4 ± 4.9 ⇑ 86.3 ± 5.5 ↓⇑89.5 ± 4.6 ↓⇑87.7 ± 4.4 ↓⇑54.4 ± 2.1↑⇑50.7 ± 0.5↑⇑84.4 ± 3.0 97.6 ± 0.6
8 88.4 ± 4.1 ↓⇑77.6 ± 6.9↑⇑ 83.1 ± 4.6↑⇑ 87.7 ± 4.6 ↓⇑89.9 ± 4.2 ↓⇑87.2 ± 3.5 ↓⇑54.8 ± 1.2↑⇑50.6 ± 0.5↑⇑85.5 ± 2.7 97.7 ± 0.6
9 88.3 ± 3.7 ↓⇑77.4 ± 6.5↑⇑ 84.1 ± 4.4↑⇑ 86.6 ± 4.4 ⇑ 90.6 ± 4.2 ↓⇑87.9 ± 4.4 ↓⇑55.1 ± 1.7↑⇑50.6 ± 0.5↑⇑86.4 ± 2.3 97.7 ± 0.5
10 87.5 ± 4.0 ⇑ 77.6 ± 6.1↑⇑ 84.7 ± 3.7↑⇑ 87.4 ± 4.7 ⇑ 90.8 ± 4.0 ↓⇑87.5 ± 5.0 ⇑ 55.0 ± 2.0↑⇑50.7 ± 0.6↑⇑87.1 ± 1.7 97.9 ± 0.4

Table 3: Results of the group B data set.

Non-GP Methods GP-based Methods

Size ABoostM1 KStar NB NBTree NNge SVM Conven. Two-tier One-shot Compound
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1 70.3 ± 24.6 ⇑ 66.2 ± 10.7 ⇑ 67.9 ± 11.8 ⇑ 63.7 ± 12.5 ⇑ 64.9 ± 20.1 ⇑ 64.9 ± 20.1 ⇑ 58.5 ± 5.0 ⇑ 49.8 ± 1.0 ⇑ N/A 91.4 ± 14.3
2 73.4 ± 17.3↑⇑ 71.5 ± 12.4↑⇑ 71.5 ± 13.5↑⇑ 69.8 ± 14.6↑⇑ 73.4 ± 14.8↑⇑ 69.0 ± 16.1↑⇑ 55.9 ± 6.8↑⇑ 51.1 ± 1.6↑⇑ 91.3 ± 8.891.6 ± 13.1
3 73.5 ± 15.1↑⇑ 72.0 ± 14.2↑⇑ 81.5 ± 10.3↑⇑ 62.8 ± 15.7↑⇑ 77.0 ± 13.1↑⇑ 69.1 ± 18.1↑⇑ 54.5 ± 6.4↑⇑ 51.9 ± 1.7↑⇑ 91.4 ± 8.291.2 ± 12.2
4 74.9 ± 15.4↑⇑ 72.3 ± 14.3↑⇑ 83.9 ± 9.2 ↑⇑ 62.0 ± 16.0↑⇑ 76.0 ± 13.2↑⇑ 69.7 ± 17.8↑⇑ 54.9 ± 6.8↑⇑ 52.2 ± 1.6↑⇑ 91.3 ± 7.690.7 ± 11.7
5 76.7 ± 16.2↑⇑ 72.4 ± 14.0↑⇑ 85.1 ± 7.8 ↑⇑ 69.2 ± 17.2↑⇑ 76.2 ± 12.5↑⇑ 70.6 ± 17.4↑⇑ 55.3 ± 6.6↑⇑ 52.0 ± 2.2↑⇑ 91.4 ± 7.191.8 ± 10.6
6 76.8 ± 15.4↑⇑ 72.8 ± 13.1↑⇑ 85.2 ± 8.2 ↑⇑ 69.2 ± 17.9↑⇑ 77.6 ± 13.2↑⇑ 71.5 ± 17.7↑⇑ 54.8 ± 6.2↑⇑ 52.5 ± 2.5↑⇑ 92.3 ± 6.791.9 ± 10.6
7 76.6 ± 15.4↑⇑ 74.3 ± 13.1↑⇑ 87.0 ± 6.5 ↑⇑ 73.7 ± 17.0↑⇑ 82.9 ± 7.9 ↑⇑ 73.7 ± 16.9↑⇑ 54.0 ± 6.8↑⇑ 53.1 ± 2.2↑⇑ 92.7 ± 6.292.5 ± 9.9
8 77.2 ± 16.0↑⇑ 75.4 ± 12.1↑⇑ 87.2 ± 6.2 ↑⇑ 76.0 ± 16.7↑⇑ 84.3 ± 8.0 ↑⇑ 74.6 ± 17.2↑⇑ 52.9 ± 6.8↑⇑ 53.2 ± 2.1↑⇑ 93.2 ± 6.393.1 ± 9.2
9 77.7 ± 16.3↑⇑ 77.3 ± 11.6↑⇑ 87.9 ± 4.3 ↑⇑ 75.4 ± 17.3↑⇑ 85.2 ± 7.9 ↑⇑ 75.9 ± 16.3↑⇑ 53.0 ± 6.8↑⇑ 53.2 ± 2.1↑⇑ 93.6 ± 5.393.5 ± 8.5
10 77.7 ± 15.3↑⇑ 77.6 ± 11.2↑⇑ 88.5 ± 4.5 ↑⇑ 78.2 ± 15.2↑⇑ 85.4 ± 8.0 ↑⇑ 77.6 ± 14.9↑⇑ 52.0 ± 6.7↑⇑ 53.3 ± 2.3↑⇑ 94.0 ± 4.794.1 ± 7.9

tated version of the Textures-4 data set. While Compound-GP has maintained its per-
formance, the performance of the One-shot GP method has greatly dropped compared
to Textures-4. Similar to Compound-GP, other methods have also shown a nearly con-
sistent performance on this data set. Noticeably, the AdaBoostM1 method shows a
considerably better performance on this data set compared to the performance of this
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Table 4: Results of the group C data sets.

Non-GP Methods GP-based Methods

Size ABoostM1 KStar NB NBTree NNge SVM Conven. Two-tier One-shot Compound
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1 93.6 ± 5.4 ⇑ 61.9 ± 5.6 ⇑ 53.1 ± 5.0 ⇑ 61.5 ± 6.9 ⇑ 49.5 ± 4.0 ⇑ 49.5 ± 4.0 ⇑ 50.4 ± 0.8 ⇑ 50.2 ± 0.2 ⇑ N/A 98.2 ± 1.0
2 94.2 ± 5.4 ⇑ 67.7 ± 7.9↑⇑ 65.2 ± 7.2↑⇑ 63.4 ± 6.4 ↑⇑55.4 ± 4.3↑⇑ 55.1 ± 4.3↑⇑ 50.7 ± 0.8↑⇑50.3 ± 0.3↑⇑93.7 ± 1.0 98.7 ± 0.2
3 94.7 ± 5.3↓⇑ 70.5 ± 4.8↑⇑ 63.4 ± 7.6↑⇑ 62.4 ± 7.2 ↑⇑57.9 ± 3.7↑⇑ 59.2 ± 5.2↑⇑ 50.9 ± 0.8↑⇑50.4 ± 0.2↑⇑93.3 ± 0.7 98.8 ± 0.2
4 95.2 ± 5.2↓⇑ 72.4 ± 7.5↑⇑ 62.2 ± 7.9↑⇑ 65.0 ± 11.2↑⇑59.1 ± 3.6↑⇑ 60.2 ± 5.8↑⇑ 51.5 ± 0.9↑⇑50.5 ± 0.3↑⇑93.5 ± 0.8 98.8 ± 0.2
5 95.7 ± 5.1↓⇑ 72.3 ± 6.0↑⇑ 59.3 ± 6.4↑⇑ 65.0 ± 11.1↑⇑61.7 ± 4.0↑⇑ 61.0 ± 5.8↑⇑ 51.5 ± 1.2↑⇑50.5 ± 0.4↑⇑94.4 ± 0.4 98.8 ± 0.2
6 96.3 ± 4.9↓⇑ 73.4 ± 7.7↑⇑ 56.8 ± 2.3↑⇑ 65.8 ± 13.7↑⇑64.7 ± 6.4↑⇑ 64.0 ± 7.3↑⇑ 51.5 ± 1.2↑⇑50.6 ± 0.4↑⇑95.0 ± 0.2 98.8 ± 0.1
7 96.8 ± 4.6↓⇑ 75.6 ± 7.1↑⇑ 58.1 ± 2.7↑⇑ 67.0 ± 14.3↑⇑67.0 ± 6.5↑⇑ 64.3 ± 6.8↑⇑ 51.4 ± 1.5↑⇑50.7 ± 0.3↑⇑95.3 ± 0.3 98.8 ± 0.1
8 97.3 ± 4.3↓⇑ 78.7 ± 8.9↑⇑ 58.5 ± 3.1↑⇑ 67.5 ± 14.6↑⇑69.5 ± 8.9↑⇑ 66.0 ± 8.2↑⇑ 51.5 ± 1.8↑⇑50.6 ± 0.4↑⇑95.5 ± 0.2 98.8 ± 0.1
9 97.8 ± 3.8↓⇑ 79.0 ± 9.1↑⇑ 58.9 ± 3.2↑⇑ 63.7 ± 16.8↑⇑70.7 ± 10.0↑⇑66.0 ± 7.6↑⇑ 51.5 ± 1.8↑⇑50.8 ± 0.4↑⇑95.8 ± 0.3 98.8 ± 0.1
10 98.3 ± 3.2↓⇑ 81.3 ± 7.4↑⇑ 60.2 ± 3.7↑⇑ 65.6 ± 18.8↑⇑70.6 ± 9.0↑⇑ 66.4 ± 7.1↑⇑ 51.5 ± 1.9↑⇑51.0 ± 0.3↑⇑96.0 ± 0.3 98.8 ± 0.1
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1 49.6 ± 0.8 ⇑ 97.6 ± 2.4 ⇑ 73.3 ± 7.5 ⇑ 97.8 ± 4.0 ⇑ 66.5 ± 9.4 ⇑ 66.5 ± 9.4 ⇑ 56.8 ± 2.2 ⇑ 51.1 ± 0.4 ⇑ N/A 100.0 ± 0.0
2 67.6 ± 24.4↑⇑ 99.2 ± 0.7↑⇑ 99.1 ± 2.4↑⇑ 99.9 ± 0.3↑⇑ 97.6 ± 3.4↑⇑ 93.2 ± 9.3↑⇑ 66.7 ± 6.5↑⇑51.4 ± 0.4↑⇑100.0 ± 0.0100.0 ± 0.0
3 77.8 ± 25.2↑⇑ 99.9 ± 0.2↑⇑ 99.5 ± 0.9↑⇑ 100.0 ± 0.0↓ 100.0 ± 0.1 ⇑ 99.9 ± 0.3↑⇑ 76.1 ± 4.3↑⇑52.1 ± 0.7↑⇑100.0 ± 0.0100.0 ± 0.0
4 80.3 ± 24.8↑⇑ 100.0 ± 0.0↓⇑99.8 ± 0.3↑⇑ 100.0 ± 0.0↓ 100.0 ± 0.0↓ 100.0 ± 0.0↓⇑79.6 ± 2.0↑⇑52.5 ± 0.7↑⇑100.0 ± 0.0100.0 ± 0.0
5 82.7 ± 24.2↑⇑ 100.0 ± 0.0↓ 99.9 ± 0.2↑⇑ 100.0 ± 0.0↓ 100.0 ± 0.0↓ 100.0 ± 0.0↓ 82.0 ± 2.0↑⇑53.1 ± 0.8↑⇑100.0 ± 0.0100.0 ± 0.0
6 85.2 ± 23.2↑⇑ 100.0 ± 0.0↓ 99.1 ± 4.1↑⇑ 100.0 ± 0.0↓ 100.0 ± 0.0↓ 100.0 ± 0.0↓ 82.7 ± 2.3↑⇑53.2 ± 0.8↑⇑100.0 ± 0.0100.0 ± 0.0
7 87.7 ± 21.9↑⇑ 100.0 ± 0.0↓ 99.8 ± 0.6↑⇑ 100.0 ± 0.0↓ 100.0 ± 0.0↓ 100.0 ± 0.0↓ 83.8 ± 2.6↑⇑53.6 ± 0.7↑⇑100.0 ± 0.0100.0 ± 0.0
8 90.1 ± 20.3↑⇑ 100.0 ± 0.0↓ 100.0 ± 0.0↓ 100.0 ± 0.0↓ 100.0 ± 0.0↓ 100.0 ± 0.0↓ 85.1 ± 2.4↑⇑54.1 ± 0.7↑⇑100.0 ± 0.0100.0 ± 0.0
9 92.6 ± 18.1↑⇑ 100.0 ± 0.0↓ 100.0 ± 0.0↓ 100.0 ± 0.0↑⇑100.0 ± 0.0↓ 100.0 ± 0.0↓ 86.3 ± 2.3↑⇑54.4 ± 0.6↑⇑100.0 ± 0.0100.0 ± 0.0
10 95.1 ± 15.2↑⇑ 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0↑⇑100.0 ± 0.0 100.0 ± 0.0 86.7 ± 2.6↑⇑54.8 ± 0.8↑⇑100.0 ± 0.0100.0 ± 0.0
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1 57.7 ± 30.3 ⇑ 89.0 ± 4.7 ⇓ 67.5 ± 8.8 ⇑ 87.2 ± 6.2 ⇓ 69.6 ± 12.5 ⇑ 69.6 ± 12.5 ⇑ 70.0 ± 2.1 ⇑ 50.9 ± 0.5 ⇑ N/A 80.7 ± 8.1
2 77.1 ± 26.4↓⇑90.0 ± 3.7↓⇓ 91.0 ± 5.2↓⇓ 90.8 ± 4.6↓⇓ 78.2 ± 9.9 ↓⇑79.9 ± 11.7↓⇑78.5 ± 2.8↓⇑52.2 ± 0.7↑⇑74.4 ± 4.7 84.4 ± 5.4
3 93.6 ± 1.4 ↓⇓ 92.2 ± 3.4↓⇓ 93.0 ± 2.5↓⇓ 92.5 ± 1.6↓⇓ 85.7 ± 6.7 ↓ 85.4 ± 11.0↓ 84.9 ± 2.5↓ 53.4 ± 0.6↑⇑75.4 ± 2.9 86.5 ± 4.6
4 93.7 ± 1.4 ↓⇓ 92.7 ± 3.3↓⇓ 93.3 ± 0.9↓⇓ 93.5 ± 1.4↓⇓ 89.3 ± 6.4 ↓⇓88.0 ± 10.0 ↓ 87.4 ± 1.3↓ 54.1 ± 0.8↑⇑75.9 ± 2.7 86.3 ± 4.3
5 93.8 ± 1.3 ↓⇓ 93.0 ± 2.9↓⇓ 92.4 ± 2.4↓⇓ 93.7 ± 1.5↓⇓ 91.1 ± 5.8 ↓⇓89.7 ± 8.6 ↓⇓88.7 ± 1.4↓⇓55.0 ± 1.1↑⇑77.2 ± 2.7 86.8 ± 2.4
6 93.8 ± 1.3 ↓⇓ 93.6 ± 2.6↓⇓ 91.1 ± 3.5↓⇓ 94.0 ± 1.3↓⇓ 93.1 ± 4.9 ↓⇓91.4 ± 7.4 ↓⇓89.0 ± 1.4↓⇓55.9 ± 1.1↑⇑79.0 ± 2.3 87.8 ± 1.8
7 93.9 ± 1.2 ↓⇓ 93.7 ± 2.5↓⇓ 93.0 ± 1.7↓⇓ 94.1 ± 1.0↓⇓ 94.3 ± 3.9 ↓⇓92.8 ± 6.4 ↓⇓89.7 ± 1.1↓⇓56.7 ± 1.1↑⇑80.2 ± 2.6 87.1 ± 1.8
8 93.9 ± 1.2 ↓⇓ 93.9 ± 2.3↓⇓ 92.6 ± 1.7↓⇓ 94.0 ± 1.2↓⇓ 94.9 ± 3.7 ↓⇓94.2 ± 5.1 ↓⇓90.0 ± 1.0↓⇓57.3 ± 0.9↑⇑80.8 ± 2.3 87.4 ± 1.5
9 93.9 ± 1.1 ↓⇓ 94.1 ± 2.0↓⇓ 89.1 ± 4.0↓⇓ 94.3 ± 1.0↓⇓ 95.4 ± 3.4 ↓⇓95.4 ± 3.8 ↓⇓90.6 ± 1.0↓⇓57.7 ± 1.1↑⇑81.8 ± 2.2 87.5 ± 1.2
10 94.0 ± 1.1 ↓⇓ 94.1 ± 1.9↓⇓ 91.1 ± 2.3↓⇓ 94.4 ± 0.8↓⇓ 95.9 ± 3.0 ↓⇓96.0 ± 3.3 ↓⇓90.7 ± 0.9↓⇓58.2 ± 0.8↑⇑82.3 ± 1.9 87.5 ± 1.4
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1 48.5 ± 9.4 ⇑ 83.1 ± 5.7 ⇑ 76.1 ± 6.9 ⇑ 80.5 ± 6.1 ⇑ 70.6 ± 15.2 ⇑ 70.6 ± 15.2 ⇑ 50.4 ± 1.0 ⇑ 50.0 ± 0.3 ⇑ N/A 90.5 ± 5.0
2 91.4 ± 14.0↓ 83.8 ± 6.9↓⇑ 71.5 ± 8.6 ⇑ 86.1 ± 4.3↓⇑ 90.3 ± 3.2 ↓⇑90.1 ± 2.1 ↓⇑51.3 ± 1.1↑⇑50.1 ± 0.3↑⇑71.4 ± 6.4 92.0 ± 2.5
3 97.0 ± 0.8↓⇓ 89.7 ± 2.9↓⇑ 78.6 ± 10.1↓⇑85.1 ± 8.0↓⇑ 92.3 ± 3.3 ↓ 92.1 ± 1.9 ↓ 52.8 ± 2.1↑⇑50.4 ± 0.2↑⇑69.6 ± 5.5 92.4 ± 2.0
4 97.0 ± 0.8↓⇓ 91.3 ± 3.4↓⇑ 71.6 ± 8.5 ↓⇑89.7 ± 7.5↓⇑ 94.0 ± 3.2 ↓⇓92.9 ± 1.9 ↓ 54.4 ± 2.7↑⇑50.5 ± 0.4↑⇑69.0 ± 4.6 92.3 ± 1.5
5 97.1 ± 0.9↓⇓ 92.2 ± 2.0↓⇑ 74.4 ± 11.1↓⇑91.1 ± 6.1↓⇑ 94.9 ± 2.3 ↓⇓93.5 ± 1.7 ↓ 56.3 ± 3.5↑⇑50.5 ± 0.4↑⇑71.1 ± 3.9 93.0 ± 1.6
6 97.2 ± 0.9↓⇓ 93.2 ± 2.3↓ 78.7 ± 9.7 ↓⇑93.4 ± 3.2↓ 95.5 ± 1.5 ↓⇓94.1 ± 1.4 ↓⇓57.6 ± 3.8↑⇑50.7 ± 0.4↑⇑73.3 ± 2.9 93.1 ± 1.5
7 97.2 ± 1.0↓⇓ 93.0 ± 2.6↓ 81.4 ± 9.7 ↓⇑92.9 ± 4.2↓ 95.8 ± 1.4 ↓⇓94.6 ± 1.4 ↓⇓58.2 ± 3.1↑⇑50.7 ± 0.5↑⇑75.8 ± 2.8 93.3 ± 1.5
8 97.3 ± 1.0↓⇓ 93.1 ± 1.9↓ 84.1 ± 9.5 ↓⇑93.3 ± 4.1↓ 96.2 ± 1.1 ↓⇓94.7 ± 1.5 ↓⇓59.6 ± 3.3↑⇑50.7 ± 0.6↑⇑77.4 ± 2.7 93.6 ± 1.5
9 97.4 ± 1.0↓⇓ 93.2 ± 1.8↓ 84.8 ± 11.9↓⇑93.8 ± 3.0↓ 96.4 ± 0.9 ↓⇓95.2 ± 1.2 ↓⇓59.4 ± 3.3↑⇑50.8 ± 0.5↑⇑79.4 ± 2.8 93.5 ± 1.2
10 97.4 ± 1.0↓⇓ 93.2 ± 2.0↓ 86.6 ± 9.8 ↓⇑94.4 ± 2.3↓⇓ 96.4 ± 0.9 ↓⇓95.6 ± 1.0 ↓⇓60.4 ± 3.3↓⇑50.9 ± 0.4↓⇑80.4 ± 2.8 93.6 ± 1.1

method on Textures-4.

5.1.4 Group D Data Set
Table 5 shows the results of the experiment on the Faces data set. Both of One-shot
GP and Compound-GP have achieved better accuracy than all other methods on this
data set when the number of instances is smaller than four per class. Meanwhile, the
Two-tier GP and NB start to compete when the number of training instances increases.
Apart from NB, the Compound-GP method has significantly outperformed all other
methods on this data set. The One-shot GP method, on the other hand, has significantly
outperformed NBTree, SVM, and Conventional-GP in all the nine different sizes, and
some cases compared to AdaBoostM1, KStar, NNge, and the Two-tier GP methods.

5.1.5 Summary
The results show that both One-shot GP and Compound-GP have successfully evolved
programs using only a few instances that can generalised well to the unseen data.
Compared to non-GP and GP-based methods, One-shot GP and Compound-GP have
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Table 5: Results of the group D data set.

Non-GP Methods GP-based Methods

Size ABoostM1 KStar NB NBTree NNge SVM Conven. Two-tier One-shot Compound

Fa
ce

s

1 56.1 ± 8.2 ⇑ 61.2 ± 9.0 ⇑ 57.3 ± 7.6 ⇑ 61.7 ± 9.3 ⇑ 57.6 ± 9.0 ⇑ 57.7 ± 9.2 ⇑ 55.2 ± 2.7 ⇑ 55.9 ± 1.9 ⇑ N/A 67.8 ± 10.0
2 55.4 ± 10.0↑⇑ 60.8 ± 9.2↑⇑ 64.9 ± 8.8 59.1 ± 11.6↑⇑ 61.4 ± 11.8↑⇑ 62.8 ± 12.3↑⇑ 57.6 ± 3.4↑⇑ 60.9 ± 2.9↑⇑ 67.6 ± 6.3 68.6 ± 9.7
3 57.6 ± 9.6 ↑⇑ 63.6 ± 9.0↑⇑ 67.4 ± 11.0 ⇑ 58.3 ± 11.4↑⇑ 64.2 ± 12.9↑⇑ 64.9 ± 12.3↑⇑ 58.6 ± 3.3↑⇑ 63.2 ± 2.7↑⇑ 68.1 ± 4.6 70.4 ± 5.2
4 63.3 ± 10.8↑⇑ 65.3 ± 8.5↑⇑ 71.3 ± 10.2↓ 57.6 ± 10.7↑⇑ 64.8 ± 13.1↑⇑ 63.4 ± 16.0↑⇑ 59.6 ± 3.4↑⇑ 65.1 ± 2.6↑⇑ 68.1 ± 4.9 70.6 ± 5.4
5 64.5 ± 11.4↑⇑ 67.0 ± 8.2 ⇑ 73.2 ± 10.2↓ 65.0 ± 10.8↑⇑ 66.2 ± 12.3↑⇑ 63.9 ± 12.1↑⇑ 60.7 ± 4.7↑⇑ 66.7 ± 2.5↑⇑ 68.6 ± 4.1 72.8 ± 2.5
6 66.9 ± 11.1↑⇑ 68.8 ± 7.6 ⇑ 73.6 ± 9.2 ↓ 60.0 ± 11.2↑⇑ 68.2 ± 11.6 ⇑ 63.6 ± 11.5↑⇑ 61.5 ± 4.5↑⇑ 68.1 ± 2.0 ⇑ 69.3 ± 3.7 73.5 ± 2.3
7 66.3 ± 11.2↑⇑ 69.6 ± 7.5 ⇑ 75.4 ± 7.6 ↓ 63.8 ± 9.2 ↑⇑ 69.0 ± 12.3 ⇑ 61.8 ± 12.5↑⇑ 61.7 ± 4.8↑⇑ 69.2 ± 1.3 ⇑ 69.4 ± 3.7 74.9 ± 2.6
8 68.6 ± 10.8 ⇑ 70.1 ± 7.3 ⇑ 76.9 ± 6.9 ↓⇓ 66.1 ± 9.3 ↑⇑ 70.4 ± 11.2 ⇑ 62.6 ± 12.8↑⇑ 61.9 ± 4.6↑⇑ 70.2 ± 1.7 ⇑ 70.0 ± 3.1 75.4 ± 2.1
9 69.8 ± 8.7 ⇑ 70.3 ± 7.1 ⇑ 77.2 ± 6.7 ↓⇓ 61.4 ± 8.9 ↑⇑ 71.8 ± 9.9 ↓⇑ 62.3 ± 10.8↑⇑ 62.0 ± 4.2↑⇑ 71.1 ± 1.6 ⇑ 70.4 ± 2.5 76.0 ± 1.7
10 72.2 ± 7.7 ↓⇑ 70.3 ± 6.9 ⇑ 77.5 ± 6.9 ↓⇓ 66.0 ± 9.5 ↑⇑ 73.2 ± 9.3 ↓⇑ 62.7 ± 9.7 ↑⇑ 62.6 ± 3.6↑⇑ 71.1 ± 1.7 ⇑ 70.8 ± 2.4 76.6 ± 1.3

Figure 13: The average performance of the experimented methods on the Textures-5
data set using four different sets of features.

achieved significantly better or comparable results in most cases. However, in some
situations the two new methods, especially One-shot GP, show significantly worse per-
formance, e.g., on the Textures-1 data set compared to the performance of AdaBoostM1.

5.2 Feature Extraction

As highlighted in Section 4, the goodness of the detected and extracted features by the
One-shot GP and Compound-GP methods have been investigated via feeding those
features to six different classifiers (the non-GP methods that were used in the first ex-
periment). The performance of those classifiers on the handcrafted features and those
extracted by the Two-tier GP method have been compared to the use of One-shot GP
and Compound-GP extracted features.

The result of each of the six classifiers on each of the data sets using four different
sets of features is represented by a single line chart. Moreover, the results of the all six
classifiers are aligned on a single row for each data set. The y-axes and x-axes of each
chart represent the average accuracy and number of instances per class in the training
set respectively. Due to the page limit, only the results on the data set of the second
group are presented here and the rest are presented in Section A.1 of Appendix A.

On the Textures-5 data set, the features extracted by the One-shot GP and
Compound-GP methods have significantly improved the performance of all the six
classifiers over both handcrafted and Two-tier GP features as presented in Figure 13.
As highlighted in Section 4, this data set are more challenging than other texture-based
data sets due to illumination, scale, and pose variations of its instances.

Evolutionary Computation Volume x, Number x 23



H. Al-Sahaf, M. Zhang, M. Johnston

5.3 Training and Testing Time

In this study, we also measured the average training and testing times in order to high-
light the cost of evolving a program by each of the One-shot GP and Compound-GP
methods. The results are presented in blocks of line charts that each shows the aver-
age time required to evolve or evaluate a program by each of the four GP methods.
Each row of blocks represents either the training or testing phase, while each column
presents the results of a single data set as presented in Figure 14. Similar to the plots
of the previous section, the x-axes represents the number of instances per class in the
training set; and y-axes represents the time in seconds. Due to the page limit, only the
results on the data sets of the first group are presented here and the other figures are
presented in Section A.2 of Appendix A.

The results show that both of the One-shot GP and Compound-GP methods takes
significantly longer time to evolve and evaluate/test a program than Conventional-GP
and Two-tier GP. Moreover, Conventional-GP is the fastest method amongst the four
GP method, followed by the Two-tier GP with a slightly slower speed. This large gap
between the two new and baseline methods was expected due to the following reasons:

• Feature detection and extraction: Apart from Conventional-GP, the other three
GP-based methods perform feature detection and extraction at the lower part (near
the leaves) of the evolved program. Performing those operations increases the
complexity of the evolved program in terms of memory and computation costs.
Moreover, in the case of the Two-tier GP, there are only four simple operations
(minimum, maximum, mean, and standard deviation) that can be used to perform
feature extraction. However, this operation is more complicated in the case of
both One-shot GP and Compound-GP methods. The complication results from
the calculation of the LBP code of each pixel in each of the detected regions, which
require applying a threshold operation, checking if the calculated code is uniform
or not, and accumulate it with other codes to form a histogram.

• Wrapped classifiers: In the case of both Conventional-GP and Two-tier GP the
aim is to evolve a GP-based classifier. Thus, both of those methods do not have
any wrapped classifier that needs to be trained. Meanwhile, the One-shot GP and
Compound-GP methods have different number and type of wrapped classifiers.
The One-shot GP method uses a simple kNN classifier; whereas Compound-GP
consists of two SVM and two kNN classifiers for each of the Special node (the root
of the evolved program’s tree) children. Training and evaluating those wrapped
classifiers introduce extra complexities that need to be handled.

• Fitness function: The fitness function of both Conventional-GP and Two-tier GP
is simple that does not require extra calculations. However, the fitness function of
both One-shot GP and Compound-GP is complex and requires calculating more
parameters such as the overlapping ratio of the detected regions (OVR).

• Termination criteria: In the case of the One-shot GP and Compound-GP, the sys-
tem is forced to proceed until the maximum number of generations is reached.
Meanwhile, the Conventional-GP and Two-tier GP can terminate once an ideal pro-
gram has been found.

5.4 Program Size

Here we investigate the complexity of the program evolved by each of the GP-based
methods by average program size. The results are presented in line plots, where each
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Figure 14: The average training and test time of the four GP-based methods on the
Textures-1, Textures-2, Textures-3, and Textures-4 data sets.

row corresponds to one of the data sets, and each column represents the number of
instances per class in the training set as presented in Figure 15. The y-axes and x-axes
represent the number of nodes and generation respectively. Each block contains four
lines one for each of the four GP methods. Due to the page limit, only the results on
the data sets of the first group are presented here and the other figures are presented in
Section A.3 of Appendix A.

The results of Conventional-GP and Two-tier GP show that when there are fewer
than four instances per class, these two methods terminate early and before the max-
imum number of generations is reached. This was expected as both of those methods
rely on the accuracy alone as a goodness measure. However, this does not occur in
the case of One-shot GP and Compound-GP due to the other components of the fitness
measures of these two methods that force the system to proceed.

The results show that One-shot GP has a constant program size that is neither
affected by the size of the training set nor by the generation (progress of the run). This
was expected due to the restriction of the program size of the One-shot GP method.
The size is 35 nodes that are: one Controller; two Histogram; eight Area; and twenty four
terminal nodes.

The Compound-GP method, on the other hand, evolves programs of different
sizes, only restricted by the maximum-depth of the tree parameter. The results show
that on average the method starts with a large program that gets reduced in later stages
(subsequent generations). The main reason of this behaviour is the overlapping ratio
(OVR) component of the fitness function, which forces the system to detect distinctive
regions with minimal overlapping.
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Figure 15: The average program size per generation of the four GP-based methods on
the Textures-5 data set.

6 Further Analyses

Two evolved programs by each of the One-shot GP and Compound-GP methods are
investigated in this section. The first example is taken from those programs that were
evolved on one of the texture-based data sets, whereas the second example is a program
that was evolved to discriminate between face and non-face instances.

6.1 One-shot GP Examples

The first example of an evolved program by the One-shot GP method on the Textures-2
data set is presented in Figure 16. The tree representation of this program is shown in
Figure 16(a) that is made up of one Controller, two Histogram, and eight Area nodes. The
position of each of those eight regions is highlighted in Figure 16(b) on one example of
each class and the enlarged cut-outs are presented below each image. This program
was evolved using the minimum allowed number of instances (two per class) by One-
shot GP, and has achieved 100% accuracy on the unseen data of this data set. A closer
look on the enlarged cut-outs reveals that the regions of the rice instance has less texture
than that of the corresponding sesameseeds instance.

The example presented in Figure 17 shows an evolved program by the One-shot
GP method on the Faces data set. This program has achieved 78.3% accuracy using
only two instances of each class in the training set. The program detects the regions
around both eyes, eyebrows, and cheeks. Those regions (especially around the eyes
and cheeks) are similar to those were designed by a domain-expert, which shows the
ability of the system to automatically detect such important regions.

6.2 Compound-GP Examples

The tree representation of an evolved program by the Compound-GP method on the
Textures-2 data set is shown in Figure 18(a). This program was evolved using only one
instance of each class, and has scored 100% accuracy on the unseen data of this data set.
The detected regions by this program are shown in Figure 18(b). The evolved program
shows that regions of different sizes and shapes have been detected, and the cut-outs
of the two instances show clear differences in the texture especially the small ones.

Figure 19 shows an evolved program by the Compound-GP method on the Faces
data set. The program has achieved 78.0% accuracy using only one instance per class.
The tree representation shows that nine regions have been detected by this program as
depicted in Figure 19(a). These regions are highlighted in Figure 19(b), which shows
that some interesting regions such as the mouth, three regions around the left eye and
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(a)

(b)

Figure 16: An evolved program by the One-shot GP method on the Textures-2 data set
(a) the tree representation, and (b) the detected regions.

(a)

(b)

Figure 17: An evolved program by the One-shot GP method on the Faces data set (a)
the tree representation, and (b) the detected regions.

forehead, two regions detecting the left cheek, and three detecting the right cheek. This
example shows that the detected regions have common features with those that were
designed by a domain-expert.

6.3 Comments on the Number of Examples

An important question that is applicable to both methods is why using a few instances
can be sufficient to evolve a model with reasonably good performance. The answer to this
question can be the similarity between instances belonging to the same class. That is,
instances belonging to one class must have distinctive features to those of other classes;
otherwise, they must be grouped together. For example, the instances of each texture-
based class have a special repetitive pattern or structure, where detecting this structure
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(a)

(b)

Figure 18: An evolved program by the Compound-GP method on the Textures-2 data
set (a) the tree representation, and (b) the detected regions.

(a)

(b)

Figure 19: An evolved program by the Compound-GP method on the Faces data set (a)
the tree representation, and (b) the detected regions.

represents the main task of the Texture synthesis field (Pietroni et al., 2010; Galerne et al.,
2011). Similarly, all instances of the Faces data set have similar features in relativity
fixed positions (eyes, nose, cheeks and so on). Therefore, allowing the system to detect
distinctive regions from one or a few instances can be sufficient to generalise to unseen
data. Therefore, the assumption is that the same pattern or structure is shared by all
instances of one class.
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7 Conclusions and Future Work

In this study, the One-shot GP and Compound GP methods have been investigated.
The main aim of those two methods is to evolve a GP-based program for the task of
binary classification in images using only one or a few instances per class. Moreover,
neither of the two methods relies on the concept of learning by knowledge transfer ap-
proach where some instances from related domains can be used to assist the process of
evolving a model. Using ten data sets of different flavours, and compared against two
other GP and six non-GP methods, the results revealed that both of these new methods
(One-shot GP and Compound-GP) were able to evolve good programs that are capa-
ble of performing image classification. Furthermore, the evolved programs have either
outperformed all other competitor methods, or achieved comparable performance (i.e.
accuracy) to the best of those other methods in most of the studied cases.

Some of the data sets that were used in this study are aimed at testing the ability
of the evolved programs by One-shot GP and Compound-GP to handle illumination,
rotation, and scale variations. Generally, the results show that the evolved programs by
those two methods have maintained their performances or slightly dropped when one
or more of those variations occurred. In other words, both of those new methods are
capable to evolve (to some extent) illumination, rotation, and scale invariant programs.

The impact of the detected and extracted features by One-shot GP and Compound-
GP on the performance of a variety of classifiers such as AdaBoostM1, NB, NBTree,
SVM, KStar, and NNeg has also been investigated in this study. The results were com-
pared against the use of handcrafted features and those were extracted by the Two-tier
GP (Al-Sahaf et al., 2012a) method. The results show that the features of One-shot
GP and Compound-GP have positive impact on the performance of most of the ex-
perimented classifiers in a large number of cases. However, in other cases those two
methods (One-shot GP and Compound-GP) features have slightly degraded the per-
formance of some of those classifiers.

In order to address the interpretability aspect, two examples of the evolved pro-
grams by each of the One-shot GP and Compound-GP methods have been discussed
in detail in this study. The discussions revealed that the evolved programs are easy to
interpret and unlike other methods that build a black-box like model.

Despite the good ability of the One-shot GP and Compound-GP methods to evolve
good programs using a small number of examples, a closer look on the complexity of
the evolved programs by these two methods reveal their drawbacks. The methods
take a considerably longer time (especially Compound-GP) to evolve a good program
than other GP-based methods specifically Conventional-GP and Two-tier GP. More-
over, the size of the evolved program by Compound-GP is larger than those evolved
by Conventional-GP, Two-tier GP, and One-shot GP. The size of the evolved program
by One-shot GP, is fixed and introduces an extra parameter that needs to be set. Al-
though the features extracted by either of these two methods, i.e., One-shot GP and
Compound-GP, are not biased to a specific classifier (as the results suggest), it may
vary when the wrapped classifiers are replaced by other classifiers.

Future Work

In the future we plan to investigate the possibility of extending both of the One-shot GP
and Compound-GP methods to perform multi-class image classification using a limited
number of instances of each class in the training set. Reducing the complexity of the
evolved programs by these two methods, represents another direction that are worth
investigating in the future. We also plan to study the impact of using different classifiers
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(i.e. wrapped) on the performance of the evolved programs, and the goodness of the
extracted features by the One-shot GP and Compound-GP methods.
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Ojala, T., Pietikäinen, M., and Harwood, D. (1994). Performance evaluation of texture measures
with classification based on Kullback discrimination of distributions. In Proceedings of the 12th
IAPR International Conference on Pattern Recognition, volume 1, pages 582–585. IEEE.
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A Appendix

A.1 Feature Extraction
A.1.1 Group A Data Sets
Apart from AdaBoostM1, the use of One-shot GP and Compound-GP extracted features show
significant improvement in the performance of the classifiers when there are fewer than six in-
stances per class in the training set.

On Textures-2, on the other hand, all of the six classifiers have achieved perfect performance
using the features extracted by the One-shot GP and Compound-GP methods. Apart from KStar
and NBTree, it is clear that the new features have large positive impact on the performance of the
other four classifiers when there are less than four instances per class in the training set.

The results of the experiment on Textures-3 show that the features of Compound-GP has
slightly dropped the performance of all the six methods, whilst the features of One-shot GP show
large negative impact on the performance of those classifiers. However, all the six classifiers have
achieved significantly better performance using the features of the two new methods compared
to those extracted by the Two-tier GP.

The features extracted by the One-shot GP show improvement in the performance of all
the classifiers apart from the AdaBoostM1 classifier with handcrafted features. The features ex-
tracted by the Compound-GP method, on the other hand, show positive impact and have signif-
icantly improved the performance of all the six classifiers over the use of both the handcrafted
and Two-tier features.

A.1.2 Group C Data Sets
The results show that the six classifiers have maintained their performances when the features
of One-shot GP and Compound-GP are used on Textures-6 compared to Textures-1. Meanwhile,
apart from AdaBoostM1, the use of handcrafted features have significant negative impact on the
performance of those classifiers.

Similarly, the features extracted by both One-shot GP and Compound-GP show insensitivity
to rotation on Textures-7. Also, a nearly consistent performance has been achieved by all those
six classifiers when the handcrafted and Two-tier features are used.

Comparing the performance achieved of the six classifiers on Textures-8 and Textures-3,
the classifiers show consistent or slightly improved performance when the handcrafted features
are used; while the Compound-GP features have dropped the performance of almost all the six
classifiers. The features extracted by One-shot GP, on the other hand, show similar behaviour
to the handcrafted features; however, the gap between the two is significant. The inconsistency
in the performance that the Compound-GP features show was expected due to having the same
behaviour in the results of the first experiment on this data set.

On Textures-9, compared to Textures-4, the six classifiers have maintained their perfor-
mances when the One-shot GP and Compound-GP extracted features were used. The hand-
crafted features show positive improvement in the performance of all the six classifiers compared
to that was achieved on Textures-4.

A.1.3 Group D Data Set
Apart from NB, the features from the One-shot GP and Compound-GP methods have improved
the performance of the other five classifiers on this data set. Although the Two-tier GP extracted
features show improvement in the performance of those classifiers, this improvement is still not
as good as those introduced by the two new methods (One-shot GP and Compound-GP). The
handcrafted features show, in most cases, the worst performance on this data set.

A.1.4 Summary
The results of this experiment show that the feature extracted by the two new methods have
improved the performance of the six classifiers in most cases. However, those features are also
showing an inconsistency in other cases especially Textures-3 and its rotated version Textures-8.
Most importantly, the features detected by the One-shot-GP and Compound-GP methods are not
biased to a specific classifier, and are invariant to rotation, illumination, and scale variations to
some extent.
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Figure 20: The average performance of the experimented methods on the data sets of
the first, second, and fourth group using four different sets of features.
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A.2 Training and Testing Time

Figure 21: The average training and test time of the four GP-based methods on the data
sets of the second, third, and fourth group.
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A.3 Program Size

Figure 22: The average program size per generation of the four GP-based methods on
the data sets of the first, second, and fourth group.
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