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Abstract. The task of image classification has been extensively studied
due to its importance in a variety of domains such as computer vision and
pattern recognition. Generally, the methods developed to perform this
task require a large number of instances in order to build effective models.
Moreover, the majority of those methods require human intervention
to design and extract some good features. In this paper, we propose a
Genetic Programming (GP) based method that evolves a program to
perform the task of multiclass classification in texture images using only
two instances of each class. The proposed method operates directly on
raw pixel values, and does not require human intervention to perform
feature extraction. The method is tested on two widely used texture
data sets, and compared with two GP-based methods that also operate
on raw pixel values, and six non-GP methods using three different types
of domain-specific features. The results show that the proposed method
significantly outperforms the other methods on both data sets.
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1 Introduction

In the fields of computer vision and pattern recognition, image classification
represents one of the most important tasks. However, developing a program that
is capable of performing image classification with good performance is a very
challenging task, particularly for difficult problems. Even discriminating between
instances of two classes (binary classification) can be difficult. The difficulty of
this task increases with a large number of classes due to the increased complexity
of detecting a good set of features. The majority of the proposed methods for
multiclass classification in the literature suffer one or both of the following issues:
(1) some human intervention to design and extract a good set of features is
required prior to the training phase [6]; and (2) a large number of instances are
required in order to reach a suitable level of performance. In terms of the first
issue, an expert with background knowledge of the domain is required to perform
the task of detecting a set of distinctive features. It is not always feasible to find
such a person or it can be very expensive. Similarly, in terms of the second



issue, acquiring a sufficiently large number of instances can be expensive, hard,
or infeasible in many cases.

Genetic Programming (GP) is an evolutionary search method inspired by the
principles of natural selection [12]. GP aims at evolving a computer program for
a user-defined problem. Starting from a randomly generated initial population of
solutions, GP uses genetic operators and a fitness function to evolve a solution.
The fitness function is used to measure the goodness of each program, which
reflects the performance level or the ability of that program to solve the prob-
lem. The genetic operators allow the system to explore or introduce different
combinations of the genetic materials.

In tree-based GP [12], an evolved program is represented as a tree where
all non-leaf nodes are drawn from the function set, while leaves are taken from
the terminal set. The program evolved by GP produces a single value from the
root node for each instance. For binary classification, the resulting value can be
naturally translated to a class label such that all negative values represent one
class and all non-negative values represent the other class.

There are at least four approaches that can be adopted to extend GP to
perform multiclass classification tasks. In the first, a wrapper approach can be
adopted where a multiclass classifier (e.g. nearest-neighbour) is used to perform
the classification task, while GP is used to perform feature selection, extraction,
or construction [15]. The second approach is to change the mapping scheme
such that the real number line is divided into more than two intervals and the
single value resulting from the root node is mapped to one of those intervals [13].
The third approach is to use a different program representation that produces
multiple values instead of only a single value obtained from the root node [18].
Building a composite solution via breaking the multiclass classification task into
a number of binary classification problems is the fourth approach [7].

Song et al. [13] utilised GP to perform multiclass texture classification by
using static range selection (SRS) [16] and dynamic range selection (DRS) [7].
In SRS, the real number line is divided into a predefined number of equally
sized intervals, each of which represents one class. This method requires N − 1
thresholding values, where N is the number of classes. Selecting a good set of
threshold values introduces an extra complexity that is an interesting research
topic itself. In DRS, the idea is to dynamically divide the real number line
during the program evolving phase (training). Their experiments reveal that
both methods are capable of handling the multiclass classification task on texture
images using the raw pixel values. SRS and DRS methods are used as baseline
methods in this study.

A method that decomposes the multiclass classification task into a number of
binary classification tasks was used by Loveared et al. [7]. The idea is to evolve a
single program for each of the pairwise class combinations. The cost of evolving
a complete set of sub-classifiers represents the main drawback of this approach.

Changing the representation of the GP program to produce multiple values
from the internal nodes rather than the single value of the root node represents
another approach that has been adopted to tackle the problem of multiclass



classification in [18]. The idea is to use a special type of node that make decisions
to discriminate between instances of the different classes, and then a voting
approach is used to predict the class label of the instance being evaluated.

In this paper, a wrapper-based approach is adopted via combining a nearest-
neighbour classifier and GP to evolve a model. The main idea of the proposed
method is to evolve a program that applies different operations on the instance
being evaluated such that the response to a bank of filters (i.e. set of convolution
masks) will be different depending on the textures of the different class instances.
Therefore, a single program is evolved to handle the multiclass classification task
rather than breaking the task into a number of sub-tasks.

The overall goal of this paper is to use GP to evolve a program for the task
of multiclass image classification using a small number of instances. Precisely,
we are interested in addressing the following questions:

– what GP representation and fitness function can be used to tackle the limited
number of instances for multiclass image classification;

– whether the evolved program can compete with other GP-based methods
that were also utilised to automatically handle the multiclass image classifi-
cation task; and

– whether the evolved program can achieve better performance than the use
of domain-specific features with commonly used classification methods.

The remainder of this paper is organised as follows. Section 2 provides a
detailed discussion of the proposed method. The data sets, baseline methods,
and evaluation procedure are presented in Section 3. The results of the exper-
iments are presented and discussed in Section 4. Finally, the conclusions and
recommendations for future research directions are given in Section 5.

2 The New Method

For presentation convenience, we call the proposed GP method Tree-of-Filters
(ToFs). This section describes the terminal and function sets, fitness function,
and the procedure to measure the fitness of an evolved program.

2.1 Terminal Set

The proposed method operates directly on the raw pixel values of the image, and
does not require a prior step to perform feature detection and extraction. There-
fore, the first component of the terminal set is the instance (image) represented
as a 2D matrix. The second type in the terminal set is a list of filters that can
be used to transform the image into another image via convolution. The major
issue here is which filters to select as the literature shows that there are many
filters of different types and sizes. We have decided to limit our scope to filters
that can help in revealing the texture primitives such as lines, as presented in
Figure 1. In addition to those filters, the Gaussian and Laplacian-of-Gaussian



Fig. 1. The 29 filters used in this study. The blue cells are those cells having the value
−1, grey cells are 0, and white cells are set to a positive value equal to the number of
blue cells in order to make the sum of the filter coefficients equal to 0.

(LoG) filters were also used. The size of the Gaussian and LoG filters depends
on a σ value. The size is calculated using:

size = (2d3σe) + 1 (1)

where d·e returns the smallest integer value greater than or equal to the argu-
ment. The value of σ is randomly chosen from the set {0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4}.

The third type of terminal is a randomly generated constant value in the
closed interval [−10,+10].

In summary, the terminal set is made up of {I, Fi, Gσ, Lσ, C}, where I is the
image being evaluated, Fi is the ith predefined filter, Gσ and Lσ are respectively
the Gaussian and LoG filter of the specified σ value, and C are constant values.

2.2 Function Set

The function set consists of twelve operators that can be categorised into five
groups based on the number and type of the input arguments. The first group
consists of the {Add I(·, ·) , SubI(·, ·), Mul I(·, ·), Div I(·, ·), MinI(·, ·), Max I(·, ·)}
functions that operates on two images and return an image. The first four func-
tions of this group are the regular mathematical operators {+,−,×,÷}, where
the ÷ is protected; it returns zero when the second value (divisor) is zero. The
MinI(·, ·) and Max I(·, ·) functions respectively return the minimum and max-
imum of the arguments. The functions of this group work in a pixel-by-pixel
fashion; therefore, the input and returned images are of the same size. Similarly,
the second group of functions, {AddC(·, ·) , SubC(·, ·), MulC(·, ·), DivC(·, ·)}, op-
erate on an image and a constant value. The third group is the Conv(·, ·) function
that convolves the first argument (image) using the second argument (filter). The
fourth group is the single function Coder(·), which takes only one argument of
type image, and returns a feature vector. This is only used at the root of the
evolved program. Each function of the first three groups normalises the result-
ing image to have pixel values between 0 and 255 (inclusive) before passing it
to the parent node. Moreover, those functions, apart from Coder(·), can form
long chains in different orders due to type matching between their outputs and
at least one of the input arguments. Figure 3 shows two examples of programs
evolved by the ToFs method.



Algorithm 1: Distance ratios (DRdiff and DRsame)

Input: Ω : list of lists of Imprints
Output: Set of double-precision values

1 Σdiffer ←− 0
2 Σsame ←− 0
3 ξ ←− 0 // ξ is a counter

4 foreach ω1 ∈ Ω do // ω1 is a list of Imprint objects

5 foreach ν1 ∈ ω1 do // ν1 is an Imprint object

6 Ddiffer ←− 2
7 Dsame ←− −1
8 foreach ω2 ∈ Ω do // ω2 is a list of Imprint objects

9 foreach ν2 ∈ ω2 do // ν2 is an Imprint object

10 λ←− dist(ν1,ν2)
11 if (ω1 6= ω2) ∧ (λ < Ddiffer) then Ddiffer ←− λ
12 else if (ν1 6= ν2) ∧ (λ > Dsame) then Dsame ←− λ
13 end

14 end
15 Σdiffer ←− Σdiffer + Ddiffer

16 Σsame ←− Σsame + Dsame

17 end
18 ξ ←− ξ +

∣∣ω1

∣∣
19 end
20 return

{
Σdiffer

/
ξ,Σsame

/
ξ
}

2.3 Fitness Measure

The fitness function of the ToFs performs multiple tasks simultaneously as shown
in Equation (2).

Fitness = DRsame +
(
2− (DRdiff +Accuracy)

)
(2)

Accuracy =
Hits

Total
(3)

Here Accuracy measures the performance (accuracy) of the individual on the
training set, and Hits and Total are respectively the number of correctly clas-
sified instances and total number of instances. The DRsame and DRdiff are the
distance ratio to instances of the same and different class respectively. Algorithm
1 presents the procedure for calculating the DRsame and DRdiff values.

The dist(·, ·) function in Algorithm 1 calculates the distance between two
feature vectors of the same length:

dist
(
a, b
)

= 1−

2
(∑|a|

i=1 min (ai, bi)
)

∑|a|
i=1 ai +

∑|b|
i=1 bi

 (4)

where a and b are the two feature vectors, the | · | function returns the length
(i.e. number of elements or items) of a vector, min(·, ·) returns the minimum
value of the two arguments, ai and bi are the value of the ith feature of a and
b respectively. This distance measure returns a value between 0 and 1, where a
smaller value means a higher similarity between the two feature vectors.

2.4 Fitness Measuring Procedure

The training phase aims at evolving a program that has high accuracy on the
training set, high distance ratio between the instances of different classes, and



low distance ratio between instances of the same class. The evaluation of the
program starts from the terminal nodes as they represent the inputs of the
program’s tree, and ends at the root node (i.e. Coder). For each instance in
the training set, the system applies the operations in a bottom-up order. At
each non-terminal node, an image is generated depending on the inputs and the
specified operation. Then this image is normalised (to have values between 0
and 255) and passed to the parent node. The Coder node then receives the final
image and transforms it to a feature vector. The Coder node has a filter-bank
(list of filters) identical to those of the terminal set apart from the Gaussian and
LoG filters. This node constructs a new feature vector (all elements have zero
value) which consists of a number of elements equivalent to the number of filters
in the filter-bank (one element for each filter). A dot product is then performed
at each pixel of the image argument, along with the neighbouring pixels, with
each of the filters in the filter-bank, and the responses (resulting values) are
reported. The corresponding element of the filter that has the highest response
(largest value) is incremented by one. Finally, the generated feature vector is
normalised to have values between 0 and 1.

The system uses the feature vector generated by the Coder node along with
the actual class label of the instance being evaluated to construct an Imprint
object. The constructed imprint objects of the training set instances are stored
in a list named knowledge base that will be used for two tasks: (1) to measure
the fitness of the evolved program; and (2) to serve as a knowledge base during
the testing phase. The DRsame and DRdiff values are first calculated using the
procedure presented in Algorithm 1. Meanwhile, the accuracy is measured us-
ing the-nearest-neighbour (1NN) [2] method. Using those three values (DRsame,
DRdiff , and accuracy), the fitness of the evolved program can be measured using
the formula presented in Equation (2).

2.5 Performance Measuring Procedure

The aim of the testing phase is to measure the generalisation ability of the best
evolved program on the unseen data. Therefore, the best evolved program at the
end of the training phase is tested on the instances of the test set (unseen data).
For each instance, a feature vector is generated from the Coder node in a similar
way to that in the training phase. The distance between the generated feature
vector and each imprint object of the knowledge base list is calculated. The class
label of the closest imprint object is returned to serve as the predicted class label
for the instance being evaluated. Then the accuracy formula (Equation (3)) is
used to measure the generalisation ability of the best evolved program.

3 Experimental Design

In this section, discussions of the data sets, data set preparation, baseline meth-
ods, parameter settings, and the evaluation process are provided.



(a)

(b)

Fig. 2. Samples of the (a) Textures-1 data set; and (b) Textures-2 data set.

3.1 Data Sets

In this study, two data sets are used to evaluate the performance of the ToFs
method. The first data set is taken from the Kylberg Texture data set [5], which
is made up of 28 grey-scale texture classes. Each class consists of 160 instances of
size 576×576 pixels. The instances of this data set are fixed in terms of rotation
and scale, but not illumination. This data set comes in another flavour where the
instances are captured under different rotation angles (not used in this study).
Only 20 classes of the 28 have been selected to form the first data set of this
study Textures-1 as presented in Figure 2(a). The instances of this data set have
been resampled (i.e. resized) to 115×115 pixels to reduce the computation costs.

In computer vision and signal processing, the Brodatz textures data set [1]
is one of the mostly used data sets. This data set is made up of 112 classes
of different textures that each consists of only one grey-scale instance of size
640 × 640 pixels. Similar to Textures-1, 20 classes have been selected to form
the second data set in this study Textures-2 as presented in Figure 2(b). The
original image of each class has been divided into 16 distinct sub-samples each
of size 160× 160 pixels.

3.2 Baseline Methods

In this study, two GP-based and four non-GP methods have been used as the
baseline methods for comparison purposes.

GP Methods

– Static Range Selection (SRS) [16]: in the SRS method, the real number line is
divided into a number of equally and fixed size intervals, where each interval
is allocated for one classes. The SRS method uses the accuracy function to
measure the fitness of an evolved program.



– Dynamic Range Selection (DRS) [7]: the DRS method is similar to SRS
in terms of program representation, terminal and function sets, and fitness
measure. However, the real number line is divided into intervals dynamically
rather than using predefined intervals. Moreover, in the DRS method, the
training set is divided into segmentation and evaluation sets. The former is
used to define the corresponding interval of each class, while the latter is
used to measure the fitness of the evolved program.

Non-GP Methods

– Naive Bayes (NB) [14]: NB is a simple, yet powerful, classifier that uses
Bayes’ theorem to build a decision model.

– Support Vector Machines (SVM) [14]: SVM is a broadly used classifier in the
literature. A SVM is trained using algorithm of Platt [11] named sequential
minimal optimisation (SOM).

– Naive Bayes / Decision Trees (NBTree) [14]: Combines Decision Trees (DT)
with NB method to form a hybridised method that inherits the characteris-
tics of the two methods. DT is used to build the tree, whilst NB is used at
the leaves of the tree.

– K∗ (KStar) [14]: similar to 1NN, KStar predicts the class label of an instance
based on the similarity to the closest instance in the training set. The KStar
method uses an entropy-based distance measure to calculate the distance
between two instances.

– Non-nested generalized (NNge) [14]: similar to 1NN, NNge is an instance-
based classifier that operates based on similarity measure. Moreover, NNge
uses a non-nested exemplar.

– Multilayer Perceptron (MLP) [14]: A artificial multilayer neural network
trained using the back-propagation algorithm.

3.3 Data Sets Preparation

In both data sets, the total number of instances of each class has been divided
equally between the training and test sets. Moreover, the instances of the two
data sets are standardised to have zero mean and unit standard deviation. The
standardised images then are normalised to have values between 0 and 255.
The three GP-based methods do not require feature detection and extraction as
they were designed to operate directly on raw pixel values. However, all non-GP
methods require performing feature detection and extraction in a prior stage.
Three different feature extraction methods have been used in this study: (1)
domain-independent features (DIF) [17]; (2) Haralick texture features [4]; and
(3) local binary patterns (LBP) [10]. In the first method, each instance has been
divided into five regions that are the four quadrants and the center area of the
image. The mean and standard deviation values of each of these five regions and
the entire image are calculated to form the feature vector. Therefore, the feature
vector of each image consists of twelve values. The second method is based
on the use of the grey-level co-occurrence matrix (GLCM), which represents a



Table 1. The GP Parameters of all experiments

Parameter Value Parameter Value Parameter Value

Crossover Rate 0.80 Generations 30 Selection Type Tournament
Mutation Rate 0.19 Population Size 100 Tournament size 7
Elitism Rate 0.01 Tree depth 2-10 Initial Population Ramped half-and-half

very popular method to extract texture features. In this study, the matrices are
generated using the four orientations {0◦, 45◦, 90◦, 135◦}, of one pixel distance,
and a full range (8-bits) of grey-levels. Hence, each matrix is of size 256 × 256.
The third method, LBP, is a dense-based feature descriptor that has been used
extensively in the literature to extract texture features. In our experiments, each
instance has been transformed into a histogram of uniform LBP8,1 codes [10].

3.4 Parameter Settings and Implementation

To draw fair conclusions, all experiments have been conducted under the same
conditions. The parameter settings of GP-based methods are shown in Table 1.

The three GP-based methods (one proposed and two baseline) have nodes
that vary in the types of inputs and outputs, and the number of input argu-
ments. Therefore, Strongly-typed Genetic Programming (STGP) [9] is required
to implement these methods. The Evolutionary Computation Java-based (ECJ)
package [8] is used to implement STGP based methods. The Waikato Environ-
ment for Knowledge Analysis (WEKA) package [3] has been used to evaluate
the non-GP methods on the two data sets.

3.5 Evaluation

Only two instances of each class are randomly selected to form the training set.
Similar to other stochastic search methods, GP produces different results based
on the seed to the random number generator. Hence, the process of evolving a
program has been repeated 30 times independently and using different random
seeds. The average performance of the best evolved programs on the test set at
the end of the 30 runs is then reported. The non-GP methods, apart from MLP,
that were used in this study are all deterministic. Therefore, each of them has
been tested only one time; while the average performance for 30 runs of MLP is
reported. The selected instances forming the training set have a great impact on
the final result. Hence, and as only two instances are used, the same procedure of
30 independent runs has been further repeated 10 times using different instances
in the training set each time. The average performance of those 10 repetitions
along with the standard deviation is reported.

4 Results and Discussions

The results of the experiment are presented and discussed in this section. The
two-tailed unpaired t-test is used to check whether the difference between the
performance of the proposed method compared to that of the baseline methods is
significant or not. The significance level of the t-test is set to 5%. The superscript
“∗” appears if ToFs has significantly outperformed the other method.



Table 2. Accuracies of the Textures-1 data set.

SRS DRS ToFs

5.02 ± 0.21∗ 9.84 ± 8.01∗ 94.31 ± 1.39

Features NB SVM NBTree KStar NNge MLP

DIF 26.07 ± 3.51∗ 36.27 ± 4.20∗ 31.06 ± 5.60∗ 27.73 ± 2.39∗ 40.63 ± 5.12∗ 34.71 ± 3.72∗

Haralick 70.77 ± 9.12∗ 84.43 ± 3.85∗ 71.81 ± 4.10∗ 84.11 ± 4.21∗ 86.48 ± 2.86∗ 81.86 ± 3.26∗

LBP 75.80 ± 6.57∗ 82.17 ± 3.58∗ 78.52 ± 7.17∗ 86.82 ± 2.92∗ 88.68 ± 2.14∗ 85.54 ± 3.09∗

Table 3. Accuracies of the Textures-2 data set.

SRS DRS ToFs

5.80 ± 1.34∗ 2.28 ± 0.21∗ 95.74 ± 1.90

Features NB SVM NBTree KStar NNge MLP

DIF 46.64 ± 5.80∗ 58.21 ± 6.36∗ 53.67 ± 10.22∗ 61.56 ± 5.49∗ 59.77 ± 4.67∗ 56.49 ± 7.42∗

Haralick 84.22 ± 4.31∗ 90.78 ± 1.73∗ 80.00 ± 5.19∗ 89.61 ± 4.01∗ 92.97 ± 2.79∗ 92.58 ± 3.97∗

LBP 83.68 ± 3.76∗ 89.53 ± 3.16∗ 84.46 ± 6.89∗ 90.86 ± 3.24∗ 90.71 ± 3.49∗ 92.19 ± 3.36∗

Each of the tables presented in this section is divided vertically into two
blocks. The upper block presents the results of the GP-based methods, while
the results of the non-GP methods are presented in the lower block. Moreover,
three values are listed under each of the non-GP methods that each corresponds
to one of the three features extraction methods were discussed in Section 3.3.

4.1 Overall Results

The results on the Textures-1 data set are presented in Table 2. The statistical
test shows that ToFs has significantly outperformed all other methods on this
data set. Both of the GP-based baseline methods show very poor performance
on this data set. The use of hand crafted features with the six non-GP meth-
ods shows a good level of performance. A lower level of performance has been
achieved when the DIF features are used by all those methods compared to LBP
and Haralick. In most of the cases, the use of LBP features results in a slightly
better performance than that of the Haralick features.

Table 3 presents the results on the Textures-2 data set. Similar to Textures-1,
ToFs has significantly outperformed all other methods on this data set. SRS and
DRS have achieved the lowest accuracies amongst all other methods. Similar to
Textures-1, the non-GP methods show poor performances when the DIF features
are used. Moreover, those methods achieved a good level of performance when
LBP features or Haralick features are used.

4.2 Analysis

The results show that the simple domain-independent features are not sufficiently
powerful for these data sets. Moreover, GP with SRS and DRS are not suitable
for classification when the number of classes is large. These two methods simply
translate the single floating number output into a set of class labels, while the
proposed method evolves a program that implicitly performs feature extraction
and generates a powerful feature vector.



(a) (b)

Fig. 3. Sample programs evolved on (a) Textures-1, and (b) Textures-2 data sets.

Figure 3(a) shows a program that was trained on the Textures-1 data set.
This program has scored 95.50% accuracy on the unseen data. Meanwhile, a
program evolved by the proposed method on the Textures-2 data set is presented
in Figure 3(b). This program has scored 100% accuracy on the unseen data. It
convolves the image with a Gaussian filter with σ = 1.5, then adds it to the
original image twice. The resulting image is then multiplied by a constant value
(−7.862797) and passed over to the root node to generate the feature vector.

5 Conclusions

In this paper, a GP-based method has been proposed for the task of multiclass
classification in texture images. The proposed method uses only two instances
of each class to evolve a program that operates on raw pixel values. Two well-
known data sets have been used to evaluate the performance of the proposed
method. Moreover, the performance achieved has been compared to that of two
GP-based and six non-GP methods. Similar to the proposed method, the two
GP baseline methods operate on raw pixel values to perform multiclass texture
classification. The non-GP methods, on the other hand, require a set of pre-
extracted features to build a model. Therefore, three different feature extraction
methods have been used and the performances obtained have been compared
to that of the proposed method. The results of the experiments show that the
proposed method significantly outperformed all other methods on both of the
data sets used.

In the future, we would like to test the ability of the method to handle rota-
tion and scale variants, and on different domains other than textures. Analysing
some of the evolved programs to highlight some important patterns and to in-
vestigate the costs (i.e. speed and memory) is another objective to investigate
in the near future.
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