
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. X, NO. X, JANUARY XXXX 1

Automatic Design of Scheduling Policies for
Dynamic Multi-objective Job Shop Scheduling via

Cooperative Coevolution Genetic Programming
Su Nguyen, Mengjie Zhang, Senior Member, IEEE

Mark Johnston, Member, IEEE and Kay Chen Tan, Senior Member, IEEE

Abstract—A scheduling policy strongly influences the perfor-
mance of a manufacturing system. However, the design of an
effective scheduling policy is complicated and time-consuming
due to the complexity of each scheduling decision as well as
the interactions among these decisions. This paper develops four
new multi-objective genetic programming based hyper-heuristic
(MO-GPHH) methods for automatic design of scheduling policies
including dispatching rules and due-date assignment rules in job
shop environments. Besides using three existing search strategies
NSGA-II, SPEA2 and HaD-MOEA to develop new MO-GPHH
methods, a new approach called Diversified Multi-Objective Co-
operative Coevolution (DMOCC) is also proposed. The novelty of
these MO-GPHH methods is that they are able to handle multiple
scheduling decisions simultaneously. The experimental results
show that the evolved Pareto fronts represent effective scheduling
policies that can dominate scheduling policies from combinations
of existing dispatching rules with dynamic/regression-based due-
date assignment rules. The evolved scheduling policies also show
dominating performance on unseen simulation scenarios with dif-
ferent shop settings. In addition, the uniformity of the scheduling
policies obtained from the proposed method of DMOCC is better
than those evolved by other evolutionary approaches.

Index Terms—Genetic Programming, job shop scheduling,
hyper-heuristic, dispatching rule.

NOMENCLATURE

JSS job shop scheduling
DJSS dynamic job shop scheduling
DR dispatching rule
CDR composite dispatching rule
DDAR due-date assignment rule
SP scheduling policy
GP genetic programming
GPHH genetic programming based hyper-heuristic
MO-GPHH multi-objective GPHH
SPEA2 strength Pareto evolutionary algorithm 2
NSGA-II non-dominated sorting genetic algorithm II
HaD-MOEA harmonic distance based multi-objective

evolutionary algorithm
DMOCC diversified multi-objective cooperative co-

evolution

Su Nguyen, Mengjie Zhang, and Mark Johnston are with the Evolutionary
Computation Research Group at Victoria University of Wellington, PO Box
600, Wellington, New Zealand. Kay Chen Tan is with the Department of
Electrical and Computer Engineering, National University of Singapore, 4
Engineering Drive 3, 117576, Singapore.

Copyright (c) 2012 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

NOTATION

pj total processing time of job j
dj due-date of job j
wj weight of job j
mj number of operations of job j
rj release time of job j
Cj completion time of job j
fj flowtime of job j
f̂j estimated (predicted) flowtime of job j
ej error in flowtime estimation of job j
σ considered operation
δ machine that processes σ
p(σ) processing time of operation σ
f̂o estimated operation flowtime of σ

I. INTRODUCTION

JOB shop scheduling is a crucial issue in the made-to-
order manufacturing industry because it directly influences

the performance of manufacturing systems. In the literature,
it has been commonly assumed that JSS is equivalent to
sequencing, which determines the order in which waiting
jobs are processed on a set of machines in a manufacturing
system [1]. A large number of studies on JSS mainly focus
on the sequencing part [2], [3], [4], [5], [6], [7], [8]. The aim
of these studies is to find an optimal schedule to satisfy a
specific criterion (e.g. minimising makespan), given a set of
jobs waiting to be processed. However, sequencing is only
one of several scheduling decisions within a comprehensive
scheduling system. One of the other important activities in
JSS is due-date assignment (DDA), sometimes referred to as
the estimation of job flowtimes. The objective of this activity
is to determine the due-dates for arriving jobs by estimating
the job flowtimes (the time taken from the arrival until the
completion of a job), and therefore DDA strongly influences
the delivery performance, i.e., ability to meet the promised
delivery dates of a job shop [9].

Most studies on job shop scheduling only consider one
of the many decisions and fix the others in order to reduce
the complexity of the scheduling problems. These approaches
are valid when there is no interaction among the scheduling
decisions, which is often not the case for real world ap-
plications. Although JSS has been popular for decades and
investigation of the interactions among various decisions is

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. X, NO. X, JANUARY XXXX 2

essential for the development of effective and comprehensive
scheduling systems, studies on the interactions among different
scheduling decisions are rather limited. These studies [10],
[11], [12], [13] mainly examined the performance of simple
combinations of different existing dispatching rules (DRs) and
due-date assignment rules (DDARs). One of the reasons for
the lack of research in this direction is that dealing with each
scheduling decision is already difficult; and thus considering
multiple scheduling decisions simultaneously will be even
more complicated. To tackle this problem, there is a need
to develop new methodologies for improving the scheduling
decisions and their interactions, which should also be able to
cope with the dynamic features of JSS problems.

Genetic Programming (GP) [14], [15] is an evolutionary
computation method which has been applied to evolve/train
programs that are able to solve difficult computational prob-
lems [16], [17]. In the literature, GP has also been applied as
a machine learning method to evolve dispatching rules for dif-
ferent machine scheduling environments [18], [19], [20], [21],
[22], [23], [24]. In these studies, a dispatching rule is encoded
by a GP tree and treated as a priority function to determine
priorities for jobs waiting in the queues of machines. A set
of instances were used to train the rules and the performance
of the rules evolved by the proposed methods are evaluated
by a set of test instances. The results from these studies
showed that the evolved dispatching rules are very promising
and outperform existing dispatching rules when tested on
different scheduling instances. However, DDA was considered
in these studies and the due-dates were generated randomly
for the training/testing purpose only. In the work presented
in this paper, GP is used as a hyper-heuristic method [25]
for the automatic design of scheduling policies (SPs) which
include sequencing/dispatching rules and due-date assignment
rules for dynamic JSS problems. Unlike existing approaches,
GP is suitable for designing SPs because of its flexibility
to encode different scheduling rules in the representation.
Moreover, as an evolutionary approach, GP can be applied
to handle the multiple conflicting objectives of JSS problems.
Another advantage of GP is that evolved scheduling policies
are potentially interpretable, which is important and useful
for understanding how the problem is solved by the evolved
policies and how the trade-offs among the different objectives
of JSS can be obtained.

This paper presents novel methodologies to design efficient
SPs for solving dynamic multi-objective JSS problems via
genetic programming based hyper-heuristic (GPHH) [26]. In
order to address drawbacks of existing methods, three im-
portant aspects are considered in our proposed algorithms:
(i) representations of different scheduling rules; (ii) evolu-
tionary optimisation to evolve the trade-offs in SPs; and (iii)
reusability (ability to be reused on new unseen problems [26],
[25]) of the evolved SPs. The first aspect concentrates on how
the scheduling rules can be represented and evaluated in GP.
The second applies multi-objective evolutionary algorithms
[27], [28], [29], [30], [31] to explore the Pareto front of
the evolved SPs. In order to examine how training scenarios
may influence reusability of the evolved rules on unseen
situations, four multi-objective genetic programming based

hyper-heuristic (MO-GPHH) methods are proposed to deal
with the JSS problems.

In this paper, the following four research objectives will
be presented: (1) developing MO-GPHH methods for auto-
matic design of scheduling policies for dynamic job shop
scheduling problems; (2) comparing the evolved scheduling
policies with existing scheduling policies from combinations
of existing dispatching rules and due-date assignment rules; (3)
evaluating the reusability of the evolved scheduling policies;
and (4) analysing the performance of the proposed MO-GPHH
methods and the evolved scheduling policies.

Section II provides the relevant background of JSS problems
and various GPHH methods. Section III describes the proposed
MO-GPHH methods and the job shop simulation models used
for training and testing. The experimental and comparison
results of the evolved scheduling policies and the existing
scheduling policies are presented in Section IV. The analysis
of the proposed methods and the evolved scheduling policies
are shown in Section V. Conclusions are drawn in Section VI.

II. BACKGROUND

This section gives an overview of the JSS problem and
GPHH with a special focus on scheduling problems.

A. Job Shop Scheduling

In JSS problems, a number of jobs are to be processed, each
including one or more operations to be processed on a set of
machines in the shop with a pre-defined order and processing
times [32]. In practical situations, jobs can arrive at random
over time and the processing times of these jobs are not known
prior to their arrivals. There are many related decisions to
make for jobs and machines in the shops such as due-date
assignment, job order release and job scheduling. In this work,
we focus on due-date assignment and job scheduling decisions;
job release is simplified by immediately releasing jobs to the
shop upon their arrival. An example of a job shop is shown
in Fig. 1. In this figure, the due-date is assigned to a newly
arriving job by some DDAR. Then, the job will be released to
the shop and processed at the pre-determined machines. If the
job is transferred to a machine when it is busy, the job will
have to wait in the corresponding queue. Meanwhile, when a
machine completes a job (or operation), the next job in the
queue will be selected based on some sequencing/scheduling
(dispatching) rule to be processed next.

Machine 1

Machine 2

Machine 3
Job Arrival

Assign
Due-date

Delivery

Job/Operation

Queue

Machine # Machine

Route

Complete

Sequencing/
Scheduling

Fig. 1. Job Shop Scheduling (shop with 3 machines).

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. X, NO. X, JANUARY XXXX 3

1) Due-date assignment: Due-date assignment decisions
are made whenever jobs (customer orders) are received from
customers [33]. Due-dates can be set exogenously or endoge-
nously [32], [9]. In the former case, due-dates are decided
by independent agencies (sellers, buyers). In this work, we
focus on the latter case, in which the due-dates are internally
set based on the characteristics of jobs and machines [32].
Basically, the due-date of a new job j is calculated as:

dj = rj + f̂j (1)

The task of a DDAR is to assign a value to f̂j . In the ideal
case, we want the estimated due-date dj to be equal to the
completion time of the job Cj . The miss due-date performance
is normally measured by the error (lateness) between the
completion time and due-date, i.e., ej = Cj − dj = fj − f̂j .

Many DDARs have been proposed in the JSS literature.
The early works of DDARs were mainly based on creating
a simple model that employs aggregate information from the
new job and the shop. Examples of these methods are Total
Work Content (TWK) where dj = rj + kpj , Number of
Operations (NOP) where dj = rj + kmj , and Processing
Plus Waiting (PPW) where dj = rj + pj + kmj . In these
methods, k is a coefficient that needs to be determined. Other
more sophisticated models have also been proposed which
incorporate more information about jobs and the shop to make
better prediction of flowtimes. These include Job in Queue
(JIQ), Job in System (JIS), Work in Queue (WIQ), Total Work
and Number of Operations (TWK + NOP), Response Map-
ping Rule (RMR), and Operations-based Flowtime Estimation
(OFE). The comparison results of these DDARs [10], [34],
[35], [36], [37], [38] show that the DDARs which employ more
useful information can lead to better performance. However,
the drawback of these methods is that the results are depending
on finding appropriate coefficients for factors used in the
prediction models. Although linear regression models are a
popular method to determine the coefficients, it restricts the
DDARs to linear models only.

Because of the complexity and stochastic nature of dynamic
job shops, nonlinear models are needed [35], which makes it
computationally expensive to be solved by regression methods.
Since the early 1990s, artificial intelligence methods have
also been applied to deal with due-date assignment problems.
These include neural networks [35], [39], decision trees [40],
regression trees [41], and a regression-based method with case-
based tuning [42], etc. Some dynamic DDARs without the
need of finding optimal coefficients have also been proposed,
such as Dynamic Total Work Content (DTWK), Dynamic
Processing Plus Waiting (DPPW) [37], and ADRES [43].

2) Job sequencing: Over the last few decades, a large
number of techniques have been applied to solve sequencing
problems in job shops, ranging from simple heuristics to ar-
tificial intelligence and mathematical optimisation techniques
[44]. The aim of these methods is to find an optimal schedule
(e.g. minimising makespan) based on a given set of jobs. Since
this is a NP-hard problem [45], mathematical programming
approaches usually fail to produce optimal solutions within
a reasonable computational time. There are many researches
on applying meta-heuristics [46], [47] for solving scheduling

problems in the last two decades, particularly for static JSS
problems. The two popular directions in solving these prob-
lems are (1) local search based methods [2], [3], [5], [6], [8],
[4], [48] and (2) evolutionary computation methods [49], [50],
[51]. A comprehensive review of these methods is given in
Ouelhadj and Petrovic [52] and Potts and Strusevich [53].

Although there are some breakthroughs in the developments
of exact and approximate approaches, these methods mainly
focus on static problems in simplified job shop environments.
Other approaches like genetic algorithms have been extended
to solve these problems with some realistic constraints, but
they are generally computationally inefficient. Moreover, as
pointed out by McKay et al. [54], conventional operations
research and artificial intelligence approaches are often not
applicable in handling the dynamic characteristics of actual
manufacturing systems, since they are fundamentally based
on static assumptions. For this reason, simple dispatching rules
have been used in practice because of their ability to cope with
any dynamics when the shop changes. For dispatching rules,
each job in the queue of the machine is assigned a priority and
the job with the highest priority will be processed first. There
have been a large number of rules proposed in the literature
which can be classified into three categories [44]: (1) simple
priority rules, which are mainly based on information related
to the jobs; (2) combinations of rules that are implemented
depending on the situation that exists on the shop floor; and
(3) weighted priority indices which employ more than one
piece of information about each job to determine the schedule.
Composite dispatching rules (CDR) [55], [56] can also be
considered as a version of rules based on weighted priority
indices, where scheduling information can be combined in
more sophisticated ways instead of linear combinations. Pan-
walkar and Iskander [57] provided a comprehensive survey on
scheduling (dispatching) rules used in research and real world
applications using a similar classification. Pinedo [56] also
showed various ways to classify dispatching rules based on the
characteristics of these rules. The dispatching rules in this case
can be classified as static or dynamic rules, where dynamic
rules are time dependent (e.g. minimum slack) and static rules
are not time dependent (e.g. shortest processing time). Another
way to categorise these rules is based on the information
used (either local or global information) in making sequencing
decisions. A local rule only uses information available at the
machine where the job is queued. A global rule, on the other
hand, may use the information from other machines.

The interaction between DRs and DDARs has also been
studied [10], [11], [12], [13]. It has been noted that logical
combinations of DRs and DDARs can enhance the perfor-
mance of scheduling systems. Since the design of an effective
DR or DDAR is already time-consuming and complicated,
developing a comprehensive scheduling policy with rational
design of DRs and DDARs is often even more challenging.

B. GPHH for Scheduling Problems
GP has been applied in the field of hyper-heuristics, which

is known as GPHH [26]. Because GP is able to represent and
evolve complex programs or rules, it is an excellent choice
for generating heuristics. The GPHH has also been applied to

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. X, NO. X, JANUARY XXXX 4

evolve dispatching rules for scheduling problems. Dimopoulos
and Zalzala [58] used GP to evolve dispatching rules for the
problem of one-machine scheduling with a standard function
set and a terminal set of scheduling statistics (processing time,
release time, due date, number of jobs, etc.). The evolved
dispatching rules are better than traditional rules even for some
large and unseen instances. Jakobovic et al. [19] employed the
same method to develop dispatching rules for the problem
of parallel machine scheduling in both static and dynamic
environments. However, the evolved rules obtained from these
studies do not consider the effect of different representations in
regard to the performance of the GP system. Moreover, the ma-
chine and system attributes are not considered in the evolved
rules. To learn new dispatching rules for a single machine en-
vironment, Geiger et al. [59] presented a learning system that
combines GP with a simulation model of an industrial facility.
The proposed GP method is used to create the priority rule for
a single machine in both static and dynamic environments. The
terminal set of GP includes system attributes, job attributes,
and machine attributes, while the function set consists of basic
operators such as +, −, ×, protected division % and If. The
paper also proposed a method to learn dispatching rules for
multiple machine problems in which GP will evolve multiple
trees simultaneously with modified crossover and mutation
operators. The evolved rules are competitive with the optimal
Johnson’s rule in a simple two-machine environment. Geiger
and Uzsoy [21] also applied this system to learn dispatching
rules for batch processor scheduling with good results. For
a stochastic single machine scheduling problem, Yin et al.
[60] proposed a GP system employing a bi-tree structured
representation scheme to deal with machine breakdowns. In
this system, each scheduling heuristic is represented by two
subtrees, which are used to calculate the priorities and inserted
idle times of jobs, respectively. The empirical results under
different stochastic environments showed that GP can evolve
high-quality predictive scheduling heuristics.

Miyashita [61] developed an automatic method using GP
to design customised dispatching rules for a job shop en-
vironment. The JSS problem is considered as a multi-agent
problem where each agent represents a resource (machine
or work station). Three multi-agent models were proposed
and explored by the GP: (1) a homogeneous model where
all resources share the same dispatching rules, (2) a distinct
agent model where each machine employs its own evolved
rules, and (3) a mixed agent model where two rules can be
selected to prioritise jobs depending on whether the machine
is a bottleneck. Although the multi-agent models produce
good results, the use of these models depends on some prior-
knowledge of the job shop environment, which may change in
dynamic situations. A similar system was proposed by Atlan
et al. [62] to find the solution of a particular problem instance.
Jakobovic and Budin [63] applied GP to evolve dispatching
rules for both single machine and job shop environments.
The results for the single machine environment are shown to
outperform the existing rules. For the job shop environment,
a meta-algorithm was defined to show how the evolved rules
can be used to construct a schedule. They also proposed an
interesting approach to provide some adaptive behaviours for

the evolved rules by presenting a GP-3 system that evolves
three components, a discriminant function and two dispatching
rules. The discriminant function aims at identifying whether
the machine to be scheduled is a bottleneck. This function
serves as a classifier for the binary classification problems.
Based on the classification decision obtained from the dis-
criminant function, one of the two dispatching rules will
be selected to sequence jobs in the queue of the machine.
Although the purpose of the discriminant function in this case
is to identify the bottleneck machine, there is no guarantee that
the classification can help to indicate the bottleneck machine
or just some useful attributes of the shop or machines. The
results show that the GP-3 system performed better than
traditional GP with a single tree. However, the paper gave
no demonstration or analysis of the evolved rules.

Tay and Ho [20] proposed a GP system to evolve dis-
patching rules for a multi-objective job shop environment. The
multi-objective problem was converted into a single objective
problem by linearly combining all the objective functions. The
proposed GP program can be considered as a priority function
which is used to calculate the priority of operations in the
queue of a machine based on a set of static and dynamic
variables. The set of test instances was randomly generated
and it has been shown that the evolved dispatching rules
outperformed other simple dispatching rules. However, the
use of machine attributes in the priority function was not
considered. Hildebrandt et al. [18] re-examined the system in
different dynamic job shop scenarios, which showed that the
rules evolved by Tay and Ho [20] are only slightly better than
the earliest release date rule and worse than the performance
of the shortest processing time rule. They explained that the
poor performance of these rules is caused by the use of a
linear combination of different objectives. In addition, the
randomly generated instances cannot effectively represent the
situations that happened in a long term simulation. Hildebrandt
et al. [18] then evolved dispatching rules via four simulation
scenarios (10 machines with two utilisation levels and two
job types) and minimised the mean flow time only. The
experimental results showed that the evolved rules are rather
complicated but more effective as compared to other existing
rules. Moreover, these evolved rules are robust when they
are tested in another environment (50 machines and different
processing time distributions). However, their work has not
considered multiple conflicting objectives and the influence of
other scheduling decisions on the performance of the evolved
dispatching rules.

Designing an effective scheduling system is an important
and complicated task, which will influence the entire manufac-
turing system. Moreover, all the scheduling decisions and their
interactions should be considered in order to ensure the success
of the scheduling system in real world applications. This paper
will present a novel GP approach for automatically designing
scheduling policies including due-date assignment rules and
dispatching rules for dynamic job shop environments. The
focus of this work is on the representations of scheduling
rules evolved by the GP system, the evolutionary search
approaches to handle multiple conflicting objectives in JSS,
and the reusability of the evolved scheduling policies.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. X, NO. X, JANUARY XXXX 5

III. MULTI-OBJECTIVE GPHH METHODS FOR DYNAMIC
JSS PROBLEMS

This section describes the new GPHH methods for evolv-
ing scheduling policies, which include rules for due-date
assignment and sequencing decisions in dynamic job shop
environments. We will first show how DDARs and DRs are
represented by individuals in GP. Then, new MO-GPHH meth-
ods based on NSGA-II, SPEA2, HaD-MOEA and a proposed
cooperative coevolution method are applied to deal with the
dynamic JSS problems. These MO-GPHH methods are differ-
ent in the way the Pareto fronts of non-dominated scheduling
policies are explored. Lastly, the job shop simulation model
used for the training and testing will be described.

A. Representations

1) Due-date Assignment Rules: The task of a DDAR is
to determine the flowtime (i.e. due-dates by using equation
(1)) by employing information from jobs and the shop. In this
work, we evolve operation-based DDARs which will indirectly
calculate job flowtimes through the accumulation of operation
flowtimes in order to enhance the accuracy of the flowtime
estimation by employing more detailed operation information.
Here, we use a GP tree [14] to represent mathematical
combinations of these pieces of information. The function set
will include four standard mathematical operators +,−,×, and
protected division % (similar to normal division but returns a
value of 1 when division by 0 is attempted), along with a
conditional function If to allow GP to evolve sophisticated
DDARs. Function If takes three arguments and if the value
from the first argument is greater than or equal to zero, If
will return the value from the second argument; otherwise If
will return the value from the third argument. The terminal
set for synthesising DDARs is shown in Table I. In this table,
SOTR and SAPR are calculated based on the 20 previous jobs
processed at machine δ. SAR, on the other hand, is calculated
based on arrivals of the last 100 jobs. When the number of
jobs is less than the sample size, SOTR, SAPR and SAR are
calculated as an average over the available jobs.

TABLE I
TERMINAL SETS FOR DDARS (σ IS THE CONSIDERED OPERATION, AND δ

IS THE MACHINE THAT PROCESS σ)

N number of jobs in the shop
SAR sampled arrival rate
APR average processing times of jobs in queue of the machine that

processes σ
OT processing time of σ
LOT time for δ to finish the leftover job
OTR percentage of jobs in queues of δ require less processing time

less than OT
SOTR percentage of sampled jobs processed at δ that require less

processing time less than OT
QWL total processing time of jobs in queue of δ
SAPR sampled average processing time of jobs processed at δ
RWL total processing time of jobs that need to be processed at δ
W weight of the considered job
PEF partial estimated flowtime
random number from 0 to 1

Instead of using the function obtained from the GP tree to
directly estimate job flowtime, f̂ , the output of this function is
used to estimate the operation flowtime f̂o of each operation
σ of the new job, starting from the first operation. When f̂o
is obtained, a condition is checked to see whether σ is the
last operation. If it is not the last operation of the new job, f̂o
will be used to update the partial estimated flowtime (PEF),
which will also be used as a terminal in the GP tree. Then,
the next operation σ and the machine δ processing σ are used
as the inputs for the GP tree to estimate the next operation
flowtime f̂o. In the case that the flowtime of the last operation
has been estimated, f̂o will be added to the current PEF to
obtain the estimated job flowtime f̂ . The evaluation scheme
for a DDAR is shown in Fig. 2. The use of PEF (initially
zero for the first operation) in the terminal set of DDARs also
provides a chance to predict the changes of the system, given
that the partial estimated flowtime is well predicted.

2) Dispatching Rules: The composite dispatching rules
(CDR) [55], [56] will be represented by GP trees and will be
evolved in this work. Basically, a CDR is a priority function
that uses different pieces of information from jobs and ma-
chines to assign priorities to jobs in queues. The operation/job
with the highest priority is scheduled to be processed next on
the machine. The function set used for DDARs is also applied
here along with min, max and abs, which commonly appear
in existing CDRs. The terminal set for CDRs is shown in
Table II. Terminals in the upper part provide information about
the considered job. The last six terminals are used to provide
information about the machine and shop status, where Λ is
the set of operations/jobs currently in the shop that have the
considered machine m on their routes; and K and I (subsets
of Λ) are the sets of all operations/jobs that have and have
not yet been processed by m, respectively (Λ = K ∪ I). We
call a machine critical if it has the greatest total remaining
processing time

∑
σ∈I p(σ) and a machine is called bottleneck

if it has the largest workload
∑

σ∈Ω p(σ) where Ω is the set
of jobs in queue of the considered machine. An example of a
CDR is shown in Figure 3.

B. A Cooperative Coevolution MO-GPHH for DJSS

As discussed earlier, this work aims to evolve scheduling
policies that include two key components, i.e., due-date as-
signment rules and dispatching rules. While the representa-
tion of the rules has been discussed previously, we need to
specify how these rules are evolved in our proposed GPHH
methods. In this work, two approaches are examined. First,
a GP individual contains two GP trees for the two rules as
presented above. In this case, each individual is equivalent
to a scheduling policy. The scheduling policy is evaluated by
applying the first tree as a DDAR when a new job arrives at
the job shop to assign a due-date to that job. Meanwhile, the
second tree is applied when a machine becomes idle and there
are jobs in the queue of that machine to find the next job to
be processed. For the first approach, we apply NSGA-II [29],
SPEA2 [64], and HaD-MOEA [65] to explore the Pareto front
of non-dominated scheduling policies similar to the common
applications of these algorithms.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. X, NO. X, JANUARY XXXX 6

+

OT +

QWL PEF

New job arrives

of̂

PEFˆPEF � of

next
operation

GV ,ofirst
operation

PEFˆˆ � off
xx is

the last operation ?
V

GV ,o

No

Yes

Fig. 2. Operation-based DDAR.

+

PR %

SJ RO

Machine is idle
and there are

jobs in the queue

Assign Priority

Each job
has been assigned
a priority ?

Go to the next
unassigned job

Process the job
with the

highest priority
YesFirst job in

the queue

No

ˆ

G,

V

G,

Fig. 3. Example of GP tree as a CDR.

TABLE II
TERMINAL SET FOR CDR

rJ job release time (arrival time)
RJ operation ready time
RO number of remaining operation of the job j.
RT work remaining of the job
PR operation processing time
W weight of the job
DD due date dj
RM machine ready time
SJ slack of the job j = DD− (t+ RT)
Random number from 0 to 1

WR workload ratio =
∑

σ∈Ω p(σ)∑
σ∈I p(σ)

MP machine progress =
∑

σ∈K p(σ)∑
σ∈Λ p(σ)

DJ deviation of jobs in queue =
minσ∈Ω{p(σ)}
maxσ∈Ω{p(σ)}

CWR critical workload ratio =
∑

σ∈Ωc p(σ)∑
σ∈Ω p(σ)

CWI critical machine idleness, WR of the critical machine

BWR bottleneck workload ratio =
∑

σ∈Ωb p(σ)
∑

σ∈Ω p(σ)

∗t is the time when the sequencing decision is made.
∗Ωb amd Ωc are subsets of Ω that include jobs that will visit the
bottleneck and critical machines in the future, respectively.

The second approach to evolving scheduling policies is
to employ cooperative coevolution [66], [67], [68] to evolve
two decision rules in two sub-populations. This approach is
similar to the cooperative coevolution framework proposed by
Potter and de Jong [69], in which the scheduling policy is
the combination of an individual in a sub-population with
a representative from the other sub-population, and some
specialised operations are also employed here to help explore
the Pareto front of the scheduling policies. In this work,
we propose a new diversified multi-objective cooperative co-
evolution (DMOCC) method based on the second approach.
An overview of the proposed DMOCC is shown in Fig. 4.
Here each sub-population (P1 for DDARs and P2 for DRs)
represents one rule of the complete scheduling policy. For

each individual pri ∈ Pr, the objective values which determine
the quality (fitness) of pri are obtained by combining that
individual with a representative from the other population
to form a complete scheduling policy S. When a complete
scheduling policy is applied to the job shop, the quality
of that policy is characterised by the expected values of
three performance measures: (1) makespan (Cmax) [56]; (2)
total weighted tardiness (TWT) [56]; and (3) mean absolute
percentage error (MPEA) [43] (see Table V). Cmax and TWT are
two popular performance measures for evaluating dispatching
rules or scheduling methods while MPEA is used to indicate
the accuracy of the due-date assignment rules. In this work,
the scheduling policies are evolved such that these three
performance measures are minimised.

Within DMOCC, we use the crowding distance (individuals
with higher crowding distances are located in less crowded
areas of the objective space) and non-dominated rank [29]
(individuals with the same rank are not dominated by each
other and dominated by at least one individual with a smaller
rank) to select GP individuals for genetic operations and
for collaboration between the two sub-populations. Repre-
sentatives for collaboration are selected based on a binary
tournament selection method [29], which randomly selects
two individuals and the one with a lower non-dominated rank
will be chosen. In the case that two individuals have the
same rank, the individual with a higher crowding distance will
be selected. The binary tournament selection is employed in
DMOCC because it takes into account both the quality of the
non-dominated individuals and their spread/distribution.

An external archive A is employed in this method to store
the non-dominated scheduling policies. After all individuals
have been evaluated, a set of non-dominated scheduling poli-
cies are extracted from individuals in the two sub-populations
and the current archive to form a new archive. Besides
storing the non-dominated scheduling policies, the archive in

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. X, NO. X, JANUARY XXXX 7

䇻 䇻

Sub-population
for DRs

Sub-population
for DDARs

Individual pi

Collaborate

Complete
scheduling policy

Evaluate

Obtain the
objectives

Sub-population

All individuals
evaluated?

No

Yes

Form new
sub-population

Maximum
generation?

No

EndYes

representative

representative

r

i
p

r
P

S

1
P

2
P

1

rep
p

2

rep
p

Assign ranks
and crowding
distance

Update archive

A

Fig. 4. Overview of DMOCC.

DMOCC is also used for two other purposes. First, it is used
to evaluate the quality (rank and crowding distance) of the
evolved scheduling policies in the two sub-populations. Instead
of evaluating the quality of the evolved rules independently
in each sub-population, it is better to assess their quality
based on comparisons with those in the archive and the
other sub-population to identify other potential non-dominated
scheduling policies. Secondly, the archive can provide genetic
materials which are needed for the crossover operation (more
details are provided in Section III-C). Different from NSGA-
II, SPEA2 and HaD-MOEA, the size of archive in DMOCC is
not fixed, although the number of complete scheduling policies
stored in the archive cannot exceed a predefined maximum
size. When the number of non-dominated scheduling policies
extracted from a generation is more than the maximum size,
only individuals with the highest crowding distance will be
preserved in the archive. Since new individuals will be created
from parents in the archive through crossover, such a dynamic
archive will help focus the search towards non-dominated
scheduling policies at the early stage of the evolution. When
the number of individuals in the archive increases, the shape
of the Pareto front will be characterised and the method will
focus on distributing the individuals uniformly.

The pseudo code of DMOCC is shown in Fig. 5. The
algorithm starts by populating the two sub-populations P1 and
P2 with randomly generated individuals. In each generation,
each individual pri of the two populations collaborates with the
representative pr

′

rep from the other sub-population to create a
complete scheduling policy S. Then, the objective values of pri
are obtained by applying S to the simulated job shop. When all
individuals have been evaluated, the archive A will be updated.
Ranks and crowding distances are then assigned to individuals
in A, P1, and P2. Here, new sub-populations are generated by
genetic operations and the algorithm starts a new generation
if the maximum generation is not reached.

� � � �

! !

1: initialise each sub-population Pr with r = {1, 2}
Pr ← {pr1, p

r
2, . . . , p

r
N}

2: A ← {}
3: while maxGeneration is not reached do

4: for r = 1 → 2 do

5: for i = 1 → N do

6: S ← collaborate(pri , p
r′

rep) where r′ #= r
7: pri .objectives ← evaluate(S)
8: end for

9: end for

10: A ← update(A
⋃
P1

⋃
P2)

11: assign ranks and crowding distance
12: for r = 1 → 2 do

13: Pr ← genetic operations(Pr, A)
14: end for

15: end while

16: return A

Fig. 5. Pseudo code for DMOCC.

C. Genetic Operators

Traditional genetic operators are employed by the proposed
MO-GPHH methods. For crossover, GP uses the subtree
crossover [14], which creates new individuals for the next gen-
eration by randomly recombining subtrees from two selected
parents. SPEA2 uses tournament selection to select parents in
the population with the highest fitness value in the tournament.
NSGA-II and HaD-MOEA use binary tournament selection
based on rank and crowding distance as explained in the
previous section. For DMOCC, binary tournament selection is
used to select one parent from a sub-population and one parent
from the archive. Since individuals in the archive have a rank
of zero, the selection is made only based on the crowding
distance in order to direct the search to less crowded areas.
Here, mutation is performed by the subtree mutation [14],
which randomly selects a node of a chosen individual in the
population and replaces the subtree rooted at that node by
a newly randomly-generated subtree. For NSGA-II, SPEA2
and HaD-MOEA, the genetic operations will first randomly
choose which tree (either DR or DDAR) of the parents to
perform the operations on since each individual includes two
trees for the two scheduling rules. If the crossover is applied,
only genetic materials from the selected tree of the same type
will be exchanged (e.g. a tree representing DR in one parent
will only crossover with a tree representing DR of the other
parent).

D. Parameters

Table III shows the parameters used by the four proposed
MO-GPHH methods. SPEA2 applied tournament selection
with a tournament size of 5 to select individuals for the
genetic operations. NSGA-II, SPEA2, and HaD-MOEA used
a population size of 200 while DMOCC used a population
size of 100 for each sub-population to ensure that the number
of program evaluations remains the same for all methods. The
archive size of SPEA2 and maximum-size of DMOCC are set
to 200. These settings are used so that the proposed methods

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. X, NO. X, JANUARY XXXX 8

TABLE III
PARAMETER SETTINGS

Initialisation ramped-half-and-half [14]
Crossover rate 90%
Mutation rate 10%
Maximum depth 8
Number of generations 100
Population size 200 for NSGA-II, SPEA2, and HaD-MOEA, and

100 for each sub-population of DMOCC

TABLE IV
TRAINING AND TESTING SCENARIOS

Factor Training Testing
Number of machines 4,6 5,10,20
Utilisation 80%,90% 70%,80%,90%,95%
Distribution of processing time Exponential Exponential, Uniform
Distribution of # of operations missing missing,full

will give the same number of non-dominated scheduling
policies at the end of each run.

E. Job Shop Simulation Model
In this work, we use a symmetrical (balanced) job shop

simulation model in which each operation of a job has equal
probability to be processed at any machine in the shop and
a job visits each machine at most once. Therefore, machines
in the shop are expected to have the same level of congestion
in long simulation runs. This model has been used in many
studies in the JSS literature [18], [37], [38], [70], [71]. Based
on the factors discussed above, the scenarios for training and
testing of the scheduling policies are shown in Table IV.

Without loss of generality, the mean processing time of
operations is fixed to 1 in these scenarios. The arrival of
jobs will follow a Poisson process [18], [37], [38] with the
arrival rate adjusted based on the utilisation level. For the
distribution of the number of operations, the missing setting
is used to indicate that the number of operations will follow
a discrete uniform distribution from 1 to the number of
machines. Meanwhile, the full setting indicates that each job
will have its number of operations equal to the number of
machines in the shop. The sequence of machines that a job
will visit is selected randomly with a job visiting a machine
at most once. New jobs will be assigned random weights such
that 20% of the jobs have weights of 1, 60% have weights
of 2 and 20% have weights of 4. This setting was inspired
by Pinedo and Singer [7], which showed that approximately
20% of the customers are very important, 60% are of average
importance and the remaining 20% are of less importance.
In each replication of a simulation scenario, we start with
an empty shop and the interval from the beginning of the
simulation until the arrival of the 1000th job is considered as
the warm-up time and the statistics from the next completed
5000 jobs (set C) are recorded to evaluate the performance
measures of the scheduling policies as shown in Table V.
In this table, M is the number of machines in the shop, w̄
is the average weight and 1

µ is the average processing time
of an operation. The average values of these performance
measures across different simulation scenarios/replications are

TABLE V
PERFORMANCE MEASURES OF SCHEDULING POLICIES

Makespan [56] Cmax = maxj∈C{fj}

Normalised Total Weighted Tardiness [72] TWT =
∑

j∈C wjTj

|C|×M× 1
µ×w̄

Mean Absolute Percentage Error [43] MAPE = 1
|C|

∑
j∈C

|ej |
fj

the objectives to be minimised by the proposed MO-GPHH
methods.

In the training stage, due to the heavy computation time, we
only perform one replication for each scenario. As mentioned
in Table IV, there are (2×2×1×1) = 4 simulation scenarios
used for evaluating the performance of the evolved scheduling
policies. It should be noted that the performance measures are
obtained for each scenario by applying the evolved scheduling
policies thousands of times, since there are thousands of due-
date assignment and sequencing decisions needed to be made
during a simulation replication of that scenario. During the
testing, each of the non-dominated scheduling policies from a
GP run is applied to (3×4×2×2) = 48 simulation scenarios
(see Table IV) and 5 simulation replications are performed for
each scenario; therefore, we perform 48× 5 = 240 simulation
replications for testing the performance of the obtained non-
dominated scheduling policies. The use of a large number of
scenarios and replications in the testing stage will help confirm
the quality and reusability of the evolved scheduling policies.

F. Performance Measures for MO-GPHH Methods
Similar to other multi-objective optimisation applications,

we are interested in the quality of the obtained Pareto fronts in
terms of (1) convergence to the trade-off solutions and (2) the
spread or distribution of the solutions on the obtained Pareto
front. Three popular performance metrics for multi-objective
optimisation are used here: hypervolume ratio (HVR) [28],
[73]; SPREAD [29]; and generational distance (GD) [27].

1) Hypervolume (HV) and Hypervolume Ratio (HVR):
Hypervolume is used to measure the “volume” in the objective
space covered by the obtained non-dominated solutions for
minimisation problems,

HV = volume(
nPF⋃

i=1

νi) (2)

where nPF is the number of members in the obtained Pareto
front PFknown, νi is the hypercube constructed with a refer-
ence point and the member i as the diagonal of the hypercube
[28]. van Veldhuizen and Lamont [73] normalised HV by using
the hypervolume ratio which is the ratio of the hypervolume of
PFknown and the hypervolume of the reference Pareto front
PFref ,

HV R =
HV (PFknown)

HV (PFref)
(3)

2) SPREAD: This metric measures the non-uniformity of
PFknown [29]. A widely and uniformly spread out set of non-
dominated solutions in the PFknown will result in a small

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. X, NO. X, JANUARY XXXX 9

SPREAD.

SPREAD =
df + dl +

∑nPF−1
i=1 |d′i − d̄|

df + dl + (nPF − 1)d̄
(4)

where d′i is the Euclidean distance between member i and its
nearest member in PFknown, d̄ is the average of all d′i, and
df and dl are the Euclidean distances between the extreme
solutions and the boundary solutions of PFknown.

3) Generational Distance (GD): This metric is used to
measure the distance between the obtained Pareto front
(PFknown) and the reference Pareto front (PFref) [27],

GD =

(
1

nPF

nPF∑

i=1

d2i

)1/2

(5)

where di is the Euclidean distance between the member i in
PFknown and its nearest member in PFref .
PFref is normally the true Pareto front, which is unknown

in the simulation here. Therefore, we adopt a reference Pareto
front PFref in the calculation of these performance metrics.
In this work, PFref includes the non-dominated scheduling
policies extracted from all scheduling policies found by the
four MO-GPHH methods (NSGA-II, SPEA2, HaD-MOEA,
and DMOCC) in all independent runs as shown in the next
section.

IV. RESULTS

In order to evaluate the effectiveness of the proposed
methods, 30 independent runs of each MO-GPHH method are
performed and the evolved Pareto fronts obtained from each
run are recorded. The evolved non-dominated scheduling poli-
cies (SPs) are then compared with the existing SPs based on
combinations of well-known dispatching rules with dynamic
and regression-based due-date assignment rules.

A. Pareto Front of the Evolved Scheduling Policies
Fig. 6(a) and Fig. 6(b) show the aggregate Pareto fronts

extracted from all the evolved scheduling policies, which were
obtained by the four proposed MO-GPHH methods in 30
independent runs for both the training and testing scenarios. It
can be observed that the three objectives Cmax, TWT and MAPE
are conflicting objectives. When tracing along the Pareto front
to find scheduling policies that are able to minimise Cmax and
TWT, it can be seen that the value of MAPE tends to be increased.
This suggests that scheduling policies that provide better shop
performance (small Cmax and TWT) will result in flowtimes that
are hard to predict accurately (large MAPE). Given a similar
value of MAPE, trade-off between Cmax and TWT can also be
observed, which suggests that there is no evolved dispatching
rule that can simultaneously optimise these objectives. Such an
observation is consistent with those discussed in the literature
[55], [20].

In both the testing and training scenarios, it is observed
that Cmax and TWT can be significantly reduced by using SPs
with MAPE smaller than 0.5. The use of more sophisticated SPs
can provide slightly better Cmax and TWT but they also make
the job flowtimes much more difficult to be estimated. These

results show that there are many trade-offs to be considered
when selecting an appropriate SP for a scheduling system
and the knowledge about these trade-offs is useful in making
a better decision. For example, the obtained Pareto fronts
suggest that much better delivery reliability (a small MAPE)
can be achieved with a reasonable sacrifice in Cmax or TWT.
However, if a single objective such as Cmax or TWT is to be
minimised in this case, the evolved SPs will lead to very poor
delivery reliability (a high MAPE) and thus reduce the customer
satisfaction. Also, given the shape of the Pareto fronts in Fig.
6, it would be difficult to apply a traditional linear combination
of objective values for fitness assessment [20] to find desirable
rules due to the difficulty in identifying suitable weights for
each objective. These observations show that handling multiple
objectives with knowledge about their Pareto front is crucial
for the design of effective scheduling policies.

B. Comparison to Existing DRs and Dynamic DDARs

The combination of six popular DRs and three dynamic
DDARs are evaluated on both the training and testing scenar-
ios. The results are compared with the evolved non-dominated
SPs as shown in Fig. 6. The six DRs used in this comparison
are First-In-First-Out (FIFO), Critical Ratio (CR), Slack-per-
Operation (S/OPN), Shortest Processing Time (SPT) [57],
weighted Apparent Tardiness Cost (ATC) and weighted Cost
Over Time (COVERT) [72]. The parameters of ATC and
COVERT are the same as those used in Vepsalainen and
Morton [72] (k = 3 for ATC, k = 2 for COVER, and the
leadtime estimation parameter b = 2). The three dynamic
DDARs are DTWK, DPPW [37] and ADRES [43]. These
DDARs are selected for comparison because they are well-
known in the scheduling literature and the application of these
rules does not require predetermination of any parameter or
coefficient for each simulation scenario. The objective values
obtained by these 18 combinations for the training and testing
scenarios are shown in Table VI and Table VII and are
visualised as crosses in Fig. 6(a) and (b).

TABLE VI
PERFORMANCE OF EXISTING SCHEDULING POLICIES

FOR TRAINING SCENARIOS (Cmax, TWT, MAPE)

DTWK DPPW ADRES
FIFO (101.5, 1.25, 0.81) (101.5, 0.71, 2.00) (101.5, 0.36, 1.05)
CR (174.6, 0.53, 0.73) (127.4, 0.52, 2.47) (178.0, 0.49, 1.33)

S/OPN (156.9, 0.42, 0.57) (114.0, 0.42, 1.63) (123.9, 0.14, 1.68)
SPT (575.8, 0.60, 0.67) (575.8, 0.69, 1.45) (575.8, 0.46, 4.96)
ATC (476.9, 0.32, 0.58 (504.3, 0.36, 1.32) (173.8, 0.06, 2.17)

COVERT (301.6, 0.25, 0.40) (362.9, 0.23, 1.00) (145.4, 0.09, 0.96)

TABLE VII
PERFORMANCE OF EXISTING SCHEDULING POLICIES

FOR TESTING SCENARIOS (Cmax, TWT, MAPE)

DTWK DPPW ADRES
FIFO (149.7, 0.73, 0.35) (149.7, 0.47, 0.80) (149.7, 0.21, 0.60)
CR (160.5, 0.19, 0.18) (115.2, 0.18, 0.71) (206.1, 0.03, 0.60)

S/OPN (159.9, 0.20, 0.20) (114.2, 0.19, 0.58) (184.6, 0.02, 0.74)
SPT (510.2, 0.68, 0.56) (510.2, 0.74, 0.86) (510.2, 0.45, 2.59)
ATC (302.8, 0.19, 0.29) (306.4, 0.19, 0.53) (220.4, 0.01, 1.05)

COVERT (242.8, 0.15, 0.21) (237.9, 0.14, 0.46) (152.2, 0.02, 0.55)

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. X, NO. X, JANUARY XXXX 10

0
100

200
300

400
500

600

0
0.2

0.4
0.6

0.8
1

1.2
1.4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

CmaxTWT

M
AP

E

0

100

200

300

400

500

600

0

0.2

0.4

0.6

0.8

1

1.2

1.4
0

1

2

3

4

5

Cmax
TWT

M
AP

E

0

100

200

300

400

500

600

00.20.40.60.811.21.4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

TWT

M
AP

E

70

80

90

100

110

120

130

140

Cmax

Cmax

(a) Training Scenarios

0

100

200

300

400

500

600

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8

0

0.5

1

1.5

2

2.5

3

3.5

Cmax
TWT

M
AP

E

50
100

150
200

250
300

350
400

450
500

550

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
0

1

2

3

4

CmaxTWT

M
AP

E

0

100

200

300

400

500

600

00.10.20.30.40.50.60.70.8

0

0.5

1

1.5

2

2.5

3

3.5

Cmax

TWT

M

AP
E

80

90

100

110

120

130

140

150

Cmax

(b) Testing Scenarios

Fig. 6. Pareto front of non-dominated scheduling policies. The plots show three different views of the aggreate Pareto fronts obtained for training and testing,
• and + respectively represent evolved and existing scheduling policies as shown in Section IV-C.

Among these existing scheduling policies, the ones given
with FIFO provide the best Cmax. The scheduling policies with
DTWK provide the best MAPE, and the combination of ATC and
ADRES achieves the best TWT. However, these existing schedul-
ing policies are easily dominated by the evolved scheduling
policies in the aggregate Pareto fronts as shown in Fig. 6.
Moreover, when compared with the non-dominated schedul-
ing policies obtained by each independent run of NSGA-II,
SPEA2, HaD-MOEA and DMOCC, it can be observed from
our experiments that these scheduling policies are dominated
by at least one of the evolved scheduling policies using the
proposed methods in both the training and testing scenarios.
These results show that the non-dominated scheduling policies
evolved by the proposed MO-GPHH methods not only show
good performance on the training scenarios, but can also be
effectively reused for unseen scenarios.

C. Comparison to Existing DRs and Regression-based DDARs

We further examine the effectiveness of the evolved SPs
by comparing them with existing DRs and regression-based
DDARs. The four due-date assignment models used here
are TWK, NOP, JIQ and JIS in combination with the six

dispatching rules reported in the previous section. Different
from the dynamic DDARs, the coefficients of the employed
models have to be determined by regression methods for each
job shop setting. Fig. 7 and Table VIII show the performance
of these (6× 4) = 24 combinations and the aggregate Pareto
front of the non-dominated scheduling policies for the case
with utilisation of 90%, 5 machines, full setting and processing
times follow an exponential distribution. In this case, the
coefficients of the due-date assignment models TWK, NOP,
JIQ and JIS were determined by using Iterative Multiple
Regression (IMR) [74]. The values shown in the figure are
the average values of the three objectives obtained from 30
independent simulation replications.

Since this work deals with a dynamic JSS environment with
stochastic factors (such as arrival process, processing time), we
also examine the Pareto dominance of SPs under uncertainty.
The definition of statistical Pareto dominance is introduced
in Appendix A to help determining the Pareto dominance
relation between two scheduling policies in this case. The
results show that each of the 24 existing SPs considered here
is statistically dominated (with a significant level α = 0.05
and the Bonferroni method [75] used to adjust the value of

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. X, NO. X, JANUARY XXXX 11

80

100

120

140

160

180

200

0
0.2

0.4
0.6

0.8
1

1.2

0

0.5

1

1.5

2

2.5

3

3.5

4

Cmax

TWT

M
AP

E

0 100 200 300 400 500 600 700 0
0.5

1
1.5

2
2.5

3
3.5

0

0.5

1

1.5

2

2.5

3

3.5

4

TWT

Cmax

M
AP

E

0

200

400

600

00.511.522.533.5
0

0.5

1

1.5

2

2.5

3

3.5

4

Cmax

TWT

M
AP

E

80

85

90

95

100

105

110

115

120

Cmax

Fig. 7. DRs and Regression-based DDARs vs. evolved scheduling policies. (• and ! are respectively the non-dominated and dominating evolved scheduling
policies; and + represents existing scheduling policies)

TABLE VIII
PERFORMANCE OF DRS AND REGRESSION-BASED DDARS

Cmax TWT MAPE
FIFO + TWK 129.381 ± 27.26 3.231 ± 1.38 0.495 ± 0.05
FIFO + NOP 129.381 ± 27.26 1.933 ± 1.31 0.451 ± 0.09
FIFO + JIQ 129.381 ± 27.26 0.924 ± 0.09 0.178 ± 0.01
FIFO + JIS 129.381 ± 27.26 0.871 ± 0.13 0.178 ± 0.01
CR + TWK 183.169 ± 44.14 1.239 ± 1.06 0.291 ± 0.07
CR + NOP 139.275 ± 40.01 1.183 ± 0.94 0.310 ± 0.09
CR + JIQ 103.784 ± 15.15 0.406 ± 0.04 0.084 ± 0.01
CR + JIS 102.935 ± 16.73 0.384 ± 0.04 0.085 ± 0.01

S/OPN + TWK 156.279 ± 27.73 1.650 ± 1.36 0.440 ± 0.10
S/OPN + NOP 126.500 ± 29.73 1.698 ± 1.44 0.375 ± 0.10
S/OPN + JIQ 102.718 ± 15.44 0.383 ± 0.05 0.088 ± 0.08
S/OPN + JIS 101.404 ± 15.74 0.390 ± 0.07 0.089 ± 0.09
SPT + TWK 603.661 ± 235.69 0.996 ± 0.30 0.608 ± 0.03
SPT + NOP 603.661 ± 235.69 1.370 ± 0.33 0.844 ± 0.03
SPT + JIQ 603.661 ± 235.69 0.979 ± 0.29 0.632 ± 0.02
SPT + JIS 603.661 ± 235.69 0.990 ± 0.30 0.616 ± 0.02
ATC + TWK 600.539 ± 213.47 0.507 ± 0.19 0.481 ± 0.04
ATC + NOP 609.517 ± 200.21 0.702 ± 0.21 0.441 ± 0.03
ATC + JIQ 570.168 ± 201.18 0.409 ± 0.10 0.395 ± 0.02
ATC + JIS 548.237 ± 190.89 0.381 ± 0.08 0.362 ± 0.02

COVERT + TWK 511.948 ± 204.55 0.424 ± 0.18 0.225 ± 0.03
COVERT + NOP 540.604 ± 210.92 0.483 ± 0.19 0.233 ± 0.04
COVERT + JIQ 379.399 ± 141.83 0.258 ± 0.03 0.141 ± 0.02
COVERT + JIS 336.875 ± 116.26 0.237 ± 0.02 0.135 ± 0.02

each individual statistical test) by at least one evolved SP in
the aggregate Pareto front, which is indicated as a dominating
evolved scheduling policy in Fig. 7 and Table IX. This further
shows the high-quality of the evolved SPs even when they
are compared with customised SPs. Fig. 7 also reveals that
the combinations of existing DRs and DDARs do not cover
all promising regions in the objective space. This observation
suggests that automatic design methods like the proposed MO-
GPHH methods are essential in order to provide informed
knowledge about any potential SPs. Moreover, these results
suggest that the evolved SPs are robust to uncertain JSS
environments even though they are trained/evolved based on
the mean values of the objectives across different simulation
scenarios.

V. FURTHER ANALYSIS

The comparison results in the previous section have shown
the effectiveness of the proposed MO-GPHH methods for
evolving efficient SPs. In this section, we will compare the

TABLE IX
PERFORMANCE OF DOMINATING EVOLVED SCHEDULING POLICIES

SP/Objective Cmax TWT MAPE
#1 91.507 ± 15.32 0.204 ± 0.04 0.114 ± 0.01
#2 91.824 ± 15.47 0.194 ± 0.04 0.114 ± 0.01
#3 95.497 ± 16.46 0.135 ± 0.02 0.116 ± 0.01
#4 95.590 ± 16.61 0.182 ± 0.03 0.093 ± 0.01
#5 96.075 ± 16.85 0.134 ± 0.02 0.117 ± 0.01
#6 96.996 ± 16.67 0.182 ± 0.03 0.093 ± 0.01
#7 101.597 ± 15.45 0.180 ± 0.02 0.097 ± 0.01
#8 102.104 ± 17.60 0.171 ± 0.02 0.111 ± 0.01
#9 102.430 ± 19.77 0.133 ± 0.01 0.127 ± 0.01
#10 102.562 ± 18.31 0.132 ± 0.01 0.122 ± 0.01
#11 102.567 ± 19.25 0.122 ± 0.01 0.125 ± 0.01
#12 102.885 ± 18.65 0.118 ± 0.01 0.135 ± 0.02
#13 103.970 ± 18.12 0.106 ± 0.02 0.138 ± 0.02
#14 106.151 ± 17.82 0.096 ± 0.01 0.084 ± 0.01
#15 106.892 ± 17.40 0.085 ± 0.01 0.136 ± 0.02
#16 107.526 ± 21.07 0.086 ± 0.01 0.122 ± 0.01
#17 109.083 ± 18.78 0.165 ± 0.01 0.066 ± 0.01
#18 110.068 ± 22.30 0.126 ± 0.01 0.071 ± 0.01
#19 110.518 ± 19.41 0.163 ± 0.01 0.069 ± 0.01
#20 110.667 ± 19.84 0.154 ± 0.01 0.068 ± 0.01
#21 110.754 ± 19.52 0.080 ± 0.01 0.136 ± 0.02
#22 111.922 ± 19.59 0.040 ± 0.01 0.134 ± 0.01
#23 112.373 ± 17.29 0.040 ± 0.01 0.122 ± 0.01
#24 114.717 ± 23.73 0.072 ± 0.01 0.097 ± 0.01
#25 115.209 ± 24.68 0.057 ± 0.01 0.101 ± 0.01
#26 116.613 ± 22.75 0.069 ± 0.01 0.091 ± 0.01
#27 120.045 ± 27.26 0.053 ± 0.01 0.107 ± 0.01
#28 120.625 ± 25.72 0.052 ± 0.01 0.107 ± 0.01
#29 124.931 ± 24.49 0.065 ± 0.01 0.095 ± 0.01
#30 125.122 ± 26.18 0.065 ± 0.01 0.096 ± 0.01
#31 132.354 ± 26.58 0.105 ± 0.01 0.080 ± 0.01

ability of the proposed MO-GPHH methods in exploring the
Pareto front of non-dominated SPs.

A. Performance of MO-GPHH Methods

The performance indicators of the four MO-GPHH methods
are shown in Fig. 8 and Fig. 9 (better methods have higher
HVR and smaller SPREAD and GD). With the training
scenarios, Wilcoxon signed-rank tests (with significance level
of 0.05) show that the HVRs obtained by DMOCC, NSGA-II,
and HaD-MOEA are significantly better (higher) than that of
SPEA2. This means that the SPs obtained by these methods
can significantly dominate those obtained by SPEA2. In terms
of HVR, there is no significant difference between DMOCC,
NSGA-II, and HaD-MOEA but the standard deviations of

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. X, NO. X, JANUARY XXXX 12

DMOCC NSGA−II SPEA2 HaD−MOEA

0.
86

0.
88

0.
90

0.
92

0.
94

0.
96

0.
98

(a) HVR

DMOCC NSGA−II SPEA2 HaD−MOEA
0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

(b) SPREAD

DMOCC NSGA−II SPEA2 HaD−MOEA

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

(c) GD

Fig. 8. Performance of MO-GPHH methods on training scenarios. (HVR to
be maximised; and SPREAD and GD to be minimised)

DMOCC NSGA−II SPEA2 HaD−MOEA

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

(a) HVR

DMOCC NSGA−II SPEA2 HaD−MOEA

0.
6

0.
8

1.
0

1.
2

1.
4

(b) SPREAD

DMOCC NSGA−II SPEA2 HaD−MOEA

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

(c) GD

Fig. 9. Performance of MO-GPHH methods on testing scenarios.

HVRs obtained by DMOCC and HaD-MOEA are slightly
smaller than those obtained by NSGA-II. For the distribution
of the obtained SPs on the Pareto fronts, the SPREAD val-
ues obtained by DMOCC and HaD-MOEA are significantly
better than those obtained by NSGA-II and SPEA2. Although
DMOCC uses crowding distance (like NSGA-II) as the indica-
tor for individuals in less crowded areas, the selection method
for choosing representative individuals as well as individuals
for crossover has significantly improved the uniformity of the
Pareto fronts obtained by DMOCC. Given a better distribution
of scheduling policies, GD of DMOCC is significantly smaller
than NSGA-II although there is no significant difference in
HVR. Overall, DMOCC and HaD-MOEA are the two most
competitive methods for the problems studied in this paper.
It should be noted that performances of the obtained non-
dominated SPs on the testing scenarios are rather consistent
with those obtained in the training scenarios. However, the
SPREAD of DMOCC is significantly better than all the other
methods. These experimental results show that the proposed
DMOCC is a very promising approach for evolving highly
efficient SPs.

B. Complexity of DMOCC
The complexity of DMOCC depends on the operations

performed at each generation. Similar to NSGA-II, the three
basic operations of DMOCC are (1) non-dominated sorting, (2)
crowding-distance assignment, and (3) sorting for genetic and
representative selection. For non-dominated sorting, we adopt
the procedure proposed by Deb et al. [29], which results in the
worst-case complexity of O(MR2) where M is the number
of objective functions to be minimised and R is the size of
the joined population. Assuming that the size of each sub-
population N is the same and the maximum size of the archive
is A, the size of the joined population is R = 2N + A. The
worst-case complexity of the crowding-distance assignment

and sorting for genetic operators and representative selection
are O(MR log(R)) and O(R log(R)), respectively. It is obvi-
ous that the complexity of the algorithm is O(MR2), governed
by the non-dominated sorting procedure. Therefore, both the
sub-population size N and archive size A will influence the
complexity of DMOCC. For complex problems where GP
needs a large population size in order to maintain the diversity
of the population, the complexity of NSGA-II (O(MN2)) will
increase since its complexity depends mainly on the population
size. Because the number of final non-dominated solutions is
not necessarily as large as the population, the complexity of
DMOCC can be smaller than that of NSGA-II by maintaining
a small archive.

C. Representative Selection

As mentioned earlier, representative selection is an impor-
tant factor in the proposed cooperative coevolution method.
Here we will examine the influence of representative selection
methods on the performance of the proposed DMOCC. Apart
from the representative selection method discussed above, two
other methods are also examined here. The first is a problem-
based method which applies two different representative se-
lection strategies for each sub-population. In this method, the
representatives of the sub-population of DRs are selected by
using a similar method as in DMOCC (based on the non-
dominated rank and crowding distance). On the other hand,
the representatives of DDARs are selected based on the values
of MAPE. This method assumes that good DDARs (with small
values of MAPE) are able to cope with a wide range of DRs, and
thus it will only focus on MAPE when selecting representatives
to form complete SPs with the evolved DRs. The second
method simply selects random representatives from each sub-
population. The performances of the three representative selec-
tion methods are shown in Fig. 10 and Fig. 11. The DMOCC-
P and DMOCC-R are similar to DMOCC, except that they
employ problem-based and random representative selection
methods, respectively.

DMOCC DMOCC−P DMOCC−R

0.
85

0.
90

0.
95

(a) HVR

DMOCC DMOCC−P DMOCC−R

0.
4

0.
6

0.
8

1.
0

1.
2

(b) SPREAD

DMOCC DMOCC−P DMOCC−R

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

(c) GD

Fig. 10. Influence of representative selection methods on training scenarios.

The results from these figures show that the HVR values
of the three selection methods are not significantly different.
However, DMOCC gives significantly better SPREAD and
GD performances as compared to DMOCC-P and DMOCC-
R. Also, the DMOCC-P is better than DMOCC-R according
to these two performance metrics. The results show that it
is important to include the representative selection method
based on the non-dominated rank and crowding distance. Al-

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. X, NO. X, JANUARY XXXX 13

DMOCC DMOCC−P DMOCC−R

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

(a) HVR

DMOCC DMOCC−P DMOCC−R
0.
6

0.
8

1.
0

1.
2

1.
4

(b) SPREAD

DMOCC DMOCC−P DMOCC−R

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

(c) GD

Fig. 11. Influence of representative selection methods on testing scenarios.

though individuals selected for genetic operations for each sub-
population also employ the non-dominated rank and crowding
distance, the features of non-dominated rank and crowding
distance still have a strong impact on the performance of
the representative selection method. Also, the evolved DDARs
with good MAPE are not necessarily suitable for a wide range
of DRs, since DMOCC-P does not produce Pareto fronts with
the performance of SPREAD as good as DMOCC.

D. Choice of Training Scenarios
Like other machine learning methods, it would be interest-

ing to examine how the choices of training sets or training
scenarios may influence the ability of the proposed MO-
GPHH in exploring effective scheduling policies. Previously,
we have trained the proposed MO-GPHH on scenarios with
the missing setting of arriving jobs. This section will further
examine the cases where full and missing/full settings are used.
The first case used 4 simulation scenarios and the second
case used 8 simulation scenarios for training. Fig. 12 shows
the performance of DMOCC on the testing scenarios when
different training scenarios have been used.

The results show that there is no significant difference
between the cases where missing and full settings are used.
When both missing and full settings are used for training,
the obtained HVRs are significantly better than those obtained
in the cases where either missing or full setting is used and
there is no significant differences in SPREAD and GDs. This
indicates that more general training scenarios are necessary in
order to improve the quality of the evolved scheduling policies.
Although the simulation scenarios with jobs following the
missing setting also include jobs following the full setting,
it is still unable cover all situations that happened in the
simulation scenarios with jobs following the full setting. The
major problem is that the use of a large number of simulation
scenarios will increase the computation cost of the proposed
methods. Thus, there is a trade-off between the computational
effort and the reusability of the evolved scheduling policies.
Depending on the available computational resources and the
environments where the evolved scheduling policies will be
applied, the training simulation scenarios should be logically
selected.

E. The Evolved Scheduling Policies
This section investigates how the evolved scheduling poli-

cies can effectively solve the problem and how trade-offs can
be made among different objectives. Since many SPs have

miss full miss/full

0.
70

0.
80

0.
90

1.
00

(a) HVR

miss full miss/full

0.
6

0.
8

1.
0

1.
2

1.
4

(b) SPREAD

miss full miss/full

0.
00

0.
05

0.
10

0.
15

0.
20

(c) GD

Fig. 12. Influence of training scenarios on testing performance of DMOCC.

been obtained from our experiments, we will present some
examples of the SPs. Fig. 13 is the same as Fig. 6(a) with a
different view and the points surrounded by rectangles are the
example SPs, which are also presented in Table X.

60 70 80 90 100 110 120 0

0.5

1

0

0.5

1

1.5

2

2.5

3

TWT

Cmax

M
A
P
E

#4

#3

#2

#1

Fig. 13. Pareto front and selected evolved scheduling policies.

TABLE X
EXAMPLES OF THE EVOLVED SCHEDULING POLICIES

Scheduling Policy #1 (Cmax = 90.774, TWT = 0.170, MAPE = 0.098)

DR : 2RO2MP
(0.9087407−RJ) + IF(max(BWR, WR)− 2SJ,−PR,−RJ)

DDAR: OT+ LOT+ QWL

Scheduling Policy #2 (Cmax = 83.597, TWT = 0.048, MAPE = 0.312)

DR : max(−0.043989424, 1
PR
(2PR+RT

PR
+ max(RT, PR)− SJ))

DDAR: OT+ LOT+ QWL

Scheduling Policy #3 (Cmax = 66.844, TWT = 0.311, MAPE = 0.608)

DR : RT RO
PR

+ IF(−CWR SJ
PR
, DJ, RT(RO

PR
)2)− 2rJ+ W

DDAR: OT+ 2LOT+ QWL

Scheduling Policy #4 (Cmax = 68.162, TWT = 0.059, MAPE = 1.321)

DR : RT(2 RO
PR

− CWR)− 3rJ+ W
DDAR: OT+ 2LOT+ 2QWL+ 2SOTR
∗These rules have been simplified for better presentation but still ensure to achieve the
same objective values obtained by the original evolved rules.
∗IF(a, b, c) will return b if a ≥ 0; otherwise it will return c.

In general, the evolved rules are not very complicated
and are in forms that are explainable, especially for the
DDARs, which are simply linear combinations of different
terms. Scheduling Policy #1 is the one that achieves the
best MAPE among the four SPs. Since Scheduling Policy #2

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. X, NO. X, JANUARY XXXX 14

also employs the same DDAR, the better MAPE obtained by the
first SP is strongly influenced by its DR. The first component
of the DR in Scheduling Policy #1 will be negligible at the
latter stage of the simulation since it has RJ in its denominator,
which increases with the time. Therefore, this component has
little impact on the performance of the scheduling policy and
the performance of the rules will be governed by the second
component. At the first glance, the second component is a
combination of both SPT and FIFO because the priorities
of jobs are either −PR (higher priority for jobs with smaller
processing time) or −RJ (higher priority for jobs arriving at
the machine earlier). The switch between FIFO and SPT is
controlled by max(BWR, WR)− 2SJ. In the case that the slack
of jobs SJ is positive (not late) and larger than 1

2max(BWR, WR),
FIFO will be applied; otherwise SPT will be used. The purpose
of this rule is to maintain a more predictable flow (by FIFO)
of jobs when the jobs are not late, and to finish jobs with a
smaller processing time first so as to reduce the number of
jobs in the shop. These features make the flowtime prediction
by OT+ LOT+ QWL more accurate because it is important for
a shop to have a smooth flow of jobs.

Scheduling Policy #2 provides a better Cmax and TWT as
compared to the first SP. Different from DR in the first SP,
the DR in this SP emphasises more on reducing the time jobs
stay in the shop as well as on reducing the lateness of jobs. In
this case, if the remaining processing time RT of a job is large,
the rule will give a higher priority to jobs with a higher RT in
order to reduce its flowtime (and the makespan in general). In
the case that jobs have large negative slacks, the rule will give
a higher priority to jobs with larger negative slacks and reduce
the lateness of jobs. However, because this rule will disturb
the flow of jobs, the prediction will become less reliable.

Scheduling Policies #3 and #4 are the two SPs that
provide the smallest makespans among the four. In general,
the DRs in these two SPs give a higher priority for jobs with
a larger RT, RO and a smaller release time rJ in order to
reduce the makespan. However, when these values are similar
for the considered jobs, W is used to break the ties and gives
a higher priority to jobs with higher weights. The focus on
makespan has made the delivery performance of Scheduling
Policy #3 worse as compared to the first and the second
SPs. Scheduling Policy #4 tries to minimise TWT by over-
estimating the flowtimes for reducing the tardiness of jobs.
The consequence is that the reliability of the due-date is
deteriorated significantly.

From Scheduling Policies #1 to #4, MAPE tends to be
increased and either Cmax or TWT is reduced, especially for Cmax.
Tracking the evolved SPs along this direction helps explain
how the trade-offs can be achieved, mainly between Cmax and
MAPE. When observing the evolved SPs on the Pareto fronts
along other directions, we are also able to explore other types
of trade-offs, e.g., accepting a higher makespan for a better
TWT. Since the evolved SPs are constructed based on the
genetic materials of other SPs or individuals, we can easily
examine the connection among these SPs and understand what
creates the trade-offs. In other words, the evolved DRs and
DDARs are interpretable in this case.

VI. CONCLUSIONS

Designing an effective scheduling policy is challenging and
time-consuming because it needs to take into account multiple
scheduling decisions and conflicting objectives in a manufac-
turing system. The original contributions of our paper can
be summarised as follows. First, the paper developed genetic
programming based hyper-heuristics for automatic design of
scheduling policies. The novelty here is on the representa-
tions and evolutionary search approaches to handling multiple
scheduling rules and conflicting objectives in the evolution of
scheduling policies. Four genetic programming based hyper-
heuristics have been proposed in this paper. The performances
of the proposed methods are examined by training and testing
the evolved scheduling policies on various simulation sce-
narios. The results show that the evolved scheduling policies
outperform the existing scheduling policies created from com-
binations of popular dispatching and dynamic or regression-
based due-date assignment rules on both the training and
testing scenarios. Moreover, the obtained Pareto fronts also
provide much better knowledge about the space of potential
scheduling rules, which cannot be achieved by simple com-
binations of existing scheduling rules or by methods using
an aggregate objective function to handle multiple objectives.
Another advantage of the proposed methods is that they
perform well on unseen situations, which makes the evolved
scheduling policies more robust when they are employed in
stochastic and dynamic job shops. Analysis of the evolved
scheduling policies also shows that the proposed methods can
evolve not only effective but also very meaningful scheduling
policies. In addition, it is easy to apply the proposed method
to track the evolved scheduling policies along the Pareto
front for better understanding of the trade-off among different
objectives.

The second contribution is the development of a diversified
multi-objective cooperative coevolution method, which shows
favourable performance as compared to other popular evo-
lutionary multi-objective search strategies. The experimental
results show that the proposed DMOCC method can evolve
Pareto fronts that are better than NSGA-II and SPEA2. It
is also very competitive on all performance metrics for the
training scenarios and provides a better spread of the evolved
scheduling policies for the testing scenarios. Further analysis
also shows that the representative selection strategies based
on non-dominated rank and crowding distance play a very
important role in the proposed cooperative coevolution for
evolving well-distributed Pareto fronts. Another advantage of
the coevolution approach is that multiple scheduling decisions
can be evolved in different sub-populations in order to re-
duce the complexity of evolving the sophisticated scheduling
policies. This method can be modified to take advantage of
parallelisation techniques so as to reduce the computational
time.

For future studies, we will enhance the performance of
the proposed cooperative coevolution method by improving
representation of the scheduling rules, genetic operations and
strategies to explore optimal Pareto fronts. When examining
the impact of the training scenarios, it has been observed

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. X, NO. X, JANUARY XXXX 15

that general training scenarios helped improve the quality
of the evolved scheduling policies. However, this also in-
creased the computational time, and thus we will also study
decomposition approaches for better learning/evolving in the
algorithm. The incorporation of other scheduling rules such
as order review/release and order acceptance/rejection will
also be considered. In addition, we want to extend the pro-
posed methods to evolve heterogeneous scheduling rules for
shops with specialised machines or groups of machines (batch
processing, machines with sequence-dependent setup, etc.).
Besides, we will further examine the performance of DMOCC
on other multi-objective optimisation problems.

APPENDIX A
STATISTICAL PARETO DOMINANCE

As compared to the literature related to probabilistic for-
mulation of the Pareto dominance, the problem in our work
has some special features. First, our problem needs to be
handled with a probabilistic formulation rather than a ro-
bustness formulation (uncertainties defined by intervals) since
the uncertainties in our problem come from a probability
distributions [76]. Second, it is computationally expensive to
evaluate the rules; and therefore it is very time consuming
to perform a large number of simulation replications. Finally,
our methods try to evolve rules in tree form which are very
different from vectors of design variables in most studies in
the literature. Because of these features, analytical or reliability
approaches which depend on some assumptions on the uncer-
tainties [76], [77] cannot be used, and the Pareto dominance
under uncertainty in our work can only be determined via
the pure sampling technique [76]. In order to examine the
Pareto dominance of our evolved scheduling policies against
the existing ones, we need to use statistical tests and introduce
the notion of statistical Pareto dominance as opposed to
probabilistic Pareto dominance [78], [79].

Traditionally, solution a is said to Pareto-dominate solution
b if and only if ∀i ∈ {1, 2, . . . n} : fi(a) ≤ fi(b) ∧
∃j ∈ {1, 2, . . . n} : fj(a) < fj(b) where n is the number of
objective functions to be minimised. In this regard, scheduling
policy a statistically Pareto-dominates scheduling policy b
if and only if ∀i ∈ {1, 2, . . . n} : fi(a) ≤T fi(b) ∧
∃j ∈ {1, 2, . . . n} : fj(a) <T fj(b), where fi(a) ≤T fi(b)
means that a is significantly smaller than or not significantly
different from b based on the statistical test T (Wilcoxon
signed-rank test in this work); similarly, fj(a) <T fj(b)
means that a is significantly smaller than b based on T .

ACKNOWLEDGMENT

This work is supported in part by the Marsden Fund of
New Zealand Government (VUW0806 and 12-VUW-134),
administrated by the Royal Society of New Zealand, and the
University Research Fund (200457/3230) at Victoria Univer-
sity of Wellington.

REFERENCES

[1] I. Ahmed and W. W. Fisher, “Due date assignment, job order release,
and sequencing interaction in job shop scheduling,” Decision Sciences,
vol. 23, no. 3, pp. 633–647, 1992.

[2] P. M. Pardalos, O. V. Shylo, and A. Vazacopoulos, “Solving job shop
scheduling problems utilizing the properties of backbone and ”big
valley”,” Computational Optimization and Applications, vol. 47, pp. 61–
76, 2010.

[3] R. M. Aiex, S. Binato, and M. G. C. Resende, “Parallel GRASP with
path-relinking for job shop scheduling,” Journal of Parallel Computing,
vol. 29, pp. 393–430, April 2003.

[4] H. R. Lourenco, “Job-shop scheduling: Computational study of local
search and large-step optimization methods,” European Journal of
Operational Research, vol. 83, no. 2, pp. 347–364, 1995.

[5] E. Balas, N. Simonetti, and A. Vazacopoulos, “Job shop scheduling
with setup times, deadlines and precedence constraints,” Journal of
Scheduling, vol. 11, pp. 253–262, 2008.

[6] E. Balas and A. Vazacopoulos, “Guided local search with shifting
bottleneck for job shop scheduling,” Management Science, vol. 44, pp.
262–275, 1998.

[7] M. L. Pinedo and M. Singer, “A shifting bottleneck heuristic for
minimizing the total weighted tardiness in a job shop,” Naval Research
Logistics, vol. 46, no. 1, pp. 1–17, 1999.

[8] S. Kreipl, “A large step random walk for minimizing total weighted
tardiness in a job shop,” Journal of Scheduling, vol. 3, pp. 125–138,
2000.

[9] T. C. E. Cheng and M. C. Gupta, “Survey of scheduling research involv-
ing due date determination decisions,” European Journal of Operational
Research, vol. 38, no. 2, pp. 156–166, 1989.

[10] G. L. Ragatz and V. A. Mabert, “A simulation analysis of due date
assignment rules,” Journal of Operations Management, vol. 5, no. 1,
pp. 27–39, 1984.

[11] K. R. Baker, “Sequencing rules and due-date assignments in a job shop,”
Management Science, vol. 30, pp. 1093–1104, 1984.

[12] S. Miyazaki, “Combined scheduling system for reducing job tardiness
in a job shop,” International Journal of Production Research, vol. 19,
no. 2, pp. 201–211, 1981.

[13] T. C. E. Cheng, “Integration of priority dispatching and due-date
assignment in a job shop,” International Journal of Systems Science,
vol. 19, no. 9, pp. 1813–1825, 1988.

[14] J. R. Koza, Genetic Programming: On the Programming of Computers
by Means of Natural Selection. MIT Press, 1992.

[15] W. Banzhaf, P. Nordin, R. Keller, and F. Francone, Genetic Program-
ming: An Introduction. Morgan Kaufmann, San Francisco, 1998.

[16] S. Smith, “Cartesian genetic programming and its application to medical
diagnosis,” IEEE Computational Intelligence Magazine, vol. 6, no. 4, pp.
56–67, 2011.

[17] A. Song, Q. Shi, and W. Yin, “Understanding of GP-evolved motion
detectors,” IEEE Computational Intelligence Magazine, vol. 8, no. 1,
pp. 46–55, 2011.

[18] T. Hildebrandt, J. Heger, and B. Scholz-Reiter, “Towards improved dis-
patching rules for complex shop floor scenarios: a genetic programming
approach,” in GECCO ’10: Proceedings of the 12th Annual Conference
on Genetic and Evolutionary Computation, 2010, pp. 257–264.

[19] D. Jakobovic, L. Jelenkovic, and L. Budin, “Genetic programming
heuristics for multiple machine scheduling,” in EuroGP’07: Proceedings
of the 10th European Conference on Genetic Programming, 2007, pp.
321–330.

[20] J. C. Tay and N. B. Ho, “Evolving dispatching rules using genetic
programming for solving multi-objective flexible job-shop problems,”
Computers & Industrial Engineering, vol. 54, pp. 453–473, 2008.

[21] C. D. Geiger and R. Uzsoy, “Learning effective dispatching rules
for batch processor scheduling,” International Journal of Production
Research, vol. 46, pp. 1431–1454, 2008.

[22] C. Pickardt, J. Branke, T. Hildebrandt, J. Heger, and B. Scholz-Reiter,
“Generating dispatching rules for semiconductor manufacturing to mini-
mize weighted tardiness,” in Proceedings of the 2010 Winter Simulation
Conference (WSC), 2010, pp. 2504–2515.

[23] S. Nguyen, M. Zhang, M. Johnston, and K. C. Tan, “Learning iterative
dispatching rules for job shop scheduling with genetic programming,”
The International Journal of Advanced Manufacturing Technology,
2013, DOI:10.1007/s00170-013-4756-9.

[24] ——, “A computational study of representations in genetic pro-
gramming to evolve dispatching rules for the job shop scheduling
problem,” IEEE Transactions on Evolutionary Computation, 2012,
DOI:10.1109/TEVC.2012.2227326.

[25] E. K. Burke, M. Hyde, G. Kendall, G. Ochoa, E. Ozcan, and R. Qu,
“Hyper-heuristics: A survey of the state of the art,” School of Com-
puter Science and Information Technology, University of Nottingham,
Tech. Rep. Computer Science Technical Report No. NOTTCS-TR-SUB-
0906241418-2747, 2010.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. X, NO. X, JANUARY XXXX 16

[26] E. Burke, M. Hyde, G. Kendall, G. Ochoa, E. Ozcan, and J. Woodward,
“Exploring hyper-heuristic methodologies with genetic programming,”
in Computational Intelligence, ser. Intelligent Systems Reference Li-
brary, C. Mumford and L. Jain, Eds. Springer Berlin Heidelberg, 2009,
vol. 1, pp. 177–201.

[27] D. A.van Veldhuizen and G. B. Lamont, “Multiobjective evolutionary
algorithm research: a history and analysis,” Department of Electrical
and Computer Engineering, Air Force Institute of Technology, Ohio,
Technical Report TR-98-03, 1998.

[28] E. Zitzler and L. Thiele, “Multiobjective evolutionary algorithms: a com-
parative case study and the strength pareto approach,” IEEE Transactions
on Evolutionary Computation, vol. 3, no. 4, pp. 257–271, 1999.

[29] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Transactions on
Evolutionary Computation, vol. 6, no. 2, pp. 182 –197, 2002.

[30] D. Wojtaszek and S. Wesolkowski, “Military fleet mix computation and
analysis,” IEEE Computational Intelligence Magazine, vol. 7, no. 3, pp.
53–61, 2012.

[31] C. H. Chen, T. K. Liu, I. M. Huang, and J. H. Chou, “Multiobjective
synthesis of six-bar mechanisms under manufacturing and collision-free
constraints,” IEEE Computational Intelligence Magazine, vol. 7, no. 1,
pp. 36–48, 2012.

[32] R. Ramasesh, “Dynamic job shop scheduling: A survey of simulation
research,” Omega, vol. 18, no. 1, pp. 43–57, 1990.

[33] S. Nguyen, M. Zhang, M. Johnston, and K. C. Tan, “Evolving reusable
operation-based due-date assignment models for job shop scheduling
with genetic programming,” in EuroGP’12: Proceedings of the 15th
European Conference on Genetic Programming, 2012, pp. 121–133.

[34] T. D. Fry, P. R. Philipoom, and R. E. Markland, “Due date assignment
in a multistage job shop,” IIE Transactions, vol. 21, no. 2, pp. 153–161,
1989.

[35] P. R. Philipoom, L. P. Rees, and L. Wiegmann, “Using neural networks
to determine internally-set due-date assignments for shop scheduling,”
Decision Sciences, vol. 25, no. 5-6, pp. 825–851, 1994.

[36] F.-C. R. Chang, “A study of due-date assignment rules with constrained
tightness in a dynamic job shop,” Computers & Industrial Engineering,
vol. 31, pp. 205–208, 1996.

[37] T. C. E. Cheng and J. Jiang, “Job shop scheduling for missed due-date
performance,” Computers & Industrial Engineering, vol. 34, pp. 297–
307, 1998.

[38] I. Sabuncuoglu and A. Comlekci, “Operation-based flowtime estimation
in a dynamic job shop,” Omega, vol. 30, no. 6, pp. 423–442, 2002.

[39] D. Sha and S. Hsu, “Due-date assignment in wafer fabrication using
artificial neural networks,” The International Journal of Advanced Man-
ufacturing Technology, vol. 23, pp. 768–775, 2004.

[40] A. Ozturk, S. Kayaligil, and N. E. Ozdemirel, “Manufacturing lead
time estimation using data mining,” European Journal of Operational
Research, vol. 173, no. 2, pp. 683–700, 2006.

[41] D. Sha and C.-H. Liu, “Using data mining for due date assignment in a
dynamic job shop environment,” The International Journal of Advanced
Manufacturing Technology, vol. 25, pp. 1164–1174, 2005.

[42] D. Y. Sha, R. L. Storch, and C. H. Liu, “Development of a regression-
based method with case-based tuning to solve the due date assignment
problem,” International Journal of Production Research, vol. 45, no. 1,
pp. 65–82, 2007.

[43] A. Baykasoglu, M. Gocken, and Z. D. Unutmaz, “New approaches to
due date assignment in job shops,” European Journal of Operational
Research, vol. 187, pp. 31–45, 2008.

[44] A. Jones and L. C. Rabelo, “Survey of job shop scheduling techniques,”
NISTIR, National Institute of Standards and Technology, Gaithersburg,
USA, Tech. Rep., 1998.

[45] M. R. Garey, D. S. Johnson, and R. Sethi, “The complexity of flowshop
and jobshop scheduling,” Mathematics of Operations Research, vol. 1,
no. 2, pp. pp. 117–129, 1976.

[46] F. Glover, “Future paths for integer programming and links to artificial
intelligence,” Computers & Operations Research, vol. 13, pp. 533–549,
1986.

[47] S. Luke, Essentials of Metaheuristics. Lulu, 2009. [Online]. Available:
http://cs.gmu.edu/∼sean/book/metaheuristics/

[48] E. Nowicki and C. Smutnicki, “A fast taboo search algorithm for the
job shop problem,” Management Science, vol. 42, pp. 797–813, 1996.

[49] R. Cheng, M. Gen, and Y. Tsujimura, “A tutorial survey of job-shop
scheduling problems using genetic algorithms, part II: hybrid genetic
search strategies,” Computers & Industrial Engineering, vol. 36, no. 2,
pp. 343–364, 1999.

[50] J. F. Goncalves, J. J. de Magalhaes Mendes, and M. G. C. Resende, “A
hybrid genetic algorithm for the job shop scheduling problem,” European
Journal of Operational Research, vol. 167, no. 1, pp. 77–95, 2005.

[51] T. Yamada and R. Nakano, “A genetic algorithm with multi-step
crossover for job-shop scheduling problems,” in GALESIA: First In-
ternational Conference on Genetic Algorithms in Engineering Systems:
Innovations and Applications, 1995, pp. 146–151.

[52] D. Ouelhadj and S. Petrovic, “A survey of dynamic scheduling in
manufacturing systems,” Journal of Scheduling, vol. 12, no. 4, pp. 417–
431, 2009.

[53] C. N. Potts and V. A. Strusevich, “Fifty years of scheduling: a survey of
milestones,” Journal of the Operational Research Society, vol. 60, pp.
41–68, 2009.

[54] K. N. McKay, F. R. Safayeni, and J. A. Buzacott, “Job-shop scheduling
theory: What is relevant?” Interfaces, vol. 18, pp. 84–90, 1988.

[55] M. S. Jayamohan and C. Rajendran, “New dispatching rules for shop
scheduling: a step forward,” International Journal of Production Re-
search, vol. 38, pp. 563–586, 2000.

[56] M. L. Pinedo, Scheduling: Theory, Algorithms, and Systems, 3rd ed.
Springer, 2008.

[57] S. S. Panwalkar and W. Iskander, “A survey of scheduling rules,”
Operations Research, vol. 25, pp. 45–61, 1977.

[58] C. Dimopoulos and A. M. S. Zalzala, “Investigating the use of genetic
programming for a classic one-machine scheduling problem,” Advances
in Engineering Software, vol. 32, no. 6, pp. 489–498, 2001.

[59] C. D. Geiger, R. Uzsoy, and H. Aytug, “Rapid modeling and discovery of
priority dispatching rules: An autonomous learning approach,” Journal
of Heuristics, vol. 9, no. 1, pp. 7–34, 2006.

[60] W. J. Yin, M. Liu, and C. Wu, “Learning single-machine scheduling
heuristics subject to machine breakdowns with genetic programming,”
in CEC ’03: IEEE Congress on Evolutionary Computation, 2003, pp.
1050–1055.

[61] K. Miyashita, “Job-shop scheduling with GP,” in GECCO’00: Proceed-
ings of the Genetic and Evolutionary Computation Conference, 2000,
pp. 505–512.

[62] L. Atlan, J. Bonnet, and M. Naillon, “Learning distributed reactive
strategies by genetic programming for the general job shop problem,” in
Proceedings of the 7th Annual Florida Artificial Intelligence Research
Symposium, 1994.

[63] D. Jakobovic and L. Budin, “Dynamic scheduling with genetic program-
ming,” in EuroGP’06: Proceedings of the 9th European Conference on
Genetic Programming, 2006, pp. 73–84.

[64] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving the
strength pareto evolutionary algorithm for multiobjective optimization,”
in Evolutionary Methods for Design, Optimisation and Control with
Application to Industrial Problems (EUROGEN 2001), 2002, pp. 95–
100.

[65] Z. Wang, K. Tang, and X. Yao, “Multi-objective approaches to optimal
testing resource allocation in modular software systems,” IEEE Trans-
actions on Reliability, vol. 59, no. 3, pp. 563–575, 2010.

[66] C. K. Goh and K. C. Tan, “An investigation on noisy environments
in evolutionary multiobjective optimization,” IEEE Transactions on
Evolutionary Computation, vol. 11, no. 3, pp. 354–381, 2007.

[67] ——, “A competitive-cooperative coevolutionary paradigm for dynamic
multiobjective optimization,” IEEE Transactions on Evolutionary Com-
putation, vol. 13, no. 1, pp. 103–127, 2009.

[68] K. C. Tan, Y. J. Yang, and C. K. Goh, “A distributed cooperative coevo-
lutionary algorithm for multiobjective optimization,” IEEE Transactions
on Evolutionary Computation, vol. 10, no. 5, pp. 527–549, 2006.

[69] M. A. Potter and K. A. de Jong, “Cooperative coevolution: An architec-
ture for evolving coadapted subcomponents,” Evolutionary Computation,
vol. 8, no. 1, pp. 1–29, 2000.

[70] M. Thurer, M. Stevenson, C. Silva, M. Land, and M. G. Filho,
“Workload control and order release in two-level multi-stage job shops:
an assessment by simulation,” International Journal of Production
Research, 2012, (appear online).

[71] M. Land, “Parameters and sensitivity in workload control,” International
Journal of Production Economics, vol. 104, no. 2, pp. 625–638, 2006.

[72] A. P. J. Vepsalainen and T. E. Morton, “Priority rules for job shops with
weighted tardiness costs,” Management Science, vol. 33, pp. 1035–1047,
1987.

[73] D. A. van Veldhuizen and G. B. Lamont, “Multiobjective evolutionary
algorithm test suites,” in Proceedings of the 1999 ACM Symposium on
Applied Computing (SAC’99), 1999, pp. 351–357.

[74] E. S. Gee and C. H. Smith, “Selecting allowance policies for improved
job shop performance,” International Journal of Production Research,
vol. 31, no. 8, pp. 1839–1852, 1993.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. X, NO. X, JANUARY XXXX 17

[75] D. C. Montgomery, Design and Analysis of Experiments. John Wiley
& Sons, 2001.

[76] R. F. Coelho and P. Bouillard, “Multi-objective reliability-based op-
timization with stochastic metamodels,” Evolutionary Computation,
vol. 19, pp. 525–560, 2011.

[77] K. Deb, S. Gupta, D. Daum, J. Branke, A. K. Mall, and D. Padmanabhan,
“Reliability-based optimization using evolutionary algorithms,” IEEE
Transactions on Evolutionary Computation, vol. 13, no. 5, pp. 1054–
1074, 2009.

[78] E. Hughes, “Evolutionary multi-objective ranking with uncertainty and
noise,” in EMO ’01: Proceedings of the First International Conference
on Evolutionary Multi-Criterion Optimization, 2001, pp. 329–343.

[79] J. Teich, “Pareto-front exploration with uncertain objectives,” in EMO
’01: Proceedings of the First International Conference on Evolutionary
Multi-Criterion Optimization, 2001, pp. 314–328.

Su Nguyen received the B.E. degree in industrial
and systems engineering from the Ho Chi Minh
City University of Technology, Hochiminh City,
Vietnam, in 2006, and the M.E. degree in indus-
trial engineering and management from the Asian
Institute of Technology (AIT), Bangkok, Thailand.
He is currently pursuing the Ph.D. degree with the
Evolutionary Computation Research Group, Victoria
University of Wellington (VUW), Wellington, New
Zealand.

Prior to VUW, he was a research associate in
Industrial and Manufacturing Engineering at the School of Engineering
and Technology, AIT. His primary research interests include evolutionary
computation, discrete-event simulation and their applications in operations
planning and scheduling.

Mengjie Zhang (SM’10) received the B.E. and M.E.
degrees from the Artificial Intelligence Research
Center, Agricultural University of Hebei, Baoding,
China, in 1989 and 1992, respectively, and the Ph.D.
degree in computer science from RMIT University,
Melbourne, Australia, in 2000.

Since 2000, he has been with the Victoria Univer-
sity of Wellington, Wellington, New Zealand. He is
currently a Professor of computer science and heads
the Evolutionary Computation Research Group. His
current research interests include evolutionary com-

putation, genetic programming, and particle swarm optimization with ap-
plication areas of image analysis, multiobjective optimization, classification
with unbalanced data, and feature selection and dimension reduction for
classification with high dimensions.

Dr. Zhang is a member of the IEEE Computer Society, the IEEE CI Society,
and the IEEE SMC Society. He is also a member of the IEEE CIS Evolutionary
Computation Technical Committee, a member of the IEEE CIS Intelligent
Systems Applications Technical Committee, a Vice Chair of the IEEE CIS
Task Force on Evolutionary Computer Vision and Image Processing, and
a Committee Member of the IEEE New Zealand Central Section. He is a
member of the ACM and the ACM SIGEVO Group. He has been serving as
an Associate Editor or Editorial Board Member for five international journals.

Mark Johnston (M’10) received the B.Sc. degree
in mathematics and computer science and the Ph.D.
degree in operations research from Massey Univer-
sity, Palmerston North, New Zealand.

He is currently a Senior Lecturer with the Victoria
University of Wellington, Wellington, New Zealand,
where he teaches various operation research courses.
His current research interests include primarily com-
binatorial optimization and evolutionary computa-
tion, with a particular interest in scheduling models,
genetic programming, and multiple-objective opti-

mization.

Kay Chen Tan (SM’08) received the B.Eng. degree
(First Class Honors) in electronics and electrical en-
gineering and the Ph.D. degree from the University
of Glasgow, Glasgow, Scotland, U.K., in 1994 and
1997, respectively.

He is currently an Associate Professor with the
Department of Electrical and Computer Engineering,
National University of Singapore, Singapore. He has
published over 100 journal papers, over 100 papers
in conference proceedings, co-authored five books,
and co-edited four books.

He served as the General Co-Chair for the IEEE Congress on Evolutionary
Computation, Singapore, in 2007, and the General Co-Chair for the IEEE
Symposium on Computational Intelligence in Scheduling, Tennessee, in 2009.
He has been an IEEE Distinguished Lecturer of the IEEE Computational
Intelligence Society since 2011. He is currently the Editor-in-Chief of the
IEEE Computational Intelligence Magazine. He also serves as an Associate
Editor and Editorial Board member of over 15 international journals. He was
a recipient of the 2012 IEEE Computational Intelligence Society Outstanding
Early Career Award. He was a recipient of the Recognition Award in 2008
from the International Network for Engineering Education and Research
(iNEER). He was a recipient of the NUS Outstanding Educator Award in
2004, the Engineering Educator Award in 2002, 2003, and 2005, the Annual
Teaching Excellence Award in 2002, 2003, 2004, 2005, and 2006, and the
Honor Roll Award in 2007.

View publication statsView publication stats

https://www.researchgate.net/publication/255485244

