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Abstract. In machine learning, it is common to require a large number
of instances to train a model for classification. In many cases, it is hard
or expensive to acquire a large number of instances. In this paper, we
propose a novel genetic programming (GP) based method to the prob-
lem of automatic image classification via adopting a one-shot learning
approach. The proposed method relies on the combination of GP and
Local Binary Patterns (LBP) techniques to detect a predefined number
of informative regions that aim at maximising the between-class scatter
and minimising the within-class scatter. Moreover, the proposed method
uses only two instances of each class to evolve a classifier. To test the
effectiveness of the proposed method, four different texture data sets
are used and the performance is compared against two other GP-based
methods namely Conventional GP and Two-tier GP. The experiments
revealed that the proposed method outperforms these two methods on
all the data sets. Moreover, a better performance has been achieved by
Näıve Bayes, Support Vector Machine, and Decision Trees (J48) methods
when extracted features by the proposed method have been used com-
pared to the use of domain-specific and Two-tier GP extracted features.

Keywords: Genetic Programming, Local Binary Patterns, Image Clas-
sification, One-shot Learning

1 Introduction

The ability of recognising objects surrounding us represents one of the supreme
tasks of human brains, specifically the visual system. Different parts of our bodies
(i.e. eyes, hands, tongue, and brain) cooperate with each other in order to learn
new objects. Humans are heavily relying on the visual system to capture the
variety of object characteristics such as colour, shape, size, and distance. One
study [3] shows that the brain of a six year child can recognise objects from
more than 104 categories, and the learning process continues throughout life.
Furthermore, the human brain has the ability to organise learnt objects into
different informative groups.

Image classification is mainly concerned with the task of grouping images
based on the similarity of its contents, which represents an important task in a
variety of fields such as automatic face recognition, disease detection, and ma-
chine vision. The importance of this operation has attracted many researchers
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over the last three decades; and a rich set of different methods have been pro-
posed to the problems of object classification, detection, and recognition. How-
ever, performing image classification by machines remains difficult and not as
easy as it is by humans.

Genetic Programming (GP) is an evolutionary computation method based
on Darwinian principles of natural selection [10]. The promising results achieved
using GP techniques to solve a variety of problems in different domains represent
a major reason that motivated researchers to investigate those techniques even
more over decades. However, the high computational cost of such techniques
represents its major drawback.

Local Binary Patterns (LBP) aims at extracting image descriptors based on
the relation between each pixel value in an image and its 8 (3×3 window) neigh-
bouring pixels [16]. Since 1995, a number of LBP variants have been introduced
and investigated in the literature. In Section 2 of this paper we will provide more
details about this operator.

Generally, the task of learning or evolving models requires tuning a large
number of parameters in order to capture features covering a diversity of dif-
ferent objects. It has been observed that a large number of training instances
are required to adjust or estimate the models’ parameters values [7], [22], [23],
[24]. In many cases, the task of acquiring a large number of instances can be dif-
ficult, expensive or infeasible (e.g. ID-card identification and e-passport). Jain
and Chandrasekaran [9] discussed the problem of the training set size in gen-
eral. Raudys and Jain [20] investigated the effect of using a smaller training set
on statistical pattern recognition and gave guidelines and recommendations for
practitioners. Moreover, Duin [5] showed that one possible way to reduce the
number of used training instances is via reducing the searching space size (i.e.
number of features). The main difficulty of this approach is that it has to be han-
dled by a domain expert with good background knowledge about the problem
nature, which is in many cases hard and expensive.

Motivated by humans remarkable ability of learning relatively new objects
using one or few images, researchers have tried to replicate this functionality in
machines and termed it as one-shot learning [6]. This problem has been broadly
researched and numerous methods are proposed in the field of, but not limited
to, machine vision. To stimulate the ability of humans to rapidly learn numerous
types of regularities and generalisations, Yip and Sussman [26] proposed a novel
method towards fast learning in the domain of morphology. The method exploits
the characteristics of sparse representations and forced constraints by a plausible
hardware mechanism. A Bayesian-based method is proposed by Fei-Fei and Fer-
gus [6] investigating the problem of object categories using the one-shot learning
approach. The aim of their study was to use only one or very few of images
to learn much information about a category. Their results show the system can
effectively use information gathered during the learning phase to discriminate
between unseen instances. Lake et al. [12] proposed a generative model moti-
vated by the concepts of one-shot learning. The method shows how obtaining
knowledge from previously learnt characters can be relied on to infer the use of
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strokes for different characters composition. A hierarchical Bayesian model has
been developed in [21] that uses a single training example to learn informative
information about a complete category.

In this paper, we propose a hybrid GP based method that adopts the one-
shot learning approach to the problem of image classification. The proposed
method relies on the combination of GP and a LBP operator to handle the
task of automatic binary classification in images using raw pixel values. We are
interested in investigating the following objectives:

– To develop a program structure that has the ability to capture informative
information of the two classes;

– To find a suitable design of a fitness function that minimises the within-class
scatter and maximises the between-class scatter;

– To test the performance of the system against other GP based methods for
automatic image classification (i.e. Two-tier GP [2]), and conventional GP
using hand-crafted domain-specific features; and

– To investigate the ability of the proposed method for feature extraction by
comparing the features extracted by the proposed method with domain-
specific features and those extracted by Two-tier GP on three commonly
used methods: Näıve Bayes, Support Vector Machines and Decision Trees
(J48).

The rest of this paper is structured as follows. Section 2 briefly explains the
Local Binary Patterns (LBP) operator and LBP histogram (LBPH). A detailed
description of the proposed method is given in Section 3. Experimental design,
data sets, baseline methods, and parameter settings are described in Section 4.
Results are shown in Section 5. Section 6 concludes the paper.

2 Local Binary Patterns

The Local Binary Patterns (LBP) operator was originally proposed by Ojala et
al. [16] in which the authors aimed at calculating each pixel value of an image
based on the values of its neighbouring pixels. The basic LBP operator works in a
3×3 window, which consists of three steps: (1) Assign the value of a neighbouring
pixel to 0 if it is less than the centre value of the window and 1 otherwise; (2)
the values of the resulted matrix are then multiplied by the power of two in
a clockwise direction; and (3) the value of the centre pixel is then replaced by
the summation of the resulted values as shown in Figure 1. Formally, the LBP
operator can be defined as

LBPn,r(xc, yc) =

n−1∑
j=0

2js(Vj − Vc) (1)

where r is the radius and n is the number of neighbouring pixels. The values of
xc and yc represent the coordinate of the centre pixel of the current window. The
jth pixel value is denoted as Vj whilst the value of the centre pixel is Vc. The
function s(x) returns 1 if x ≥ 0 and zero otherwise. A variety of LBP operators
have been proposed in the literature that differ in the way of thresholding the
neighbouring pixel values, the size of the window and radius, and calculating the
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Fig. 1. An example of the required steps to extract an LBP code.

Fig. 2. Some examples of texture primitives of different uniform LBP codes.

final value (more details can be found in [18]). An important extension of basic
LBP is known as uniform patterns [17] that is denoted as LBPu2

n,r. A circularly
traversed pattern is considered to be uniform if bits equal 1 are consequent. For
example, if we have the code 00000000, then 00011000, 00110000, and 00111000
are all uniform codes. Uniform codes are important for two reasons: (1) the
frequency of uniform codes is higher than non-uniform ones [1]; hence, omitting
non-uniform patterns reduces the number of possible LBP codes significantly;
and (2) uniform codes can be used to detect different texture primitives as shown
in Figure 2.

In [13], a grey-scale invariant intensity-based descriptor is proposed named
NI-LBP. The main difference between basic LBP and NI-LBP is that the latter
uses the mean value of all pixels in a window as the threshold instead of only
the value of the centre pixel. In this study, we use the same descriptor (NI-LBP)
to extract the pattern of each pixel.

Traditionally, the frequencies of LBP codes appearance are used to form Lo-
cal Binary Pattern Histogram (LBPH) [8]. For example, if we have an 8-bit
codes then we can label 256 different labels starting from 0 (00000000) up to
255 (11111111). Each label of the LBPH is considered as a bin that accumu-
lates the number of occurrences of a specific value or label. By omitting non-
uniform codes, there will be only 59 bins (58 uniform codes plus one bin for
all non-uniform ones). Let LBPn,r(i, j) identify the calculated LBP code of the
pixel(i, j) where 0 ≤ i < N and 0 ≤ j < M of an N × M image; then the
histogram h of length L of the entire image can be formally defined as

h(l) =

N−1∑
i=0

M−1∑
j=0

(LBPn,r(xi, yj) = l) l = 0, 1, ..., L− 1 (2)

LBP histograms can either be calculated over the entire image or com-
bine multiple histograms that are obtained from different areas (mostly non-
overlapping). The latter approach is used in this study. The length of the his-
togram vector varies based on the number of areas as shown in Figure 3.

3 The New Method
The representation of a new one-shot GP-based method is described in this
section. The design of the GP individual that extracts LBP histograms from a
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Fig. 3. An example of an LBP histogram that constructed as the combination of 24
sub-histograms (one per region).

raw image pixel value and calculates the similarity of two histograms occupies
the first part of this section. The rest of the section gives the terminal and
function sets, and the fitness function.

3.1 One-shot GP and Program Structure

An individual is made up of three types of non-terminal nodes: (1) controller
node; (2) histogram node; and (3) area node. Figure 4 shows a general structure
of an individual for binary classification. Each individual has a set of control-
ling instances, one for each class notated as controllerX where X represents the
class label of that instance. The training process starts by extracting the his-
togram of each controller instance depending on the detected areas by the current
individual. Hence, in our case of binary classification we have histogramA and
histogramB where A and B are the class labels of the two classes. The controller
histogram will be compared with the histogram of each and every instance in the
training and test sets. The system then iterates over all instances of the training
set and for each instance there will be H histograms (equal to the maximum
number of classes) one from each branch of the individual tree. The distance
between each of the corresponding histograms (controller and instance resulted
from the same branch) is then calculated and passed over to the controller node
(more details of this step in the fitness function subsection). To meet the condi-
tion of one-shot learning (only one or a few number of instances), the training
set is made up of two randomly selected instances of each class. One is used as a
controller and the other is used to reflect the goodness of the evolved individual
on unseen data (validation set).

The size of the evolved individual under this design is fixed in terms of depth
and width of the tree. The number of branches (children of the controller node)
increases only if more classes are added which will increase the size of the tree
horizontally. The number of detected areas has the same impact and will result
in a wider tree. Hence, the positions and sizes of the detected areas represent
the only dynamic part of the evolved individual.

3.2 Function Set

The function set in this study is strongly-typed [15], and is composed of three dif-
ferent types of nodes in which each type has its own functionality. The controller
node represents the first type, which restricted to be the root of the individual
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Fig. 4. The program structure of a one-shot GP, which consists of two histogram nodes
that each has four area nodes.

tree. Hence, each individual has one and only one node of this type. The out-
put of this node is a vector of double-precision values for each instance. The
length of the resulted vector is fixed and equivalent to the number of classes.
The type of input values of this node is the extracted LBP histograms from its
children. The second type is the histogram node that represents the root node of
each branch of the controller node children. Histogram nodes are responsible for
extracting the LBP histograms by combining the received sub-histograms from
each of its children. Each histogram node has a predefined number of area nodes
that represent the third type of the function set nodes. Each area node detects
an area of the image, calculates the LBP histogram, and passes it over to its
parent (histogram node).

3.3 Terminal Set

The terminal set is also made of three nodes: 1) X-Coordinate; 2) Y-Coordinate;
and 3) Window size. Each of these nodes is of type integer value and has its
own restrictions. For example, x-cord and y-cord nodes take values in the range
[1, N − 2] and [1,M − 2] respectively, where N and M represent the width and
height of an image respectively. The size node is restricted to be in the range
between 3 and 15.

3.4 Fitness Function
The fitness function used here aims at minimising the within-class scatter and
maximising the between-class ones as shown in Equation (3). The fitness value
is proportional to the distance of the same class instances and inversely propor-
tional to distance between instances of different class. However, the denominator
of the function is assigned to a small value (0.0001) if it was 0 in order to prevent
the division by zero. Based on this design, the smaller the within-class distance
or the greater the between-class distance, the better the fitness.

Fitness(I) =

T∑
j=1

χ̄2(hx
j , h

x
c )

χ̄2(h̄x
j , h

x̄
c )

(3)

Here I is the current individual being evaluated, T is the total number of
training instances, χ̄2(.) is the distance measure, hxj and h̄xj are the extracted
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histograms of the jth instance, and hxc and hx̄c are the two classes controller
histograms. The motivation for this fitness function is to give the GP process
the opportunity to detect more distinctive regions during the training process.
Note that the use of accuracy makes the system suffer from the problem of
over-fitting1.

In [25], the χ2 distance measurement shown in Equation (4) is used to mea-
sure the similarity between two histograms (bin-by-bin approach). To give the
system more flexibility, a shape based version of this formula is used to make it
shifting invariant (unbinned approach) via using the mean and standard devia-
tion as shown in Equation (5) [19].

χ2(ha, hb) =
1

2

B̄−1∑
i=0

(ha
i − hb

i )
2

ha
i + hb

i

(4)

χ̄2(ha, hb) =
(µa − µb)2

σa + σb
(5)

where ha and hb are the two histograms, B̄ is the total number of bins, µa and
µb are the mean of histogram ha and hb respectively, and σa and σb are the
standard deviation of histogram ha and hb respectively.

4 Experimental Design

The main focus of this section is to highlight the parameter settings and data
sets that were used to evaluate the proposed method.

4.1 Data Sets

In order to test the effectiveness of the proposed method, four different tex-
ture image-based data sets are used. Six different classes of the Kylberg Texture
Dataset [11] are selected to form three data sets in this paper. Originally, this
data set is composed of 28 different classes that each consists of 160 instances.
Each instance of this data set is a grey-scale image of size 576× 576 pixels that
was resampled to 57× 57 pixel in our experiments. Furthermore, we equally di-
vided the total number of instances of each class between the training and test
sets. Hence, each set is made of 160 instances in total (2 classes × 80 instances).

The stoneslab1 and wall1 classes are picked to represents the first data set in
this study and we named it as Textures-1. Figure 5(a) shows a sample of these
two classes. Textures-2 represents the second set that is made of the rice2 and
sesameseeds classes as shown in Figure 5(b). The training and test sets of the
third set are made of the blanket1 and canvas1 class instances which we refer to
as Textures-3 in this paper and some of its instances are shown in Figure 5(c).

The instances of the fourth data set were taken from the Columbia-Utrecht
Reflectance and Texture (CUReT) data set [4]. The CUReT data set is made of
61 classes in total that only brown bread and sponge classes are selected to form
the fourth data set that we call it Textures-4 in this study as shown in Figure
5(d). The size of each instance is a 200 × 200 pixel and there are 81 instances

1
The GP process can easily detects areas that can be relied on to discriminate between a small
number of instances. However, exposing such a model to a large set of unseen instances can result
in a very poor performance.
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Fig. 5. Samples of the four texture data sets.

in each class. Hence, the training and test sets consist of 40 and 41 instances of
each class respectively.

4.2 Baseline GP Methods

The performance of the proposed system has been compared against two other
GP-based methods. The details of those two methods are discussed below.

Conventional GP. The conventional GP method is applied on a set of hand-
crafted pre-extracted features. The mean and standard deviation of the entire
image, the four quadrants, and the centre part of each instance have been calcu-
lated. The extracted 12 values are then stored in a text file which is later fed to
a GP package to evolve a model. Then the evolved model is tested on the test
set that was created in a similar way to the training set.

Two-tier GP. Al-Sahaf et al. [2] have developed a GP-based method for au-
tomatic feature extraction and selection, and image classification named it as
Two-tier GP. The system automatically detects areas of different shapes and
sizes, and uses different functions to extract the features from pixel values of
those areas. The Two-tier GP method showed superior performance over all
other competitive methods in that study [2]. Hence, we will compare the perfor-
mance of the one-shot GP with this Two-tier GP method.

4.3 Parameter Settings

The GP parameters of the three methods in all conducted experiments are shown
in Table 1. As shown in the table, some of the parameters are not applicable
in the case of the proposed method due to the design restrictions discussed in
Section 3. The rates of crossover, mutation and reproduction are 0.80, 0.19, and
0.01 respectively. The tournament selection method of size 7 is used to maintain
population diversity.

4.4 Evaluation

Two different set of experiments are conducted that each aims at testing a differ-
ent objective. In the first set, the focus was toward investigating the performance
of the proposed method against the two baseline (GP) methods. Hence, each of
the three methods (two baseline methods and the proposed one) has been eval-
uated on the four data sets described at the beginning of this section. Only four
instances (two of each class which represents the smallest number based on the
current design) are randomly selected to play the role of training set. The best
evolved individual of each run is then tested against the unseen instances (test
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Table 1. The GP Parameters of all experiments

Parameter Value Conve-GP Two-tier GP One-shot GP
Generations 20 3 3 3
Population Size 1000 3 3 3
Tree min-depth 2 3 3 7
Tree max-depth 10 3 3 7
Crossover min-depth 2 3 3 7
Crossover max-depth 10 3 3 7
Mutation min-depth 2 3 3 7
Mutation max-depth 10 3 3 7
Initial Population Ramped half-and-half 3 3 7

set) and the accuracy is reported. In the case of both baseline methods, the
value of 0 is used to divide the results space such that all negative values and 0
are considered representing one class while the other class is considered having
positive values. However, the instance is evaluated as belonging to the branch
having a smaller distance of the evolved program in the case of the proposed
method.

This process is repeated for 30 independent runs using the same training
and test sets. The average performance of the best evolved programs of the 30
runs on the test set is then recorded. The use of different instances to evolve
the model has large impact on the performance of the resulted program. Hence,
the entire procedure is repeated 10 times (10 × 30 = 300 runs) using different
instances in the training set each time while test set kept the same. At the end
of all 10 repetitions the highest and lowest average performances are reported,
and the mean and standard deviation statistics are calculated as shown in Table
2. The same procedure is used to evaluate all three methods using exactly the
same training and test instances each time.

In the case of the second experiment, the best evolved program at the end
of each of the 30 runs of the first experiment is used to extract features of the
detected areas in the case of the proposed and Two-tier GP methods. Hence,
there will be 10 different individuals as the first experiment is repeated 10 times.
In the case of Two-tier GP method, the calculated values of the aggregation
nodes are used to represents the extracted features similar to the work in [2].
In the case of one-shot GP method, the calculated differences between the two
controller histograms and resulted histograms of each instance are considered
to be the extracted features. This process is also repeated 10 times for each
individual due to having 10 different training sets (as mentioned in above). It
is important to notice that, extracted features by any two individuals of the
test set are different due to different detected areas in terms of position, size,
and/or number. In addition to feature sets extracted by those two methods,
domain-specific features are also used in this experiment (as stated earlier). The
extracted features by each of the three methods are then fed to three different
classification methods, i.e., Näıve Bayes (NB), Support Vector Machines (SVM)
and Decision Trees (J48). The goal of this set of experiments is to investigate
the capability of the new method for automatic feature extraction.

The proposed method, as well as the two other GP-based methods, were
all implemented using the platform provided by Evolutionary Computing Java-
based (ECJ) package [14]. This is mainly because implementing strongly-typed
GP in this package is relatively easy.
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Table 2. Comparison between conventional GP, Two-tier GP, and One-shot GP

Conventional GP (%) Two-tier GP (%) One-shot GP (%)
Min Max x̄ ± s Min Max x̄ ± s Min Max x̄ ± s

Texture-1 52.73 66.37 57.10 ± 4.43 49.29 53.56 51.52 ± 1.23 82.37 92.23 87.76 ± 3.65 †§

Texture-2 47.92 63.98 55.50 ± 4.76 50.29 53.33 51.30 ± 1.05 98.88 99.81 99.38 ± 0.34 †§

Texture-3 50.77 66.48 57.75 ± 4.85 48.29 54.06 51.62 ± 1.69 64.92 82.50 76.95 ± 6.09 †§

Texture-4 44.72 63.21 56.35 ± 5.94 50.41 55.08 53.05 ± 1.49 54.11 93.25 81.12 ± 14.64 †§

5 Results and Discussions

This section highlights the results of the experiments. Here, t-tests have been
used to compare the difference between the performances of the proposed method
and each of the two baseline methods. The “†” and “§” signs in the tables
appear if the performance of the proposed method is significantly different than
conventional GP and Two-tier GP methods respectively. The bolded numbers
in the tables represent the highest mean value amongst the three methods.

Table 2 shows the average performance of the 10 repetitions (each with 30
independent runs) gained from the first experiment on the four data sets. The
proposed method has significantly outperformed both conventional GP and Two-
tier GP methods on all of the data sets. Moreover, the proposed method, in its
worst case, shows better performance than the best performance of the Two-tier
GP method on all experimented data sets. However, in the case of conventional
GP this property does not hold on the Textures-3 and Textures-4 data sets, but
the best performance of the proposed one-shot GP is 16% and 30% higher than
the conventional GP and Two-tier GP respectively.

The performance statistics of the NB, SVM and DT (J48) on the four data
sets using three different sets of features are shown in Table 3. The three clas-
sifiers show significantly better performance on all data sets using the features
extracted by the proposed method over using those extracted by the Two-tier
GP. However, this property holds for NB and SVM in Textures-1 and Textures-4
data sets in the case of comparing the use of domain-specific features and the
features extracted by the proposed method. In Textures-3 data set, the three
classification methods have achieved better results using domain-specific features
over features extracted by the other two methods, which is opposite to the case
of Textures-4. We can observe that the features extracted by the new method
have positive influence on the performances of both NB and SVM (scored first
in three out of four data sets). This is also true in the case of DT (J48) in the
Textures-4 data set. In all other cases, these methods have the second rank using
the set of extracted features by the proposed method.

6 Conclusions

In this paper, a one-shot learning approach has been adopted to the problem
of automatic image classification. The proposed method uses the combination
of GP and LBP techniques to evolve a classifier. Moreover, the fitness function
has been designed to maximises the distance of between-class and minimises the
within-class distance. We used four texture data sets to evaluate the perfor-
mance of the proposed method. The conventional GP and Two-tier GP methods
have been used as competitive methods. Two experiments have been conducted
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Table 3. The performance of Näıve Bayes, Support Vector Machine, and Decision
Trees (J48) classification methods on the four texture data sets using domain-specific
features, and features extracted by each of the Two-tier GP and One-shot GP methods

Domain-specific (%) Two-tier GP (%) One-shot GP (%)
Min Max x̄ ± s Min Max x̄ ± s Min Max x̄ ± s

Tex-1 NB 53.75 92.50 70.00 ± 12.18 47.50 66.25 55.56 ± 5.65 83.75 96.25 91.07 ± 4.29 †§

SVM 47.50 94.38 74.64 ± 13.67 50.00 65.63 55.25 ± 5.44 88.13 98.75 92.69 ± 3.72 †§

J48 66.25 97.50 88.13 ± 10.87 46.88 64.38 53.82 ± 6.55 51.88 90.00 79.00 ± 12.64 §

Tex-2 NB 96.25 100.0 98.50 ± 1.36 46.88 69.38 55.13 ± 6.35 93.75 100.0 98.69 ± 2.07 §

SVM 83.75 100.0 96.75 ± 4.98 48.75 58.13 52.50 ± 3.85 93.13 100.0 99.13 ± 2.15 §

J48 43.13 92.50 71.50 ± 15.78 50.00 58.75 53.63 ± 3.59 53.75 96.88 69.63 ± 16.16 §

Tex-3 NB 61.25 92.50 79.00 ± 12.39 36.25 63.75 53.57 ± 8.06 60.00 85.00 76.82 ± 8.56 §

SVM 55.00 96.25 85.75 ± 12.47 55.00 65.63 55.44 ± 6.05 78.75 86.25 82.94 ± 2.65 §

J48 56.88 93.75 76.25 ± 12.12 39.38 67.50 53.50 ± 8.17 52.50 86.25 69.56 ± 12.25 §

Tex-4 NB 42.68 82.93 61.22 ± 11.82 46.34 71.95 64.27 ± 8.81 36.59 98.78 82.44 ± 19.22 †§

SVM 42.68 51.71 61.59 ± 16.61 50.00 74.39 60.00 ± 7.53 67.07 100.0 88.17 ± 10.94 †§

J48 14.63 86.59 60.37 ± 19.89 29.27 76.83 55.98 ± 14.67 50.00 95.12 75.00 ± 16.90 §

that aim at investigating different objectives. The performance of the proposed
method is investigated in the first experiment and compared to each of the two
baseline methods. The results of this experiment show superior performance of
the new method over the other two competitive methods. The second exper-
iment aims at investigating the effectiveness of the extracted features by the
proposed method on the performance of Näıve Bayes, Support Vector Machines,
and Decision Trees (J48) classification methods. The resulted performances are
also compared against the use of both domain-specific features and features ex-
tracted by the Two-tier GP method. The results of this experiment show that
significantly better or at least comparable performance can be achieved when
features extracted by the proposed method are used.
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