
Hybrid evolutionary computation methods for quay crane
scheduling problems

Su Nguyena, Mengjie Zhanga, Mark Johnstonb, Kay Chen Tanc

aSchool of Engineering and Computer Science, Victoria University of Wellington, New Zealand
bSchool of Mathematics, Statistics and Operations Research, Victoria University of Wellington, New Zealand

cDepartment of Electrical and Computer Engineering, National University of Singapore, Singapore

Abstract

Quay crane scheduling is one of the most important operations in seaport terminals.
The effectiveness of this operation can directly influence the overall performance as
well as the competitive advantages of the terminal. This paper develops a new
priority-based schedule construction procedure to generate quay crane schedules.
From this procedure, two new hybrid evolutionary computation methods based on
genetic algorithm (GA) and genetic programming (GP) are developed. The key
difference between the two methods is their representations which decide how pri-
orities of tasks are determined. While GA employs a permutation representation
to decide the priorities of tasks, GP represents its individuals as a priority function
which is used to calculate the priorities of tasks. A local search heuristic is also
proposed to improve the quality of solutions obtained by GA and GP. The proposed
hybrid evolutionary computation methods are tested on a large set of benchmark
instances and the computational results show that they are competitive and effi-
cient as compared to the existing methods. Many new best known solutions for
the benchmark instances are discovered by using these methods. In addition, the
proposed methods also show their flexibility when applied to generate robust solu-
tions for quay crane scheduling problems under uncertainty. The results show that
the obtained robust solutions are better than those obtained from the deterministic
inputs.

Keywords: genetic programming, local search, quay crane scheduling

1. Introduction

Container terminals play an important role in modern sea-freight transporta-
tion. With the rapid annual growth rates of the shipped container volume, con-
tainer terminals have become the bottlenecks in the global supply chain [1] and
the effectiveness of the container terminal is an important factor for liner shipping
companies to decrease their cost [2]. In addition, a container terminal also needs

Preprint submitted to Computers and Operations Research March 18, 2013

to improve its service to compete with other terminals. In order to improve their
productivity and customer satisfaction, it is important that the terminals can ef-
fectively utilise their expensive resources such as ship berthing areas, quay cranes,
and yard cranes [3]. To support terminal operational decisions, many operations
research methods have been proposed [4, 5, 6, 7].

Quay crane (QC) scheduling is one of the most important operations within
a container terminal because the effectiveness of this activity can strongly influ-
ence the productivity of the entire container terminal. The aim of the quay crane
scheduling problem (QCSP) is to find a good schedule for the loading/unloading
operations of a vessel with a given number of quay cranes in order to minimise the
overall vessel handling time (or makespan) [8]. An illustration of the working QCs
at a vessel is shown in Figure 1. In this case, a number of QCs are allocated to the
vessel for loading/unloading operations of containers (20ft or 40ft). All QCs move
on a railway line parallel to the vessel and QCs are not allowed to cross each other.
Different models focusing on different levels of complexity of the problems have
been investigated. Bierwirth and Meisel [6] have provided a detailed classification
of the existing models to handle QCSPs. Three main problem classes that are most
popular in the research community are: (1) QCSP with container groups, (2) QCSP
with complete bays (each bay is considered as a single task), and (3) QCSP with
bay areas (a set of bays of a vessel is treated as a task to be exclusively handled by
one QC) [6, 8].

The focus of this paper is QCSP with container groups in which containers of
the same bay of the vessel are grouped as different tasks to be assigned to different
QCs. In these problems, each task is located at a bay position of the vessel and
the precedence constraints need to be satisfied due to the stacking dependent ac-
cessibility of tasks located in the same bay. To avoid congestion at the yard blocks,
some tasks are also not allowed to be processed simultaneously [9]. Each QC has
a ready time and an initial bay position. When operating, all QCs must not cross
each other and two QCs cannot work at the same bay location and their safety dis-
tance (measured in unit of bays) have to be maintained [8]. The readers can refer
to Kim and Park [10] and Bierwirth and Meisel [6] for detailed examples of QCSP.
Many methods have been proposed in the literature to deal with these problems
[9, 11, 12, 10, 13, 14]. However, there are still two major limitations with these
methods. First, the running times of these methods increase rapidly as the problem
size increases. Second, although some methods can provide very good solutions,
they are not flexible enough to cope with practical requirements (e.g. coping with
the uncertainty, integrating with other operation decisions).

1.1. Goals

The overall goal of this work is to develop new methods for QCSPs with con-
tainer groups which can effectively find near-optimal schedules within reasonable

2

QC #3

Figure 1: Illustration of QCs working on a vessel.

computational times and have the flexibility to taking into account different require-
ments of the real-world applications. Due to the effective search of near-optimal
solutions for scheduling problems [11, 12], we propose new evolutionary computa-
tion methods to tackle QCSPs with container groups. The research objectives of
this work can be summarised as follows:

1. Developing new hybrid methods that combine the advantages of evolutionary
computation methods and a local search heuristic for QCSPs,

2. Comparing the proposed methods with the existing methods in the literature
and analysing their advantages and disadvantages,

3. Extending the methods to handle the QCSPs with uncertain processing times,
and

4. Analysing the behaviour of the proposed methods.

The novelty of the proposed methods is the use of a new priority-based schedule
construction procedure, where the priorities are determined based on two represen-
tations that allow the proposed methods to simultaneously decide the assignments
of tasks to quay cranes and the sequencing of tasks. In the first representation,
the individual is represented as an order of tasks to be processed by the available
quay cranes, which is usually found in applications of genetic algorithm (GA) [15]
for scheduling problems. The second representation is a priority function in a tree
form, which is widely used in genetic programming (GP) [16, 17]. Different from
the individuals in the first representation that can be directly used as the priori-
ties for task assignment and sequencing, the tree-based individuals will indirectly
calculate the priorities of tasks based on the status/attributes of tasks and quay
cranes at the moments that scheduling decisions need to be made. While GA as
well as some other evolutionary computation methods such as particle swarm opti-
misation (PSO) or ant colony optimisation (ACO) has been applied regularly in the

3

scheduling literature (PSO and ACO have not been applied to solve QCSPs with
container groups), GP is not a conventional method for these problems from the
optimisation viewpoint. Therefore, it would be interesting to have a comparison
of these two methods in this work. Two advantages of GA and GP are that they
are easy to be implemented, and that they are flexible enough to be extended to
deal with different objectives or to be integrated with other operation decisions.
In order to further improve the quality of the scheduling solutions, we also intro-
duce a new simple local search procedure to refine the schedules obtained by GA
and GP. This paper also presents the first work that compares the performance of
the simulation-optimisation methods with that of deterministic methods to handle
QCSPs with uncertain handling times.

1.2. Organisation

The rest of this paper is organised as follows. An overview of existing methods
used to deal with QCSPs are presented in Section 2 and we give a mathematical
programming model of the considered QCSP in Section 3. In Section 4, details
about the new hybrid methods are provided to show how they can be used to solve
QCSPs. Section 5 and Section 6 show the experimental design and the results
obtained by the proposed methods on a large number of benchmark instances.
Section 7 extends the proposed methods to deal with QCSPs under uncertainty.
Further discussion about the proposed methods is presented in Section 8. Finally,
we provide conclusions and highlight future research directions.

2. Related work

Study of QCSPs were initiated with the early work of Daganzo [18] who inves-
tigated the problem with multiple vessels at a berth and cranes which can move
freely. An exact method was provided to deal with small problems. Perterkof-
sky and Daganzo [19] proposed a branch-and-bound algorithm to solve real size
problems. However, these studies did not consider interference between the quay
cranes.

Kim and Park [10] further investigated this problem at a greater level of detail
by dividing a task into smaller fractions (referred to as clusters or container groups)
as compared to those from Daganzo [18] and Perterkofsky and Daganzo [19]. They
also included realistic constraints such as quay crane ready times, non-crossing and
precedence constraints in their model. A first formal mixed-integer linear program
(MILP) was also presented in this work to avoid interference and later this was
improved by Moccia et al. [13], Sammarra et al. [14] and Bierwirth and Meisel
[9]. Unfortunately, QCSPs with the interference constraints are too complex to
be solved to optimality by MILP solvers. Kim and Park [10] developed a branch-
and-bound (B&B) algorithm to find optimal non-delay schedules with minimum

4

makespan (the completion time of the last task). However, B&B can only solve
problems with fewer than 20 tasks. Moccia et al. [13] proposed a new Branch and
Cut algorithm for QCSPs and showed that this algorithm can significantly improve
solutions obtained by B&B [10] within a limited running time of two hours.

Since QCSP is an NP-complete problem [20], some heuristics and meta-heuristics
have been proposed to find approximate solutions instead. Kim and Park [10]
proposed a greedy randomised adaptive search procedure (GRASP) based on the
non-delay schedule construction approach and a local search to improve the sequence
of tasks handled by each QC. Sammarra et al. [14] applied Tabu Search (TS) and
showed that it provided better results as compared to GRASP [10]. This method
also significantly reduced the computational time compared to the Branch and
Cut (B&C) algorithm [13] with only a slight deterioration in the solution quality.
Chung and Choy [11] proposed a GA method in which an individual represents both
the task-to-quay crane assignment and sequencing decisions. The performance of
the GA method was better than that of GRASP but worse than that of TS [14]
and B&C [13] as the problem size increases. Bierwirth and Meisel [9] developed
a Unidirectional Scheduling (UDS) heuristic which employs a B&B algorithm to
search for the optimal unidirectional schedule (cranes do not change the moving
direction after any initial repositioning). The experimental results have shown that
UDS outperformed the previous proposed methods both in term of quality and
computational time. Kaveshgar et al. [12] proposed another GA method that can
effectively find solutions that are very close to those obtained by UDS with shorter
computation time when dealing with large benchmark instances [8].

Some variants of the QCSP have also been considered. Lee et al. [20] proposed
a GA method for the QCSP with non-interference constraints (without precedence
constraints) and showed that the proposed GA method can effectively find optimal
or near-optimal solutions. Tavakkoli-Moghaddam et al. [21] extended the MILP
model proposed by Kim and Park [10] to take into account the QC-to-vessel assign-
ment decisions with total cost as the objective function. They also developed a GA
method in which each individual represents the number of QCs assigned to a vessel
and the sequence of tasks to be processed on a vessel. The gap between solutions
from this GA method and the optimal solution is about 3% and their algorithm
was able to handle larger instances. Legato et al. [22] developed a simulation-based
optimisation method for QCSP based on simulated annealing. This method was
shown to be effective when applied to practical scenarios.

3. Problem description

The mathematical formulation presented here for the QCSP with interference
and precedence constraints is based on the MILP models developed by Bierwirth
and Meisel [9]. This model is an extended version of the models developed by Kim

5

and Park [10], Moccia et al. [13], and Sammarra et al. [14] to properly avoid
interferences of cranes.

The following notations are used in the mathematical formulation.

Indices

i, j tasks which are ordered in an increasing order of their bay positions
k, υ,ω quay cranes which are ordered in an increasing order of their bay positions

Problem data

pj handling time of task j
lj bay position of task j
lk0 initial bay position of quay crane k
rk ready time of quay crane k
t̂ time to move a QC to move across a bay
δ the smallest safety distance between two QCs
tij travel time between position li and lj calculated as tij = t̂ · |li − lj |
tk0j time to move QC k from its initial position to lj is calculated as tk0j = t̂ · |lk0− lj |
∆υω

ij minimum timespan to elapse between the processing of two tasks i and j which
are respectively handled by QCs υ and ω

∆υω
ij =

(li − lj + δυω) · t̂ if υ < ω and i "= j and li > lj − δυω
(lj − li + δυω) · t̂ if υ > ω and i "= j and li < lj − δυω
0 otherwise.

Sets of indices

Ω set of tasks Ω = {1, 2, . . . , n}
Q set of QCs Q = {1, 2, . . . , q} assigned to handle tasks in Ω
Φ set of task pairs (i, j) (task j cannot start before the completion of task i)
Ψ set of task pairs that cannot be processed simultaneously (Φ ⊆ Ψ)
others Ω0 = Ω ∪ {0}, ΩT = Ω ∪ {T} and Ω = Ω ∪ {0, T} where 0 and T = n+ 1 are

two dummy tasks with zero processing time are also included to indicate the
beginning and the end of the service of the considered vessel

Θ set of all combinations of tasks and QCs that potentially lead to crane inter-
ference Θ = {(i, j, ν, w) ∈ Ω2 ×Q2|(i < j) ∧ (∆υω

ij > 0)}

Decision variables

xk
ij 1, if tasks i and j are processed consecutively by QC k; otherwise xk

ij = 0
zij 1 if and only if task j starts after task i is completed; otherwise zij = 0
ci completion time of task i. The objective to be minimised is the completion

time of the final task, cT

The QCSP is formulated as follows:

minimise cT (1)
∑

j∈ΩT

xk
0j = 1 (k ∈ Q) (2)

∑

j∈Ω0

xk
jT = 1 (k ∈ Q) (3)

6

∑

k∈Q

∑

j∈ΩT

xk
ij = 1 (i ∈ Ω) (4)

∑

j∈Ω0

xk
ji −

∑

j∈ΩT

xk
ij = 0 (i ∈ Ω, k ∈ Q) (5)

ci + tij + pj − cj ≤M(1− xk
ij) (i, j ∈ Ω, k ∈ Q) (6)

ci + pj − cj ≤ 0 ((i, j) ∈ Φ) (7)

ci + pj − cj ≤M(1− zij) ((i, j) ∈ Ω) (8)

cj + pj − ci ≤Mzij ((i, j) ∈ Ω) (9)

zij + zji = 1 ((i, j) ∈ Ψ) (10)
∑

u∈Ω0

xν
ui +

∑

u∈Ω0

xω
uj ≤ 1 + zij + zji ((i, j, υ,ω) ∈ Θ) (11)

ci +∆υω
ij + pj − cj ≤ (3− zij −

∑

u∈Ω0

xν
ui −

∑

u∈Ω0

xω
uj) ((i, j, υ,ω) ∈ Θ) (12)

cj +∆υω
ij + pi − ci ≤ (3− zji −

∑

u∈Ω0

xν
ui −

∑

u∈Ω0

xω
uj) ((i, j, υ,ω) ∈ Θ) (13)

rk + tk0j + pj − cj ≤M(1− xk
0j) (i ∈ Q, j ∈ Q) (14)

ci ≥ 0 (i ∈ Ω) (15)

xk
ij ∈ {0, 1} (i, j ∈ Ω, k ∈ Q) (16)

zij ∈ {0, 1} (i, j ∈ Ω) (17)

Constraints (2)–(3) force each quay crane to handle only one first task and one last
task, and each task can only be handled by one QC. Constraint (4) ensures that each
task must be completed by exactly one QC. Constraints (5)–(10) are to guarantee
a well-defined sequence of tasks. Constraints (11)–(14) ensure that the interference
is avoided and the precedence relations between tasks are satisfied. Constraints
(15)–(17) ensures the correctness of the decision variables. For detailed discussions,
we refer to the studies of Kim and Park [10], Moccia et al. [13], Sammarra et al.
[14], and Bierwirth and Meisel [9].

4. Methodology

In this section, we introduce the key elements of our proposed methods. We first
present a priority-based schedule construction procedure. Then, we describe two
representations of solutions/individuals evolved by our proposed methods. Finally,
a summary of the proposed methods is provided.

4.1. Priority-based schedule construction procedure

Figure 2 shows our proposed procedure to construct a schedule for QCSPs.
The procedure starts by partitioning set Ω into a set T of ready tasks and a set

7

1: T← {τ ∈ Ω|precτ = 0} and U← {Ω \ T} ∗

2: rτ ← +∞ for ∀τ ∈ Ω with precτ > 0
3: ck = rk for ∀k ∈ Q
4: while T is not empty do
5: let Q the index of QC with cQ = mink∈Q {ck} ∗∗

6: let T′ ← {τ ∈ T|rτ ≤ cQ}
7: assign a priority vτ for each task τ ∈ T′

8: sort T′ such that T′ ← {τ1, . . . , τ|T′|} with vτi > vτi+1

9: for i = 1 to |T′| do
10: if (no interference when quay crane Q reach task τi) then
11: assign Q to handle τi
12: else
13: if (other QCs can move for quay crane Q to process τi) then
14: assign Q to handle τi
15: end if
16: end if
17: if (quay crane Q is able to process τi) then
18: update the completion time cQ = cQ + t̂ · |hQ − lτi |+ pτi
19: update the QC position hQ = lτi , update precτ for ∀τ ∈ U
20: U′ ← {τ ∈ U|precτ = 0} and set rτ = cQ for ∀τ ∈ U′

21: move all task in U′ from U into T
22: remove task τi from T, and set cτi = cQ

23: break the loop
24: end if
25: end for
26: if (quay crane Q cannot be assigned to handle any task) then
27: update the completion time cQ = mink∈{Q\Q} {ck}
28: end if
29: end while
30: return maxτ∈Ω {cτ}

∗ precτ indicates the number of tasks preceding τ that have not been completed
∗∗ if ties occur, select the quay crane Q that updates its completion time earlier.

Figure 2: Priority-based schedule construction procedure for QCSPs.

of unready tasks U. A ready task is defined as a task which has the number of
uncompleted precedence tasks precτ equal to zero. The ready time rτ for each
ready task is set to zero and the ready time ck (or completion time of the previous
task) for each quay crane is assigned based on the input data. This procedure will
iteratively schedule a task in set T. Within each iteration, quay crane Q with the
earliest completion time is chosen to process the next task. If there are more than
one QC with the same completion time, the one that updates its completion time
earlier (in previous iterations) is chosen or the left most QC is selected if it is the
first iteration and these QCs have the same ready time. A set T′ of candidate tasks
to be selected in this iteration is a subset of T which contains tasks with ready
times earlier than the completion time of quay crane Q (rτ ≤ cQ). Based on the

8

employed heuristics, a priority is assigned to each task in T′ (more details on how
the priorities are calculated will be shown in Section 4.2). Then, T′ is sorted in a
decreasing order of the priorities of tasks and task τi from the one with the highest
priority is checked if it can be assigned to quay crane Q in this iteration. If there is
no interference (crossing other QCs or violating the safety distance) occurring when
quay crane Q attempts to reach the position of task τi, this task will be assigned
to quay crane Q. Otherwise, the procedure assigns quay crane Q to handle task
τi if other QCs can shift away to avoid interference when quay crane Q processes
task τi. If a task is assigned to quay crane Q, the completion time cQ and position
hQ of this quay crane are updated (based on the location and processing time of
the selected task) and the values of precτ of unready tasks are adjusted to include
the new ready tasks into T. After quay crane Q is dispatched, task τi is removed
from T and the procedure moves to the next iteration (break the loop). Otherwise,
the next task τi in T′ is examined. In case that no task can be assigned to quay
crane Q in this iteration, the completion time of this quay crane will be updated to
the earliest completion time of the other quay cranes. The procedure stops when
all tasks are scheduled (set T is empty) and the completion time of the final task
(makespan) is returned.

Basically, this procedure generates a schedule similar to the non-delay schedule
generated by the list scheduling procedure proposed by Kim and Park [10]. The key
difference is that our proposed procedure provides a more flexible way to assign tasks
to quay cranes by selecting the task based on the priority of tasks instead of the first
task in the list. Moreover, the quay crane with the earliest completion time may not
always be assigned to a task immediately but can be delayed until the next earliest
completion time of other quay cranes. As compared to the schedule construction
procedure based on the disjunctive graph employed in UDS [9], our procedure is
more flexible since it is able to generate bidirectional schedules where QCs can move
in both directions during the schedule. This feature allows the search method to
find potential solutions in the search space of bidirectional schedules, which cannot
be found by UDS. However, since our procedure also restricts the idleness of QCs
(mainly based on the earliest completion time), it cannot guarantee to provide an
optimal solution.

4.2. Representations

Within the schedule construction procedure (see Figure 2), priorities need to be
assigned to tasks in T′. This is a crucial step of the whole procedure since it decides
the sequence as well as the task-to-crane assignment and strongly influences the
makespan of a schedule. In this work, we develop two representations for individuals
(or solutions), which are respectively at the core of our proposed GA and GP
methods and govern how the priorities are assigned.

9

7 6 8 3 4 2 9 10

6 9 5 10 2 7 8 1

7 9 5 10 4 2 6 3

9 6 8 3 2 7 5 1

(a) crossover

6 8 3 4 2 9 10

6 8 3 4 7 9 10

(b) mutation

Figure 3: Crossover and mutation for the permutation-based representation.

4.2.1. Permutation representation for GA
In this representation, the solution is represented as an array of integers with

the size equal to the number of tasks n. Each element in the array represents a task
and the array represents the order in which tasks are supposed to be processed. The
tasks located at the further left positions of the array will have higher priorities in
the schedule construction procedure (step 7). New children are generated by partial-
mapped crossover (PMX) [23] and two-point exchange mutation as shown in Figure
3, which are two popular genetic operations in GA, especially when applied to
scheduling problems. For PMX, two random positions of the array are first selected
and two substrings between two parents are exchanged. Then, the children are
modified based on the mapping relationship between the two parents. Meanwhile
the mutation is performed simply by randomly exchanging two positions of the
array.

4.2.2. Tree representation for GP
In the tree representation, individuals are priority functions which are repre-

sented in tree-form. This representation is very popular in the GP research com-
munity to evolve computer programs for solving complex computational problems
[16, 17]. Instead of a direct search for the priorities of tasks in the previous repre-
sentation, we try to evolve priority functions that can synthesise the information of
quay cranes and tasks at the decision moments to determine the priorities of tasks.
The trees in this case are generated based on a terminal set and a function set.
The terminal set contains terminals (leaf nodes) or variables/inputs of the prob-
lems which are connected by functions (internal nodes) in the function set. The
descriptions of terminals used in our work are presented in Table 1. It is noted that
the values for each terminal are different depending on the quay crane Q, consid-
ered task τ and the state of quay cranes when the priorities are calculated in step
7 in Figure 2. The first five terminals in Table 1 are static values from the problem
inputs. The next seven terminals are variables that characterise the status of quay
crane Q and task τ . Random constants are also included in the terminal set. The

10

Table 1: Terminal set for the tree representation (for task τ and quay crane Q)

Notation Description Value

P task handling time pτ
T moving speed to quay cranes t̂
S safety distance between two QCs δ
Q number of QCs |Q|
B number of bays b

D distance between task τ and QC Q |lτ − hQ|
C completion time of QC Q cQ

HWL holding workload
∑

τ ′∈Sτ
pτ ′

LWL local workload
∑

τ ′∈L pτ ′

LQC local quay crane |QL|
DNQ distance to the nearest quay crane Q′ mink∈Q{|ck − lτ |}
CNQ completion time of the nearest quay crane Q′ cQ

′

ephemeral random constants (ERC) [17] Uniform [0, 1]

∗ Sτ is the set of tasks that can only be processed when task τ is completed

∗ L← {τ ′ ∈ T
⋃

U||lτ − lτ ′ | ≤ δ + 1} contains remaining tasks in the radius of (δ + 1) of task τ

∗ QL is the number of QCs in the radius of (δ + 1) of task τ

function set will consist of standard mathematical operators +,−,×, protected di-
vision % (similar to normal division but returning a value of 1 when division by 0
is attempted), min and max.

bay 1 2 3 4 5 6 7 8 9 10 11 12

Ta
sk

 #
1

Ta
sk

 #
3

Ta
sk

 #
2

QC #1
Completion Time = 50

QC #2
Completion Time = 70

D

max

S

P

-

priority

Task Location Handling Time

#1 4 10

#2 7 4

#3 7 6

S = 1

D

1

4

4

Priority

-9

0

-2

Figure 4: Illustration of tree representation for QCSPs.

An illustration of an individual with the tree representation is provided in Figure
4 along with a small example to show how it can be used to decide which task is to
be processed next. In this example, the priority function obtained from the tree is
(max(D,S)−P) and there are three tasks waiting to be processed. Since QC #1 is
the one with the earliest completion time, it is selected for handling the next task.

11

D

max

S

P

+

LWL T

%

P D

x

+

P

+

LWL

%

P

+

TD

x

D

max

S

Parent #1 Parent #2

Child #1 Child #2

(a) crossover

D

max

S

P

+

D

max

S

+

D

+

P

Parent Child

(b) mutation

Figure 5: Crossover and mutation for the tree representation.

Based on the handling times (P) of tasks and the relative distance (D) between QC
#1 and each task, the priorities are calculated. Because task #2 is the one that
has the highest priority and there is no interference, it is handled by QC #1 in this
iteration.

Crossover and mutation with the tree-based individual are very different from
those used in the previous section. In this work, we employ GP subtree crossover and
subtree mutation [17] which are popular in the GP community. For crossover, new
individuals are created for the next generation by randomly recombining subtrees
from two selected parents. Meanwhile, mutation is performed by randomly selecting
a node of a chosen individual and replacing the subtree rooted at that node by a
newly randomly-generated subtree. Illustrations of subtree crossover and subtree
mutation are shown in Figure 5. The maximum depth for the newly generated
individuals is restricted to eight in our work.

4.3. Local search heuristic

Even though GA and GP are powerful search methods, it is quite difficult for
these methods to quickly converge to good solutions. For that reason, we also ap-
plied a simple local search heuristic (LSH) to refine the solutions obtained from the
global search level by GA and GP. In our proposed LSH, we employ the permutation
representation introduced in Section 4.2.1 as the solution representation. Therefore,
if GA is used at the global search level, the solution can be directly transferred to
LSH for further improvement. If GP is used, the order in which the tasks are pro-
cessed with a GP individual is recorded as the input for the LSH. An overview of the
LSH is shown in Figure 6. The neighbour solution Π′ of the incumbent solution Π is
generated by randomly swapping two tasks. Basically, the neighbour solution will
be generated exactly the same way as the two point exchange mutation described
in Section 4.2.1.

12

1: Input: sequence/order Π← {π1,π2, . . . ,πn} of tasks to be processed
2: Πlbest ← Π
3: makespanlbest ← makespan obtained from Π
4: while stopping condition is not reached do
5: Π′ ← Πlbest

6: randomly select i and j from [1, n] such that i "= j
7: swap πi and πj in Π′

8: makespannew ← construct a schedule from Π′

9: if (makespanlbest > makespannew) then
10: Πlbest ← Π′ and makespanlbest = makespannew

11: end if
12: end while
13: return makespanlbest

Figure 6: Local search heuristic for QCSPs.

4.4. Summary of the proposed methods

Figure 7 presents our general hybrid evolutionary computation approach, which
can be employed by both GA and GP to deal with QCSPs. The method starts by
reading the input data from an instance. Then, the initial population is randomly
generated. In a generation, each individual is first applied to construct a schedule
based on the procedure in Figure 2. After the schedule based on an individual is
obtained, it is used as the input for the local search heuristic for further improve-
ment. The (improved) makespan returned from local search is then used as the
fitness of the individual. After all individuals are evaluated and the stopping con-
dition is not reached, the new population is generated by using genetic operations
and a new generation is started. The key difference between the GA-based method
and the GP-based method is related to the three processes highlighted in Figure
7 by a bold frame. For GA, the initial individuals are generated by creating ran-
dom permutations of tasks. Meanwhile, the initial population of GP is generated
using the ramped-half-and-half method [17]. Since GA and GP use two different
representations (permutation and tree), the ways that their individuals are used to
construct schedules and the genetic operations applied to generate new individuals
are also very different as discussed in Section 4.2.1 and Section 4.2.2. For ease of
presentation, we simply call the versions of the hybrid methods based on GA and
GP as HGA and HGP respectively in the rest of this paper.

5. Experimental design

5.1. Datasets

In this section, we test the two proposed methods HGA and HGP using the
benchmark instances introduced by Kim and Park [10] and the large number of

13

benchmark instances proposed by Meisel and Bierwirth [8]. The instances in [8]
were classified into seven sets which focus on different problem characteristics. The
first three sets (A, B, and C) represent the problems with two QCs serving small,
medium and large vessels. The scale of the vessel is decided by its number of bays.
The number of tasks in these three sets ranges from 10 to 100 tasks. Sets D, E, F
and G are for medium sized vessels with different handling rates (the percentage of
containers handled in a service against the total vessel capacity), distributions of
tasks on the vessel, numbers of QCs, and safety distances.

5.2. Parameter settings

Since the population size and stopping condition of the local search heuristic
are two important factors that influences both computational times and solutions’

Start Read input
data

Generate the
initial population

Construct a
schedule based
on the individual

Perform local
search on the

obtained schedule

Use the obtained
makespan as the

fitness for the
individual

All individuals
are evaluated ?

Start new
generation

Stopping
condition met?

Yes

End Yes

Generate new
population via

genetic operations

No

Go to the next
individual

No

Figure 7: Proposed hybrid evolutionary computation approach for QCSPs

14

quality, we will perform some pilot experiments to find the suitable settings for
these two parameters. Figure 8 shows the performance of HGA (HGP also shows
similar behaviour) with different population sizes and stopping conditions (max-
imum number of steps) for the local search heuristic. In these experiments, five
independent runs of HGA (in 10 seconds) were performed on the largest class of Set
A [8] (with 40 tasks) for each configuration. These preliminary results indicate that
a population size of 500 and maximum steps of 100 provide reasonable performance.
Increasing the values of these parameters can improve the quality of the solutions
slightly but will significantly increase the computational time, especially for larger
instances.

0.
7

0.
8

0.
9

1.
0

population size

re
la

tiv
e

er
ro

r (
%

)

 100 300 500 700 1000

(a)

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

maximum step in local search

re
la

tiv
e

er
ro

r (
%

)

 0 50 100 150 200

(b)

Figure 8: Influence of population size and maximum steps in the local search heuristic

The parameters used in both HGA and HGP are the same. The population
size for the two methods are 500 and tournament selection with a tournament
size of seven is used for individual selection. Although bidirectional schedules can
provide better makespans as compared to unidirectional schedules, the search space
of bidirectional schedules is much larger than that of unidirectional schedules. For
that reason, it is faster and easier to search for good unidirectional schedules in
large instances. To create a balance between the search time and solution quality,
we use half of the population (250 individuals) to build bidirectional schedules and
the other half to build unidirectional schedules. The unidirectional schedules can
be easily created using the procedure in Figure 2 by adding a condition to forbid
QCs from moving backward and bypassing a task that cannot be approached by any
other QC. The crossover, mutation and reproduction rates are 80%, 10% and 10%
respectively. These values are chosen after some preliminary experiments. Since the
local search heuristic is used with GA and GP, the mutation rate is set higher than
usual to avoid solutions trapped at the local optima. The details about the crossover
and mutation operations for HGA and HGP were explained in Section 4. When
reproduction (elitism) is applied, an individual is selected from the population by
tournament selection and copied to the population of the next generation.

15

HGA and HGP are coded in Java and run on Intel Core i5-2400 3.10 GHz
CPUs, single thread. The running time limits for HGA and HGP are 60 seconds
for Kim and Park’s instances [10] and ten independent runs for HGA and HGP are
performed for each instance. The results from this set of instances are compared
with those obtained by B&B and GRASP [10], B&C [13], tabu search [14], and
UDS [9]. In Meisel’s instances [8], running time limits are set as 10, 300, and 600
seconds for the small, medium and large vessels respectively and five independent
runs of each method are performed for each instance. The results obtained from
the two methods are compared to those obtained by UDS [9], GA [12], and the
optimal solutions or lower bounds provided by using CPLEX to solve the MILP
model [9, 8].

6. Results

Table 2 shows the results for instances k13− k49 [10]. The column Opt.∗ gives
the optimal makespans (or lower bounds) fopt for each instance. The values reported
for each method are the relative error in percentage RE = (fbest − fopt)/fopt × 100
where fbest is the makespan obtained by each method. For HGA and HGP, we show
the average relative error ARE(%) and the best found makespan bf obtained from
ten runs for each instance. It is easy to see that HGA and HGP can provide very
good results as compared to other methods. The relative errors obtained by HGA
and HGP are less than 4% for all instances. On average, the relative errors from our
proposed methods are clearly better B&B, GRASP, and TS and very competitive as
compared with B&C and UDS. The B&C method is slightly worse than HGP and
slightly better than HGA. The results from HGP are only slightly worse than UDS.
In addition, the proposed methods are able to discover new best known solution
(instance with ! next to the relative errors) for three instances.

The average computational times for each group of instances are shown in Ta-
ble 3. For our methods, we show the average and maximal times to find the best
results. Even though each method is performed with different computer configu-
rations, it is very obvious that our proposed methods are much faster than most
methods and only slower than UDS in these instances. In general, these results
have confirmed that our proposed methods are not only effective but also very ef-
ficient. Although our methods and those from Kim and Park [10] are both based
on non-delay schedules, the priority-based schedule construction procedure and the
hybrid search mechanism make our methods much more competitive.

A summary of the results for different classes of instances [8] obtained by HGP
and HGA is shown in Table 4 and the computational times (in seconds) are pre-
sented in Table 5 (the detailed results for each instance are available at https://
ecs.victoria.ac.nz/foswiki/pub/Groups/ECRG/OnlineSupplimentaryMaterials/
qcspAppendix.pdf). It is clear that our proposed methods can obtain good results

16

Table 2: Comparison of HGA and HGP with other methods (k13− k49 [10])

Instance Opt.∗
KP [10] MCGL [13] SCLM [14] BM [9] HGA HGP

B&B GRASP B&C TS UDS ARE(%) bf ARE(%) bf

k13 453 0.00 0.00 0.00 0.00 0.00 0.00 453 0.00 453
k14 546 0.00 0.00 0.00 0.00 0.00 0.00 546 0.00 546
k15 513 0.00 0.00 0.00 0.00 0.00 0.00 513 0.00 513
k16 312 2.88 2.88 0.00 0.00 0.00 0.00 312 0.00 312
k17 453 0.66 0.66 0.00 0.00 0.00 0.00 453 0.00 453
k18 375 0.00 0.00 0.00 0.00 0.00 0.00 375 0.00 375
k19 543 1.66 1.66 0.00 0.00 0.00 0.00 543 0.00 543
k20 399 20.30 20.30 0.00 0.00 0.00 0.00 399 0.00 399
k21 465 0.00 0.00 0.00 0.00 0.00 0.00 465 0.00 465
k22 537 34.08 34.08 0.00 0.00 0.56 0.56 540 0.56 540
k23 576 0.00 2.60 0.00 1.04 0.00 0.05 576 0.00 576
k24 666 0.45 1.35 0.00 0.45 0.00 0.00 666 0.00 666
k25 738 0.00 0.41 0.00 0.41 0.00 0.00 738 0.00 738
k26 639 0.00 1.88 0.00 0.00 0.00 0.00 639 0.00 639
k27 657 0.00 4.57 0.00 0.46 0.00 0.00 657 0.00 657
k28 531 1.13 3.39 0.00 0.00 0.00 0.00 531 0.00 531
k29 807 0.00 1.49 0.00 0.37 0.00 0.00 807 0.00 807
k30 891 0.00 1.68 0.00 0.00 0.00 0.00 891 0.00 891
k31 570 0.00 0.00 0.00 0.00 0.00 0.00 570 0.00 570
k32 591 0.00 1.02 0.00 0.00 0.00 0.00 591 0.00 591
k33 603 0.00 10.45 0.00 0.00 0.00 0.05 603 0.25 603
k34 717 0.00 6.28 0.00 2.51 0.00 1.46 723 0.38 717
k35 684 0.88 2.19 0.00 0.88 0.00 1.23 684 0.13 684
k36 678 6.19 4.42 0.00 0.44 0.00 0.00 678 0.13 678
k37 510 1.18 5.88 0.00 1.76 0.00 0.06 510 0.00 510
k38 613.7 3.15 7.55 0.71 0.71 0.71 0.61! 615 0.51! 615
k39 508.4 8.58 13.89 0.91 2.09 0.91 0.91 513 0.91 513
k40 564 2.13 5.85 0.00 0.53 0.00 0.53 567 0.37 564
k41 585 11.78 9.73 0.50 1.53 0.50 0.40! 585 0.00! 585
k42 560.3 4.94 18.86 1.73 2.80 2.26 3.50 579 3.34 579
k43 859.3 10.67 9.62 4.38 2.29 1.94 1.80! 873 2.22 876
k44 820.4 7.15 4.59 0.20 1.66 0.20 1.70 831 0.60 822
k45 824.9 4.38 5.83 1.83 3.29 1.11 2.09 840 1.87 840
k46 690 2.61 6.52 0.00 0.00 0.00 0.74 690 0.70 690
k47 792 15.15 1.89 0.00 0.00 0.00 1.10 792 0.00 792
k48 628.9 6.38 6.38 2.56 5.43 1.61 2.33 639 1.90 639
k49 879.2 4.07 10.55 5.43 3.73 1.68 2.19 897 2.53 897

Average 4.06 5.63 0.49 0.88 0.31 0.58 0.44

Table 3: Average computational times (in minutes) (k13− k49 [10])

Instances
KP [10] MCGL [13] SCLM [14] BM [9] HGA HGP

B&B GRASP B&C TS UDS avg. max. avg. max.

k13− k22 0.44 0.35 1.10 1.52 1.12× 10−5 0.01 0.02 0.01 0.01
k23− k32 17.53 1.46 8.91 5.86 3.68× 10−5 0.04 0.13 0.03 0.08
k33− k42 564.47 3.16 72.19 21.75 6.26× 10−4 0.18 0.38 0.20 0.51
k42− k49 809.73 7.56 102.49 48.68 3.43× 10−3 0.57 0.89 0.39 0.75

CPU P2, 466 MHz P4, 2.5GHz P4, 2.5GHz P4, 2.8GHz i5-2400, 3.10 GHz

17

with only very small errors as compared to UDS (less than 0.6% for HGA and less
than 0.5% for HGP). In addition, the computational times of the proposed meth-
ods are much shorter than those from UDS for many classes of instances. When
tested with different handling rates f in set D, HGA and HGP show very good
results and are able to beat UDS in several instances with the small handling rate
(f = 0.2). For instances with the high handling rate (f = 0.8), the results from our
proposed methods and UDS are competitive. Regarding the results in other sets, it
is noted that the proposed methods perform very well on instances with more quay
cranes and large safety distances. These experimental results are able to confirm
the effectiveness and efficiency of the proposed methods when dealing with different
scenarios. The proposed methods are also able to improve the best known solutions
(BKS) of some instances as compared to CPLEX and UDS. From the experiments,
we also see that HGA and HGP outperform GA [12] in both computational time
and solution quality.

Table 4: Average % relative errors of HGA and HGP compared to UDS for Sets A−G [8]

Sets A B C D E F G

HGA 0.03 0.56 0.55 0.26 0.42 0.21 0.19
HGP 0.00 0.46 0.49 0.21 0.30 0.12 0.18

of new BKS 3 3 20 12 0 7 5

Table 5: Average computational times (in seconds) for Sets A−G [8]

Sets A B C D E F G

UDS 0.00 1451.33 3541.33 1416.16 1331.2 1590 2828.21
HGA 1.37 115.89 320.25 74.23 88.51 63.38 51.90
HGP 0.63 120.06 282.36 82.23 84.66 55.28 45.76

7. Simulation-optimisation methods for QCSPs

The previous section has shown that HGA and HGP are effective methods to
deal with QCSPs. Although there are small gaps in the solution quality compared
to UDS, the proposed methods have some practical advantages. First, the compu-
tational times for the proposed methods are short, which allows us to obtain good
solutions within reasonable computational times even for large instances. Second,
the proposed methods are quite flexible and easy to extend to cope with practi-
cal requirements such as simultaneously handling berth allocation and quay crane
scheduling. In this section, we extend the use of the proposed methods to create
robust schedules (task sequences) for QCSPs. This is motivated by the fact that
there are always some types of uncertainty occurring when QCs are operating at
a vessel such as unreliable handling times caused by operators’ skills and break-
downs, or the delay of yard trucks. Within the QCSP literature, there have not

18

been many studies on this topic. Most recently, Han et al. [24] developed a GA
method to deal with simultaneous berth and quay crane allocation with stochastic
arrival and handling times. However, the detailed task to QC scheduling problems
(like the QCSPs in our work) were not considered in their work. Legato et al. [22]
proposed a simulation-optimisation (SO) method to deal with a special scenario of
quay crane scheduling and compared the obtained schedules to one generated by
the terminal planner. In our work, we investigate robust schedules under different
scenarios/instances and different levels of random variation in handling times.

Different from the deterministic case where the goal is to find the schedule with
the minimal makespan, we try to find a robust solution (task priorities or order
of tasks to be handled) that minimises the expected makespan E[cT] when dealing
with QCSPs under uncertainty. In these problems, the makespan is determined
via stochastic simulation, in which the handling time of a task follows a uniform
distribution p′j ∼ U [(1−γ)pj, (1+γ)pj], where γ is the noise factor that decides how
the handling time deviates from the average handling time pj. A higher γ means
that there can be larger differences between p′j and pj. In the dynamic operating
condition of the simulation, quay cranes handle tasks based on the priority-based
construction procedure in Figure 2. To estimate the expected makespan of a solu-
tion, we run multiple simulation replications based on the input data. The fitness
of HGA and HGP is also the expected makespan obtained from a number of simu-
lation scenarios (sample) in order to evolve robust solutions that are able to cope
with possible changes of the problems. In order to evaluate the performance of the
simulation-optimisation methods based on HGA (SO-HGA) and HGP (SO-HGP),
we will test them using the input data in the instances in set A [8]. We will compare
the solutions obtained by these two methods with the best known deterministic so-
lutions (BKDS) found methods employed in the previous section. For each instance,
the expected makespan for the comparison is obtained through 10,000 simulation
replications. The sample size to determine fitness values for SO-HGA and SO-HGP
is 100. Since the fitness evaluation in SO-HGA and SO-HGP is much more expen-
sive than the original HGA and HGP, we will not apply the local search heuristic
to each individual in the population but only to the best solution obtained by the
methods at the end of each generation.

Five independent runs of 60 seconds for each method are performed for each
instance in set A under different levels of noise and the results are summarised in
Table 6. Values in this table are the relative deviation (in %) of the expected values
and standard deviations of makespans (REE[cT] and REσcT

) as compared to those
of BKDSs. The results show that solutions obtained by SO-HGA and SO-HGP are
better than BKDS even with small noise of 5%. While the improvements in the
expected makespan made by SO-HGA and SO-HGP are not large, the solutions
obtained by the simulation-optimisation methods are much more robust since the

19

Table 6: Performance of simulation-optimisation methods (Set A [8])

SO-HGA SO-HGP

REE[cT] REσcT
REE[cT] REσcT

γ = 5%
n = 10 −1.06 −15.74 −1.06 −15.46
n = 15 −0.72 −9.88 −0.62 −6.07
n = 20 0.08 0.74 0.21 4.05
n = 25 −0.24 −5.05 −0.22 −4.41
n = 30 −0.05 −5.36 −0.06 −10.78
n = 35 0.11 −0.57 0.25 17.10
n = 40 0.09 −8.36 −0.20 −14.00

γ = 10%
n = 10 −1.36 −13.93 −1.38 −13.35
n = 15 −0.78 −9.10 −0.71 −10.07
n = 20 0.04 −0.23 0.11 0.07
n = 25 −0.32 −4.71 −0.30 −5.54
n = 30 −0.25 −11.32 −0.16 −11.56
n = 35 −0.15 −5.18 −0.06 −7.61
n = 40 0.03 −11.22 −0.28 −12.93

γ = 15%
n = 10 −1.47 −9.68 −1.41 −6.66
n = 15 −0.96 −9.55 −0.87 −9.32
n = 20 −0.07 −1.27 −0.03 −1.51
n = 25 −0.44 −5.05 −0.33 −5.97
n = 30 −0.46 −10.85 −0.42 −10.36
n = 35 −0.44 −8.23 −0.36 −8.83
n = 40 −0.17 −10.98 −0.39 −13.66

γ = 20%
n = 10 −1.65 −9.37 −1.63 −9.67
n = 15 −1.27 −10.85 −1.16 −10.32
n = 20 −0.19 0.29 −0.08 −1.55
n = 25 −0.66 −5.57 −0.42 −5.75
n = 30 −0.66 −9.05 −0.56 −10.05
n = 35 −0.62 −11.31 −0.47 −8.59
n = 40 −0.40 −13.61 −0.51 −13.50

γ = 25%
n = 10 −1.69 −7.81 −1.71 −7.80
n = 15 −1.43 −7.13 −1.51 −9.75
n = 20 −0.49 −4.12 −0.39 −4.85
n = 25 −0.96 −6.98 −0.70 −7.99
n = 30 −0.92 −9.80 −0.79 −9.61
n = 35 −0.88 −12.12 −0.80 −11.81
n = 40 −0.65 −13.91 −0.79 −15.22

γ = 30%
n = 10 −1.58 −5.06 −1.65 −5.74
n = 15 −1.91 −10.39 −1.91 −12.14
n = 20 −0.82 −4.57 −0.74 −5.45
n = 25 −1.20 −6.45 −0.87 −6.66
n = 30 −1.20 −10.46 −1.07 −10.69
n = 35 −1.15 −12.75 −0.96 −10.60
n = 40 −0.93 −15.19 −1.05 −14.88

standard deviation values of makespan are significantly smaller than those obtained
in the deterministic case. This feature makes the solutions obtained by the SO
methods more reliable as applied in practical situations. As the noise increases

20

0 20 40 60 80 100

65
0

70
0

75
0

generation

fit
ne
ss

GP−average
GA−average

(a) average fitness

0 20 40 60 80 100

51
0

51
1

51
2

51
3

51
4

51
5

51
6

51
7

generation

fit
ne
ss

GP−best
GA−best

(b) best fitness

Figure 9: Behaviour of GA and GP for a single instance of QCSP

from 5% to 30%, the improvement in the expected makespan gained by the SO
methods also increases. This confirms the importance of the proposed methods in
order to create more effective and reliable solutions for QCSPs under uncertainty.

8. Further discussions

In Section 6, we have seen that the performance of HGP is better than HGA
when tested on a large number of problem instances. Since both HGA and HGP use
the same local search heuristic, these results must be achieved through the search
mechanisms of GA and GP. Therefore, it would be interesting to understand how
better performance is obtained by GP. We use an instance with 40 tasks (the first
instance of this class in set A [8]) as the example to show the behaviour of GA
and GP without the support of the local search heuristic. The parameters for this
experiment are the same as those in the previous experiments but the two methods
stop when they reach 100 generations. The results are shown in Figure 9 and the
values in these figures are averaged from 30 independent runs of GA and GP.

It is obvious that GP performs better than GA both in terms of the average
fitness and the best fitness. For the average fitness, it is interesting that the initial
populations of GP are actually worse than that of GA but GP can converge very
quickly to good solutions while GA can only converge roughly after 70 generations.
Regarding the best fitness, it is also easy to see that GP finds better solutions as
compared to GA even though the average fitness of GP initial populations are not as
good as those from GA. An explanation for the good performance of GP is that GP
tries to find the dispatching rules to solve the problem instead of specific solutions
for the problem. Since dispatching rules (represented by GP individuals) define
how all tasks should be processed, poor rules will provide very bad results, which
are different from GA individuals whose quality depends on each gene. Because
of this property, it is easier for GP to distinguish good rules from bad rules than
GA to distinguish between good and bad solutions, and therefore GP can quickly
improve the fitness of its population. The only drawback of GP in this experiment

21

is the computational time. While GA only needs 0.8 second on average to finish
100 generations, GP needs 4.5 seconds. This issue comes from the fact that GP
needs more time to evaluate the tree/individual to obtain the priorities in each
iteration of the schedule construction procedure. However, when the local search
heuristics are applied, this gap in the computational time between GA and GP
is very small as compared to the total computational time. This explains why
HGP can provide better results with similar computational times as HGA in the
experiments in Section 6.

Although the proposed methods are able to outperform most methods in the
literature, they are still slightly worse than UDS in term of quality. There are two
reasons for this issue. First, the proposed methods search in the search space of
bi-directional schedules, which are much larger than the search space of UDS. Since
most near-optimal solutions or optimal solutions in the benchmark instances can
be found in the unidirectional search space, UDS is more competitive. A solution
for this issue is to improve the priority-based construction heuristics to restrict the
search space. Second, it is difficult for the local search heuristic within the proposed
methods to find local optima with limited random steps especially in large and hard
instances (e.g. complicated precedence constraints). Therefore, it is important for
future study to develop exact and efficient local search heuristics to improve the
effectiveness of HGA and HGP.

9. Conclusions

This paper proposes new hybrid evolutionary computation methods for QCSPs.
In the proposed methods, schedules are generated by using a priority-based schedule
construction procedure. Two representations based on GA and GP are proposed.
A local search heuristic is also developed to improve the solutions obtained by
GA and GP. The experimental results have shown that the proposed methods are
very effective and efficient as compared to the existing methods in the literature.
Moreover, new best known solutions to the benchmark instances are also found by
the proposed methods and reported in this paper. One of the key advantages of the
proposed methods is their flexibility, which allows them to easily handle practical
requirements, compared to other methods.

In this work, we have also shown the importance of taking into account un-
certainty in order to improve the effectiveness of the solutions when applied to
practical situations. To tackle these problems, the proposed methods are extended
to simulation-optimisation methods. The experimental results showed that the so-
lutions obtained by the simulation-optimisation methods are better, both in terms
of quality and reliability, compared to the optimal (or near-optimal) solutions ob-
tained based on the deterministic assumption. These results indicate that more
attention should be paid to handle uncertainty which is inevitable in practice.

22

In future studies, it would be interesting to adapt the hybrid methods to take
into account other decisions such as berth and quay crane allocation or yard truck
dispatching. Different strategies to handle uncertainty should also be considered and
compared to understand their advantages and disadvantages. Also, the proposed
methods can be easily extended to cope with multiple objectives. Regarding GP in
this work, we have shown that it is a very promising method for solving QCSPs as
compared to GA. Because the solution from GP can be applied to unseen instances,
it would be interesting to further investigate how to take advantage of this method
to boost the performance of other optimisation methods by, for example, reusing
the evolved dispatching rules to create a set of potential initial solutions.

References

[1] M. E. Petering, K. G. Murty, Effect of block length and yard crane deployment systems on
overall performance at a seaport container transshipment terminal, Computers & Operations
Research 36 (5) (2009) 1711–1725.

[2] Q. Zeng, Z. Yang, Integrating simulation and optimization to schedule loading operations in
container terminals, Computers & Operations Research 36 (6) (2009) 1935–1944.

[3] Z. Lu, X. Han, L. Xi, A. L. Erera, A heuristic for the quay crane scheduling problem based
on contiguous bay crane operations, Computers & Operations Research 39 (12) (2012) 2915–
2928.

[4] I. F. A. Vis, R. M. B. M. de Koster, Transshipment of containers at a container terminal:
An overview, European Journal of Operational Research 147 (1) (2003) 1–16.

[5] D. Steenken, S. Voß, R. Stahlbock, Container terminal operation and operations research - a
classification and literature review, OR Spectrum 26 (2004) 3–49.

[6] C. Bierwirth, F. Meisel, A survey of berth allocation and quay crane scheduling problems in
container terminals, European Journal of Operational Research 202 (3) (2010) 615–627.

[7] R. Stahlbock, S. Voß, Operations research at container terminals: a literature update, OR
Spectrum 30 (2008) 1–52.

[8] F. Meisel, C. Bierwirth, A unified approach for the evaluation of quay crane scheduling models
and algorithms, Computers & Operations Research 38 (3) (2011) 683–693.

[9] C. Bierwirth, F. Meisel, A fast heuristic for quay crane scheduling with interference con-
straints, Journal of Scheduling 12 (4) (2009) 345–360, ISSN 1094-6136.

[10] K. H. Kim, Y.-M. Park, A crane scheduling method for port container terminals, European
Journal of Operational Research 156 (3) (2004) 752–768.

[11] S. Chung, K. Choy, A modified genetic algorithm for quay crane scheduling operations, Expert
Systems with Applications 39 (4) (2012) 4213–4221.

23

[12] N. Kaveshgar, N. Huynh, S. K. Rahimian, An efficient genetic algorithm for solving the quay
crane scheduling problem, Expert Systems with Applications (2012) (online).

[13] L. Moccia, J.-F. Cordeau, M. Gaudioso, G. Laporte, A branch-and-cut algorithm for the quay
crane scheduling problem in a container terminal, Naval Research Logistics 53 (1) (2006) 45–
59.

[14] M. Sammarra, J.-F. Cordeau, G. Laporte, M. F. Monaco, A tabu search heuristic for the quay
crane scheduling problem, Journal of Scheduling 10 (4-5) (2007) 327–336, ISSN 1094-6136.

[15] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Addison-
Wesley Longman Publishing Co., Inc., 1st edn., 1989.

[16] W. Banzhaf, P. Nordin, R. Keller, F. Francone, Genetic Programming: An Introduction,
Morgan Kaufmann, San Francisco, 1998.

[17] J. R. Koza, Genetic Programming: On the Programming of Computers by Means of Natural
Selection, MIT Press, 1992.

[18] C. F. Daganzo, The crane scheduling problem, Transportation Research Part B: Methodolog-
ical 23 (3) (1989) 159–175.

[19] R. I. Peterkofsky, C. F. Daganzo, A branch and bound solution method for the crane schedul-
ing problem, Transportation Research Part B: Methodological 24 (3) (1990) 159–172.

[20] D.-H. Lee, H. Q. Wang, L. Miao, Quay crane scheduling with non-interference constraints
in port container terminals, Transportation Research Part E: Logistics and Transportation
Review 44 (1) (2008) 124–135.

[21] R. Tavakkoli-Moghaddam, A. Makui, S. Salahi, M. Bazzazi, F. Taheri, An efficient algorithm
for solving a new mathematical model for a quay crane scheduling problem in container ports,
Computers & Industrial Engineering 56 (1) (2009) 241–248.

[22] P. Legato, R. Mazza, R. Trunfio, Simulation-based optimization for discharge/loading oper-
ations at a maritime container terminal, OR Spectrum 32 (2010) 543–567.

[23] M. Gen, R. Cheng, Genetic Algorithms and Manufacturing Systems Design, John Wiley &
Sons, Inc., 1st edn., 1996.

[24] X. Han, Z. Lu, L. Xi, A proactive approach for simultaneous berth and quay crane scheduling
problem with stochastic arrival and handling time, European Journal of Operational Research
207 (3) (2010) 1327–1340.

24

View publication statsView publication stats

https://www.researchgate.net/publication/255485190

