
A Hybrid Genetic Programming Approach to
Feature Detection and Image Classification

Andrew Lensen, Harith Al-Sahaf, Mengjie Zhang, and Bing Xue
School of Engineering and Computer Science,

Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
Email: {Andrew.Lensen, Harith.Al-Sahaf, Mengjie.Zhang, Bing.Xue}@ecs.vuw.ac.nz

Abstract—Image classification is a crucial task in Computer
Vision. Feature detection represents a key component of the
image classification process, which aims at detecting a set of
important features that have the potential to facilitate the
classification task. In this paper, we propose a Genetic Program-
ming (GP) approach to image feature detection. The proposed
method uses the Speeded Up Robust Features (SURF) method to
extract features from regions automatically selected by GP, and
adopts a wrapper approach combined with a voting scheme to
perform image classification. The proposed approach is evaluated
using three datasets of increasing difficulty, and is compared to
five popularly used machine learning methods: Support Vector
Machines, Random Forest, Naive Bayes, Decision Trees, and
Adaptive Boosting. The experimental results show the proposed
approach has achieved comparable or better performance than
the five existing methods on all three datasets, and reveal its
capability to automatically detect good regions from a large image
from which good features are automatically constructed.

I. INTRODUCTION

Feature detection in the image analysis domain seeks to
extract patterns from an image that can then be used as a
partial representation of an image’s structure [1]. Techniques
are generally categorised as global or local feature detection
[1]. Global features are extracted from an image in its entirety,
and as such are most useful when an image is being considered
as a whole or has very distinct properties. Common techniques
include colour-based approaches using histograms [2], texture-
based features such as those produced by the Gabor filter [3]
and eigenspace matching [4].

A local feature is extracted from an area of an image that
differ from its immediate neighbourhood [1]. This difference
can be as simple as a different colour or intensity, or more
complex such as being a corner or an edge of an object. Local
features, also known as keypoints, have several benefits over
global features; they can be used to identify objects within
images that occur at different locations (or even different scales
or rotations), and also to identify multiple different objects in
an image. As local feature extraction considers only a small
part of the image, the overall composition of an image is also
not critical.

One of the most widely used local feature extractors is the
Scale-Invariant Feature Transform (SIFT) algorithm [5]. SIFT
selects keypoints, i.e., local features, that are areas of an image

with high contrast to their surroundings. The design of SIFT
means that the keypoints are both scale and rotation-invariant.
This makes SIFT a robust algorithm as it does not have the
complications associated with other methods where the scale
or angle of objects in images cannot be guaranteed. Speeded
Up Robust Features (SURF) [6] is another scale and rotation
invariant feature extractor that is generally faster than SIFT
while achieving similar or better performance [6]. SURF uses
a Hessian matrix for blob detection that is faster than the
Difference of Gaussians (DoG) approach used in SIFT.

Many different approaches have been proposed using SIFT
or SURF features for classification in images. One common
approach is to use a bag-of-keypoints [7]. Keypoints are
extracted from an image using SIFT or SURF, and are then
clustered using k-means clustering. A histogram of cluster
memberships is then produced with length k. The value at
bin i is the number of keypoints in the image that are
part of cluster i. The histogram is then classified using a
classifier such as Support Vector Machines (SVM), Naive
Bayes or Adaptive Boosting (AdaBoost) [7], [8]. However, this
approach has a limitation that learning algorithms traditionally
require fixed length features as input, for example an SVM
cannot train effectively when a varying number of features is
used. Farquhar et al. [9] proposed improvements to overcome
this limitation by training to be performed directly on input
features without any information being lost.

Evolutionary Computation (EC) techniques have also been
applied to image feature extraction and classification problems.
EC techniques have the ability to give good results by widely
exploring a search space for a problem and considering
solutions that the hand-crafted feature extraction methods may
not. Genetic Programming (GP) [10] is an EC technique that
mimics Darwin principles for nature selection and survival
of the fittest. The GP search process starts by randomly
generating a population of solutions (computer programs), and
gradually evolves those solutions over a predefined number
of iterations (generations) using genetic operators (crossover,
mutation and reproduction). GP has been used in this domain
since its introduction [11], [12].

One common technique uses images as the input to the
program tree with functions which operate on individual pixels

978-1-5090-0357-0/15/$31.00 c©2015 IEEE

in the image. Pixel-based methods struggle for recognition
of complex (e.g. many real world) images due to functions
operating on a single or small number of pixels. A refinement
to this idea is to use some simple pre-defined features which
have the potential to capture useful information in an image.
One approach [13] used the mean and standard deviation
across some pre-defined regions as terminals in a GP tree. This
produced trees that had potential to be understood by humans,
while achieving good performance on two of the three datasets.
The approach, however, struggled to produce programs that
could be interpreted on the difficult retina dataset. Using pre-
defined regions for feature extraction is somewhat inflexible
and so can give poor performance for some problems when
important parts of an image do not fall entirely within a pre-
defined region.

A two-tier approach [14] was proposed which used GP
to both select good regions of an image and also to extract
features from the regions (in the form of pixel statistics) and
perform classification. This approach achieved good perfor-
mance across a range of datasets in different domains, and also
produced easily interpretable solutions; one GP tree contained
a circular region enclosing the eye of a face dataset, suggesting
that the eye pixels are an important part of an image for
classifying it as a face. This two-tier approach used simple
pixel statistics to extract feature values from regions, which is a
relatively low-level feature extraction technique. Using higher-
level features could improve performance further, especially in
difficult problems or where illumination, scale or rotation of
objects vary. In this paper, we propose a method which uses
a similar region selection strategy, but uses more advanced
SURF features to improve classification performance.

Other EC techniques such as Particle Swarm Optimisation
[15] and Genetic Algorithms (GAs) [16] have also been
applied to image classification with some success. Bala et al.
[16] used GAs to select features from images that would be
classified by a decision tree. By doing so, they were able to
exclude poor features from being used by the decision tree
classifier. Combinations of EC techniques with other methods
have also been shown to be effective at image classification
[17], [18].

Both SIFT and SURF extract features from the entire image,
which can be time consuming as computation time increases
proportionately with the image size. Moreover, the extracted
feature vectors can contain redundant or irrelevant features,
which negatively affect the classification performance [19].
Applying SIFT or SURF to only sub-regions of the image
has the potential to give more time-efficient and accurate
classification by reducing the number of these problematic
features.

A. Goals

This study aims to improve domain-independent object
classification in images by using GP techniques. The proposed
method uses GP to select good regions of the instance being
evaluated, extracts good keypoints from those regions using
SURF, classifies each keypoint using a wrapped classifier (e.g.

Fig. 1. An example of the general GP program structure.

SVM), and predicts the class label with a voting scheme.
Specifically, we are interested in achieving the following
objectives:

• Designing a program representation that is capable of de-
tecting sub-regions of the image that are rich in features;

• Constructing a classification system to extract features
from the selected regions and then use a SVM classifier
and voting scheme to predict the class label;

• Evaluating the proposed method and comparing its per-
formance against five well-known classifiers on three
datasets of increasing difficulty and for different appli-
cations; and

• Investigating whether the regions detected by the new
method are similar to those designed by domain experts.

B. Organisation

The rest of the paper is organised as follows. Section
II discusses the proposed method and highlights its main
components. The experiment design and evaluation process
are explained in Section III. Experiment results are discussed
in Section IV. Section V concludes the paper and suggests
directions of future work.

II. THE PROPOSED METHOD

This section discusses the proposed method and explains its
main components. The discussion includes the GP program
representation (i.e. the terminal and function sets), fitness
function, process to generate SURF keypoints, and the class
label predicting procedure.

A. GP Program Representation

As shown in Fig. 1, a tree-based GP structure is used to
represent an evolved program in the proposed method. Due
to having different numbers and types of input and output
parameters, Strongly-typed GP (STGP) [20] is adopted to
provide constraints for different nodes. In GP, the system uses
two sets to generate an individual: (1) a terminal set; and (2) a
function set. The terminal set is used to populate the terminal
or leaf nodes of the program tree, whereas the internal nodes
are populated using the function set.

The terminal set comprises of five elements. The x and w
nodes are randomly generated integer values in [0,minwidth]
where minwidth is the minimum width of any image in
the training set. Similarly, the y and h nodes are randomly
generated integer values in [0,minheight] where minheight is
the minimum height of any image in the training set. The
empty node returns an empty list in order to allow the GP
tree to terminate correctly.

The function set consists of two distinct nodes. The first
is the rectangle node that takes four arguments: x, y, w,
and h (from the terminal set). It returns a list containing a
single rectangle region starting at the coordinates (x, y) with
width and height given by the w and h values respectively.
The second node of the function set is the aggregate node
that takes two lists of regions, and returns a unified list. This
node allows the system to produce multiple regions.

B. The Fitness Function
The fitness function is used to evaluate the performance of

an evolved GP program on a set of images. This is used during
the training phase to guide the GP method to select the best
programs to evolve, and during the testing phase to measure
the performance of the best evolved program on the unseen
data. Picking a good fitness function is essential in achieving
good results with GP as it determines the criteria that the
evolutionary process is aiming to optimise. In this study, the
datasets are balanced; nearly an equal number of instances
from both classes is used to form each of the training and test
sets. Hence, the fitness function used is just simple accuracy
that is formally defined as:

fitness =
Ncorrect

Ntotal
(1)

where Ncorrect is the number of instance correctly classified,
and Ntotal is the total number of instances being evaluated. A
fitness value of 1 represents the perfect fitness, a fitness value
of 0 is the worst possible performance.

C. Generating SURF Keypoints
The SURF descriptor will generate varying numbers of

keypoints based on the number of interest points an image
has. This presents a problem for many classifiers where a static
number of features is expected. To address this problem, we
have developed the method presented in Algorithm 1. This
method works by altering the Hessian threshold that SURF
uses to determine how large the output from the Hessian filter
must be in order to consider a point to be an interest point.
The algorithm adjusts this threshold using a binary search
until a predefined number of keypoints are retrieved. Using
a fixed number of keypoints allows more effective training
as a solution can perform consistently across a dataset and
the situations where there are missing or extra keypoints are
prevented.

Algorithm 1 Selecting p best keypoints
1: function FINDKEYPOINTS(image, lowerBound, upperBound, p)
2: threshold← (upperBound− lowerBound)/2 + lowerBound
3: keypoints← SURF(threshold)
4: if |keypoints| = p then
5: return keypoints
6: else if |keypoints| > p then
7: lowerBound← threshold
8: else
9: upperBound← threshold

10: end if
11: return FINDKEYPOINTS(image, lowerBound, upperBound, p)
12: end function

Fig. 2. The process of predicting the class label for an instance.

D. Predicting the Class Label

The class label for the instance being evaluated by an
evolved program is predicted as follows. The program is
evaluated, giving a list of regions as the output of the tree. Each
region is then fed into SURF and p keypoints are generated,
each being a vector of 64 values. The list of all keypoints
extracted from all regions are then individually fed into an
SVM classifier. The SVM classifier assigns a class label (either
+ve or −ve) for each keypoint independently of all other
points. The class label of a keypoint represents a single vote.
The dominating class, i.e., the class with the most votes, is then
returned as the predicted label for the instance being evaluated.
This process is depicted in Fig. 2.

During training, an individual is trained by feeding all
keypoints of all images into an SVM, where each keypoint
is labelled with the class of the image it was extracted from.
In other words, a list of pairs (~uj

i , y
j) of length t × rj are

fed into the SVM, where t is the number of instances in
the training set, rj is the total number of extracted keypoints
from the jth instance, ~uj

i is the ith keypoint’s vector of the
jth instance, and yj is the class label of the jth instance.
Each vector ~uj

i consists of 64 values, i.e.,
[
aji,1, . . . , a

j
i,64

]
where aji,s is the sth element in the ith keypoint of the jth

instance. This ensures that the SVM trains on each keypoint
independently. This is important for generalising performance
as a voting approach is being used.

It is highly likely that GP generates regions which exceed
the image boundaries. These regions are ignored, and so play
no part in the classification process. A number of empty
nodes can be part of the evolved program; they are also
ignored. Similarly, regions which reach 100 iterations of
Algorithm 1 without producing p keypoints are discarded, as it
is unlikely the correct number of keypoints will be produced
with additional iterations. Limiting the number of iterations
avoids an overly long training time.

III. EXPERIMENT DESIGN

The datasets used to evaluate the proposed method are
discussed in this section. This section also lists and explains
the baseline methods, as well as discussing the evolutionary
parameter settings and libraries used in our implementation.

A. Evaluation Data Sets

Three datasets are used in this study to evaluate the pro-
posed method. The datasets vary in difficulty and type (i.e.
application). Each of the datasets is comprised of two classes
(binary classification) and contains grey-scale images.

Fig. 3. Samples of the UIUC cars dataset shows instances of the car and
background classes in the first and second row respectively.

(a) (b)

Fig. 4. Samples of the JAFFE dataset (a) before cropping, and (b) after
cropping.

The first dataset is the UIUC database for Car Detection1

[21] dataset. The dataset consists of 1, 050 instances that 550
are cars and 500 are background. Each of the car instances
shows the side view of the vehicle captured from the same
angle and distance (giving the same scale) as shown in Fig.
3. The instances in this dataset are 100× 40 pixels in size.

The Japanese Female Facial Expression2 (JAFFE) [22]
dataset is used in the literature to identify different facial
expressions. There are 213 images in this dataset that fall into 7
classes: neutral, happy, sad, surprised, angry, disgust, and fear.
Ten Japanese female subjects provided several images for each
facial expression. Our second dataset uses the instances of the
happy and surprised classes as shown in Fig. 4. Similar to
[23], we have cropped the instances of this dataset to remove
the image background and most of the subject’s hair, leaving
only the face. Each instance is grey-scale and after cropping
has dimensions ranging between 121 and 143 in width, and
between 164 and 207 in height.

The two classes of the third dataset are drawn from a
popular and widely used dataset in computer vision called
the Columbia Object Image Library3 (COIL-20) [24]. The
COIL-20 dataset consists of 20 classes each of which represent
a different toy object such as cars, rubber ducks, and cups.
Each object was placed on a turntable in a scene with a black
background. The object was rotated through 360◦, with an
image captured every 5◦ of rotation, giving 72 images per
object. The images were normalized to be 128 × 128 pixels
and the object was centred in the images as much as possible.
The colour of each image was also normalised by making the
brightest pixel equal to 255 and scaling the other pixel values
accordingly. The car and rubber duck classes are used to form
our third dataset in this study. Fig. 5 shows some examples of
these two classes.

The performance on these datasets was evaluated by using

1Available at: http://cogcomp.cs.illinois.edu/Data/Car/
2Available at: http://www.kasrl.org/jaffe.html
3Available at: http://www.cs.columbia.edu/CAVE/software/

Fig. 5. Samples of the COIL-20 dataset, where instances of the cars and
rubber ducks classes are shown in the first and second row respectively.

k-fold cross validation. The instances of the UIUC and COIL-
20 datasets were randomly split into 10 folds. The JAFFE
dataset is smaller and has 3 images of the same person for
each expression, therefore it was manually split into 3 folds
so that images of each person occurred across each fold.

B. Baseline Methods

The performance of the proposed method is assessed by
comparing it to five well-known machine learning algorithms
which are detailed in [25]:

• Support Vector Machine (SVM): a powerful classification
model that analyses data and recognises patterns using a
learning algorithm. The Sequential Minimal Optimisation
(SMO) [26] learning algorithm was used in this study.

• Naive Bayes (NB): a simple probabilistic method which
follows Bayes’ theorem to build a model.

• Adaptive Boosting (AdaBoost): an adaptive method that
builds a model by improving on misclassified instances
of previous models.

• Decision Trees (J48): a re-implementation of the C4.5
decision tree learning algorithm.

• Random Forest (RF): an ensemble method that constructs
a set of decision trees, which is designed to mitigate the
overfitting habit of decision trees.

SURF produces a feature vector consisting of 64 val-
ues (i.e. features) for each keypoint, hence, there will be
p × 64 features per instance where p is the number of
keypoints used. In each of the baseline methods, the train-
ing set contains instances represented as pairs of con-
catenated SURF keypoints and the class label for the in-
stance. The training set is formally represented as follows:[(
~u1
1 . . . ~u

1
p, y

1
)
,
(
~u2
1 . . . ~u

2
p, y

2
)
, . . . ,

(
~ut
1 . . . ~u

t
p, y

t
)]

where yi

is the class label of the ith instance, t is the total number of
instances in the training set, and each vector ~uj

i consists of 64
values, as defined in Section II-D.

C. Evolutionary Parameters and Implementation

The GP system is evolved until 50 generations are com-
pleted or an ideal individual (with 100% accuracy) is found.
The population is relatively large with 1, 024 individuals,
and the initial population is generated using the ramped-half-
and-half method. The diversity of the population has been
maintained by using a 30% mutation rate. In order to maintain
the progress of the evolutionary process, the “keep top n
individuals” scheme is adopted with n = 10. The crossover

TABLE I
THE GP EVOLUTIONARY PARAMETERS

Parameter Value Parameter Value

Generations 50 Crossover Rate 0.70
Population Size 1024 Mutation Rate 0.30
Minimum Depth 2 Elitism keep the top 10
Maximum Depth 6 Selection Type Tournament
Initial Population Half-and-half Tournament size 7

TABLE II
THE ACCURACIES ON THE UIUC DATASET.

p = 5 p = 10 p = 20 p = 50

Training Test Training Test Training Test Training Test

GP 0.99 0.92 0.98 0.92 N/A N/A N/A N/A
SVM 0.99 0.92 1.00 0.91 N/A N/A N/A N/A
NB 0.90 0.89 0.90 0.89 N/A N/A N/A N/A
J48 0.99 0.84 0.99 0.83 N/A N/A N/A N/A
RF 1.00 0.94 1.00 0.93 N/A N/A N/A N/A
AdaBoost 0.88 0.85 0.88 0.84 N/A N/A N/A N/A

operator plays an essential role in the system and so is used
more often (70% of the time) than the mutation operator. Table
I summarises these parameters.

As GP is a stochastic method, each experiment is run 35
times with different fixed seeds. For each fold in a run, the
best evolved program on the training set is evaluated on the
test set. The performance of the run is then the average across
all k-folds of that run. The results reported in Section IV are
the average performance across the 35 runs.

The proposed method is implemented using the STGP plat-
form provided by the Java-based Evolutionary Computation
Research System (ECJ) package [27]. The Waikato Environ-
ment for Knowledge Analysis (WEKA) [25] implementations
of SVM, J48, NB, RF, and AdaBoost are used for the baseline
approaches.

IV. RESULTS AND DISCUSSION

The results are presented and discussed in this section. A
program evolved by the new method is also briefly analysed.

The results of each dataset are presented in a table that
horizontally consists of five blocks. The method names are
shown in the first block and each subsequent block lists
the average performance of the methods on the training and
test sets across all folds, using different numbers of SURF
keypoints (i.e. 5, 10, 20, and 50).

Table II presents the results on the UIUC dataset. The values
of the last two blocks (p = 20 and p = 50) are not available,
as SURF could not generate this many keypoints due to lack of
interest points. The proposed method shows promising results
for the p = 5 and p = 10 blocks, with performance that is very
close to RF which is the best baseline method. This suggests
that the proposed method can compete with an ensemble or
committee based approach where more than one classifier
contributes towards predicting the class label.

The results on the JAFFE dataset are shown in Table III.
The results are consistently good across a range of quantities of
keypoints. The proposed method has outperformed all baseline

TABLE III
THE ACCURACIES ON THE JAFFE DATASET.

p = 5 p = 10 p = 20 p = 50

Training Test Training Test Training Test Training Test

GP 1.00 0.87 1.00 0.87 1.00 0.89 1.00 0.89
SVM 1.00 0.63 1.00 0.72 1.00 0.74 1.00 0.82
NB 0.89 0.72 0.92 0.72 0.98 0.75 1.00 0.69
J48 0.98 0.70 0.98 0.56 0.98 0.59 0.98 0.79
RF 1.00 0.77 1.00 0.76 1.00 0.77 1.00 0.71
AdaBoost 1.00 0.70 1.00 0.77 1.00 0.67 1.00 0.71

TABLE IV
THE ACCURACIES ON THE COIL-20 DATASET.

p = 5 p = 10 p = 20 p = 50

Training Test Training Test Training Test Training Test

GP 1.00 0.99 1.00 0.99 1.00 1.00 1.00 0.99
SVM 1.00 0.99 1.00 0.99 1.00 0.99 1.00 1.00
NB 0.99 0.97 0.99 0.96 1.00 0.91 1.00 0.94
J48 0.99 0.86 0.99 0.86 0.99 0.86 0.99 0.85
RF 1.00 0.99 1.00 0.99 1.00 1.00 1.00 1.00
AdaBoost 1.00 0.96 1.00 0.96 1.00 0.93 1.00 0.93

methods on this dataset with a minimum gap of 7% on the
test set when compared to SVM when 50 keypoints is used.
The improved performance compared to the baselines indicates
the ability of this method to detect very important regions (as
discussed in the following subsection).

As shown in Table IV, the proposed method performs
equivalently to the best baseline methods (SVM, RF) on the
COIL-20 dataset. As this dataset is fairly easy, the proposed
and baseline methods were both able to achieve near perfect
performance. This shows that the additional steps in the
proposed method (as compared to the baseline SVM) do not
negatively affect performance on easy datasets, suggesting that
it is good across a range of datasets and applications.

A. Further Analysis

Fig. 6(a) shows the tree representation of a program evolved
on the JAFFE dataset. This program achieved on average over
95% accuracy on the unseen data across the 3-fold cross
validation. The program detects four interesting regions that
are highlighted in yellow on six instances that have been drawn
from both “happy” and “surprised” classes (three instances of
each class) as presented in Fig. 6(b)-(d). To ease the visual
comparison between instances of the same subject in the
two classes, those regions are also cropped. Each instance
and cropped regions of the happy class are bounded in blue,
whereas for the surprised class, they are bounded in red. The
cropped regions clearly show that the program has detected
regions of the eyes and mouth. The eyes appear more flat
when the subject is happy due to human nature in pushing-
up the cheeks while smiling, whereas the eyes are opened
wide when the subjects are surprised. The mouth is upturned
or shows a bright region due to the teeth being visible while
smiling, whilst it is darker (teeth are covered by lips) and flatter
when the subject is surprised. By focusing on these regions
where there are distinct differences, it is likely that more useful
features are extracted for better classification performance.

(a)

(b) (c) (d)

Fig. 6. Example shows (a) the tree representation of a program evolved on
the JAFFE dataset; and (b)-(d) the detect regions on three samples.

V. CONCLUSIONS

In this paper, a GP method for feature detection in images is
proposed. The proposed method evolves a program that detects
sub-regions of an image, extracts SURF points from those
regions, and classifies the instances being evaluated using a
SVM classifier and a voting scheme. Using three datasets of
varying difficulty and from different domains, the new method
achieves comparable or better performance compared to well-
known machine learning classifiers. Furthermore, the proposed
method has detected regions similar to those designed by
domain experts which indicates the capability of this method
to identify such important regions. However, there is still
plenty of space for improving the effectiveness of the proposed
method. Applying this method to multi-class classification
tasks is one area of improvement we would like to investigate.
We also would like to extend this method by changing the
program representation to automatically evolve a classifier
using GP instead of using a wrapped classifier in the hope
that it will allow even more effective training of the system.

REFERENCES

[1] T. Tuytelaars and K. Mikolajczyk, “Local invariant feature detectors:
a survey,” Foundations and Trends in Computer Graphics and Vision,
vol. 3, no. 3, pp. 177–280, 2008.

[2] A. K. Jain and A. Vailaya, “Image retrieval using color and shape,”
Pattern recognition, vol. 29, no. 8, pp. 1233–1244, 1996.

[3] B. S. Manjunath and W.-Y. Ma, “Texture features for browsing and
retrieval of image data,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 18, no. 8, pp. 837–842, 1996.

[4] H. Murase and S. K. Nayar, “Visual learning and recognition of 3-
D objects from appearance,” International journal of computer vision,
vol. 14, no. 1, pp. 5–24, 1995.

[5] D. G. Lowe, “Object recognition from local scale-invariant features,”
in Proceedings of the International Conference on Computer Vision.
IEEE, 1999, pp. 1150–1157.

[6] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust
features (SURF),” Computer Vision and Image Understanding, vol. 110,
no. 3, pp. 346–359, 2008.

[7] G. Csurka, C. Dance, L. Fan, J. Willamowski, and C. Bray, “Visual
categorization with bags of keypoints,” in Workshop on Statistical
Learning in Computer Vision, ECCV, vol. 1, no. 1. Springer, 2004, pp.
1–16.

[8] T. Serre, L. Wolf, and T. Poggio, “Object recognition with features
inspired by visual cortex,” in Proceedings of IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, vol. 2. IEEE,
2005, pp. 994–1000.

[9] J. Farquhar, S. Szedmak, H. Meng, and J. Shawe-Taylor, “Improving
“bag-of-keypoints” image categorisation: Generative models and pdf-
kernels,” University of Southampton, Tech. Rep., 2005.

[10] R. Poli, W. B. Langdon, and N. F. McPhee, A Field Guide to Genetic
Programming. Lulu, 2008, (With contributions by J. R. Koza).

[11] R. Poli, “Genetic programming for feature detection and image seg-
mentation,” in Evolutionary Computing, ser. Lecture Notes in Computer
Science. Springer, 1996, vol. 1143, pp. 110–125.

[12] M. Maghoumi and B. J. Ross, “A comparison of genetic programming
feature extraction languages for image classification,” in Proceedings
of the IEEE Symposium on Computational Intelligence for Multimedia,
Signal and Vision Processing. IEEE, 2014, pp. 1–8.

[13] M. Zhang, V. Ciesielski, and P. Andreae, “A domain-independent
window approach to multiclass object detection using genetic program-
ming,” EURASIP Journal on Advances in Signal Processing, vol. 2003,
no. 8, pp. 841–859, 2003.

[14] H. Al-Sahaf, A. Song, K. Neshatian, and M. Zhang, “Two-tier genetic
programming: Towards raw pixel-based image classification,” Expert
Systems with Applications, vol. 39, no. 16, pp. 12 291–12 301, 2012.

[15] M. Omran, A. Salman, and A. P. Engelbrecht, “Image classification
using particle swarm optimization,” in Proceedings of the 4th Asia-
Pacific conference on simulated evolution and learning, vol. 1. Springer,
2002, pp. 18–22.

[16] J. Bala, K. De Jong, J. Huang, H. Vafaie, and H. Wechsler, “Using
learning to facilitate the evolution of features for recognizing visual
concepts,” Evolutionary Computation, vol. 4, no. 3, pp. 297–311, 1996.

[17] P. Ghamisi and J. Benediktsson, “Feature selection based on hybridiza-
tion of genetic algorithm and particle swarm optimization,” IEEE
Geoscience and Remote Sensing Letters, vol. 12, no. 2, pp. 309–313,
2015.

[18] S. Li, H. Wu, D. Wan, and J. Zhu, “An effective feature selection method
for hyperspectral image classification based on genetic algorithm and
support vector machine,” Knowledge-Based Systems, vol. 24, no. 1, pp.
40–48, 2011.

[19] R. Gonzalez Valenzuela, W. Robson Schwartz, and H. Pedrini, “Di-
mensionality reduction through PCA over SIFT and SURF descriptors,”
in Proceedings of IEEE 11th International Conference on Cybernetic
Intelligent Systems. IEEE, 2012, pp. 58–63.

[20] D. J. Montana, “Strongly typed genetic programming,” Evolutionary
Computation, vol. 3, no. 2, pp. 199–230, 1995.

[21] S. Agarwal, A. Awan, and D. Roth, “Learning to detect objects in images
via a sparse, part-based representation,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 26, no. 11, pp. 1475–1490, 2004.

[22] M. Lyons, S. Akamatsu, M. Kamachi, and J. Gyoba, “Coding facial ex-
pressions with gabor wavelets,” in Proceedings of the 3rd International
Conference on Face & Gesture Recognition. IEEE, 1998, pp. 200–205.

[23] F. Cheng, J. Yu, and H. Xiong, “Facial expression recognition in JAFFE
dataset based on gaussian process classification,” IEEE Transactions on
Neural Networks, vol. 21, no. 10, pp. 1685–1690, 2010.

[24] S. A. Nene, S. K. Nayar, and H. Murase, “Columbia Object Image
Library (COIL-20),” Tech. Rep., 1996.

[25] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and
I. H. Witten, “The WEKA data mining software: An update,” SIGKDD
Explorations Newsletter, vol. 11, no. 1, pp. 10–18, 2009.

[26] J. C. Platt, “Fast training of support vector machines using sequential
minimal optimization,” in Advances in Kernel Methods, B. Schölkopf,
C. J. C. Burges, and A. J. Smola, Eds. MIT Press, 1999, pp. 185–208.

[27] S. Luke, Essentials of Metaheuristics, 2nd ed. Lulu, 2013. [Online].
Available: http://cs.gmu.edu/\simsean/book/metaheuristics/

