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ABSTRACT

Genetic programming (GP) has been shown to be very effective for

performing data mining tasks. Despite this, it has seen relatively

little use in clustering. In this work, we introduce a new GP ap-

proach for performing graph-based (GPGC) non-hyper-spherical

clustering where the number of clusters is not required to be set in

advance. The proposed GPGC approach is compared with a number

of well known methods on a large number of data sets with a wide

variety of shapes and sizes. Our results show that GPGC is the most

generalisable of the tested methods, achieving good performance

across all datasets. GPGC significantly outperforms all existing

methods on the hardest ellipsoidal datasets, without needing the

user to pre-define the number of clusters. To our knowledge, this is

the first work which proposes using GP for graph-based clustering.
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1 INTRODUCTION

Evolutionary Computation (EC) [6] algorithms, a category of meta-

heuristics algorithms founded on biological evolutionary principles,
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have been widely applied to a range of data mining tasks success-

fully. Clustering, the task of grouping similar instances in a dataset

into a number of clusters (K ), is one such data mining task that EC

has performed very well on [10, 23]. Genetic programming (GP)

[16] is a flexible EC method which represent solutions as simple

computer programs. GP has seen relatively little use in clustering

tasks, despite its flexible solution structure having the potential

to allow for a range of different cluster shapes and sizes to be

produced. In particular, GP has seen little use in clustering for

producing non-hyper-spherical (NHS) clusters.

Hyper-spherical (HS) clusters are shaped in a way such that the

instances in the cluster lie in a hyper-sphere around the cluster

mean. While HS clusters are quite common, algorithms such as

k-means which produce HS clusters will perform very poorly on

datasets where clusters are ellipsoidal, curved, or otherwise non-

uniform [15]. A common technique in the clustering domain for

producing NHS clusters is to use an intuitive graph-based approach,

where a cluster is defined by a graph containing instances which

are connected by edges [21]. The full cluster partition then consists

of a number of distinct graphs.

The techniques used for deciding which instance pairs should

share an edge in graph-based clustering are generally quite naı̈ve —

for example, simple distance thresholds are often used [21]. Such

techniques often limit the performance of graph-based clustering,

and limit the extent to which algorithms can be tailored specifically

to a given dataset. GP is well-known for its ability to generate

dynamic decision tree-esque solutions which are automatically

optimised for the dataset being used by the evolutionary process.

We hypothesise that using GP to evolve dynamic individuals which

decide which pairs of instances (nodes) are connected by an edge

will allow the power and intuitive representation provided by a

graph-based approach, while overcoming the limitations of a static

design for forming edges.

In this work, we will propose a novel GP graph-based clustering

(GPGC) algorithm designed to dynamically produce a range of clus-

ter shapes including both HS and NHS clusters. To our knowledge,

this is the first piece of work using GP to build cluster graphs, and

one of the very few pieces of work using GP to do NHS clustering.

More explicitly, we will:

• Introduce a new GP program representation to allow GP to

dynamically define edges between instances (Section 3.1),

• Propose a new algorithm that uses the output of a GP tree

to directly perform graph-based clustering (Section 3.2),
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• Design a new fitness function for evaluating NHS clusters

while ensuring an appropriate number of good-quality

clusters are generated (Section 3.3), and

• Comprehensively compare our proposed algorithm to a

number of existing methods across a wide range of HS and

NHS datasets (Section 5).

2 BACKGROUND

Many different clustering approaches have been proposed using a

variety of techniques: hard and soft clustering allocate instances to

one or more clusters respectively; partitional, density, hierarchical,

and graph-based techniques are based on different fundamental

ideas and perform differently on different types of datasets [1].

Hard partitional clustering algorithms, which are by far the most

common clustering algorithms, assign every instance to exactly

one cluster. The most famous algorithm in this area is k-means

[14], also known as Lloyd’s algorithm. k-means generates random

initial clusters and then iteratively refines them by recomputing

the cluster centres at each stage to minimise intra-cluster variance.

k-means++ [3] is an improved version of k-means, which performs

more intelligent selection of the initial (seed) values for clusters

by maximising the distance between the initial cluster centres. It

has been widely used with good results for clustering problems

where HS clusters are appropriate, but is known to perform badly

on clusters of other shapes.

The most famous of the density-based clustering algorithms is

DBSCAN [7], which has since been largely succeeded by OPTICS

[2]. OPTICS improves upon DBSCAN by detecting clusters in data

of varying density more accurately, by ordering instances by their

similarity. Unlike DBSCAN, OPTICS does not explicitly produce a

partition; instead a parameter, ξ , is used — the value of ξ represents

the relative decrease in density which represents a cluster boundary,

e.g. ξ = 0.1 corresponds to a 10% drop in density.

Other clustering algorithms include agglomerative clustering,

a hierarchical clustering algorithm which initially assigns all in-

stances to their own clusters and then iteratively merges clusters

greedily [1]. The most popular graph-based clustering algorithm is

the Highly Connected Subgraph (HCS) [12] method, which uses a

similarity graph of instances and then finds the most highly con-

nected sub-graphs to be clusters.

2.1 Related Work

While a small range of methods have been proposed that use GP

for clustering, most inherently encourage the production of HS

clusters by using a fitness function which considers the intra-cluster

distance to the cluster mean, and/or the inter-cluster distance to the

dataset mean. One exception to this is a Novelty Search (NS)-GP

clustering method [19], which evolves individuals based on how

novel (i.e. sparse in the search space) they are relative to other

individuals, and then chooses a final best individual based on a

cluster distance ratio (CDR), which does not encourage HS clusters.

Unfortunately, the method was designed only for K = 2 clustering

problems, and was only tested on datasets with three features,

making it unlikely to be useful on general clustering tasks.

Coelho et al. [5] propose an ensemble-based GP clustering

method which combines the output of multiple different commonly

used clustering algorithms using consensus functions as function

nodes in GP tree in order to produce better combine clustering

partitions. While this method achieved good results, it uses a multi-

objective fitness function which considers compactness, which

encourages HS clusters to be formed. Furthermore, two of the four

base clustering algorithms used (k-means and hierarchical average

linkage) are biased towards hyper-spherical clusters. While it is

possible this method may still be able to produce NHS clusters, it is

hoped that using a pure GP approach which is designed have no

bias in cluster shape will be able to produce better results.

Boric et al. [4] and Falco et al. [8] also proposed two GP clustering

methods which use a multi-tree and a grammar-based approach

respectively. Both these approaches again use fitness functions

which encourage HS clusters to be generated. Boricfis approach

evolves one tree for each cluster, and then assigns individuals to

clusters based on which tree outputs the maximum value. While

this is an interesting approach, it does require that K is preset.

Other EC methods such as Genetic Algorithms (GAs) have been

used with a graph-based clustering approach [17], but no existing

work has proposed dynamically evolving similarity functions using

feature construction as we do here.

In summary, existing GP clustering work has several limitations

which we seek to overcome: they are commonly restricted to, or en-

courage, producing HS clusters (due to their representation/fitness

function design); they often require K to be preset; and many pro-

posed methods do not scale with a large number of features (m) or

clusters — clustering is a very hard problem in huge search spaces.

3 METHOD

The core novelty of this work is the use of GP trees to compare

two instances, and produce a single output value which gives a

measure of how clusterable they are — that is, how strongly the GP

tree believes two instances should lie in the same cluster. Clusters

can then be formed by putting an edge between all clusterable pairs;

a set of graphs will be produced, where each graph represents a

cluster. GP is effectively being used to replace the distance functions

(e.g. Euclidean distance) commonly used in clustering algorithms.

By performing feature construction on the original feature set with

a variety of arithmetic operators, it is thought that the evolutionary

process will be able to tailor the “distance functions” produced to

the dataset being trained on, without being restricted to producing

HS clusters, thereby increasing clustering performance.

Several questions arise when designing a method using this idea:

• How can a GP tree take two instances as input?

• Which instance pairs should be compared, and what de-

fines a clusterable pair?

• Which fitness function should be used, given we are at-

tempting to perform NHS clustering and so cannot use the

commonly used fitness functions proposed by other EC

clustering work?

We explore each of these issues in the following subsections.

3.1 GP Program Design

Most work using GP for feature manipulation defines the terminal

set as the features of the single instance being evaluated and, op-

tionally, a random real value. We extend this approach to allow a
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tree to take two instances by instead defining the terminal set as

all the features in each of the two instances being compared, and

a random real value (to allow the GP tree to scale features). Thus,

withm features, there will be 2m + 1 terminals. The function set

contains the following functions: {+,−,×,÷, |+ |, | − |,max,min, if}.
All functions except for if take two real inputs and output a single

real value. if takes three real inputs and outputs the second input if

the first input is positive; otherwise it outputs the third input. | + |
and | − | represent absolute addition and subtraction; ÷ is protected

division — it returns 1 if the divisor (the second input) is 0.

3.2 Clustering Process

A given GP tree will output a single value which measures how

clusterable the instances being evaluated are. Each instance, i , is said
to be connected to the top c most clusterable instances with respect

to it; i.e., the c instances which produce the largest tree output

when fed into the tree along with instance i . Finding the c most

clusterable instances across the dataset for each instance would

require n× (n− 1) evaluations of the GP tree for n instances, giving

complexity of Θ(n2). This may make the evolutionary process very

slow, as each individual must be evaluated n × (n − 1) times every

generation. The largest datasets have n ≈ 6000, which would mean

3.6×107 evaluations for each tree is required. However, it is usually
not necessary to compare pairs of instances which are far apart —

indeed, it is logical to think that an instance should only be allowed

to be connected to a number of its nearest neighbours. As a graph-

based structure is used, we can instead only compare each instance

to its l nearest neighbours, which gives Θ(nl ) complexity which

reduces to Θ(n) when l is constant and l � n. In the n ≈ 6000 case,

only 6000 × l evaluations per tree will be performed.

A number of different values of c and l were considered. It was
determined that c = 1 performed well for all datasets, and that in-

creasing c further quickly reduced the number of clusters produced,

harming performance. It was found that l should be expressed as a

function of n — the more instances present in a dataset, the more

neighbours a given instance should be compared to, as cluster size

typically increases relative to n. A suitable heuristic was found em-

pirically where l = � 3
√
n�, such that l is always at least 2. Using this

heuristic, evaluating a GP tree will have complexity of Θ(n× � 3
√
n�).

Figure 1 shows the key steps required to produce a set of graphs

for a given GP tree, and the full process for producing the cluster

partition is shown below:

(1) Assign each instance to its own cluster.

(2) For each instance, feed itself (as the 1st instance) and each

of its l nearest neighbours (in turn, as the 2nd instance)

into the tree. Add a directed edge between the instance and

the c neighbours which produce the highest tree output.

(3) Pick an instance. Find all instances it has a path to by per-

forming a depth-first search for each of its l edges. Merge

all these instances’ clusters and the chosen instance’s clus-

ter into a single cluster.

(4) Repeat Step 3 for all instances.

(5) A partition with a number of clusters equal to the number

of graphs has been generated.

Figure 1: Building a set of graphs for a given GP tree.

3.3 Fitness Function

As previously discussed, the commonly used HS-based fitness func-

tions (e.g. the trace scatter metric and the sum of squared error (SSE)

[18]) cannot be directly used to evaluate the proposed approach

as we wish to encourage NHS clusters to be produced. To address

this, we propose a novel fitness function which measures three

important indicators of cluster quality in a NHS manner. These

indicators are as follows:

Connectedness, which measures the extent to which each in-

stance is in the same cluster as its j nearest neighbours; instances
which are similar should lie in the same cluster. When j is small

(j � n), NHS clusters with good connectedness can be produced;

when j becomes too large relative to n, the connectedness metric

begins to essentially measure cluster compactness in a spherical

manner, as each instance will be compared to all other instances in

its cluster. Furthermore, as j increases, a smaller number of bigger

clusters are produced, as instances are encouraged to be in the same

cluster as an increasing number of neighbours. We trialled several

small values of j and found j = 10 provided the best balance of

encouraging connectedness while allowing flexible cluster shapes.

Compactness, which measures how tightly-packed a cluster is.

Normally, compactness is calculated based on the distance from

each instance to the cluster centre, or to each other instance in

the cluster. However, these two approaches will encourage hyper-

sphericality. Instead, we consider how far each instance is away

from its nearest neighbour in the same cluster. To best punish

clusters which contain instances distant from their neighbours,

we find the maximum of theminimum distances between each

instance in a given cluster and its nearest neighbour; we call this

the sparsity of the cluster.

Separability, which measures how well neighbouring clusters

are separated in the feature space. Again, normally separability

is based on the distance between pairs of cluster centres, or the
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distance from cluster centres to the overall dataset centre. As met-

rics based on cluster centres will encourage HS clusters, we instead

propose finding the minimum distance between each instance in a

given cluster and the instances in all other clusters. That is, we find

the minimum of the minimum distances between each instance

in a cluster and all other instances not in that cluster.

A good partition will be maximally connected, minimally sparse,

and maximally separated. Each cluster in a partition should have a

high ratio of sparsity to separability — we call this ratio the Cluster

Sparsity:Separability index (CS:S). In addition, each cluster should

have a high mean connectedness amongst its instances. To balance

these three indicators, we propose the following fitness function:

Fitness =
Mean Connectedness

Mean CS:S
(1)

where

Mean Connectedness =
1

K

K∑

i=1

1

|Ci |
∑

Ia ∈Ci , Ib ∈NIa∩Ci
dinverse (Ia , Ib )

(2)

dinverse (Ia , Ib ) =min
[ 1

d (Ia , Ib )
, 10

]
(3)

whereCi represents the i
th cluster of K clusters, Ia ∈ Ci represents

an instance in the ith cluster, andNIa
gives the j nearest neighbours

to Ia . We use j = 10 in this work. d (Ia , Ib ) is the Euclidean distance

between two instances, defined in the standard way.

Mean CS:S =
1

K

K∑

i=1

maxIa ∈Ci
(
minIb ∈Ci , Ib�Ia d (Ia , Ib )

)

minIa ∈Ci
(
minIb�CI d (Ia , Ib )

) (4)

The above fitness function is also novel in our work in that it does

not contain a component based on the number of clusters, K . It
was found that by balancing these three metrics, K was able to

be found with relative accuracy on many datasets based on the

inherent cluster quality — this is an improvement over previous

work which included a component in the fitness function which

explicitly punished large K .

4 EXPERIMENT DESIGN

This section details the baseline methods used to compare to the

proposed GPGC algorithm, describes the datasets used, the metrics

used to evaluate cluster quality, and provides the parameter settings

used in the experiments performed.

4.1 Baseline Methods

We use k-means++ [3] and OPTICS [2] as our baseline partitional

and density-based clustering methods. We use the OPTICSXi algo-

rithm provided by the ELKI [22] framework as our OPTICS baseline.

In addition, we use a PSO algorithm using a medoid representation

[13] as our baseline EC method — we struggled to obtain the source

code of any recent GP-based clustering algorithms for comparison.

By using a prototype-based method (k-means++), a density-based

method (OPTICS) and a baseline EC method, we will compare our

proposed method to a range of existing methods.

4.2 Datasets

We used a range of clustering datasets with different cluster shapes

and different numbers of clusters (K), features (m), and instances

Table 1: Generated gaussian datasets [11].

Name m n K

10d10cGaussian 10 2730 10

10d20cGaussian 10 1014 20

10d40cGaussian 10 1938 40

Table 2: Generated ellipsoid datasets [11].

Name m n K Name m n K

10d10c 10 2903 10 100d10c 100 2893 10

10d20c 10 1030 20 100d20c 100 1339 20

10d40c 10 2023 40 100d40c 100 2212 40

10d100c 10 5541 100 1000d10c 1000 2753 10

50d10c 50 2699 10 1000d20c 1000 1088 20

50d20c 50 1255 20 1000 2349 40

50d40c 50 2335 40 1000d100c 1000 6165 100

Table 3: Hand-crafted datasets [9].

Name m n K Name m n K

Jain 2 373 2 Flame 2 240 2

R15 2 600 15 Compound 2 399 6

D31 2 3100 31 Pathbased 2 300 3

Aggregation 2 788 7 Spiral 2 312 3

(n) in order to comprehensively evaluate our proposed method. The

first two groups of datasets were generated using two widely used

synthetic clustering data generators designed by Handl et al. [11].

The first generator uses a Gaussian distribution to generate clusters.

Table 1 shows the characteristics of the Gaussian datasets. The

second generator uses an ellipsoidal distribution. A large variety

of datasets were produced using this dataset, with between 10 and

1000 features, and 10 and 100 clusters. These datasets are inherently

more difficult than the Gaussian datasets, due to their larger number

of features and clusters, and their less uniform shapes. In particular,

existing methods struggle significantly on the 100 feature and 1000

feature datasets; GPGC will be tested to see if it can perform well at

these high dimensions. The final group of datasets are sourced from

a collection of hand-crafted datasets curated by Fränti et al. [9].

This group has datasets with a range of different shapes (as shown

in Figure 2) which are used to evaluate if clustering methods can

adapt to varying cluster densities and geometries. These datasets

only have two features each, but vary in the number of instances

and clusters they contain, as detailed in Table 3. All datasets are

pre-processed by scaling each feature to fall between 0 and 1 to

reduce the effect of feature range on the clustering process.

4.3 Evaluation Metrics

The clustering performance of a given algorithm can be measured

using a variety of metrics. In this work, we evaluate the GPGC

algorithm compared to the baseline methods based on four criteria:
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Figure 2: Visualisation of hand-crafted datasets [9].

the number of clusters (K) produced (which should be as close to

the actual number of clusters as possible), the sum of the distance

between each instance and its cluster centre (called
∑

Intra), and

two external metrics, which compare the clusters produced to the

actual known clusters provided by the dataset. As we are using a

number of NHS datasets, we focus less on the
∑

Intra metric, as

it is naturally optimised by forming HS clusters. The two external

metrics used are described below.

F-Measure: TheF-Measure is a commonly usedmetric formeasur-

ing accuracy in classification tasks. Unfortunately, the F-measure

cannot be directly applied to evaluating clustering algorithms, as

there is no ideal method for mapping the clusters produced to the ac-

tual known clusters. Instead, we use an analogue to the F-measure,

where instance pairs are evaluated to determine whether or not

they should appear in the same cluster or not, according to the

known clusters. More explicitly, each possible pair of instances is

considered and one of the following cases is selected:

(1) Both instances in the same known cluster and the algo-

rithm assigns them to the same cluster: true positive (TP ).
(2) Both instances in the same known cluster but the algorithm

assigns them to different clusters: false negative (FN ).

(3) Both instances in different known clusters and the algo-

rithm assigns them to different clusters: true negative

(TN ).

(4) Both instances in different known clusters but the algo-

rithm assigns them to the same cluster: false positive (FP ).

The F-measure is then calculated as it is in the classification domain

based on the sum of each of the TPs , FPs , and FNs:

F-measure = 2 × precision × recall
precision + recall

(5)

recall =
T Ps

T Ps + FNs
(6) precision =

T Ps

T Ps + F Ps
(7)

Class purity: A metric which represents how uniform each clus-

ter is in terms of the known cluster labels of the instances it contains.

Generally, it is expected that good clusters will have instanceswhich

belong to the same known cluster. The class purity is computed as

follows. Firstly, find the majority known cluster label for each clus-

ter, and then count the number of instances in each cluster which

have the majority known cluster label. Then compute the class

purity as the total count divided by the number of total instances.

Table 4: Gaussian datasets

(a) 10d10cGaussian

Method #Clusters
∑

Intra Class Purity F-Measure

GPGC 20.27 735.9 0.8959 0.7554

k-means++ 10.00 713.2+ 0.9299+ 0.8647+

OPTICS–0.005 39.00 783.1− 0.8721 0.5721−
PSO Medoid 10.00 720.5 0.9116 0.8526+

(b) 10d20cGaussian

Method #Clusters
∑

Intra Class Purity F-Measure

GPGC 19.87 213.3 0.9965 0.9963

k-means++ 20.00 235.6− 0.9287− 0.886−
OPTICS–0.001 26.00 212.7 0.9891− 0.9015−
PSO Medoid 20.00 219.6− 0.9749− 0.9589−

(c) 10d40cGaussian

Method #Clusters
∑

Intra Class Purity F-Measure

GPGC 34.03 426.0 0.9518 0.9528

k-means++ 40.00 423.0 0.9417− 0.8936−
OPTICS–0.001 55.00 397.0+ 0.9861+ 0.8483−
PSO Medoid 40.00 424.2 0.9438 0.8991−

4.4 Parameter Settings

Each of the three baseline methods and the proposed GPGC algo-

rithm require parameters to be set before they are used. For both

the k-means++ and PSO Medoid algorithms, K is set to the known

number of clusters. k-means++, the PSO method, and GPGC are all

run for 100 iterations/generations, by which point convergence has

nearly always occurred. The PSO method uses standard settings for

its parameters [24]: a swarm size of 30, vmax = 6, w = 0.729844,

and c1 = c2 = 1.49618. The proposed GPGC algorithm uses a pop-

ulation size of 1,024, 20% mutation, 80% crossover, top-10 elitism,

and minimum and maximum tree depths of 2 and 7 respectively

[20]. The initial population is generated using the half-and-half

method, and tournament selection is used with a tournament size

of 7 [20]. The GPGC and PSO parameters are consistent across all

the datasets tested. For the OPTICS algorithm, ξ must be set per-

dataset in order to achieve reasonable results. In order to increase

the confidence in making a fair comparison to OPTICS, we ran

OPTICS several times on each dataset with different ξ values from

the range [0.001, 0.005, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5]. All of the

methods excluding OPTICS are non-deterministic in nature and so

were run 30 times each, and the mean results computed.

5 RESULTS AND ANALYSIS

The results on each of the three types of datasets (Gaussian, ellip-

soid, and handcrafted) are shown in Tables 4, 5, and 6 respectively.

For each dataset, we report the number of clusters as well as the

performance on the clustering metrics for each of the four meth-

ods. For the OPTICS method, only the ξ value with the highest

F-Measure is included. A Student’s t-test with a 95% confidence

interval was performed on each baseline result — when the baseline

was significantly better or worse than GPGC, the result is marked

with a “+” or “−” respectively. No mark indicates no significant dif-

ference was found. More “−” markings will indicate GPGC was able

to outperform existing methods more often. The results on each

type of dataset will be analysed in turn in the following paragraphs.
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Gaussian datasets: GPGC is significantly better than all base-

line methods on two of the three Gaussian datasets in terms of the

F-measure results, despite it not being specifically designed for HS

clustering and not having K pre-defined (in contrast to k-means++

and the PSO Medoid method). The two HS methods significantly

outperform GPGC on the K = 10 dataset; at low dimensions, k-
means++ can perform very well on HS datasets as it is specifically

designed to minimise intra-cluster variance in regard to the cluster

centre. GPGC is also able to find K much more accurately than

OPTICS, while achieving much higher F-measure values.

Ellipsoid datasets: GPGC is consistently the bestmethod across

the ellipsoid datasets, significantly outperforming all other meth-

ods in terms of the F-measure results on all datasets except for

k-means++ on 10d100c (where there is no significant difference).

GPGC achieves particularly impressive results on the datasets with

the highest numbers of features and clusters (the 100d and 1000d

datasets), where the baseline methods struggle considerably. For

example, on the hardest datasets with 1000 features and 100 clus-

ters, GPGC achieves an F-measure more than twice that of the next

closest result, and over 8 times better than the commonly used

k-means++ algorithm. GPGC is also able to accurately find the

number of clusters on a majority of datasets, finding K within 25%

of the true value on all datasets except 10d10c. This is a promising

result considering that the fitness function used does not consider

the number of clusters at all — GPGC is able to naturally find the

correct K based on the data structure alone.

Handcrafted datasets: On the handcrafted datasets, GPGC

has the best F-measure performance on two datasets (aggregation

and spiral), and is 2nd to OPTICS on two others (compound and

jain). These four datasets are clearly have extremely non-uniform

cluster shapes, and so GPGC is able to significantly outperform

the k-means++ and PSO distance-based algorithms. The clustering

results on the aggregation dataset are visualised in Figure 3. These

visualisations clearly show how GPGC is able to find well-formed

clusters of varying shape. Interestingly, GPGC differs from the

ground truth only in that it merges clusters which are connected

by a small number of instances — we argue that in doing so, GPGC

has not produced a strictly incorrect partition. k-means++ clearly

performs poorly due to the circular clusters produced, and OPTICS

seems to struggle with this dataset — it mistakenly combines several

distinct clusters into the same cluster, and also breasks two bigger

clusters up by adding an additional obviously incorrect cluster.

Both the path-based and flame datasets, forwhichGPGC achieves

the 3rd and 4th best F-measure result respectively, do not have a

clear separation between their two clusters; instances within each

cluster are similar distances apart to instances between clusters.

On the pathbased dataset, the boundary between the two “blob”

clusters are quite fuzzy relative to the large arc cluster. This is

an inherent limitation of the GPGC method, as the proposed fit-

ness function encourages solutions to be produced which have

clear separation between clusters and minimal gaps within clusters.

We hypothesise that an alternate fitness function may be able to

give much better results on these datasets — unlike OPTICS or

k-means++, GPGC can be tailored to be more suited to a particu-

lar clustering problem by changing the measure of cluster quality

used. The final two datasets, r15 and d31, contain clusters which

Table 5: Ellipsoid datasets (Part 1)

(a) 10d10c

Method #Clusters
∑

Intra Class Purity F-Measure

GPGC 30.90 578.2 0.9588 0.7995

k-means++ 10.00 602.1 0.7446− 0.5471−
OPTICS-0.05 32.00 1124.0− 0.3541− 0.2387−
PSO Medoid 10.00 582.5 0.7781− 0.5881−

(b) 10d20c

Method #Clusters
∑

Intra Class Purity F-Measure

GPGC 25.90 199.4 0.8389 0.6824

k-means++ 20.00 179.2+ 0.715− 0.5082−
OPTICS-0.001 69.00 160.3+ 0.8602 0.3619−
PSO Medoid 20.00 179.4+ 0.7433− 0.5451−

(c) 10d40c

Method #Clusters
∑

Intra Class Purity F-Measure

GPGC 53.93 339.2 0.7918 0.5728

k-means++ 40.00 299.1+ 0.6881− 0.4424−
OPTICS-0.001 118.00 322.4 0.7616− 0.3418−
PSO Medoid 40.00 311.6+ 0.6929− 0.4781−

(d) 10d100c

Method #Clusters
∑

Intra Class Purity F-Measure

GPGC 118.00 964.2 0.6941 0.4291

k-means++ 100.00 719.8+ 0.6724 0.4051

OPTICS-0.001 290.00 856.4+ 0.7084 0.2829−
PSO Medoid 100.00 930.8 0.574− 0.3819−

(e) 50d10c

Method #Clusters
∑

Intra Class Purity F-Measure

GPGC 10.63 1558.0 0.9646 0.9592

k-means++ 10.00 1307.0+ 0.7412− 0.4833−
OPTICS-0.05 28.00 2099.0− 0.5752− 0.3684−
PSO Medoid 10.00 1242.0+ 0.7605− 0.5073−

(f) 50d20c

Method #Clusters
∑

Intra Class Purity F-Measure

GPGC 22.73 597.1 0.8909 0.7967

k-means++ 20.00 522.9+ 0.7047− 0.3698−
OPTICS-0.005 73.00 421.3+ 0.8995 0.4017−
PSO Medoid 20.00 508.3+ 0.7561− 0.4822−

(g) 50d40c

Method #Clusters
∑

Intra Class Purity F-Measure

GPGC 48.63 926.9 0.9036 0.797

k-means++ 40.00 827.3+ 0.6922− 0.2549−
OPTICS-0.001 150.00 652.9+ 0.9122 0.4042−
PSO Medoid 40.00 844.3+ 0.7438− 0.4463−

are roughly circular, and so it is unsurprising that GPGC is outper-

formed by the PSO and k-means++methods. It would be interesting

to examine how GPGC performs relative to the baselines if these

handcrafted datasets were extended to have a higherm — as shown

on the elliptical dataset results, GPGC performs very well at high

dimensionality where the other baselines fail.

Summary: The results showed that the proposed GPGC algo-

rithm significantly outperforms all baseline methods across the

ellipsoid datasets, with particularly impressive performance on the
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Table 5: Ellipsoid datasets (Part 2)

(h) 100d10c

Method #Clusters
∑

Intra Class Purity F-Measure

GPGC 10.17 2092.0 0.9894 0.9916

k-means++ 10.00 1907.0+ 0.7713− 0.5463−
OPTICS-0.001 92.00 1571.0+ 0.9779− 0.4547−
PSO Medoid 10.00 1814.0+ 0.7862− 0.5983−

(i) 100d20c

Method #Clusters
∑

Intra Class Purity F-Measure

GPGC 20.43 961.0 0.917 0.8759

k-means++ 20.00 821.3+ 0.698− 0.3638−
OPTICS-0.01 76.00 610.4+ 0.9395+ 0.3859−
PSO Medoid 20.00 767.8+ 0.7647− 0.4678−

(j) 100d40c

Method #Clusters
∑

Intra Class Purity F-Measure

GPGC 48.60 1261.0 0.8755 0.7415

k-means++ 40.00 1111.0+ 0.7041− 0.2725−
OPTICS-0.001 140.00 919.1+ 0.9037+ 0.4387−
PSO Medoid 40.00 1115.0+ 0.7551− 0.455−

(k) 1000d10c

Method #Clusters
∑

Intra Class Purity F-Measure

GPGC 9.73 6656.0 0.9844 0.9818

k-means++ 10.00 5862.0+ 0.7408− 0.4929−
OPTICS-0.001 86.00 5049.0+ 0.9586− 0.4507−
PSO Medoid 10.00 5511.0+ 0.7617− 0.549−

(l) 1000d20c

Method #Clusters
∑

Intra Class Purity F-Measure

GPGC 21.13 2524.0 0.8918 0.8249

k-means++ 20.00 2092.0+ 0.7105− 0.3578−
OPTICS-0.001 67.00 1574.0+ 0.9384+ 0.4687−
PSO Medoid 20.00 1915.0+ 0.7718− 0.4777−

(m) 1000d40c

Method #Clusters
∑

Intra Class Purity F-Measure

GPGC 43.63 4368.0 0.8968 0.7923

k-means++ 40.00 3697.0+ 0.6837− 0.2197−
OPTICS-0.001 132.00 3037.0+ 0.9302+ 0.4302−
PSO Medoid 40.00 3604.0+ 0.7586− 0.3914−

(n) 1000d100c

Method #Clusters
∑

Intra Class Purity F-Measure

GPGC 127.30 8314.0 0.9665 0.8725

k-means++ 100.00 8388.0 0.6597− 0.1021−
OPTICS-0.001 356.00 6471.0+ 0.9361− 0.4313−
PSO Medoid 100.00 10840.0− 0.6118− 0.2019−

high-dimensional datasets; achieve the best performance on the

majority of the Gaussian datasets; and outperform a majority of the

baselines on the handcrafted datasets which had most varied shapes.

While the GPGC algorithm struggled on a handful of handcrafted

datasets, it was shown to be the best performing method in general

across all datasets evaluated, without any parameter tuning across

datasets being required. Both the k-means++ and PSO methods

required K to be pre-defined, and the OPTICS algorithm had to be

tested with a range of ξ values in order to find one which could
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(a) GPGC (FM: 0.8563)
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(b) k-means++ (FM: 0.7698)

●

●

●
●

●
●

●

●

●

●
●
●
●

●

●
●

●

●

●

●
●

●●

●

● ●
●

●

●
●

●●

●

●

●
●

●

●
●●

●

●
●
● ● ●

●● ●
●
● ●

●
●

●●
●●

●

●
●

●

●

●
●

●●
●

●
●

●
● ●●●

●

●
●

●

●●
●

● ●
●●●

●
●

●

● ●
●

● ●

●

●
●
●
●

●
●●

●

●

●

● ●

●
●

●

●

●
●

●
●●

● ●
●

●
●

●

●
● ●
●

●
●
●

● ●

●

●●
●
●

●

●●

● ●
●

●

●
●
●

●●

●
●

● ●

●
●

●

●

●
●
● ●

●
●

●

●

●

●●
●●

●
●

●

●

●
●●

●

●
●

●
●
● ●

●

●● ●
●

●●
●

●●
● ● ●

●

● ● ●

●
●
●

●
●
● ●

●

●
●

●

●

●

●

● ●

●
●

●

● ●
●

●●

●
●

●
●

●
●

●

●

●

●
●

●
●

●

●

● ●
●
● ●

●
●

●
●
●

●
●

●

●

●●
●

●

●
●

●
●

●
●●
●

●
●

●●
●

●
● ●

● ● ●

●●●●

●
●

●
●

●

●

● ●
●
●

●

●

●
●

● ●

●
●●

●
●

●

●

●

●
●

●
●
●
●

●
●
●
●

●
●
●
●
●

●●

●

●
●

● ● ●
●

●
●●
●
●●
● ●

●
●

●
●
●●
●

●

●
●

●
●

●
●

● ●

●●

● ●

●
●

●
●

●
●
●●

● ●●● ●●

●
●

● ●●
●

●
●
●

●
●

● ● ●
●

●

●
●
●

●

●
●
●

●

●

●
●

●
●

●
●

●

●
●

●
●●

●
●

●
●

●
●

●
●
●

●
● ● ●

●●

●●
●

●

●
●

●
●
●
●

●●

●
●
●

●
●
●

●●
●

●●
●●

●

●
●

●

●
●●
●
●

●

●
●

● ●

●

●

● ●

●
●

●
●●

●
●

●

● ●

●

●
●●

●
●

●
●

●

●

● ●

●

●

●
●
●

●
●
● ●
●
●

●
●
●●●

●●

●●
●
●
●●

●
●

●
●●● ●

● ● ●
●

● ●

●
●

●
●
● ●

●

●●

●
●●

●
●●●

●●

● ●●●

●
●●

● ●

●
● ●

●
●●

●
● ● ●

●

●
●

● ●

●
● ●

●

●●●

●●
●

●
●
●
●
●

●

●
●
●●

●●
●●

● ●
●●

●

● ●
●●

●

● ●
●

●
●

●
●
●

●
●

●●
●

● ●
●
●
●

●
●

●●
● ● ●

●
●●

●

● ●●
●
●

●
●

●
●

●
●

●
●

●
●
●

●
●
● ●

●●●

● ●
●●

●
● ●

●

●
●
●

●

●

●
●●

● ● ●●

●

●
●●

●
●

●

●●

●
●

●
●

●
● ●

●●
●

● ●
●

●
●
●

●
●

●
●

●
●

●

●

● ●
●

●●
●
●

●● ●

●
● ●

●
●

●
●
●●

●●

●
●
●

●
● ●

●

●● ●

● ● ●

●

●

●
●
●

●●

●

●

●
●

●

●●

● ●
●●

●●
●● ●

●●

●

●
●
●
●●●

● ●
● ●

● ●

● ● ●
●

● ●

●
●

●
●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Dimension 1

D
im

en
si

on
 2

(c) OPTICS–0.05 (FM: 0.5478)
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(d) Ground Truth

Figure 3: Cluster partitions produced by GPGC compared

to k-means++, OPTICS, and the ground truth. Partitions for

GPGC and k-means++ are the median result of the 30 runs.

give acceptable results. However, the GPGC algorithm does have

the ability to be tailored to a given clustering problem by adjusting

the fitness function proposed to match the characteristics of the

problem (if known). The fitness function proposed allowed both

generalisability (it works well across the majority of datasets), and

allowed GPGC to achieve the best performance on many datasets.

We believe this is due to the careful design of the fitness function

to ensure that it can measure clustering performance accurately in-

dependent of cluster shape — using three very important measures

of cluster quality (connectedness, compactness, separability) allows

a holistic evaluation of cluster quality, and using these measures in

an NHS manner prevents bias towards clusters of particular shape.

6 CONCLUSION

In this study we introduced the GPGC algorithm, a novel graph-

based GP algorithm for performing clustering while also automati-

cally determining K . As far as we are aware, this is the first work
using GP with a graph-based approach for clustering. Our results

showed that GPGC was able to achieve good performance on a vari-

ety of datasets with a range of characteristics, without requiring any

per-dataset parameter tuning. GPGC achieved results that were far

superior to existing methods on the ellipsoid datasets, significantly

better on most of the Gaussian datasets, and performed well on the

handcrafted datasets with the most non-uniformly shaped clusters.

As little work has been done in this area previously, there are

a number of future directions which could be taken to extend the

GPGC algorithm. Firstly, as the fitness function essentially balances

three different competing criteria, it is likely using a multi-objective

approach would have the potential to further increase performance.

In addition, the function and terminal sets used could be further

refined. Currently, a GP tree is able to compare any feature from

instance a to any feature from instance b. However, clustering is
usually performed by comparing the values of the same feature in

each of two instances; allowing comparison of different features

may introduce large areas of “bad” search space. Furthermore, the
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Table 6: Handcrafted datasets

(a) jain

Method #Clusters
∑

Intra Class Purity F-Measure

GPGC 2.93 77.65 1.0 0.8775

k-means++ 2.00 82.01 0.882− 0.8178−
OPTICS-0.1 3.00 87.98− 1.0 0.9879+

PSO Medoid 2.00 82.01 0.8819− 0.8176

(b) r15

Method #Clusters
∑

Intra Class Purity F-Measure

GPGC 11.07 35.03 0.7304 0.651

k-means++ 15.00 19.37+ 0.9252+ 0.8989+

OPTICS-0.005 20.00 16.5+ 0.9833+ 0.9255+

PSO Medoid 15.00 16.91+ 0.9771+ 0.9597+

(c) d31

Method #Clusters
∑

Intra Class Purity F-Measure

GPGC 76.73 339.8 0.4965 0.3876

k-means++ 31.00 121.8+ 0.9039+ 0.8605+

OPTICS-0.05 56.00 192.6+ 0.7852+ 0.518+

PSO Medoid 31.00 127.8+ 0.8686+ 0.8024+

(d) aggregation

Method #Clusters
∑

Intra Class Purity F-Measure

GPGC 5.00 136.9 0.8274 0.8563

k-means++ 7.00 94.79+ 0.8973+ 0.7691−
OPTICS-0.05 7.00 225.9− 0.6409− 0.5478−
PSO Medoid 7.00 92.99+ 0.9028+ 0.7857−

(e) flame

Method #Clusters
∑

Intra Class Purity F-Measure

GPGC 2.00 76.71 0.6458 0.6976

k-means++ 2.00 57.68+ 0.8494+ 0.7521+

OPTICS-0.05 2.00 60.41+ 0.9875+ 0.9767+

PSO Medoid 2.00 58.02+ 0.84+ 0.7393+

(f) compound

Method #Clusters
∑

Intra Class Purity F-Measure

GPGC 4.00 62.62 0.7794 0.8615

k-means++ 6.00 46.06+ 0.818+ 0.6455−
OPTICS-0.1 6.00 65.31 0.9098− 0.9186+

PSO Medoid 6.00 45.21+ 0.8512+ 0.6589−

(g) pathbased

Method #Clusters
∑

Intra Class Purity F-Measure

GPGC 4.67 57.45 0.7136 0.6182

k-means++ 3.00 50.82+ 0.7433 0.6586+

OPTICS-0.05 1.00 +∞− 0.3667− 0.4995−
PSO Medoid 3.00 50.83+ 0.7439 0.6588+

(h) spiral

Method #Clusters
∑

Intra Class Purity F-Measure

GPGC 4.10 91.66 0.9306 0.8318

k-means++ 3.00 62.92+ 0.3478− 0.3277−
OPTICS-0.005 6.00 97.87− 0.8718− 0.7354−
PSO Medoid 3.00 62.99+ 0.3484− 0.3286−

result of comparing two different features may vary depending on

which instance is “first”. Consider, for example, a sub-tree of the

form a5 − b2. The result of this expression will vary depending

on the order of our two instances. While these limitations are not

inherently problematic (GP can likely learn to avoid these prob-

lems), we hypothesise that an alternative approachmay allow better

searching, ergo better performance.
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