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Responses to Reviewers’ Comments 

We appreciate very much the constructive comments from the reviewers, which have had helped us to revise and 

improve the paper greatly. One-to-one responses and corresponding revisions are given below. 

Associate Editor: 

Comments to the Author: 

Both reviews were quite positive about the quality and importance of this paper. However, they did recommend some 

changes, which could require significant re-writing. Therefore, I recommend a "major revision".  Please revise 

addressing the comments from the reviewers, including the addition of more references, particularly more recent ones, 

and consider inclusion of new topics such as Quantum Synthetic Aperture Radars.  Reviewer 2 suggested some re-

organization of the paper. 

A: Thanks for the comments on this work. Following the reviewers’ suggestions, more references have been 

supplemented including recent ones and technologies such as polarimetric SAR, interferometric SAR, bistatic SAR, 

constellation SAR and quantum radar. For details, please find the corresponding answers A1 and A9 to reviewer 1, A6 

to reviewer 2. Also, this paper has been reorganized and please refer to the A2 to reviewer 2 for details.  

Reviewer 1: 

Comments to the Author 

This paper reviews the major development of SAR image statistical modeling since the beginning, including more than 

20 statistical distributions of 8 statistical models, and gives their derivations and expressions, which can be used as a 

basic reference for statistical modeling of SAR images. 

Q1. Introduction: Please refer also to Quantum synthetic Aperture radars and potential application of quantum 

entanglement. 

A1. We thank the reviewer for this suggestion which enriches the content of the paper by adding the latest Quantum 

radar technology. As the latest advanced technology, the introduction of quantum radar is supplemented in Section 5.2, 

Page 23, Left-column, Lines 17-26, and Right-column, Lines 7-38: 

“…The rapid development of radar system technologies lead to the emergence of new types of SAR images, including 

polarimetric SAR (PolSAR) [2], interferometric SAR [107], bistatic and multistatic constellation SAR [108-112] and 

quantum radar [113]. For example, the advanced non-interrupted synchronization scheme for spaceborne bistatic SAR 

in [108] demonstrates superiority over techniques of existing systems such as TanDEM-X and is promising in the future 

spaceborne bistatic and multistatic systems. Another example is quantum radar which may greatly enhance receiver 

sensitivity. These new types of SAR data have brought higher requirements and more opportunities to the task of image 

interpretation. 

… 

(5) Quantum technology [135] may bring change to both radar systems and image interpretation.  

On the one hand, the development of quantum device in quantum radar [113] is based on the mechanisms of quantum 

physics. Quantum radar has been proved to have the potential to break the limit of conventional radar detection 

performance such as system sensitivity [136] and target detection capability [137]. Several quantum radar concepts 

such as quantum radar equation, quantum radar cross section (QRCS) and quantum detection theory have been 
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researched recently [137-139]. Quantum entanglement is a quantum phenomenon where multiple particles are linked 

together in a way such that the measurement of one particle's quantum state determines the possible quantum states of 

the other particles [113]. It leads to correlations between observable physical properties of the systems [113, 136]. It 

has been shown the resolution of quantum radar systems using entangled photons is higher then that of non-entangled 

quantum radar [140]. As the further development of quantum radar theory and core techniques, the corresponding 

statistical modeling should be a studied.  

On the other hand, the principles of quantum computing [135], such as uncertainty, superposition, interference and 

implicit parallelism, make it have better diversity and better trade-off between the exploration and the exploitation than 

common evolutionary algorithms [141]. These principles have inspired many evolutionary computing algorithms to 

solve the optimization problem in SAR image segmentation, such as quantum clonal selection clustering (QCSC) 

algorithm [142], quantum immune fast spectral clustering (QIFSC) approach [143] and quantum-inspired 

multiobjective evolutionary clustering (QMEC) algorithm [141]. These research results demonstrate the application 

value of quantum computing in the field of SAR image modeling and data processing.” 

 

Q2. This comment refers to both Figure 6 and Figure 7, which are a bit complicate to understand. For example explain 

better what the small box linked by the letter “A” stands for. 

 

Figure6 

A2. Thanks for pointing out this issue and it helps to improve the presentation of the figures. Following the reviewer’s 

suggestion, the “Yellow shading box with embedded product operator” in Figure 6 linked by the letter “A” denotes the 

“Product model”. It has two inputs i.e. the statistical distribution of speckle and RCS, and outputs the distribution of 

SAR image intensity. Now this is explained in Page 5 Right-column Line 1-4: 

“The “Yellow shading box with embedded product operator” in Figure 6 denotes the “Product model” which has two 

inputs, i.e. the statistical distribution of speckle and RCS, and outputs the distribution of SAR image intensity.” 
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Figure 1: Statistical distributions of scattered intensity based on product model 

Similarity, the Figure 7 is revised and explained in Page 10 Right-column Line 48-52, Figure 9 is revised and explained in 

Page 14 Right-column Line 11-15, Figure 10 is revised and explained in Page 15 Right-column Line 6-9. 

“The “Yellow shading box with embedded ‘NR’” in Figure 7 denotes the “non-Rayleigh speckle model” which inputs 

the statistical distribution of the number of scatterers and the amplitude of the scatterers, and outputs the distribution of 

SAR image intensity.”… 

“As shown in Figure 9, the “Yellow shading box with embedded ‘GCL’” denotes the “Generalized central limit theorem 

model” which inputs the statistical distribution of the real and imaginary components, and outputs the distribution of 

SAR image intensity.”… 

“As shown in Figure 10, the “Yellow shading box with embedded ‘ISS’” denotes the “Incoherent scatterer model” which 

inputs the statistical distribution of the number of scatterers, and outputs the distribution of SAR image intensity.” 

 

Figure 2 Statistical distributions of scattered intensity based on non-Rayleigh speckle model 
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Figure 3 Statistical distributions of scattered intensity based on generalized central limit theorem model 

 

Figure 4 Statistical distributions of scattered intensity based on incoherent scatterer sum model 

Q3. Table 1 and table 2 are not synchronized in the style of representation and then, in my opinion, they are a bit too 

complicated. For example, table 1 is interrupted from the end of the page, then, always in table 1 there are things 

defined in bold where you can't see them in table 2. In my opinion the graphic of table 2 needs to be redone, it seems 

to be a bit heavy. 

A3. We thank the reviewer for pointing out these problems. Now Table 1 is adjusted to avoid interruption shown in 

Page 5 Line 43. Table 1 describes two statistical distributions under the Rayleigh speckle model including its statistical 

characteristics. Table 2 is relatively complicated because it expresses the modeling idea of the product model. It gives 

the corresponding probability density function (PDF) of RCS and speckle while the intensity distribution of SAR images. 

The 𝑟-order moments in Table 2 shows the statistical characteristics of distributions. To make the Table 2 clearer and 

less heavy, we have changed its expressions as shown in Page 7 Line 1: 
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“ 

Table 1: Statistical distribution and characteristics of product model for intensity data 

Distribution 

type 

PDF of 

RCS 

𝒑(𝑿𝝈 = 𝒙) 

PDF of 

Speckle 

𝒑(𝒀𝝈 = 𝒚) 

PDF of SAR image 

𝒑(𝒁𝝈 = 𝒛) 

𝒓 − 𝐨𝐫𝐝𝐞𝐫 moment 𝐄{𝒁𝝈
𝒓 } 

Gamma 

distribution 

[1] 

 𝑝𝐶 

𝑝𝛤 

𝑝Gamma𝜎
(𝑍𝜎 = 𝑧; 𝑛, ℴ) =

1

Γ(𝑛)
(

𝑛

ℴ
)

𝑛

𝑧𝑛−1 exp (−
𝑛𝑧

ℴ
) E{𝑍𝜎

𝑟 } =
Γ(𝑛 + 𝑟)

Γ(𝑛)
(

ℴ

𝑛
)

𝑟

 

𝑮 

distribution 

[43,44] 

𝑝𝐺𝐼𝐺 

𝑝𝐺𝜎
(𝑍𝜎 = 𝑧; 𝛽, 𝛾, 𝛼, 𝑛)

=
𝑛𝑛(𝛽/𝛾)𝛼/2𝑧(𝑛−1)

Γ(𝑛)𝐾𝛼(2√𝛽𝛾)
(

𝛾 + 𝑛𝑧

𝛽
)

𝛼−𝑛
2

𝐾𝛼−𝑛 (2√𝛽(𝛾 + 𝑛𝑧)) 

𝐸{𝑍𝜎
𝑟}

= (
𝛾

𝑛2𝛽
)

𝑟
2 𝐾𝛼+𝑟(2√𝛽𝛾)Γ(𝑛 + 𝑟)

𝐾𝛼(2√𝛽𝛾)Γ(𝑛)
 

𝑲 

distribution 

[2,43] 

𝑝Gamma 

𝑝𝐾𝜎
(𝑍𝜎 = 𝑧; 𝛽, 𝛼, 𝑛)

=
2𝛽𝑛

Γ(𝑛)Γ(𝛼)
(𝛽𝑛𝑧)

𝛼+𝑛
2

−1𝐾𝛼−𝑛(2√𝛽𝑛𝑧) 

E{𝑍𝜎
𝑟}

= (𝑛𝛽)−𝑟
Γ(𝑛 + 𝑟)Γ(𝛼 + 𝑟)

Γ(𝑛)Γ(𝛼)
 

𝑮𝟎 

distribution 

[43] 

𝑝Gamma−1 
𝑝𝐺𝜎

0(𝑍𝜎 = 𝑧; 𝛾, −𝛼, 𝑛) =
𝑛𝑛Γ(𝑛 − 𝛼)𝛾−𝛼𝑧𝑛−1

Γ(𝑛)Γ(−𝛼)(𝛾 + 𝑛𝑧)𝑛−𝛼 
E{𝑍𝜎

𝑟}

= (𝛾/𝑛)𝑟
Γ(𝑛 + 𝑟)Γ(−𝛼 − 𝑟)

Γ(𝑛)Γ(−𝛼)
 

𝐆𝐡 

distribution 

[43,45] 

𝑝IG 

𝑝𝐺𝜎
ℎ(𝑍𝜎 = 𝑧; 𝜆, 𝜇)

= √
2𝜆

𝜋
𝑒

√
𝜆2

𝜇
𝑛𝑛𝑧𝑛−1

Γ(𝑛)
(

(𝜆 + 2𝑛𝑧)𝜇

𝜆
)

−1−2𝑛
4

× 𝐾
𝑛+

1
2

(
(𝜆 + 2𝑛𝑧)𝜆

𝜇
) 

𝐸{𝑍𝜎
𝑟 }

= √
2𝜆

𝜋
(

𝜇

𝑛2)

𝑟
2

𝑒
√

𝜆2

𝜇 𝜇−
1
4

×
𝐾𝑟−1/2(𝜆/√𝜇)Γ(𝑛 + 𝑟)

Γ(𝑛)
 

GC 

distribution 

[38] 

𝑝𝐺𝛤 𝑝𝐺𝛤 

𝑝𝐺𝐶𝜎
(𝑍𝜎 = 𝑧; 𝑎, 𝑏1, 𝑣1, 𝑏2, 𝑣2)

=
𝑏1𝑏2

2𝑧Γ(𝑣1)Γ(𝑣2)

√𝑧
𝑏1𝑣1

𝑎𝑏2𝑣2
∫ 𝑥𝑏2𝑣2−𝑏1𝑣1−1

∞

0

× exp [− (
𝑥

𝑎
)

𝑏2

− (
√𝑧

𝑥
)

𝑏1

] 𝑑𝑥 

E{𝑍𝜎
𝑟 }

= 𝑎2𝑟
Γ(

2𝑟
𝑏1

+ 𝑣1)Γ(
2𝑟
𝑏2

+ 𝑣2)

Γ(𝑣1)Γ(𝑣2)
 

Notes and 

Supplements  

Without special explanation, the symbols in this table above are defined as follows: 𝑛 is the number of look, the special 

function 𝐾𝑛(∙) is the second type of modified Bessel function, Γ(∙) is the gamma function, 𝑋𝜎 denotes the RCS, and 𝑌𝜎 

denotes the speckle. 𝑍𝜎 = 𝑋𝜎 ∙ 𝑌𝜎 denotes the SAR intensity image. 

(1) The detailed expressions in the second column, i.e. Probability density function (PDF) of RCS, are: 

𝑝𝐶(𝑋𝜎 = 𝑥; ℴ) = {
1, 𝑥 = ℴ
0, others

;  ℴ > 0, 

𝑝𝐺𝐼𝐺(𝑋𝜎 = 𝑥; 𝛽, 𝛾, 𝛼) =
(

𝛽
𝛾

)

𝛼
2

2𝐾𝛼(2√𝛽𝛾)
𝑥(𝛼−1) × 𝑒

−(𝛽𝑥+
𝛾
𝑥

)
 ; 𝛼 ∈ 𝑅, (𝛽, 𝛾) ∈ Θ𝛼; Θ𝛼 = {

{(𝛽, 𝛾): 𝛽 > 0, 𝛾 ≥ 0}    𝑖𝑓  𝛼 > 0
{(𝛽, 𝛾): 𝛽 > 0, 𝛾 > 0}    𝑖𝑓  𝛼 = 0
{(𝛽, 𝛾): 𝛽 ≥ 0, 𝛾 > 0}    𝑖𝑓  𝛼 < 0

, 

𝑝Gamma(𝑋𝜎 = 𝑥; 𝛽, 𝛼) =
𝛽𝛼

Γ(𝛼)
𝑥(𝛼−1)𝑒−𝛽𝑥; 𝛽, 𝛼 > 0, 

𝑝Gamma−1(𝑋𝜎 = 𝑥; 𝛼, 𝛾) =
𝛾−𝛼

Γ(−𝛼)
𝑥𝛼−1𝑒−𝛾/𝑥; −𝛼, 𝛾 > 0, 

𝑝IG(𝑋𝜎 = 𝑥; 𝜇, 𝜆) = [
𝜆

2𝜋𝑥3]
1/2

× exp [−𝜆 (
𝑥

2𝜇
+

1

2𝑥
)] ; 𝜇 ≥ 0, 𝜆 > 0, 

𝑝𝐺𝛤(𝑋𝜎 = 𝑥; 𝑎, 𝑏2, 𝑣2) =
𝑏2

2√𝑥𝑎Γ(𝑣2)
(

√𝑥

𝑎
)

𝑏2𝑣2−1

× exp [− (
√𝑥

𝑎
)

𝑏2

] ; 𝑎, 𝑏2, 𝑣2 > 0. 

(2) The detailed expressions in the third column, i.e. PDF of Speckle, are gamma distributed speckle 𝑌𝜎~Gamma(𝑛, 𝑛), which 

is 

𝑝𝛤(𝑌𝜎 = 𝑦) =
2𝑛𝑛

Γ(𝑛)
𝑦2𝑛−1 exp(−𝑛𝑦2) , 𝑦, 𝑛 > 0, 

and generalized gamma distributed speckle 𝑌𝜎~GΓ(𝑏1, 𝑣1), which is: 

𝑝𝐺𝛤(𝑌𝜎 = 𝑦) =
𝑏1

2Γ(𝑣1)
𝑦

𝑏1𝑣1
2

−1 exp [−𝑦
𝑏1
2 ] ; 𝑏1, 𝑣1 > 0  

” 
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Q4. I take as an example the Page 8 line 2, left column: is it possible to cite references from the title of subsections? 

A4. Thanks for pointing out this issue. To make it more appropriate, we move the references in the title of subsections 

to the main text including Section 2.3.2(a-f), Section 2.4.2(b-f) and Section 2.5.2(a-c) in the revised version. 

Q5. Formula 35: Probably Sum_i(m_i)=n instead  Sum(m_1)=n? 

A5. Yes, it should be ∑ 𝑚𝑖 = 𝑛 and this confusion may be caused by the small font. We have checked it and, to make 

it more clear, we use ∑ 𝑚𝑖
𝑁
𝑖=1 = 𝑛 instead of ∑ 𝑚𝑖 = 𝑛 in Page 10 Right-column Line 14 & 19: 

Q6. Figure 9 is too small; 

A6. We thank the suggestion and the font of Figure 9 is enlarged now shown in Page 14 Line 31. 

Q7. You have inserted a comma and then you have inserted a capital letter. 

 

A7. We thank the reviewer for pointing out this issue. Now it is corrected by using “then” instead of ‘Then in Page 15 

Right-column Line 57. 

Q8. Tab. 4 and Tab. 5: please refere to previous comments. 

A8. Following the reviewer’s suggestion, Table 3 in Page 17 Line 1、Table 4 in Page 17 Line 24 and Table 5 in Page 18 

Line1 are re-drawn in the same style as the Table 1 and Table 2: 
“Table 2: Statistical distribution and characteristics of single empirical distribution model 

Distributio

n type 

Probability density function 

(PDF) 
Mean Variance 𝐫-order moment 

Log-

normal 

distributio

n 

𝑝𝐿𝑁(𝑧; 𝛽, 𝑉)

=
1

𝑧√2𝜋𝑉
𝑒𝑥𝑝 [−

(𝑙𝑛 𝑧 − 𝛽)2

2𝑉
] 

𝑒𝑥𝑝 [𝛽 +
𝑉

2
] 𝑒𝑥𝑝(2𝛽 + 𝑉) (𝑒𝑥𝑝(𝑉) − 1) 𝐸{𝑍𝑟} = 𝑒𝑥𝑝 [𝑟𝛽 +

𝑟2𝑉

2
] 

Weibull 

distributio

n 
𝑝𝑊𝐵(𝑧; 𝑐, 𝑏) =

𝑐𝑧𝑐−1

𝑏𝑐 𝑒𝑥𝑝 [− (
𝑧

𝑏
)

𝑐

] 𝑏𝛤 (1 +
1

𝑐
) 𝑏2 [𝛤 (

2

𝑐
+ 1) − 𝛤2(

1

𝑐
+ 1)] 𝐸{𝑍𝑟} = 𝑏𝑟𝛤(

𝑟

𝑐
+ 1) 

Fisher 

distributio

n 

𝑝𝐹(𝑧; 𝐿, 𝑀, 𝜇)

=
𝛤(𝐿 + 𝑀)

𝛤(𝐿)𝛤(𝑀)

𝐿

𝑀𝜇

(
𝐿𝑧
𝑀𝜇

)
𝐿−1

(1 +
𝐿𝑧
𝑀𝜇

)
𝐿+𝑀, 

𝐿 > 0, 𝑀 > 0 

𝑀

𝑀 − 1
𝜇 

𝑀2𝜇2(𝐿 + 𝑀 − 1)

𝐿(𝑀 − 1)2(𝑀 − 2)
 __ __ 

Generalize

d gamma 

distributio

n 

(𝐆𝚪𝐃 − 𝟏) 

𝑝𝐺𝛤𝐷1(𝑧; 𝑎, 𝑏, 𝑣)

=
𝑏

𝑎𝛤(𝑣)
(

𝑧

𝑎
)

𝑏𝑣−1

𝑒𝑥𝑝 [− (
𝑧

𝑎
)

𝑏

] 𝑎
𝛤(

1
𝑏

+ 𝑣)

𝛤(𝑣)
 

𝑎2

𝛤2(𝑣)
[𝛤 (

2

𝑏
+ 𝑣) 𝛤(𝑣)

− 𝛤2 (
1

𝑏

+ 𝑣)] 

𝐸{𝑥𝑟} = 𝑎𝑟
𝛤(

𝑟
𝑏

+ 𝑣)

𝛤(𝑣)
 

Generalize

d gamma 

distributio

n 

(𝐆𝚪𝐃 − 𝟐) 

𝑝𝐺𝛤𝐷2(𝑧; 𝑣, 𝜅, 𝜂)

=
|𝑣|𝜅𝜅

𝜂𝛤(𝜅)
(

𝑧

𝜂
)

𝜅𝑣−1

𝑒𝑥𝑝 [−𝜅 (
𝑧

𝜂
)

𝑣

], 

𝑣 ≠ 0, 𝜅 > 0, 𝜂 > 0 

{
𝜂

𝜅1/𝑣

𝛤(𝜅 +
1
𝑣

)

𝛤(𝜅)
,
1

𝑣
> −𝜅  

∞,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝜂2

𝛤2(𝜅)𝜅
2
𝑣

[𝛤 (𝜅 +
2

𝑣
) 𝛤(𝜅) 

−𝛤2 (𝜅 +
1

𝑣
)], 

1

𝑣
> −𝜅,

2

𝑣
> −𝜅 

𝐸{𝑥𝑟}

= {
𝜂𝑟

𝜅𝑟/𝑣

𝛤(𝜅 +
𝑟
𝑣

)

𝛤(𝜅)
,
𝑟

𝑣
> −𝜅  

∞,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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Table 3: Parameter estimation formulas of MoLC method for amplitude distributions 

Distribution 

type 
Probability density function (PDF) Parameters Estimation formula of MoLC 

Rayleigh 

distribution 
𝑝(𝐴) =

2𝐴

ℴ
𝑒−

𝐴2

ℴ  ℴ 𝑘1 =
(𝑙𝑛 ℴ + 𝛹(1))

2
 

Square root 

gamma 

distribution 

𝑝(𝐴) =
2

𝛤(𝑛)
(

𝑛

ℴ
)

𝑛

𝐴2𝑛−1𝑒−𝑛𝐴2/ℴ 
𝑛, 
ℴ 

2𝑘1 = 𝑙𝑛 ℴ + 𝛹(𝑛) − 𝑙𝑛 𝑛 

4𝑘2 = 𝛹(1, 𝐿) 

K distribution 

𝑝(𝐴; 𝛽, 𝛼, 𝑛)

=
4𝛽𝑛𝐴

𝛤(𝑛)𝛤(𝛼)
(𝛽𝑛𝐴2)(𝛼+𝑛)/2−1𝐾𝛼−𝑛(2𝐴√𝛽𝑛) 

𝛽, 
𝛼, 
𝑛 

2𝑘1 = 𝑙𝑛 𝛽 + 𝛹(𝑛) − 𝑙𝑛 𝑛 + 𝛹(𝛼) 

4𝑘2 = 𝛹(1, 𝑛) + 𝛹(1, 𝛼) 

8𝑘3 = 𝛹(2, 𝑛) + 𝛹(2, 𝛼) 

𝐒𝛂𝐒𝐆𝐑 

distribution 

𝑝𝐴(𝐴; 𝛾, 𝛼)

= 𝐴 ∫ 𝑠 𝑒𝑥𝑝(−𝛾𝑠𝛼) 𝐽0(𝑠𝐴)𝑑𝑠 
∞

0

 

𝛾, 
𝛼 

𝛼𝑘1 = 𝛹(1)(𝛼 − 1) + 𝛼 𝑙𝑛 2 + 𝑙𝑛 𝛾 

𝑘2 = 𝛹(1,1)𝛼−2 

𝐆𝐆𝐑 

distribution 

𝑝𝐴(𝐴; 𝛾, 𝑐)

=
𝛾2𝑐2𝐴

𝛤2(
1
𝑐

)
∫ 𝑒𝑥𝑝{−(𝛾𝐴)𝑐(|𝑐𝑜𝑠 𝜃|𝑐

𝜋
2

0

+ |𝑠𝑖𝑛 𝜃|𝑐)} 𝑑𝜃 

𝛾, 
𝑐 

𝑘1 =
1

𝑐
𝛹 (

2

𝑐
) − 𝑙𝑛 𝛾 −

1

𝑐
𝐺1 (

1

𝑐
) 𝐺0 (

1

𝑐
)

−1

 

𝑘2 =
1

𝑐2 𝛹 (1,
2

𝑐
) +

1

𝑐2 𝐺2 (
1

𝑐
) 𝐺0 (

1

𝑐
)

−1

−
1

𝑐2 𝐺1 (
1

𝑐
)

2

𝐺0 (
1

𝑐
)

−2

 

𝐆𝚪𝐑 

distribution 

𝑝𝐴(𝐴; 𝜈, 𝜂, 𝜅) = [
𝜈

𝜂𝜅𝜈𝛤(𝜅)
]

2

𝐴2𝜅𝜈−1 ∙ 

∫ |𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜃|𝜅𝜈−1 𝑒𝑥𝑝 {− (
𝐴

𝜂
)

𝜈

(|𝑐𝑜𝑠 𝜃|𝜈

𝜋
2

0

+ |𝑠𝑖𝑛 𝜃|𝜈)} 𝑑𝜃, 𝜈 =
1

𝜛
 

𝜈, 
𝜂, 
𝜅 

𝑘1 = 𝑙𝑛 𝜂 + 𝜛𝛹(2𝜅) − 𝜛
𝐺1(𝜅, 𝜛)

𝐺0(𝜅, 𝜛)
 

𝑘2 = 𝜛2 [𝛹(1,2𝜅) +
𝐺2(𝜅, 𝜛)

𝐺0(𝜅, 𝜛)
−

𝐺1
2(𝜅, 𝜛)

𝐺0
2(𝜅, 𝜛)

] 

𝑘3 = 𝜛3 [𝛹(2,2𝜅) −
𝐺3(𝜅, 𝜛)

𝐺0(𝜅, 𝜛)
+ 3

𝐺2(𝜅, 𝜛)𝐺1(𝜅, 𝜛)

𝐺0
2(𝜅, 𝜛)

− 2
𝐺1

3(𝜅, 𝜛)

𝐺0
3(𝜅, 𝜛)

] 

Log-normal 

distribution 
𝑝(𝐴; 𝑉, 𝛽) =

1

𝐴√2𝜋𝑉
𝑒𝑥𝑝 [−

(𝑙𝑛 𝐴 − 𝛽)2

2𝑉
] 

𝑉, 
𝛽 

𝑘1 = 𝛽 

𝑘2 = 𝑉 

Weibull 

distribution 
𝑝(𝐴; 𝑏, 𝑐) =

𝑐𝐴𝑐−1

𝑏𝑐 𝑒𝑥𝑝 [− (
𝐴

𝑏
)

𝑐

] 
𝑏, 
𝑐 

𝑘1 = 𝑙𝑛 𝑏 + 𝛹(1)𝑐−1 

𝑘2 = 𝛹(1,1)𝑐−2 

Fisher 

distribution 

𝑝(𝐴; 𝐿, 𝑀, 𝜇)

=
𝛤(𝐿 + 𝑀)

𝛤(𝐿)𝛤(𝑀)

𝐿

𝑀𝜇

(
𝐿𝐴
𝑀𝜇

)
𝐿−1

(1 +
𝐿𝐴
𝑀𝜇

)
𝐿+𝑀 

𝐿, 
𝑀, 
𝜇 

𝑘1 = 𝑙𝑛 𝜇 + (𝛹(𝐿) − 𝑙𝑛 𝐿) − (𝛹(𝑀) − 𝑙𝑛 𝑀) 

𝑘2 = 𝛹(1, 𝐿) + 𝛹(1, 𝑀) 

𝑘3 = 𝛹(2, 𝐿) − 𝛹(2, 𝑀) 

Generalized 

gamma 

distribution 

𝑓(𝐴; 𝑎, 𝑏, 𝑣)

=
𝑏

𝑎𝛤(𝑣)
(

𝐴

𝑎
)

𝑏𝑣−1

𝑒𝑥𝑝 [− (
𝐴

𝑎
)

𝑏

] 

𝑎, 
𝑏, 
𝑣 

𝑘1 = 𝛹(𝑣)/𝑏 + 𝑙𝑛 𝑎 

𝑘2 = 𝛹(1, 𝑣)/𝑏2 

𝑘3 = 𝛹(2, 𝑣)/𝑏3 

Note: 𝐊𝐯(∙)  is the second type of modified Bessel function, 𝚿(∙)  denotes the digamma function, 𝚿(𝐢,∙)  represents the 𝐢 -order 

polygamma function, 𝐆𝐯(𝛌) is an integral function introduced in [20]: 

𝑮𝒗(𝝀) = ∫
𝒍𝒏𝒗𝑨(𝜽, 𝝀)

𝑨(𝜽, 𝝀)𝟐𝝀
𝒅𝜽

𝝅/𝟐

𝟎

, 𝒗 = 𝟎, 𝟏, 𝟐;  𝑨(𝜽, 𝝀) = |𝒄𝒐𝒔 𝜽|𝟏/𝝀 + |𝒔𝒊𝒏 𝜽|𝟏/𝝀 

𝐆𝐢(𝐤, 𝛡) is an integral function introduced in [21]: 

𝑮𝒊(𝒌, 𝝕) = ∫ |𝒄𝒐𝒔 𝜽𝒔𝒊𝒏 𝜽|
𝒌
𝝕

−𝟏 𝒍𝒐𝒈𝒊𝑨(𝜽, 𝝀)

𝑨(𝜽, 𝝀)𝟐𝒌
𝒅𝜽

𝝅/𝟐

𝟎

;  𝑨(𝜽, 𝝀) = |𝒄𝒐𝒔 𝜽|𝟏/𝝀 + |𝒔𝒊𝒏 𝜽|𝟏/𝝀 
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Table 4: Summary of single-pixel statistical modeling 

Models Model complexity 

& physical 

meaning 

Distributions Existence of 

analytical PDF 

Application scope 

Rayleigh 

speckle 

model 

Low model 

complexity 

& 

weak physical 

meaning 

Negative exponential 

distribution 

Yes Widely used in single-look intensity image of homogenous area 

Rayleigh distribution Yes Widely used in single-look amplitude image of homogenous area 

Gamma distribution Yes Widely used in multi-look intensity image of homogenous area 

Square root gamma 

distribution 

Yes Widely used in multi-look amplitude image of homogenous area 

Product 

model 

Less high model 

complexity 

& 

Less strong  

physical meaning 

G distribution Yes Used in homogenous, inhomogeneous, extremely 

inhomogeneous areas; suitable for single/multi-look intensity or 

amplitude image 

Gh distribution Yes Used in extremely inhomogeneous urban areas and mixed terrain 

areas; 

GC distribution Yes Used in sea and land areas of medium-resolution (15m2/30 m2) 

Non-

Rayleigh 

speckle 

model 

High model 

complexity 

& 

strong physical 

significance 

G0 distribution Yes Used in homogenous, inhomogeneous, extremely 

inhomogeneous areas; suitable for single/multi-look intensity or 

amplitude image 

K distribution Yes Widely used in medium inhomogeneous area; 

suitable for single/multi-look intensity or amplitude image 

W distribution Yes Used in medium inhomogeneous area; 

suitable for single/multi-look intensity or amplitude image 

U distribution Yes Used in medium inhomogeneous area; 

suitable for single/multi-look intensity or amplitude image 

Rice distribution Yes Used in low-resolution images with targets in weak clutter 

RiIG distribution Yes Used in SAR amplitude image or ultrasound image 

Generalized 

central 

limit 

theorem 

model 

Less high model 

complexity 

& 

Less strong  

physical meaning 

GGR distribution No Used for multiple types of terrains (such as urban areas, 

farmland, lakes, mountains) in multi-polarized channels 

GΓR distribution No Used for homogenous or inhomogeneous SAR amplitude image 

with multiple types of terrains (such as urban areas, farmland, 

and mountains) 

SαSGR distribution No Used for Long-tailed amplitude image of urban area 

Single 

empirical 

distribution 

model 

Low model 

complexity 

& 

no clear physical 

meaning 

Log-normal 

distribution 

Yes Used for medium-resolution amplitude images for sea clutter and 

homogenous urban 

Weibull distribution Yes Used for medium-resolution amplitude or intensity images 

Fisher distribution Yes Used in homogenous, inhomogeneous, extremely 

inhomogeneous areas; suitable for single/multi-look intensity or 

amplitude image 

Generalized gamma 

distribution 

Yes Used for homogenous or inhomogeneous SAR 

amplitude/intensity image with multiple types of terrains (such 

as urban areas, farmland, and mountains) 

Finite 

mixture 

statistical 

model 

High model 

complexity 

& 

weak physical 

significance 

Mixed K-distribution 

or mixed log-normal 

distribution 

Yes Used for homogenous or inhomogeneous high-resolution SAR 

images 

Dictionary-based 

mixture distribution 

model 

Yes Used for complex scenes composed by multiple types of terrains 

with medium, high or ultra-high resolution. 

Non-

parametric 

statistical 

model 

High model 

complexity 

& 

no clear physical 

meaning 

Parzen-window 

method 

No Used for complex scenes composed by multiple types of terrains 

SVM method No Used for complex scenes composed by multiple types of terrains 

Neural network 

method 

No Used for complex scenes composed by multiple types of terrains 

” 

Q9. Please consider to insert into bibliography the following works: 

V. Akbari, S. N. Anfinsen, A. P. Doulgeris, T. Eltoft, G. Moser and S. B. Serpico, "Polarimetric SAR Change Detection With 

the Complex Hotelling–Lawley Trace Statistic," in IEEE Transactions on Geoscience and Remote Sensing, vol. 54, no. 7, 

pp. 3953-3966, July 2016. doi: 10.1109/TGRS.2016.2532320 
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W. B. Silva, C. C. Freitas, S. J. S. Sant'Anna and A. C. Frery, "Classification of Segments in PolSAR Imagery by Minimum 

Stochastic Distances Between Wishart Distributions," in IEEE Journal of Selected Topics in Applied Earth Observations 

and Remote Sensing, vol. 6, no. 3, pp. 1263-1273, June 2013. doi: 10.1109/JSTARS.2013.2248132 

A. C. Frery, R. J. Cintra and A. D. C. Nascimento, "Entropy-Based Statistical Analysis of PolSAR Data," in IEEE Transactions 

on Geoscience and Remote Sensing, vol. 51, no. 6, pp. 3733-3743, June 2013. doi: 10.1109/TGRS.2012.2222029 

S. N. Anfinsen, A. P. Doulgeris and T. Eltoft, "Goodness-of-Fit Tests for Multilook Polarimetric Radar Data Based on the 

Mellin Transform," in IEEE Transactions on Geoscience and Remote Sensing, vol. 49, no. 7, pp. 2764-2781, July 2011. 

doi: 10.1109/TGRS.2010.2104158 

Biondi, F. (2019). Multi-chromatic analysis polarimetric interferometric synthetic aperture radar (MCA-PolInSAR) for 

urban classification. International journal of remote sensing, 40(10), 37213750. 

A9. Thanks for sharing these excellent works. These works mainly focus on the polarimteric statistical modeling for SAR 

images which is an important extension of single-channel statistical modeling introduced in this paper. These works as 

well as the references are now referred in the outlook of this paper, which is in Section 5.2 in Page 23 Left-column Line 

50- Right-column Line 7: 

“…(4) PolSAR images contain richer scene information compared with the single-channel SAR data [2]. The statistical 

analysis [114, 115] of PolSAR images plays an important role for its interpretation such as image segmentation [116, 

117] and classification [118-122], change detection [123-128], target detection [129, 130] and despeckling [131-134]. 

Many statistical distributions for PolSAR data can be seen as an extension of single-channel statistical modeling 

reviewed in this paper. The scaled complex Wishart distribution is employed as a statistical model for homogeneous 

regions in PolSAR images [115]. And the product model has developed many statistical distributions to describe the 

nonhomogeneous regions in PolSAR images such as the polarimetric G_P distribution, K_P distribution, G_P^0 

distribution, U distribution and so on [114, 120]. The expansion from single-channel statistical modeling to polarimetric 

statistical modeling and the study of polarimetric statistical modeling will provide an important research foundation for 

the wide application of PolSAR images. …” 

with the corresponding references: 

“…[115] A. C. Frery, R. J. Cintra, A. D. C. Nascimento, "Entropy-based Statistical Analysis of PolSAR Data,"[J] 

IEEE Transactions on Geoscience & Remote Sensing, vol. 51, pp. 3733-3743, 2012. 

[116] F. Lang, J. Yang, D. Li, L. Zhao, L. Shi, "Polarimetric SAR image segmentation using statistical region 

merging,"[J] IEEE geoscience and remote sensing letters, vol. 11, pp. 509-513, 2013. 

[117] N. Bouhlel, S. Méric, "Unsupervised Segmentation of Multilook Polarimetric Synthetic Aperture Radar 

Images,"[J] IEEE Transactions on Geoscience and Remote Sensing, vol. 57, pp. 6104-6118, 2019. 

[118] S.-W. Chen, C.-S. Tao, "PolSAR image classification using polarimetric-feature-driven deep convolutional 

neural network,"[J] IEEE Geoscience and Remote Sensing Letters, vol. 15, pp. 627-631, 2018. 

[119] A. Masjedi, M. J. V. Zoej, Y. Maghsoudi, "Classification of polarimetric SAR images based on modeling 
contextual information and using texture features,"[J] IEEE Transactions on Geoscience and Remote Sensing, vol. 54, 

pp. 932-943, 2015. 

[120] W. B. Silva, C. C. Freitas, S. J. Sant'Anna, A. C. Frery, "Classification of segments in PolSAR imagery by 

minimum stochastic distances between Wishart distributions,"[J] IEEE Journal of Selected Topics in Applied Earth 

Observations and Remote Sensing, vol. 6, pp. 1263-1273, 2013. 

[121] N. Anfinsen, A. P. Doulgeris, T. Eltoft, "Goodness-of-Fit Tests for Multilook Polarimetric Radar Data Based 

on the Mellin Transform,"[J] IEEE Transactions on Geoscience and Remote Sensing, vol. 49, pp. 2764-2781, 2011. 

[122] F. Biondi, "Multi-chromatic analysis polarimetric interferometric synthetic aperture radar (MCA-

PolInSAR) for urban classification,"[J] International journal of remote sensing, vol. 40, pp. 3721-3750, 2019. 

[123] V. Akbari, S. N. Anfinsen, A. P. Doulgeris, G. M. T. Eltoft, S. B. Serpico, "Polarimetric SAR Change 

Detection With the Complex Hotelling–Lawley Trace Statistic,"[J] IEEE Transactions on Geoscience and Remote 

Sensing, vol. 54, pp. 3953-3966, 2016. 

[124] J. Prendes, M. Chabert, F. Pascal, A. Giros, J.-Y. Tourneret, "A new multivariate statistical model for change 
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detection in images acquired by homogeneous and heterogeneous sensors,"[J] IEEE Transactions on Image Processing, 

vol. 24, pp. 799-812, 2014. 

[125] N. Bouhlel, S. Méric, "Multilook Polarimetric SAR Change Detection Using Stochastic Distances Between 

Matrix-Variate Gd⁰ Distributions,"[J] IEEE Transactions on Geoscience and Remote Sensing, 2020. 

[126] T. Liu, Z. Yang, A. Marino, G. Gao, J. Yang, "Robust CFAR Detector Based on Truncated Statistics for 

Polarimetric Synthetic Aperture Radar,"[J] IEEE Transactions on Geoscience and Remote Sensing, 2020. 

[127] A. D. Nascimento, A. C. Frery, R. J. Cintra, "Detecting changes in fully polarimetric SAR imagery with 

statistical information theory,"[J] IEEE Transactions on Geoscience and Remote Sensing, vol. 57, pp. 1380-1392, 2018. 

[128] W. Yang, X. Yang, T. Yan, H. Song, G.-S. Xia, "Region-based change detection for polarimetric SAR images 

using Wishart mixture models,"[J] IEEE Transactions on Geoscience and Remote Sensing, vol. 54, pp. 6746-6756, 2016. 

[129] A. Marino, I. Hajnsek, "Statistical Tests for a Ship Detector Based on the Polarimetric Notch Filter,"[J] IEEE 

Transactions on Geoscience and Remote Sensing, vol. 53, pp. 4578-4595, 2015. 

[130] D. Tao, A. P. Doulgeris, C. Brekke, "A Segmentation-Based CFAR Detection Algorithm Using Truncated 

Statistics,"[J] IEEE Transactions on Geoscience and Remote Sensing, vol. 54, pp. 2887-2898, 2016. 

[131] P. A. A. Penna, N. D. A. Mascarenhas, "SAR Speckle Nonlocal Filtering With Statistical Modeling of Haar 
Wavelet Coefficients and Stochastic Distances,"[J] IEEE Transactions on Geoscience and Remote Sensing, vol. 57, pp. 

7194-7208, 2019. 

[132] L. Torres, S. J. S. Sant'Anna, C. C. Freitas, A. C. Frery, "Speckle Reduction in Polarimetric {SAR} Imagery 

with Stochastic Distances and Nonlocal Means,"[J] Pattern Recognition, vol. 47, pp. 141--157, 2014. 

[133] J.-S. Lee, T. L. Ainsworth, Y. Wang, K.-S. Chen, "Polarimetric SAR Speckle Filtering and the Extended Sigma 

Filter,"[J] Transactions on Geoscience and Remote Sensing, vol. 53, pp. 1150--1160, 2015. 

[134] H. Zhong, J. Zhang, G. Liu, "Robust Polarimetric SAR Despeckling Based on Nonlocal Means and Distributed 

Lee Filter,"[J] IEEE Transactions on Geoscience and Remote Sensing, vol. 52, pp. 4198 - 4210 2014.… “ 

Q10. Thank you and good work! 

A10. We appreciate the encouragement from the reviewer. 

Reviewer 2: 

Comments to the Author 

SAR image statistical modeling is one of the theoretical foundations for SAR image interpretation. This paper presents 

an overview of SAR image single-pixel statistical modeling, including more than 20 statistical distributions of 8 statistical 

models, gives their derivations and expressions, and introduces the application situation of each model and distribution. 

It can be used as an important reference for SAR image statistical modeling research, and will provide guidelines for 

researchers to further enhance the development of SAR image statistical modeling. The remarks are as follows: 

Q1: The title is suggested to be changed to "SAR Image Statistical Modeling Part I: Single-Pixel Statistical Modeling". 

A1: Following the reviewer’s suggestion, the title of the paper is changed to “SAR Image Statistical Modeling Part I: 

Single-Pixel Statistical Models”. 

Q2: It is suggested that the structure of the paper be divided into five sections: Introduction, Statistical modeling based 

on coherent scatterer models, Statistical modeling based on empirical models, Model selection and parameter 

estimation, and Conclusion. 

A2: We thank the reviewer for this suggestion. It makes a clearer description for the categories of statistical models. 

Now the structure of the paper is divided into five sections as suggested. To make the whole paper consistent, the 

Figure 4 as well as its description is moved to Section 1.1 Page 3 Left-column Line 3. 

Q3: The fonts of many figures and tables are a little small, so it is recommended to change them a little larger. 

A3: Thanks for this suggestion and the fonts of Figures 7, 9, 10, 13 and Tables 1-5 are enlarged now. 
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Q4: Some terminologies are a little confusing. For example, three different terms, “non-Rayleigh model”, “non-Rayleigh 

speckle model” and “non-Rayleigh speckle”, appear in the paper, but they seem to have the same meaning. There are 

similar situations such as “single-pixel statistical modeling”, “single-pixel statistical models”, “single-pixel model” and 

“single-pixel distribution models”. 

A4: We apologize for the confusing terminologies. “non-Rayleigh model” and “non-Rayleigh speckle model” have the 

same meaning and they are unified as “non-Rayleigh speckle model” now. The “non-Rayleigh speckle model” 

introduced in Section 2.4 is a statistical modeling which brings K distribution, Rice distribution, RiIG distribution, 𝐺0 

distribution, W distribution and U distribution. However, as shown in Figure 4, the “non-Rayleigh speckle” does not 

refer to a certain model, but covers the statistical modeling developed from the coherent scatterer model whose 

amplitude does not follow the Rayleigh distribution. “non-Rayleigh speckle” includes the product model, non-Rayleigh 

speckle model, generalized central limit theorem model and incoherent scatterer sum model. This is explained in Page 

2 Right-column Line 29-33. 

“…non-Rayleigh speckle covers the statistical modeling developed from the coherent scatterer model whose amplitude 

does not follow the Rayleigh distribution including the product model, non-Rayleigh speckle model, generalized central 

limit theorem model and incoherent scatterer sum model….” 

“single-pixel statistical modeling”, “single-pixel statistical models”, “single-pixel model” and “single-pixel distribution 

models” have the same meaning, and they are all unified by “single-pixel statistical modeling” now. 

 

Figure 5: The framework of single-pixel statistical modeling 

Q5: There seems to be something wrong with equation (9). According to my personal derivation, it should be 

𝑝𝑅,𝐼 =
1

𝜋𝜎2
𝑒

−
𝑅2+𝐼2

𝜎2  

Equation (49) may have the same problem. In addition, the intensity and standard deviation in the paper are expressed 

by the same symbol 𝜎, is it easy to cause confusion?  

A5: We thank the reviewer for pointing out this problem and apologize for the incorrect expression in Eq. (9). In 

following we give the detailed derivation of Eq. (9). The standard deviation is denoted by √ℴ/2. 

The ℜ and 𝔗 are Gaussian distributed random variables with zero mean and the same variance ℴ/2. Note that the 

variance “ℴ2/2” in original paper is revised by “ℴ/2” in the revised version in Page 4 Right-column Line 14-15: 

“ℜ and 𝔗 are Gaussian distributed random variables with zero mean and the same variance ℴ/2”. 

Then we write the distribution of ℜ and 𝔗 as: 
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𝑝ℜ(ℜ) =
1

√𝜋ℴ
𝑒−

ℜ2

ℴ , 𝑝𝔗(𝔗) =
1

√𝜋ℴ
𝑒−

𝔗2

ℴ , 

and therefore: 

𝑝ℜ,𝔗(ℜ, 𝔗) = 𝑝ℜ(ℜ)𝑝𝔗(𝔗) =
1

𝜋ℴ
𝑒−

ℜ2+𝔗2

ℴ . 

The Eq. (9) is now corrected using above equation in Page 4 Right-column Line 17: 

“ 

𝑝ℜ,𝔗(ℜ, 𝔗) =
1

𝜋ℴ
𝑒−

ℜ2+𝔗2

ℴ . (1) 

” 

The joint probability distribution of amplitude 𝐴 = √ℜ2 + 𝔗2 and phase 𝜃 = arctan(𝔗/ℜ) then can be obtained 

using variable substitution: 

𝑝𝐴,𝜃(𝐴, 𝜃) =
𝐴

𝜋ℴ
exp [−

𝐴2

ℴ
]. 

The probability distribution of 𝐴 is obtained by integrating 𝜃, which is Rayleigh distribution: 

𝑝𝐴(𝐴) =
2𝐴

ℴ
exp [−

𝐴2

ℴ
] 

Take ℴ as a random variable denoted by symbol 𝑧, we obtain the Eq. (49) in Page 11 Right-column Line 51 : 

“ 

𝑝(𝐴|𝑧) =
2𝐴

𝑧
𝑒−

𝐴2

𝑧 . (2) 

”. 

Besides, what we need to explain is that the intensity in the paper are expressed by the same symbol 𝜎 or 𝐼 which 

has been illustrated in the original paper in Section 1.2 Page 3 Left-column Line 30-33: 

“𝜎: for the model not taking into account the imaging function, it denotes the intensity of scattered field 𝜎 = 𝐴2; but for 

the model taking into account imaging function, it denotes the radar cross section (RCS), while the intensity is denoted 

by 𝐼;”. 

The standard deviation is denoted by √ℴ/2, and please note that “𝜎” and “ℴ” are two different symbols.  

Q6: It is suggested to cite more literatures published in the past 5 years.   

A6: Thanks for the good suggestion to improve this paper. We have supplemented more recent literatures by looking 

into the important and forefront SAR technologies especially for the polarimetric SAR and quantum radar, more 

detailed information can be found in the A1 and A9 to reviewer 1. The supplemented literatures are: 

“… 

[94] X. Y. Hou, W. Ao, Q. Song, J. Lai, H. P. Wang, F. Xu, "FUSAR-Ship: building a high-resolution SAR-AIS matchup 

dataset of Gaofen-3 for ship detection and recognition,"[J] Sci China Inf Sci, vol. 63, p. 140303, 2020. 

Page 12 of 40

http://mc.manuscriptcentral.com/grsm

IEEE Geoscience and Remote Sensing Magazine

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



…. 

[97] F. Xu, C. Hu, J. Li, A. Plaza, M. Datcu, "Special focus on deep learning in remote sensing image processing,"[J] 

Sci China Inf Sci, vol. 63, p. 140300, 2020. 

… 

[107] S. R. Cloude, K. P. Papathanassiou, "Polarimetric SAR interferometry,"[J] IEEE Transactions on Geoscience 

and Remote Sensing, vol. 36, pp. 1551-1565, 1998. 

[108] D. Liang, K. Liu, H. Yue, Y. Chen, Y. Deng, H. Zhang, G. J. C. Li, R. Wang, "An Advanced Non-Interrupted 

Synchronization Scheme for Bistatic Synthetic Aperture Radar," in 2019 IEEE International Geoscience and Remote 

Sensing Symposium Yokohama, Japan, 2019, pp. 1116-1119. 

[109] H. Zhang, Y. Deng, R. Wang, N. Li, S. Zhao, F. Hong, L. Wu, O. Lofeld, "Spaceborne/Stationary Bistatic SAR 

Imaging With TerraSAR-X as an Illuminator in Staring-Spotlight Mode,"[J] IEEE Transactions on Geoscience and 
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Satellite,"[J] IEEE Transactions on Geoscience and Remote Sensing, vol. 54, pp. 1977-1989, 2016. 
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Abstract—With the rapid development of spaceborne 

SAR technology and the acquisition of large volume of 

SAR images, SAR image interpretation has become an 

urgent and difficult research topic. SAR image statistical 

modeling is one of the theoretical foundations for SAR 

image interpretation. It is of great value for the in-depth 

analysis of SAR images. This paper reviews the major 

development of SAR image statistical modeling since the 

beginning, including more than 20 statistical distributions 

of 8 statistical models, and gives their derivations and 

expressions, which can be used as a basic reference for 

statistical modeling of SAR images.  
 

Index Terms—Synthetic Aperture Radar, Speckle, Texture, 

Statistical Modeling 
 

1 Introduction 

 Background 

Synthetic Aperture Radar (SAR) has become an important tool for 

land survey, resource mapping, environment monitoring, disaster 

rescue and national security due to its all-time, all-weather, high-

penetration and high-resolution imaging capability at the global scale. 

SAR systems have evolved from low resolution to high resolution, 

single polarization (single-pol) to full polarization (full-pol), single 

temporal to multi-temporal, and single incidence to multiple 

incidences, among other features. There is a huge volume of archived 

SAR images, constantly increasing by new observations on a daily 

basis. Computerized automated SAR image interpretation has 

become a key research direction to enhance the application-value of 

SAR data [1, 2].  

SAR imagery contains a wealth of information about the target and 

scene under observation. There are many methods for analyzing SAR 

images. As shown in Figure 1, there are mainly two categories 

depending on their theoretical foundations, i.e. one is the 

electromagnetic (EM) physics methods based on Maxwell's 

equations [3], the other is the statistical method focusing on the 

image itself.  

 

                                                                 
Manuscript received xxx; revised xxx...  
This work was supported in part by Natural Science Foundation of China 

no. 61991422 and 61822107. 

 

Figure 1: SAR technological development and SAR image 

interpretation 

EM-based physics methods have a clear physical meaning of 

electromagnetic scattering. However, due to its high complexity, 

both theoretical and computational, only simplified or empirical 

models can be established for specific scenarios. The statistical 

method is based on the distributional characteristics of pixel values 

and their relationships. It only considers the high-level cognitive 

characteristics of the image, but does not necessary take into account 

the actual scattering and imaging mechanism. This approach is often 

easier to model and solve, but often ignores the underlying physical 

process that gave rise to the images. 

Figure 2 lists the categories of these two main methods. The 

development of EM method has gone through three stages: 

experimental EM before 1864, classical EM from 1864 to 1950 and 

the computational EM after 1950. The statistical method can be 

summarized into two types: coherent scatterer model and empirical 

models.  

 

Figure 2: Details of the two main categories of SAR image analysis 

With the newly emerging SAR technologies, SAR data are becoming 

high-resolution, multi-dimension and multi-modes. In order to 

realize automatic interpretation of new SAR data, it is desirable to 

D.-X. Yue, F. Xu and Y.-Q. Jin are with the Key Laboratory for 
Information Science of Electromagnetic Waves (MoE), Fudan University, 

Shanghai, China 200433; A. Frery is with Universidade Federal de Alagoas, 

Brazil (Corresponding author: Feng Xu, fengxu@fudan.edu.cn). 

SAR Image Statistical Modeling Part I： 

Single-Pixel Statistical Models 
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2 

combine the advantages of both EM physics and statistical method, 

e.g., to simplify the EM scattering model from a statistical point of 

view and to use image processing methods for auxiliary analysis. In 

view of this critical needs, this paper attempts to review the statistical 

modeling of SAR images with the perspective of physics modeling, 

including two parts: single-pixel statistical modeling, and spatial 

correlation statistical modeling. 

Statistical analysis of SAR images can be traced back to the 1950s 

[4, 5]. The earliest statistical analysis was based on ocean SAR clutter. 

Due to the low resolution of early radar images, the Rayleigh speckle 

model was established under the assumption of the Central Limit 

Theorem, leading to the Rayleigh distribution for the amplitude of 

radar echoes [4, 6, 7]. However, with the improvement of SAR image 

resolution, the Rayleigh model became less accurate. Therefore, 

based on the random walk model [8], the non-Rayleigh speckle 

model [9] was proposed leading to more expressive models such as 

the K distribution [10], and the incoherent scatterer sum model [11-

13], which was used in SAR clutter simulation. Also, empirical 

probability distributions with more parameters, such as the log-

normal and Weibull distributions, were used to accurately describe 

non-Rayleigh clutters of some specific scenarios.  

In 1981, Ward proposed the product model [14], a turning point in 

the study of SAR statistical modeling. The product model can be 

regarded as a generalization of the Rayleigh speckle model. Its 

derivation is much simpler than the non-Rayleigh speckle model 

based on the random walk model. Thus, it has been widely studied 

and applied, and inspired the proposal of many classical SAR 

statistical distribution models. The product model is still the most 

popular model for SAR image statistical modeling. However, with 

the further improvement of resolution, SAR images contain more and 

more details of terrain objects and manmade targets. The relatively 

simple statistical models are no longer capable of fully describing the 

data. Therefore, the finite mixture statistical model [15, 16], the non-

parametric method model [17-19] and the generalized central limit 

theorem model [20-22] have been proposed successively. However, 

the modeling of SAR images from the statistical distribution of 

image pixel values cannot fully describe the scattering information 

embedded in SAR images. Such approaches ignore the EM physics, 

impairing limitations to SAR image interpretation. In recent years, 

the research on high-resolution SAR image statistical modeling has 

refocused on the physical process of EM scattering. As a 

consequence, the early non-Rayleigh speckle model based on 

scattering process modeling [9, 10, 23] reclaims a prominent position. 

Figure 3 illustrates the development of the SAR image statistical 

models reviewed in this paper.  

 
Figure 3: Development of SAR data statistical models 

The statistical modeling for SAR image can be divided into two parts: 

single-pixel statistical modeling, and spatial correlation modeling. 

This part studies the single-pixel statistical modeling. More than 20 

probability distributions of 8 statistical modeling methods are 

reviewed, and the methods of model selection and parameter 

estimation are briefly introduced. The spatial correlation modeling 

part introduces 3 kinds of correlation analysis of SAR images and the 

related clutter simulation methods [24]. 

The statistical modeling of single pixel can be mainly categorized 

into coherent scatterer model introduced in Section 2 and empirical 

model in Section 3. Section 4 gives several model assessment and 

parameter estimate methods. Section 5 comes to the conclusion. 

In more detail, Figure 4 shows the various statistical models and their 

relationships as reviewed in this paper. The coherent scatterer model 

is a classical model for speckle [25], which is also referred to as 

"discrete scatterer model" in [1]. Here, we call it "coherent scatterer 

model" just to emphasize the nature of coherent superposition, as 

opposed to the incoherent scatterer sum model which will be 

introduced later. The coherent scatterer model based on random walk 

is reviewed in Section 2.1. It models the coherent EM field 

summation effect and, thus, its derived distributions are determined 

by the number, amplitude and phase of the scatterers located in a 

single resolution cell [9, 25]. If taking the assumption that 1) the 

number of scatterers is constant but approaches infinite, 2) the 

scatterer amplitude is constant, 3) the scatterer phase is uniformly 

distributed, and 4) there is collective independence among the 

random variables, then the coherent scatterer model can be simplified 

as the Rayleigh speckle model which is known to fit well 

homogeneous regions (Section 2.2) [1, 2]. For the Rayleigh speckle 

model, it is found that the speckle can also be seen as a multiplicative 

noise that is applied on the RCS of a uniform scene. The 

multiplicative property can be further generalized into 

inhomogeneous scenes, and a widely applicable product model can 

be obtained (Section 2.3) [2, 14].  

As opposed to the Rayleigh speckle model, the original, and more 

general, coherent scatterer model gives rise to non-Rayleigh speckle, 

i.e. without taking the Rayleigh assumptions [9]. non-Rayleigh 

speckle covers the statistical modeling developed from the coherent 

scatterer model whose amplitude does not follow the Rayleigh 

distribution including the product model, non-Rayleigh speckle 

model, generalized central limit theorem model and incoherent 

scatterer sum model. Section 2.4 introduces the non-Rayleigh 

speckle model, which can be applied to heterogeneous regions. The 

non-Rayleigh speckle model can be degenerated into the generalized 

central limit theorem model under the assumption that 1) the real and 

imaginary components of the scattered field obey distributions with 

infinite variance and 2) the number of scatterers is an infinite 

constant [20-22, 26] (Section 2.5). In the coherent scatterer model, 

when the phase is uniformly distributed, the coupling term caused by 

the scattering phase can be neglected, then an approximate model, 

i.e., the incoherent scatterer sum model, can be obtained [11-13, 27, 

28] (Section 2.6). The incoherent scatterer sum model can be used 

for correlated clutter simulation. It was once referred to as the surface 

model [11, 12]. Here, we do not use this convention as to avoid 

confusion with ‘rough surface model’ in EM scattering theory. 

Section 3 introduces the statistical approach based on empirical 

models . These models no longer consider the scattering process, but 

only fit the statistics of the pixel. The main idea is to establish a 

statistical distribution that can better fit observed SAR image data. 

Depending on whether there exist analytical expressions and whether 

the model is elaborate, empirical models can be divided into single 

empirical distribution, finite mixture, and non-parametric. The single 

empirical distribution model uses one suitable probability 

distribution [1]. The finite mixture statistical model [29, 30] is a 

semi-parametric model that employs with multiple probability 

distributions. It involves more parameters than the single distribution 

model, but has a wider range of applications. Both models have 

analytical expressions. The non-parametric approach uses general 

mathematical models to fit real SAR images, such as the Parzen 

window method [31], neural networks [18, 32, 33], and support 
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vector machines (SVM) [19]. The non-parametric approach is 

usually elaborate and has no analytical expressions. 

 

 

Figure 4: The framework of single-pixel statistical modeling 

 Notation and definition 

If not otherwise specified, the notations employed in this paper are 

defined as follows: 

𝑁: the number of scatterers per resolution cell; 

𝑬: complex scattered field per resolution cell; 

𝐴: amplitude of the scattered field 𝑬; 

𝑎: amplitude of a single scatterer; 

휃: phase of the scattered field 𝑬;  

𝜙: phase of a single scatterer; 

ℜ: the real part of the scattered field 𝑬; 

𝔗: the imaginary part of the scattered field 𝑬; 

𝜎 : for the model not taking into account the imaging function, it 

denotes the intensity of scattered field 𝜎 = 𝐴2 ; but for the model 

taking into account imaging function, it denotes the radar cross 

section (RCS), while the intensity is denoted by 𝐼; 
𝐴𝑛: amplitude of the scattered field after 𝑛-look multilooking; 

𝜎𝑛: intensity of the scattered field after 𝑛-look multilooking; 

𝑍: SAR image pixel value, 𝑍𝐴 = 𝑋𝐴𝑌𝐴 denotes the pixel amplitude, 

𝑍𝐼 = 𝑋𝐼𝑌𝐼 denotes the pixel intensity; 

𝑋 : RCS, 𝑋𝐴  denotes amplitude of RCS, 𝑋𝐼  denotes intensity of 

RCS; 

𝑌: speckle, 𝑌𝐴 denotes its amplitude, 𝑌𝐼 denotes its intensity; 

𝐼: intensity of image pixel for models taking into account imaging 

function; 

E[∙] or 〈∙〉: expectation of a random variable; 

Mean(∙): the mean of a random variable; 

Var(∙): the variance of a random variable; 

𝐶: coefficient of variation (CV); 

Note that bold version of these symbols denote the corresponding 

vector or matrix form. 

2 Statistical modeling based on 
coherent scatterer model 

 Coherent scatterer model 

Assuming 𝑁 discrete ideal point scatterers in a resolution cell, the 

backscattering field contribution of the 𝑖-th scatterer (𝑖 = 1,2,… , 𝑁) 

is [34] 

𝐸𝑖 = 𝐾𝑖𝑎𝑖𝑐𝑜𝑠(𝜔𝑡 − 2𝑘𝑟𝑖 + 휃𝑖), (1) 

where 𝐾𝑖 is the constant related to radar system such as free space 

propagation loss, antenna gain, etc.; 𝑎𝑖  denotes the 𝑖 -th scatterer 

amplitude; 휃𝑖  denotes 𝑖-th scatterer phase; 𝑟𝑖 denotes the distance 

between the antenna and the scatterer; 𝑘 = 2𝜋/𝜆  is the 

wavenumber; 𝜔  denotes angular frequency. In free space, 𝑘 =

𝜔√𝜇0휀0 = 𝜔/𝑐, where 𝑐 denotes the speed of light. 

The phasor-domain counterpart of Eq. (1) is: 

𝑬𝑖 = 𝐾𝑖𝑎𝑖𝑒
𝑗𝜙𝑖 , 𝜙𝑖 = 휃𝑖 − 2𝑘𝑟𝑖 , (2) 

where 𝜙𝑖 denotes the phase angle of 𝑬𝑖. 
Consider the following assumptions [34]： 

Assumption (1): The scatterers per resolution are statistically 

independent, and the interaction between adjacent scatterers can be 

ignored. Then the total instantaneous field 𝑬 can be expressed as a 

coherent superposition: 

𝑬 =∑𝐾𝑖𝑎𝑖𝑒
𝑗𝜙𝑖

𝑁

i=1

. 
(3) 

Assumption (2): The maximum distance between targets ∆𝑟 =

|𝑟𝑖 − 𝑟𝑗|max
 is far less than the average distance between the antenna 

and targets; the antenna gain is uniform across the illuminated area, 

e.g. 𝐾𝑖 = 𝐾, 𝑖 = 1,2,… , 𝑁 . For convenience, we shall set 𝐾 = 1 , 

then: 

𝑬 =∑𝑎𝑖𝑒
𝑗𝜙𝑖

𝑁

𝑖=1

= 𝐴𝑒𝑗𝜃 , 
(4) 

where 𝐴 and 휃 are the amplitude and phase of 𝑬 respectively. 

As shown in Eq. (4) , if the above two assumptions are satisfied, the 

complex scattered field 𝑬 can be modeled as a random walk model 

in the complex plane and it can be expressed as the summation of the 

scattered contributions of 𝑁 independent scatterers in a resolution 

cell. This is called “coherent scatterer model”, also known as the 

discrete scatterer model in [1]. 

According to the coherent scatterer model in Eq. (4), it can be seen 

that the probability distribution of the observation in a resolution cell 

is mainly determined by four factors: 

(a) The spatial fluctuation distribution of scatterer amplitude 𝑎𝑖 in a 

resolution cell [9]. For simplicity, it is generally assumed that such 

amplitudes are independent identically distributed, as 1) constant, 2) 

variable, or 3) a sum of a known constant and an infinite number of 

variables. For complex scenes, it needs to be modeled as a finite 

mixture of multiple scatterers [35]. 

(b) The number 𝑁 of scatterers in a resolution cell. This quantity 

can be either fixed across resolution cells, or a random variable. In 

either case, it can be finite or infinite. 

(c) The distribution of scatterer phase 𝜙𝑖 in a resolution cell. It can 

be modeled as uniform distribution or non-uniform distribution. 

(d) The correlation between the amplitude 𝑎𝑖 and phase 𝜙𝑖 and the 

complex correlation among the scatterers in a resolution cell also 

contributes to the final single-pixel probability distribution. For 

simplicity, it is usually assumed that the amplitudes and phases are 

collectively independent. This hypothesis is assumed true throughout 

this paper. 

The single-pixel statistical modeling based on the coherent scatterer 

model can be classified into Rayleigh and non-Rayleigh speckle, 

according to these four factors. The Rayleigh speckle model can be 

generalized to the product model. The non-Rayleigh speckle includes 

the product model, non-Rayleigh speckle model, generalized central 

limit theorem model and incoherent scatterer sum model. The 

statistical modeling of SAR images under these models will be 

introduced in Sections 2.2 to 2.6. 
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 Statistical modeling based on Rayleigh speckle 

The Rayleigh speckle model is used to describe the scattering echoes 

from a uniform region [1, 2, 34]. The model simplifies the coherent 

scatterer model by adopting the central limit theorem. In this section, 

we firstly derive the Rayleigh speckle model based on the coherent 

scatterer model. We then introduce the statistical distribution of 

single-look/multi-look amplitude and intensity of the scattered field. 

  Rayleigh speckle model 

The Rayleigh speckle model is established when the coherent 

scatterer model in Eq. (4) satisfies the following assumptions [4, 34]： 

Assumption (1): The amplitudes and phases 

(𝑎1, 𝜙1), (𝑎2, 𝜙2),… , (𝑎𝑁, 𝜙𝑁) are collectively independent. 

Assumption (2): Since 𝜙𝑖 = 휃𝑖 − 2𝑘𝑟𝑖  is a random variable 

determined by 𝑟𝑖, then 𝑎𝑖 and 𝑟𝑖 are also independent; this is the 

same as assuming randomly positioned scatterers. 

Assumption (3): The scattered amplitudes 𝑎1, 𝑎2, …  are 

independently identically distributed with finite first and second 

moments, which ensures that there are no dominant scatterers in a 

resolution cell. 

Assumption (4): The scatterers are randomly located and the 

maximum distance ∆𝑟  is far greater than the wavelength, so the 

scatterer phase 𝜙𝑖 is uniformly distributed in (−𝜋, 𝜋]. 
Assumption (5): The number 𝑁 of scatterers is infinitely large. 

The real and imaginary components of the scattered field in Eq. (4) 

are expressed as： 

ℜ = Re{𝑬} =∑𝑎𝑖 cos 𝜙𝑖

𝑁

𝑖=1

, and 

𝔗 = Im{𝑬} =∑𝑎𝑖 sin𝜙𝑖 .

𝑁

𝑖=1

 

(5) 

The first order moments of ℜ  and 𝔗  can be derived using 

assumptions (1-4) [25, 36] : 

E[ℜ] = E [∑𝑎𝑖 cos 𝜙𝑖

𝑁

𝑖=1

] =∑E[𝑎𝑖 cos 𝜙𝑖]

𝑁

i=1

=∑E[𝑎𝑖]E[cos 𝜙𝑖]

𝑁

i=1

= 0, and 

E[𝔗] = E [∑𝑎𝑖 sin 𝜙𝑖

𝑁

𝑖=1

] =∑E[𝑎𝑖 sin 𝜙𝑖]

𝑁

i=1

=∑E[𝑎𝑖]E[sin 𝜙𝑖]

𝑁

i=1

= 0, 

(6) 

where E[∙]  denotes expectation. Similarly, the second order 

moments of ℜ and 𝔗 are [25, 36]: 

𝜎ℜ
2 =∑∑E[𝑎𝑖𝑎𝑘]E[cos 𝜙𝑖 cos 𝜙𝑘]

𝑁

𝑘=1

𝑁

𝑖=1

=∑E[𝑎𝑖
2]

𝑁

𝑖=1

E[cos2 𝜙𝑖]

=∑
E[𝑎𝑖

2]

2
, and

𝑁

𝑖=1

 

(7) 

𝜎𝔗
2 =∑∑E[𝑎𝑖𝑎𝑘]E[sin 𝜙𝑖 sin 𝜙𝑘]

𝑁

𝑘=1

𝑁

𝑖=1

=∑E[𝑎𝑖
2]

𝑁

𝑖=1

E[sin2𝜙𝑖] =∑
E[𝑎𝑖

2]

2

𝑁

𝑖=1

, 

where 𝜎ℜ  and 𝜎𝔗  denote the standard variation of ℜ  and 𝔗 , 

respectively. 

The correlation between ℜ and 𝔗 is [25] : 

𝜌ℜ,𝔗 = E[ℜ𝔗] =∑E[𝑎𝑖
2]

𝑁

𝑖=1

E[cos𝜙𝑖 sin 𝜙𝑖] = 0. (8) 

Assumption (5) allows us to use the central limit theorem, thereby 

ℜ and 𝔗 are Gaussian distributed random variables with zero mean 

and the same variance ℴ/2 . Then the joint probability density 

function of ℜ and 𝔗 is [25] : 

𝑝ℜ,𝔗(ℜ,𝔗) =
1

𝜋ℴ
𝑒−

ℜ2+𝔗2

ℴ . (9) 

 Statistical distributions 

The probability distributions of amplitude 𝐴 and intensity 𝜎 then 

can be derived from Eq. (9) by variable substitution and integrating 

with respect to the phase [25]. The definition, distribution type as 

well as the probability density function (PDF), and the statistical 

characteristics of intensity image are summarized in Table 1.  

The image generated by replacing 𝑛 pixels with a new pixel bearing 

their average value is called an 𝑛-look image. The 𝑛-look statistics 

of amplitude and intensity are also listed in Table 1. The coefficient 

of variation (CV), denoted as 𝐶 , is defined as the ratio of the 

standard derivation to the mean [25]: 

𝐶 =
√variance

mean
. (10) 

It is an important parameter that reflects the characteristics of the 

speckle pattern and is a measure of the intensity (or amplitude) 

fluctuation relative to the average intensity (or amplitude). In 

intensity, 𝐶 is a constant between 0 and 𝑛−1/2. If the observations 

are all equal, then 𝐶 = 0; as the roughness of target increases, the 

speckle gradually changes from partial developed to fully developed 

speckle, and 𝐶  gradually increases. If the target surface is very 

rough, the fluctuation of speckle is of the same order as the average 

value and 𝐶 = 1, which is called “fully developed speckle” [2, 25]. 

Notice that this discussion about 𝐶 is valid only on areas where the 

variance of the real and imaginary parts of the scattered field does 

not change from pixel to pixel. 

 

 Statistical modeling based on the product model 

The assumptions in the Rayleigh speckle model limit the scope of 

application to homogenous regions but are not valid for 

inhomogeneous areas. The product model in this section is able to 

characterize inhomogeneous areas and provides a wealth of room for 

their statistical modeling. This section first introduces the product 

model, and then summaries the statistical distributions developed by 

the product model. 

 Product model 

The product model was proposed by Ward in 1981 [14], which 

considers SAR image observations as the product of the RCS with 
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uncorrelated speckle noise. It can be seen as a generalization of the 

Rayleigh speckle model describing a uniform scene. The Rayleigh 

speckle model can be seen as a multiplication of a constant RCS with 

a square root gamma distribution or a gamma distribution. The 

product model simplifies the analysis of statistical modeling of SAR 

images. The rationality and accuracy of the product model will be 

discussed in Section 2.3.3. Figure 5 shows a schematic of the product 

model. 

 

Figure 5: Schematic of the product model 

The mathematical representation of the product model is [1, 2, 14, 

37]: 

𝑍 = 𝑋 ∙ 𝑌, 
(11) 

where 𝑍 denotes the observed value; 𝑋 denotes RCS; 𝑌 denotes 

speckle, 𝑋𝐴, 𝑋𝜎  denote the amplitude and intensity of RCS, 

respectively; and 𝑌𝐴, 𝑌𝜎  denote the amplitude and intensity of 

speckle, respectively. 

 Statistical distributions 

Figure 6 shows the modeling process of intensity statistical 

distributions based on the product model. The product model models 

the SAR image intensity as the product of speckle and RCS, therefore, 

the statistical distribution of intensity can be modeled by separately 

analyzing the statistical distribution of the speckle component and 

the RCS component. The “Yellow shading box with embedded 

product operator” in Figure 6 denotes the “Product model” which has 

two inputs, i.e. the statistical distribution of speckle and RCS, and 

outputs the distribution of SAR image intensity.  

As shown in Figure 6, the speckle component can be modeled as 

negative exponential distribution for single-look intensity image and 

gamma distribution for multi-look intensity image when the central 

limit theorem is satisfied. The speckle component can be modeled as 

generalized gamma distribution when the central limit theorem is not 

satisfied. 

The RCS component also has multiple different modeling methods 

depending on different physical scenarios: 

(a) The RCS is considered as a constant for homogenous area. 

The Rayleigh speckle model can be obtained if the central 

limit theorem is satisfied according to the product model 

shown in Figure 6. 

(b) For inhomogeneous area, the RCS can be modeled as 

generalized gamma distribution, generalized inverse 

Gaussian distribution, Beta distribution of the first kind 

and Beta distribution of the second kind [23]. And the 

generalized inverse Gaussian distribution can be 

degenerated into inverse Gaussian distribution, gamma 

distribution and inverse gamma distribution under certain 

conditions. 

As shown in Figure 6, under the product model, 1) generalized 

compound distributed (GC distribution) SAR images can be obtained 

when the RCS obeys the generalized gamma distribution and the 

speckle obeys the generalized gamma distribution [38-40]; 2) The 

SAR image obeying the 𝐺 distribution can be obtained by the RCS 

obeying the generalized inverse Gaussian distribution and the 

speckle obeying the gamma distribution. The 𝐺 distribution can be 

degenerated into 𝐺ℎ  distribution, 𝐾  distribution and 𝐺0 

distribution under certain conditions [41]; 3) 𝑈 -distributed SAR 

images can be obtained by the RCS obeying Beta distribution of the 

second kind and gamma-distributed speckle [23]; 4) The SAR image 

obeying 𝑊  distribution can be obtained by the RCS obeying the 

first kind of Beta distribution and the speckle obeying gamma 

distribution [23]. 𝐾  distribution, 𝐺0  distribution, 𝑈  distribution 

and 𝑊 distribution are all probability distributions belonging to the 

Pearson system [42-44]. 

The distribution functions and related statistical characteristics based 

on the product model are summarized in Table 2 which will be 

introduced in the following. Since the 𝑈  distribution and the 𝑊 

distribution can also be modeled under the non-Rayleigh speckle 

model, they will be introduced in detail in Section 2.4.2 and will not 

be introduced here. 

 

Table 1: Statistical distribution and characteristics of the Rayleigh speckle model 

 Definition Distribution type Probability density function (PDF) Mean Variance Coefficient of 
variation (CV) 

Intensity 𝜎 = 𝐴2 Negative 
exponential 
distribution 

𝑝(𝜎) =
1

ℴ
exp(−

𝜎

ℴ
) 

ℴ ℴ2 1 

𝒏 − 𝐥𝐨𝐨𝐤 
intensity 𝜎𝑛 =

1

𝑛
∑𝜎(ℓ)

𝑛

ℓ=1

 
Gamma 

distribution 
𝑝(𝜎𝑛) =

1

Γ(𝑛)
(
𝑛

ℴ
)
𝑛

𝜎𝑛
𝑛−1 exp (−

𝑛𝜎𝑛
ℴ
) 

ℴ ℴ2

𝑛
 

1

√𝑛
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Figure 6: Statistical distributions of scattered intensity based on product model 

 

 
Figure 7 Statistical distributions of scattered intensity based on non-Rayleigh speckle model 
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Table 2: Statistical distribution and characteristics of product model for intensity data 

Distribution type PDF of RCS 

𝒑(𝑿𝝈 = 𝒙) 

PDF of 

Speckle 

𝒑(𝒀𝝈 = 𝒚) 

PDF of SAR image 

𝒑(𝒁𝝈 = 𝒛) 

𝒓 − 𝐨𝐫𝐝𝐞𝐫 moment 𝐄{𝒁𝝈
𝒓} 

Gamma distribution [1]  𝑝𝐶  

𝑝𝛤 

𝑝Gamma𝜎(𝑍𝜎 = 𝑧; 𝑛, ℴ)

=
1

Γ(𝑛)
(
𝑛

ℴ
)
𝑛

𝑧𝑛−1 exp (−
𝑛𝑧

ℴ
) 

E{𝑍𝜎
𝑟} =

Γ(𝑛 + 𝑟)

Γ(𝑛)
(
ℴ

𝑛
)
𝑟

 

𝑮 distribution [43,44] 𝑝𝐺𝐼𝐺  

𝑝𝐺𝜎(𝑍𝜎 = 𝑧; 𝛽, 𝛾, 𝛼, 𝑛)

=
𝑛𝑛(𝛽/𝛾)𝛼/2𝑧(𝑛−1)

Γ(𝑛)𝐾𝛼(2√𝛽𝛾)
(
𝛾 + 𝑛𝑧

𝛽
)

𝛼−𝑛
2
𝐾𝛼−𝑛 (2√𝛽(𝛾 + 𝑛𝑧)) 

𝐸{𝑍𝜎
𝑟} = (

𝛾

𝑛2𝛽
)

𝑟
2𝐾𝛼+𝑟(2√𝛽𝛾)Γ(𝑛 + 𝑟)

𝐾𝛼(2√𝛽𝛾)Γ(𝑛)
 

𝑲 distribution [2,43] 𝑝Gamma 

𝑝𝐾𝜎(𝑍𝜎 = 𝑧; 𝛽, 𝛼, 𝑛)

=
2𝛽𝑛

Γ(𝑛)Γ(𝛼)
(𝛽𝑛𝑧)

𝛼+𝑛
2
−1𝐾𝛼−𝑛(2√𝛽𝑛𝑧) 

E{𝑍𝜎
𝑟} = (𝑛𝛽)−𝑟

Γ(𝑛 + 𝑟)Γ(𝛼 + 𝑟)

Γ(𝑛)Γ(𝛼)
 

𝑮𝟎 distribution [43] 𝑝Gamma−1 

𝑝𝐺𝜎0(𝑍𝜎 = 𝑧; 𝛾, −𝛼, 𝑛)

=
𝑛𝑛Γ(𝑛 − 𝛼)𝛾−𝛼𝑧𝑛−1

Γ(𝑛)Γ(−𝛼)(𝛾 + 𝑛𝑧)𝑛−𝛼
 

E{𝑍𝜎
𝑟} = (𝛾/𝑛)𝑟

Γ(𝑛 + 𝑟)Γ(−𝛼 − 𝑟)

Γ(𝑛)Γ(−𝛼)
 

𝐆𝐡 distribution [43,45] 𝑝IG 

𝑝𝐺𝜎ℎ(𝑍𝜎 = 𝑧; 𝜆, 𝜇)

= √
2𝜆

𝜋
𝑒
√
𝜆2

𝜇
𝑛𝑛𝑧𝑛−1

Γ(𝑛)
(
(𝜆 + 2𝑛𝑧)𝜇

𝜆
)

−1−2𝑛
4

× 𝐾
𝑛+

1
2
(
(𝜆 + 2𝑛𝑧)𝜆

𝜇
) 

𝐸{𝑍𝜎
𝑟} = √

2𝜆

𝜋
(
𝜇

𝑛2
)

𝑟
2
𝑒
√
𝜆2

𝜇 𝜇−
1
4 ×

𝐾𝑟−1/2(𝜆/√𝜇)Γ(𝑛 + 𝑟)

Γ(𝑛)
 

GC distribution [38] 𝑝𝐺𝛤  𝑝𝐺𝛤  

𝑝𝐺𝐶𝜎(𝑍𝜎 = 𝑧; 𝑎, 𝑏1, 𝑣1, 𝑏2, 𝑣2)

=
𝑏1𝑏2

2𝑧Γ(𝑣1)Γ(𝑣2)

√𝑧
𝑏1𝑣1

𝑎𝑏2𝑣2
∫ 𝑥𝑏2𝑣2−𝑏1𝑣1−1

∞

0

× exp [− (
𝑥

𝑎
)
𝑏2
− (

√𝑧

𝑥
)

𝑏1

] 𝑑𝑥 

E{𝑍𝜎
𝑟} = 𝑎2𝑟

Γ(
2𝑟
𝑏1
+ 𝑣1)Γ(

2𝑟
𝑏2
+ 𝑣2)

Γ(𝑣1)Γ(𝑣2)
 

Notes and Supplements  
Without special explanation, the symbols in this table above are defined as follows: 𝑛 is the number of look, the special function 𝐾𝑛(∙) is 
the second type of modified Bessel function, Γ(∙) is the gamma function, 𝑋𝜎  denotes the RCS, and 𝑌𝜎 denotes the speckle. 𝑍𝜎 = 𝑋𝜎 ∙
𝑌𝜎 denotes the SAR intensity image. 

(1) The detailed expressions in the second column, i.e. Probability density function (PDF) of RCS, are: 

𝑝𝐶(𝑋𝜎 = 𝑥; ℴ) = {
1, 𝑥 = ℴ
0, others

;  ℴ > 0, 

𝑝𝐺𝐼𝐺(𝑋𝜎 = 𝑥; 𝛽, 𝛾, 𝛼) =
(
𝛽
𝛾
)

𝛼
2

2𝐾𝛼(2√𝛽𝛾)
𝑥(𝛼−1) × 𝑒−

(𝛽𝑥+
𝛾
𝑥
)
 ; 𝛼 ∈ 𝑅, (𝛽, 𝛾) ∈ Θ𝛼; Θ𝛼 = {

{(𝛽, 𝛾): 𝛽 > 0, 𝛾 ≥ 0}    𝑖𝑓  𝛼 > 0
{(𝛽, 𝛾): 𝛽 > 0, 𝛾 > 0}    𝑖𝑓  𝛼 = 0
{(𝛽, 𝛾): 𝛽 ≥ 0, 𝛾 > 0}    𝑖𝑓  𝛼 < 0

, 

𝑝Gamma(𝑋𝜎 = 𝑥; 𝛽, 𝛼) =
𝛽𝛼

Γ(𝛼)
𝑥(𝛼−1)𝑒−𝛽𝑥; 𝛽, 𝛼 > 0, 

𝑝Gamma−1(𝑋𝜎 = 𝑥; 𝛼, 𝛾) =
𝛾−𝛼

Γ(−𝛼)
𝑥𝛼−1𝑒−𝛾/𝑥; −𝛼, 𝛾 > 0, 

𝑝IG(𝑋𝜎 = 𝑥; 𝜇, 𝜆) = [
𝜆

2𝜋𝑥3
]

1/2

× exp [−𝜆 (
𝑥

2𝜇
+
1

2𝑥
)] ; 𝜇 ≥ 0, 𝜆 > 0, 

𝑝𝐺𝛤(𝑋𝜎 = 𝑥; 𝑎, 𝑏2 , 𝑣2) =
𝑏2

2√𝑥𝑎Γ(𝑣2)
(
√𝑥

𝑎
)

𝑏2𝑣2−1

× exp [− (
√𝑥

𝑎
)

𝑏2

] ; 𝑎, 𝑏2, 𝑣2 > 0. 

  

(2) The detailed expressions in the third column, i.e. PDF of Speckle, are gamma distributed speckle 𝑌𝜎~Gamma(𝑛, 𝑛), which is 

𝑝𝛤(𝑌𝜎 = 𝑦) =
2𝑛𝑛

Γ(𝑛)
𝑦2𝑛−1 exp(−𝑛𝑦2) , 𝑦, 𝑛 > 0, 

and generalized gamma distributed speckle 𝑌𝜎~GΓ(𝑏1, 𝑣1), which is: 

𝑝𝐺𝛤(𝑌𝜎 = 𝑦) =
𝑏1

2Γ(𝑣1)
𝑦
𝑏1𝑣1
2

−1 exp [−𝑦
𝑏1
2 ] ; 𝑏1, 𝑣1 > 0  

 

a) Gamma distribution 

The square root gamma distribution is used to describe the multi-look 

amplitude images of homogenous areas [1], which has been derived 

from the Rayleigh speckle model in Section 2.2.2. It can be re-modeled 

as the product of the RCS and speckle under the product model. For 

the intensity image, if the RCS intensity is a constant 𝑋𝜎 = ℴ , the 

multi-look speckle intensity 𝑌𝜎  obeys the gamma distribution 

𝑌𝜎~Gamma(𝑛, 𝑛), and then the image intensity 𝑍𝜎 obeys the gamma 

distribution according to the product model. According to the 

statistical moment in the Table 2, when the number of looks 𝑛  is 

known, the second-order sample moment �̂�2 can be used to estimate 

the parameter: ℴ̂ = �̂�2. 

b) 𝑮 distribution 

The 𝐺 distribution was proposed by Frery et al. in 1997 [45] using the 

product model to describe the statistical characteristics of 

inhomogeneous areas. In this model, the RCS intensity obeys the 

generalized inverse Gaussian distribution 𝑋𝜎~GIG(𝛽, 𝛾, 𝛼) [46] and 

the speckle obeys the gamma distribution. According to the product 

model, the SAR image intensity 𝑍𝜎 obey the 𝐺𝜎 distribution.  
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c) 𝑲 distribution 

The 𝐾𝜎  distribution is a classical statistical distribution model 

describing inhomogeneous regions [2, 45]. The 𝐾𝜎 distribution can 

be derived based on several different modeling methods. The modeling 

under the product model is described here and other modeling methods 

will be detailed in Section 2.4.2. The 𝐾𝜎  distribution can also be 
seen as a special case of the 𝐺𝜎 distribution under the condition 
that 𝛾 → 0  [45]. At this time, the RCS amplitude distribution is 

degenerated from the generalized inverse Gaussian distribution to the 

gamma distribution 𝑋𝜎~Gamma(𝛽, 𝛼),. Then the 𝐾𝜎 distribution of 

intensity image are obtained shown in the Table 2. 

If the number of looks 𝑛  is known, when 𝑟 = 1/2, 1 , the sample 

moments �̂�1/2, �̂�1can be used to estimate the distribution parameters 

𝛼, 𝛽 by solving the following system of equations: 
Γ(𝑛 + 1/2)Γ(�̂� + 1/2)Γ(𝑛)Γ(�̂�)

Γ2(𝑛 + 1/4)Γ2(�̂� + 1/4)
−
�̂�1

�̂�1
2

2 = 0, 

�̂� =
1

𝑛
(
Γ(𝑛 + 1/2)Γ(�̂� + 1/2)

Γ(𝑛)Γ(�̂�)�̂�1
)

2

. 

(12) 

d) 𝑮𝟎 distribution 

The 𝐺𝜎
0 distribution is also a statistical distribution describing 

the inhomogeneous regions [45]. When 𝛽 → 0, 𝛼 < 0, 𝛾 > 0, the 𝐺𝜎 

distribution can be degenerated into a 𝐺𝜎
0  distribution. Under the 

product model, If the RCS intensity obeys the inverse gamma 

distribution 𝑋𝜎~Gamma
−1(𝛼, 𝛾) , the speckle obeys a Gamma 

distribution, then the intensity 𝑍𝜎 distribution of the SAR image obey 

and 𝐺𝜎
0 distribution. The parameters of the 𝐺0 distribution include 

𝛾, 𝛼, 𝑛, where 𝑛 is the number of look; 𝛼 indicates the roughness, 

𝛼 ≤ −15 represents the homogeneous area such as grassland, and 

𝛼 ∈ (−15,−5] represents inhomogeneous areas such as forests, and 

𝛼 ∈ (−5,0] represents extremely inhomogeneous area; 𝛾 is a scale 

parameter. 

If the number of looks 𝑛  is known, when 𝑟 = 1/2, 1 , the 

sample moments �̂�1/2, �̂�1can be used to estimate the distribution 

parameters 𝛼, 𝛾: 

Γ2(𝑛 + 1/4)Γ2(−�̂� − 1/4)

Γ(𝑛 + 1/2)Γ(−�̂� − 1/2)Γ(𝑛)Γ(−�̂�)
−

�̂�1
2

2

�̂�1
= 0, 

𝛾 = 𝑛 (
�̂�1Γ(𝑛)Γ(−�̂�)

Γ(𝑛 + 1/2)Γ(−�̂� − 1/2)
)

2

. 

(13) 

The mathematical form of 𝐺0 distribution is equivalent to the Fisher 

distribution, also called “Fisher–Snedecor”, described in the Table 3 in 

Section 3.1. The Fisher distribution can be obtained by setting 𝑛 =
𝐿, 𝛼 = −𝑀, 𝛾 = −𝜇𝛼. 

e) 𝑮𝒉 distribution 

The 𝐺𝜎
ℎ  distribution is another statistical distribution for 

describing inhomogeneous areas [45, 47, 48]. If 𝛽 = 𝜆/(2𝜇), 𝛾 =
𝜆/2, 𝛼 = −1/2 , the 𝐺𝜎  distribution can be degraded to 𝐺𝜎

ℎ 

distribution. Under the product model, if the RCS intensity obeys the 

inverse Gaussian distribution 𝑋𝜎~IG(𝜇, 𝜆), and the speckle obeys the 

gamma distribution, then the intensity 𝑍𝜎 of the SAR image obeys a 

𝐺𝜎
ℎ distribution. 

f) 𝑮𝑪 distribution 

The GC (Generalized Compound) distribution is a statistical 

distribution proposed by Anastassopoulos et al.  [40] based on the 

product model for describing inhomogeneous areas. Under the product 

model, if the RCS intensity obeys the generalized gamma distribution 

𝑋𝜎~GΓ(𝑎, 𝑏2, 𝑣2) , and the speckle obeys the generalized gamma 

distribution 𝑌𝜎~GΓ(𝑏1, 𝑣1), then the intensity 𝑍𝜎 of the SAR image 

obeys a GC distribution shown in Table 2. The GC distribution has 

other distributions as particular cases, for example: 

a) If 𝑏1 = 𝑏2 = 2, 𝑣1 = 1, 𝑣2 = 𝑣, then GC distribution is the 𝐾 

distribution: 

𝑝𝑍𝜎(𝑧; 𝑎, 𝑣) =
2

𝑎√𝑧Γ(𝑣)
(
√𝑧

𝑎
)

𝑣

𝐾𝑣−1 (
2√𝑧

𝑎
), (14) 

and the corresponding 𝑟-order moment is: 

E{𝑍𝜎
𝑟} = 𝑎𝑟

Γ(𝑟 + 1)Γ(𝑟 + 𝑣)

Γ(𝑣)
. 

(15) 

b) If 𝑏1 = 𝑏2 = 2𝑐, 𝑣1 = 1, 𝑣2 = 1/2, the GC distribution becomes 

a Weibull distribution： 

𝑝𝑍𝜎(𝑧; 𝑎, 𝑐) =
2𝑐

𝑎√𝑧Γ(1/2)
(
√𝑧

𝑎
)

3𝑐
2
−1

𝐾−1/2 (2(
√𝑧

𝑎
)

𝑐

). (16) 

If 𝑏 = 𝑎 × 2−1/𝑐 , the above equation can be transformed into 

𝑝𝑊𝐵(𝑧; 𝑐, 𝑏) in Table 3. 

 Validity assessment of the product model 

Although the product model greatly simplifies the statistical modeling 

of SAR images, few works have dealt with the verification of its 

theoretical and physical foundations. Especially, whether the speckle 

of high-resolution SAR images still is multiplicative noise has always 

been controversial. Some scholars believe that the speckle should be 

seen as a scattering phenomenon rather than multiplicative noise [1]. 

This section summarizes the current assessment of the validity of the 

product model. 

Early Tur et al. [49] studied the conditions applicable to the 

multiplicative speckle from the theoretical model of optical coherent 

imaging. The random intensity 𝐼𝑡𝑠  received at a certain point 𝑃 =
(𝑥𝑝, 𝑦𝑝) can be expressed as:  

𝐼𝑡𝑠(𝑥𝑝, 𝑦𝑝) = |∬𝑅cell
𝑑𝑥′𝑑𝑦′ × ℎ(𝑥𝑝 − 𝑥

′, 𝑦𝑝

− 𝑦′)𝑡(𝑥′, 𝑦′)exp [𝑖𝜑(𝑥′, 𝑦′)]|
2
, (17) 

where ℎ(𝑥, 𝑦)  represents the amplitude response of the system, 

𝜑(𝑥′, 𝑦′) represents the random phase at the point (𝑥′, 𝑦′), 𝑡(𝑥′, 𝑦′) 
indicates the scattering contribution at the point (𝑥′, 𝑦′). It should be 

noted that the meanings of 𝑡(𝑥′, 𝑦′) and 𝜑(𝑥′, 𝑦′) here correspond to 

the scattering amplitude and phase of a single scatterer in one 

resolution cell in radar imaging, respectively.  

If and only if 𝑡(𝑥′, 𝑦′)  does not change within a resolution cell, 

according to the Cauchy–Schwarz inequality, Eq. (17) can be 

expressed as [49]: 

𝐼𝑡𝑠(𝑥𝑝, 𝑦𝑝) = |𝑡(𝑥𝑝, 𝑦𝑝)|
2
|∬

Rcell
𝑑𝑥′𝑑𝑦′

× ℎ(𝑥𝑝 − 𝑥
′, 𝑦𝑝

− 𝑦′) exp[𝑖𝜑(𝑥′, 𝑦′)]|
2

 

= 𝛼 ∙ 𝐼inc(𝑥𝑝, 𝑦𝑝) ∙ 𝐼𝑠(𝑥𝑝, 𝑦𝑝), 

(18) 

𝐼inc(𝑥𝑝, 𝑦𝑝) =
1

𝛼
|𝑡(𝑥𝑝, 𝑦𝑝)|

2
 (19) 
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𝐼𝑠(𝑥𝑝, 𝑦𝑝) = |∬Rcell
𝑑𝑥′𝑑𝑦′

× ℎ(𝑥𝑝 − 𝑥
′, 𝑦𝑝

− 𝑦′) exp[𝑖𝜑(𝑥′, 𝑦′)]|
2
, 

where 𝐼inc(𝑥, 𝑦)  represents the incoherent image intensity of 𝑡 , 
𝐼𝑠(𝑥, 𝑦)  represents the intensity value at 𝑡(𝑥, 𝑦) = 1 , and 𝛼  is a 

constant depending on system parameters. Eq. (18) gives the product 

model in a coherent imaging system. Based on the above theoretical 

derivation, the literature [49] concludes that: the product model is 

established when 𝑡(𝑥′, 𝑦′) is constant in a resolution cell; the product 

model is no longer valid when 𝑡(𝑥′, 𝑦′) changes and there is detail 

information within a resolution cell. 

In addition, Lee et al. studied the product model from the fact that the 

coefficient of variation of the Rayleigh speckle model should be 

constant for homogenous areas [2]. Suppose a product model: 

𝑧(𝑘, 𝑙) = 𝑥(𝑘, 𝑙)𝑦(𝑘, 𝑙), 
(20) 

where 𝑧(𝑘, 𝑙) is the intensity or amplitude of the (𝑘, 𝑙)th pixel in the 

SAR image, 𝑥(𝑘, 𝑙)  is the reflection coefficient, and 𝑦(𝑘, 𝑙)  is the 

noise with mean of 1 and standard deviation 𝜎𝑦. 

Suppose 𝑥(𝑘, 𝑙) and 𝑦(𝑘, 𝑙) are statistically independent, according 

to the product model and 𝐸[𝑦] = 1, it can be derived that: 

𝐸[𝑧] = 𝐸[𝑥]. 
(21) 

Furthermore, the variance of 𝑧 can be derived as: 

Var (𝑧) = E[(𝑧 − 𝑧̅)2] = (Var(𝑥) + �̅�2)𝜎𝑦
2 + Var(𝑥), 

(22) 

then the coefficient of variation of 𝑧 can be obtained as: 

√Var (𝑧)

𝑧̅
= √

Var(𝑥)(1 + 𝜎𝑦
2)

𝑧̅2
+ 𝜎𝑦

2. (23) 

There is no variation of the reflection coefficient over homogenous 

areas, therefore Var(𝑥) = 0, and then: 

√Var (𝑧)

𝑧̅
= 𝜎𝑦 . (24) 

Thus, the coefficient of variation is constant in the multiplicative noise 

model of homogenous regions. In the literature [2], it is explained that 

the homogenous SAR image satisfies the product model by testing the 

coefficient of variation of the single/multi-look SAR 

amplitude/intensity image as a constant. 

It can be seen that the product model is theoretically strictly established 

only for homogenous regions but not in the inhomogeneous case. That 

is, the product model based on the Rayleigh speckle model is 

theoretically strictly established; but there is no theoretical support for 

the product model to be extended to inhomogeneous regions. However, 

the statistical modeling based on the product model is still widely used 

because it is applicable to several typical distribution models for 

inhomogeneous regions, such as the K-distribution, and it simplifies 

the derivation process of statistical modeling [50]. 

 Statistical modeling based on the non-Rayleigh speckle 

model 

The Rayleigh speckle model is used to describe low-resolution radar 

images. The model assumes that there is a large number of independent 

scatterers in a resolution cell, the scattered amplitude of the scatterers 

are independently and identically distributed, and the scattering phase 

is uniformly distributed. Such assumptions are seldom valid in high-

resolution radar imagery, though. The non-Rayleigh speckle model is 

developed based on the coherent scatterer model. In this model, the 

radar echo appears to contain “target signal” with fluctuations, and the 

main explanation for this phenomenon is [9]: 

(1) The scattered amplitude in a resolution cell is no longer a constant 

but has some fluctuating characteristics. As shown in Figure 8, 𝑎𝑖(𝒓) 
represents the fluctuating characteristic of the scattered amplitude of 

the 𝑖 -th scatterer at different observation positions 𝒓 . At a specific 

time 𝑡0, the number of scatterers at the specified observation position 

𝑟0 is 𝑁 (𝑁 = 4 in Figure 8,), the spatial fluctuation characteristics 

of the scatterer 𝑎𝑖(𝒓) cause the scattered field at the position 𝑟0 to 

be determined by a few strongly contributed scatterers. Therefore, even 

when the number 𝑁  of scatterers is large, such fluctuations cause 

non-Rayleigh scattered echoes. This phenomenon gave birth to the 

concept of “equivalent number of scatterers,” which will be introduced 

in Section 2.4.1. 

( )a r

1( )a r

2 ( )a r

3( )a r

4 ( )a r

4

1

( ) ( )
N

0 i 0

i

a a
=

=

= r r

0r
r

 

Figure 8 Amplitude fluctuation of non-Rayleigh speckle model 

(2) The number 𝑁 of scatterers in a resolution cell is small and the 

central limit theorem is no longer satisfied. The scattering echo at this 

time is no longer a Rayleigh echo, and the fluctuation characteristics 

of the number of scatterers influence the probability distribution of a 

single pixel. The number of scatterers can be modeled as a random 

variable obeying Poisson distribution whose expectation is also a 

random variable obeying some distribution. 

(3) The distribution of the phase of scattered field in a resolution cell 

is no longer uniform distributed. The discussion of phase distribution 

is relatively rare, since it is generally assumed that the scatterers are 

randomly positioned, and the maximum distance between the 

scatterers is much larger than the wavelength, therefore the scattered 

phase is usually sufficient to satisfy the uniform distribution. 

This section first theoretically deduces and analyzes the probabilistic 

statistical model under the non-Rayleigh speckle model, and then 

introduces various statistical distributions based on the non-Rayleigh 

speckle model. 

 Non-Rayleigh speckle model 

Rewrite the expression of the scattered field 𝐸(𝒓)  in the coherent 

scatterer model (Eq. (4)) as follows: 

𝐸(𝒓) =∑𝑎𝑖𝑒
𝑗𝜙𝑖

𝑁

𝑖=1

=∑(𝑎𝑖 cos 𝜙𝑖 + 𝑗𝑎𝑖 sin𝜙𝑖)

𝑁

𝑖=1

= ℜ + 𝑗𝔗 = 𝐴𝑒𝑗𝜃 . 
(25) 

Take the following assumptions: 

(1) 𝑎𝑖 , 𝑎𝑗 , 𝜙𝑖 , 𝜙𝑗 , (𝑖 ≠ 𝑗)  are collectively independent 

random variables; 

(2) {𝜙𝑖} is uniformly distributed at [0,2𝜋). 

The characteristic functions 𝑀ℜ𝑖(𝜔)  and 𝑀𝔗𝑖(𝜔)  of the real 

component 𝑎𝑖 cos 𝜙𝑖  and imaginary part 𝑎𝑖 sin 𝜙𝑖  of the 𝑖 -th 

scatterer can be written as: 
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𝑀ℜ𝑖(𝜔) = 𝑀𝔗𝑖(𝜔) ≡ 𝐸[exp(𝑗𝜔𝑎𝑖 cos 𝜙𝑖)]

= ∫ 𝑝𝜙(𝜙𝑖) exp(𝑗𝜔𝑎𝑖 cos𝜙𝑖) 𝑑𝜙𝑖

𝜋

−𝜋

=
1

2𝜋
∫ exp(𝑗𝜔𝑎𝑖 cos𝜙𝑖) 𝑑𝜙𝑖

𝜋

−𝜋

= 𝐽0(𝑎𝑖𝜔), 

(26) 

where 𝐽0 is the first type of zero-order Bessel function. 

Assuming that the number of scatterers 𝑁  is a constant, then the 

characteristic function of the sum of 𝑁 independent random variables 

is the product of the characteristic function of each variable, and the 

characteristic function of the real and imaginary components of the 

scattered field can be written as [9, 25]： 

𝑀ℜ(𝜔) = 𝑀𝔗(𝜔) =∏𝑀ℜ𝑖(𝜔)

𝑁

𝑖=1

=∏𝑀𝔗𝑖(𝜔)

𝑁

𝑖=1

=∏𝐽0(𝑎𝑖𝜔)

𝑁

𝑖=1

. 
(27) 

Since the phase angles of the summation of the individual components 

are uniformly distributed within (−𝜋, 𝜋], the joint probability density 

and joint characteristic function of the real and imaginary components 

of the summed phase vector is circularly symmetric. The two-

dimensional characteristic function 𝑀ℜ,𝔗(𝜔ℜ, 𝜔𝔗) is [9, 23]: 

𝑀ℜ,𝔗(𝜔ℜ, 𝜔𝔗) = 𝑀ℜ,𝔗 (√𝜔ℜ
2 + 𝜔𝔗

2)

=∏𝐽0(𝑎𝑖√𝜔ℜ
2 +𝜔𝔗

2)

𝑁

𝑖=1

. 
(28) 

Denoting 𝑢 = √𝜔ℜ
2 + 𝜔𝔗

2   the characteristic function of the 

amplitude 𝐴 of the scattered field, 𝐸(𝒓) [9, 25] can be written as: 

𝑀𝑁(𝑢) =∏𝐽0(𝑎𝑖𝑢)

𝑁

𝑖=1

. 
(29) 

According to Eq. (29), using the Fourier-Bessel transform, the PDF 

𝑃𝐴(𝐴) of the amplitude 𝐴 can be written as: 

𝑃𝐴(𝐴) = 2𝜋∫ 𝜌∏𝐽0(2𝜋𝜌𝑎𝑖)

𝑁

𝑖=1

𝐽0(2𝜋𝜌𝐴)
∞

0

𝑑𝜌

=
1

2𝜋
∫ 𝑢∏𝐽0(𝑢𝑎𝑖)

𝑁

𝑖=1

𝐽0(𝑢𝐴)
∞

0

𝑑𝑢, 
(30) 

where 𝜌 = 𝑢/2𝜋, 𝐴 = √ℜ2 + 𝔗2. 

Define the intensity of scattered field 𝜎(𝒓)  as the square of the 

amplitude of the scattered field: 

𝜎(𝒓) ≡ |𝐸(𝒓)|2 = 𝐴2. 
(31) 

Suppose that {𝑎𝑖} is a constant, then the probability distribution of 𝜎 

can be derived from 𝑃𝜎(𝜎) = 𝑃𝐴(√𝜎))/(2√𝜎) [25]: 

𝑃𝜎(𝜎; 𝒓; {𝑎𝑖(𝒓)}) =
1

2
∫ 𝜔𝐽0(𝜔√𝜎)∏𝐽0(𝜔𝑎𝑖(𝒓))

𝑁

𝑖=1

∞

0

𝑑𝜔. 
(32) 

Assuming that the elements {𝑎𝑖}  are collectively independent and 

identically distributed, then the average of {𝑎𝑖} is: 

𝑃𝜎(𝜎; 𝒓) =
1

2
∫ 𝜔𝐽0(𝜔√𝜎)〈𝐽0[𝜔𝑎(𝒓)]〉

𝑁
∞

0

𝑑𝜔, 
(33) 

where 〈∙〉 denotes the expectation and 

〈𝐽0[𝜔𝑎(𝒓)]〉 = ∫ 𝐽0(𝜔𝑎)𝑝(𝑎; 𝒓)
∞

0

𝑑𝑎, 
(34) 

where 𝑝(𝑎; 𝒓) is the PDF of {𝑎𝑖}, which is usually a function of the 

observed position 𝒓. 

Eq. (33) represents the PDF of the intensity of scattered field as a 

function of 𝑝(𝑎; 𝒓) and 𝑁. Due to the complex integral, it is difficult 

to derive the analytical expression when 𝑝(𝑎; 𝒓) is arbitrary, but its 

analytical expression can be written for specific probability 

distributions 𝑝(𝑎; 𝒓). 
The 𝑛-order moment of 𝑃𝜎(𝜎; 𝒓) can be obtained by solving the 𝑛-

order derivative of the moment generating function of 𝑃𝜎(𝜎; 𝒓)  at 

zero, which is [9, 25]: 

𝜎𝑛(𝒓) = (𝑛!)2 ∑ ∑ ⋯

∞

𝑚2=0

∞

𝑚1=0

∑ [
∏ 〈𝑎2𝑚𝑖(𝒓)〉𝑁
𝑖=1

(∏ 𝑚𝑖
𝑁
𝑖=1 !)

2 ]

∑ 𝑚𝑖
𝑁
𝑖=1 =𝑛

∞

𝑚𝑁=0

, 

(35) 

where 〈𝑎2𝑚(𝒓)〉  indicates the 2𝑚 -order moment of  𝑝(𝑎; 𝒓) , and 

the above equation satisfies ∑ 𝑚𝑖
𝑁
𝑖=1 = 𝑛 . Then the mean and 

normalized 2-order moment can be derived as: 

〈𝜎(𝒓)〉 = 𝑁〈𝑎2(𝒓)〉, 
〈𝜎2(𝒓)〉

〈𝜎(𝒓)〉2
= 2(1 −

1

𝑁
) +

1

𝑁

〈𝑎4(𝒓)〉

〈𝑎2(𝒓)〉2
. (36) 

In particular, if 𝑁 → ∞ , then the normalized 𝑛 -order moment 
〈𝜎𝑛(𝒓)〉/〈𝜎(𝒓)〉𝑛 → 𝑛!, and it is equal to the normalized moment of 

the negative exponential distribution. 

The number of equivalent scatterers 𝑁eff is defined by [9, 25]: 

𝑁eff(𝒓) ≡
𝑁〈𝑎2(𝒓)〉2

〈𝑎4(𝒓)〉
, 𝑁eff < 𝑁. (37) 

It can be seen 𝑁eff is determined by both the number 𝑁 of scatterers 

and the normalized moment of 𝑎(𝒓).  Even if 𝑁 is large enough, the 

value of 〈𝑎2(𝒓)〉2/〈𝑎4(𝒓)〉  may be small due to the fluctuation of 
{𝑎𝑖} , then 𝑁eff  is also small and eventually leads to non-Rayleigh 

echo. If 𝑁eff ≥ 10, the deviation of adopting Rayleigh speckle model 

is relatively small [9, 25, 35]; if 𝑁eff ≈ 1, Rayleigh speckle model will 

show significant error; if 𝑁eff ≪ 1 , Rayleigh speckle model will be 

invalid. 

 Statistical distributions 

As shown in Figure 7, this section summarizes the statistical 

distributions based on the non-Rayleigh speckle model starting from 

the modeling of the number of scatterers and the amplitude of the 

scatterers. The number of scatterers in a single resolution cell can 

typically be modeled as a constant (including infinite constant and 

finite constant) or a variable obeying a certain distribution (such as the 

Poisson and negative binomial distributions). The scattered amplitude 

of each scatterer can be modeled as 1) a constant, 2) a number of 

independent identically distributed variables (such as 𝐾 distribution, 

Rayleigh distribution, or arbitrary distribution), and 3) sum of a 

constant and an infinite number of variables. The “Yellow shading box 

with embedded ‘NR’” in Figure 7 denotes the “non-Rayleigh speckle 

model” which inputs the statistical distribution of the number of 

scatterers and the amplitude of the scatterers, and outputs the 

distribution of SAR image intensity. 

If the number of scatterers is an infinite constant and the scattered 

amplitude is modeled as the sum of a known constant and an infinite 

number of independent identically distributed (IID) variables, then the 

Rice (or Rician) distributed [25] scattered field can be obtained. Rician 

inverse Gaussian (RiIG) distributed intensity can be obtained by 

mixing the Rician distribution and inverse Gaussian distribution which 

is explained by Brownian motion with a stop time [51]. Interestingly, 
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RiIG distribution can also be explained using the non-Rayleigh speckle 

model. If the number of scatterers is modeled as Poisson distribution 

with its expectation obeying inverse Gaussian distribution and the 

amplitude is modeled as the sum of a known constant and an infinite 

number of IID variables, then RiIG distributed intensity is obtained 

[52]. If the number of scatterers is modeled as a Poisson distribution, 

and the expectation of the Poisson distribution is also a random 

variable which can be modeled as gamma distribution, inverse gamma 

distribution, Beta distribution of the second kind, and Beta distribution 

of the first kind, then the scattered intensity obeying 𝐾 distribution, 

G0  distribution, 𝑈  distribution and 𝑊  distribution can be 

respectively obtained by combing the above different distributions of 

Poisson expectation and amplitude with arbitrary distribution [23]. 

The 𝐾  distribution under the product model framework has been 

introduced in Section 2.3.2. This section will supplement the other 

modeling methods of 𝐾  distribution. The scattered field of the 𝐾 

distribution can also be obtained when the number of scatterers obeys 

the negative binomial distribution with infinite expectation and the 

amplitude obeys arbitrarily distribution. 𝐾 distributed amplitude and 

finite constant of the number of scatterers also lead to the 𝐾 

distributed scattered intensity. Similarly, the scattered field obeying 

Rayleigh distribution can also be obtained by the Rayleigh distributed 

amplitude and finite constant of the number of scatterers.  

In addition, when the real and imaginary components of the scattered 

field are IID variables with infinite variance and the number of 

scatterers is an infinite constant, the non-Rayleigh speckle model can 

be degenerated into the generalized central limit theorem model [26] 

which will be introduced in Section 2.5. 

a) K distribution 

The amplitude and intensity of the scattering field of the 𝐾 

distribution have been derived from the product model in Section 2.3.2. 

Here, the other four ways of modeling 𝐾 distributions are introduced 

based on the non-Rayleigh speckle model which is determined by the 

fluctuations of the number of scatterers and scattered amplitude [9, 10, 

23, 51, 53, 54]. 

(1) When the scattered amplitude of each scatterer is independently 

and identically 𝐾 -distributed with probability distribution 𝑝(𝑎; 𝒓) , 
and 𝑁 is an arbitrary finite constant, then the scattered intensity 𝜎 is 

𝐾-distributed [9]. The corresponding derivation process is given below. 

Assume that 𝑝(𝑎; 𝒓) is 𝐾-distributed which is: 

𝑝(𝑎; 𝒓) =
2𝑏

𝛤(1 + 𝑣)
(
𝑏𝑎

2
)
𝑣+1

𝐾𝑣(𝑏𝑎), 𝑣 > −1. (38) 

Substituting 𝑝(𝑎; 𝒓) into Eq. (33), the scattered intensity distribution 

𝑃𝜎(𝜎; 𝒓) can be derived as: 

𝑃𝜎(𝜎; 𝒓) =
𝑏/√𝜎

𝛤(𝑀)
(
𝑏√𝜎

2
)

𝑀

𝐾𝑀−1(𝑏√𝜎). (39) 

This is equivalent to the 𝐾-distributed intensity equation 𝑝𝐾𝜎(𝑍𝜎 =

𝑧; 𝛽, 𝛼, 𝑛) in Table 2 when it satisfies that: 

𝛽 = 𝑏2/4, 𝛼 = 𝑀, 𝑛 = 1, 
(40) 

where 𝑍𝜎 = 𝑧 = 𝜎. 

(2) When the number of scatterers in a resolution cell obeys the 

negative binomial distribution with mean �̅� and �̅� → ∞, then it can 

be deduced that the scattered amplitude and intensity obey the 𝐾 

distribution regardless of the distribution of scattered amplitude [10, 

54]. The following is the detailed derivation process.  

Suppose the number 𝑁 of scatterers is a negative binomial distributed 

statistical random variable independent of {𝑎𝑖} and {𝜙𝑖} with PDF: 

𝑝(𝑁; �̅�, 𝛼) = (
𝑁 + 𝛼 − 1

𝑁
)

(
�̅�
𝛼
)
𝑁

(1 +
�̅�
𝛼
)
𝑁+𝛼 , (41) 

where 𝑁  could be seen as the number of failures before the 𝛼 

successes in a series of independent Bernoulli trials, and the 

probability of success for each trial is 𝛼/(𝛼 + �̅�). The corresponding 

mean and variance are: 

Mean(𝑁) = �̅�, Var(𝑁) = 𝛼−1 + �̅�−1. 
(42) 

The characteristic function of the scattered field has been derived in 

Eq. (29). Now assume that the scattered amplitude 𝑎𝑖  of each 

scatterer is independent identically distributed, and 𝑁 is a statistical 

random variable obeying the negative binomial distribution in Eq. (41). 

Take the expectation of 𝑁 , and let 𝑎 = 𝑎/√�̅�  , then the following 

characteristic function could be derived: 

𝑀�̅�(𝑢) = [1 + (�̅�/𝛼)(1 − 〈𝐽0(𝑎𝑢/√�̅�)〉)]
−𝛼

. (43) 

It holds that 

lim
𝑁→∞

𝑀�̅�(𝑢) = [1 + 〈𝑎
2〉𝑢2/4𝛼]−𝛼 , 

(44) 

which is exactly the characteristic function of the 𝐾 distribution: 

𝑝(𝐴) =
2𝑏

Γ(𝛼)
(
𝑏𝐴

2
)
𝛼

𝐾𝛼−1(𝑏𝐴), (45) 

where 𝐴 is the scattered amplitude. Then the intensity distribution can 

be obtained using the transformation formula 𝑝𝑍𝜎(𝑧) = 𝑝𝐴(√𝑧)/

(2√𝑧)  and it is equivalent to the 𝑝𝐾𝜎(𝑍𝜎 = 𝑧; 𝛽, 𝛼, 𝑛)  in Table 2 

when it satisfies that 𝑏 = 2√𝛽, 𝑛 = 1. 

(3) Assuming that the number of scatterers in a single resolution cell 

obeys the Poisson distribution with expectation Ω = �̅� shown in Eq. 

(46), and Ω obeys the gamma distribution shown in Eq. (47), then it 

can be derived that this is equivalent to the negative binomial 

distribution in Eq. (41) according to the total probability formula in Eq. 

(48). Therefore, 𝐾-distributed SAR image in Eq. (45) can be obtained 

regardless of the distribution of scattered amplitude according to (2) 

[23, 54] 

𝑝(𝑁|Ω = �̅�) =
�̅�𝑁

𝑁!
exp(−�̅�), (46) 

𝑝(Ω = 𝜔) =
1

𝛤(𝛼)
(
𝛼

�̅�
)
𝛼

𝜔𝛼−1 exp (−
𝜔𝛼

�̅�
), 

(47) 

𝑝(𝑁) = ∫ 𝑝(𝑁|Ω = 𝜔)𝑝Ω(𝜔)
∞

0

d𝜔. 
(48) 

(4) The 𝐾 -distributed SAR image can also be modeled in the 

perspective of a random walk of Brownian motion [51]. The real 

component ℜ and imaginary 𝔗 component of the complex scattered 

field are modeled as two Wiener processes with zero mean. When the 

stop time 𝑍 = 𝑧 is given, ℜ and 𝔗 are normal distributed variables 

with a variance of 𝑧/2 , then a Rayleigh distributed amplitude 𝐴 =

√ℜ2 + 𝔗2 can be obtained as: 

𝑝(𝐴|𝑧) =
2𝐴

𝑧
𝑒−

𝐴2

𝑧 . (49) 

If the stop time 𝑍 obeys gamma distribution: 

𝑝(𝑧) =
(𝑏/2)2𝛼

Γ(𝛼)
𝑧𝛼−1 exp (−

𝑧𝑏2

4
), 

(50) 

Then, according to the Bayesian formulation: 
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𝑝(𝐴) = ∫ 𝑝(𝐴|𝑧)𝑝(𝑧)
∞

0

𝑑𝑧. 
(51) 

Substituting the transformation formula 𝑝𝑍𝜎(𝑧) = 𝑝𝐴(√𝑧)/(2√𝑧), it 

can be deduced that the scattered field intensity 𝜎 both obey the 𝐾 

distribution (see 𝑝𝐾𝜎(𝑍𝜎 = 𝑧; 𝛽, 𝛼, 𝑛) in Table 2). 

b) Rice distribution 

The Rice (or Rician) distribution is the probability distribution of the 

amplitude of a circularly symmetric Gaussian random variable with a 

non-zero mean. In the coherent scatterer model, the Rice distribution 

can be obtained by assuming that the scattered field is a summation of 

a constant 𝐴0 and an infinite number of random variables [25, 55], 

that is, the scattered field can be expressed as: 

𝑬 = 𝐴0 +∑𝑎𝑖𝑒
𝑗𝜙𝑖

𝑁

𝑖=1

= 𝐴0 + 𝐴𝑛𝑒
𝑗𝜃𝑛 . 

(52) 

The scattered intensity can be written as: 

𝜎 = |𝑬|𝟐 = 𝐴0
2 + 𝐴𝑛

2 + 2𝐴0𝐴𝑛 cos 휃𝑛, (53) 

Assuming that 1) the number of scatterers 𝑁 → ∞, 2) the amplitudes 

of each scatterer {𝑎𝑖} are independently identically distributed, and 3) 

the phase of scattered field obeys a uniform distribution in (0, 𝜋], then 

it can be deduced that the scattered field intensity obeys the Rice 

distribution which is: 

𝑝𝑅𝑖𝑐𝑒(𝜎) =
1

2ℴ2
exp {−

𝜎 + 𝐴0
2

2ℴ2
} 𝐼0 (

√𝜎𝐴0
ℴ2

), (54) 

where 𝐼0 is the modified zero-order Bessel function of the first kind. 

When the constant 𝐴0  is zero, the Rice distribution becomes the 

Rayleigh distribution. Because the Rice distribution stems from the 

central limit theorem, it is also not suitable for modeling of high-

resolution SAR images. 

Denote 𝑘 = 𝜎0/𝜎𝑛̅̅ ̅, where 𝜎𝑛̅̅ ̅ = 𝐴𝑛
2̅̅̅̅ = 2ℴ2, 𝜎0 = 𝐴0

2, as the ratio of 

the constant intensity and the average intensity (𝑘  is called "beam 

ratio" in holographic techniques) [25], then Eq. (54) can be written as: 

𝑝Rice(𝜎) =
1

𝜎𝑛̅̅ ̅
exp {−

𝜎 + 𝜎0
𝜎𝑛̅̅ ̅

} 𝐼0 (2
√𝜎𝜎0

𝜎𝑛̅̅ ̅
) 

=
1

𝜎𝑛̅̅ ̅
exp {−(

𝜎

𝜎𝑛̅̅ ̅
+ 𝑘)} 𝐼0 (2√

𝜎

𝜎𝑛̅̅ ̅
𝑘). 

(55) 

Eq. (55) is also called “modified Rice distribution” and the 

corresponding 𝑟-order moment of intensity is: 

E{𝜎𝑟} = �̅�𝑛
𝑟𝑒−𝑘𝑟! 𝐹1

1
1(𝑟 + 1,1, 𝑘), (56) 

where 𝐹1
1
1 is confluent hypergeometric function [56-58]. 

The corresponding mean, variance and coefficient of variation are: 

Mean(𝜎) = (1 + 𝑘)𝜎𝑛̅̅ ̅, 

Var(𝜎) = 𝜎𝑛̅̅ ̅
2(1 + 2𝑘), 

𝐶 =
√Var(𝜎)

Mean(𝜎)
=
√1 + 2𝑘

1 + 𝑘
. 

(57) 

c) RiIG distribution 

When 1) the number of scatterers in a single resolution cell obeys 

Poisson distribution with the expectation obeying inverse Gaussian 

distribution or the stop time of Brownian motion obey the inverse 

Gaussian distribution, 2) the scattered amplitude of each scatterer is 

modeled as the summation of a known constant and an infinite number 

of independent identically distributed variables, which obey the Rice 

distribution, then scattered field obeys the Rician inverse Gaussian 

(RiIG) distribution [51]. In the following, the RiIG distribution is first 

derived from the two-dimensional Brownian motion, and then the 

scattered amplitude given the stop time can be derived to be Rice-

distributed according to the Bayesian theorem. 

The real component ℜ  and the imaginary component 𝔗  of the 

scattered field 𝐸 are respectively regarded as two Brownian motions 

with the offsets of 𝛽ℜ, 𝛽𝔗, the stop time 𝑧, the diffusion coefficient 

𝜌 = 1 and the variance 𝜌𝑧 = 𝑧. That is, assume that ℜ and 𝔗 are 

independent Gaussian random variables with mean values 𝛽ℜ𝑧 and 

𝛽𝔗𝑧, and variance 𝑧[ their joint probability density distribution is [51]: 

𝑝ℜ(ℜ|𝑧) =
1

√2𝜋𝑧
exp (−

(ℜ − 𝛽ℜ𝑧)
2

2𝑧
), 

𝑝𝔗(𝔗|𝑧) =
1

√2𝜋𝑧
exp (−

(𝔗 − 𝛽𝔗𝑧)
2

2𝑧
). 

(58) 

Consider 𝑍 = 𝑧  as a random variable, then ℜ  and 𝔗  can be 

expressed as: 

ℜ = 𝛽ℜ𝑍 + √𝑍𝒩ℜ，𝔗 = 𝛽𝔗𝑍 + √𝑍𝒩𝔗, (59) 

where 𝒩ℜ and 𝒩𝔗 are standard Gaussian random variables. 

Describe the above conclusion in the two-dimensional form, then 

random vector 𝑬 = [ℜ,𝔗]  is a two-dimensional Gaussian 

distribution with the mean 𝜷𝑧 ,𝜷 = [𝛽ℜ, 𝛽𝔗] , and the variance Σ𝑧 , 

where 

Σ = (
1 0
0 1

) 
(60) 

Assume that the stop time 𝑍  of the Brownian motion obeys the 

inverse Gaussian distribution, i.e. 𝑍~IG(𝛿, 𝛾) , 𝛾 =

√𝛼2 − (𝛽ℜ
2 + 𝛽𝔗

2) = √𝛼2 − 𝛽2 , then the two-dimensional random 

vector 𝑬 = [ℜ,𝔗]  obeys the normal-inverse Gaussian (NIG) 

distribution with the PDF: 

𝑝(𝑬) = 𝑎(𝛼, 𝜷, 𝝁, 𝛿, Σ)𝑏(𝑬; 𝛼, 𝝁, 𝛿, Σ) exp(𝜷𝑬T), 
(61) 

where 

𝑎(𝛼, 𝜷, 𝟎, 𝛿, Σ) =
𝛼3/2

(2𝛿𝜋3)1/2
exp(𝛾𝛿), 

𝑏(𝑬; 𝛼, 𝟎, 𝛿, Σ) =
𝛿3/2𝐾3/2(𝛼√ℜ

2 + 𝔗2 + 𝛿2)

(ℜ2 +𝔗2 + 𝛿2)3/4
, 

𝑞(𝑬; 𝟎, 𝛿, Σ) =
1

𝛿
√ℜ2 + 𝔗2 + 𝛿2 . 

(62) 

Converting the two-dimensional NIG distribution to polar coordinates 

and integrating the phase, the amplitude of the scattered field obeying 

the RiIG distribution can be obtained: 

𝑝𝑅𝑖𝐼𝐺(𝐴; 𝛼, 𝛽, 𝛿, 𝛾)

= √
2

𝜋
𝛼
3
2𝛿 exp(𝛿𝛾)

𝐴

(𝛿2 + 𝐴2)
3
4

𝐾3
2
(𝛼√𝛿2 + 𝐴2) 𝐼0(𝛽𝐴), (63) 

where 𝐼0 is the first-order modified zero-order Bessel function. 

Accordingly, the density of the intensity 𝜎 = 𝐴2 is: 
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𝑝𝑅𝑖𝐼𝐺(𝜎; 𝛼, 𝛽, 𝛿, 𝛾)

= √
1

2𝜋
𝛼
3
2𝛿 exp(𝛿𝛾)

1

(𝛿2 + 𝜎)
3
4

𝐾3
2
(𝛼√𝛿2 + 𝜎) 𝐼0(𝛽√𝜎). (64) 

Furthermore, it can be deduced that the conditional probability 𝑝(𝜎|𝑧) 
of the scattered intensity field at 𝑍 = 𝑧 obeys the Rice distribution: 

𝑝(𝜎|𝑧) =
1

2𝑧
exp {−

𝜎 + 𝛽2𝑧2

2𝑧
} 𝐼0(𝛽√𝜎). (65) 

The above equation is equivalent to Eq. (54) by substituting 𝑧 =
ℴ/2, 𝛽 = 𝐴0/𝑧. If 𝛽 = 0, it becomes a Rayleigh distribution. 

The 𝑟 -order and second-order moments of the RiIG distribution 

defined in Eq. (63) are: 

E{𝐴𝑟} = ∫ (2𝑧)
𝑟
2

∞

0

Γ (
𝑟

2
+ 1) 𝐹11

0 (−
𝑟

2
, 1, −

𝛽2𝑧

2
), 

𝛿

√2𝜋
𝑥−3/2 exp(𝛿𝛾) exp(−

1

2
(
𝛿2

𝑥
+ 𝛾2𝑥))𝑑𝑧, 

(66) 

E{𝐴2} = 2
𝛿

𝛾
+
𝛽2𝛿2

𝛾2
+
𝛽2𝛿

𝛾3
, (67) 

where 𝐹1
1
1 is the confluent hypergeometric function [56]. 

d) 𝑮𝟎 distribution 

The scattered amplitude and intensity obeying the 𝐺0 distribution [45] 

have been obtained based on the product model in Section 2.3.2. The 

𝐺0  distributed scattered field based on the non-Rayleigh speckle 

model is described here. Considering the number 𝑁 of scatterers as a 

random variable obeying the Poisson distribution [23] , the mean 𝜆 of 

the Poisson distribution is a random variable �̅� . If �̅�  obeys the 

inverse gamma distribution: 

𝑓(�̅�;−𝛼, 𝛾) =
𝛾−𝛼

Γ(−𝛼)
�̅�𝛼−1𝑒−𝛾/�̅�，�̅�, −𝛼, 𝛾 > 0. 

(68) 

Then the scattered intensity obeys 𝐺0 distribution (or denoted as 𝐵 

distribution in [23]): 

𝑔(𝜎; −𝛼, 𝛾) =
−𝛼𝛾−𝛼

(𝜎 + 𝛾)−𝛼+1
, 𝜎, −𝛼, 𝛾 > 0. 

(69) 

e) W distribution 

Similar to the 𝐺0  distribution, the number 𝑁  of scatterers obeys 

Poisson distribution, and the mean value 𝜆 of 𝑁 is a random variable 

�̅�. If the mean �̅� obeys Beta distribution of the first kind [23]: 

𝑓(�̅�; 𝛽, 𝑝, 𝑞) =
𝛽𝑞

B(𝑝, 𝑞)

�̅�𝑝−1

(𝛽 − �̅�)𝑞−1
，𝑝, 𝑞 ≥ 0，𝛽

> 0，0 ≤ �̅� ≤ 𝛽, 
(70) 

where B(𝑝, 𝑞) is Beta function: 

B(𝑝, 𝑞) =
Γ(𝑝)Γ(𝑞)

Γ(𝑝 + 𝑞)
, 

(71) 

then 𝑊 distributed scattered intensity can be obtained [23]: 

𝑝𝑊(𝜎; 𝛽, 𝑝, 𝑞) =
Γ(𝑝 + 𝑞)

𝑠2𝛽Γ(𝑝)
(
𝜎

𝑠2𝛽
)

𝑝
2
−1

exp (−
𝜎

2𝑠2𝛽
)

×𝑊(−𝑝−2𝑞+2)/2,(𝑝−1)/2 (
𝜎

𝑠2𝛽
), 

(72) 

where 𝑊𝑛(∙) is Whittaker function. 

The 𝑛-look 𝑊 distribution is: 

𝑝𝑊(𝜎; 𝛽, 𝑝, 𝑞, 𝑛)

=
Γ(𝑞)

𝑠2𝛽Γ(𝑛)B(𝑝, 𝑞)
(
𝜎

𝑠2𝛽
)

𝑝+𝑛−3
2

exp (−
𝜎

2𝑠2𝛽
)𝑊(−𝑝−2𝑞+𝑛+1)/2,(𝑝−𝑛)/2 (

𝜎

𝑠2𝛽
). 

(7

3) 

Substituting 𝛽 = 𝑠2𝛽, 𝑛 = 1, it is: 

𝑝𝑊(𝜎; 𝛽, 𝑝, 𝑞)

=
Γ(𝑝 + 𝑞)

𝛽Γ(𝑝)
(
𝜎

𝛽
)

𝑝
2
−1

exp (−
𝜎

2𝛽
)𝑊(−𝑝−2𝑞+2)/2,(𝑝−1)/2 (

𝜎

𝛽
). (74) 

f) U distribution 

Similarly to previous distributions, consider the case where the number 

𝑁 of scatterers obeys a Poisson distribution, and the mean value �̅� 

of the Poisson distribution obeys a Beta distribution of the second kind 

[23]: 

𝑓(�̅�; 𝛽, 𝑝, 𝑞) =
𝛽𝑞

B(𝑝, 𝑞)

�̅�𝑝−1

(�̅� + 𝛽)𝑝+𝑞
, �̅� > 0. 

(75) 

Then 𝑈 distributed scattered intensity can be obtained [23]: 

𝑝𝑈(𝜎; 𝛽, 𝑝, 𝑞) =
𝑞Γ(𝑝 + 𝑞)

𝑠2𝛽Γ(𝑝)
𝑈𝑞+1,2−𝑝 (

𝜎

𝑠2𝛽
), 

(76) 

where 𝑈𝑞+1,2−𝑝 is degenerate hypergeometric function [23, 56]. 

The 𝑛-look 𝑈 distribution is: 

𝑝𝑈(𝜎; 𝛽, 𝑝, 𝑞, 𝑛)

=
Γ(𝑛 + 𝑞)

𝑠2𝛽Γ(𝑛)𝐵(𝑝, 𝑞)
(
𝜎

𝑠2𝛽
)
𝑛−1

𝑈𝑞+𝑛,1+𝑛−𝑝 (
𝜎

𝑠2𝛽
). (77) 

Substituting 𝛽 = 𝑠2𝛽, 𝑛 = 1, it becomes: 

𝑝𝑈(𝜎) =
𝑞Γ(𝑝 + 𝑞)

𝛽Γ(𝑝)
𝑈𝑞+1,2−𝑝 (

𝜎

𝛽
). 

(78) 

 Statistical modeling based on generalized central limit 

theorem 

It has been mentioned in Section 2.4 that when the real and imaginary 

components of the scattered field obey a distribution with an infinite 

variance and the number of scatterers is infinite , then the non-Rayleigh 

speckle model may be described with the generalized central limit 

theorem [26]. We first introduce this theorem, and then discuss some 

of the statistical distributions emerging from this model. 

 Generalized central limit theorem 

The generalized central limit theorem model can be regarded as a 

special case of the non-Rayleigh speckle model, or it can be seen as a 

generalization of the Rayleigh speckle model based on the central limit 

theorem. The central limit theorem [59] points out that the sum of 𝑁 

independent identically distributed random variables with finite mean 

and finite variance tends to be Gaussian when 𝑁 → ∞ . The 

generalized central limit theorem shows that for a set of independent 

identically distributed random variables, with either finite or infinite 

variance, the summation will converge to an 𝛼-stable distribution [60, 

61]. 

The 𝛼-stable distribution was introduced by Levy in 1925 [60]. It is a 

generalization of the Gaussian distribution and is a widely 

representative random distribution model. It can well describe the 

characteristics of spikes and heavy tailes. The most important 

motivation for the development of the 𝛼-stable distribution is because 

it is the only type of distribution that satisfies the generalized central 

limit theorem. Secondly, the linear combination of 𝛼-stable random 

variables with the same characteristic parameter is still 𝛼 -stable. 
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Therefore, for a linear system with 𝛼 -stable distributed input, its 

output still follows an 𝛼 -stable distribution. Additionally, many 

aspects of the linear system theory for Gaussian signals can be directly 

extended to the 𝛼-stable distribution [60]. With few exceptions, the 

PDF of an 𝛼-stable distribution does not have an explicit expression, 

but its characteristic function is: 

𝜑(𝑠) = exp[𝑖𝛿𝑠 − |𝛾𝑠|𝛼𝐵𝑠,𝛼], (79) 

where 

𝐵𝑠,𝛼 = {
1 − 𝑖𝛽sgn(𝑠) tan (

𝜋𝛼

2
) , 𝛼 ≠ 1

1 + 𝑖𝛽sgn(𝑠)
2

𝜋
log|𝑠| , 𝛼 = 1

, 
(80) 

in which −∞ < 𝛿 < ∞，𝛾 > 0，0 < 𝛼 ≤ 2，− 1 ≤ 𝛽 ≤ 1. 
The characteristic parameter is 𝛼(0 < 𝛼 ≤ 2) . It controls the pulse 

intensity of a random process. The smaller 𝛼 is, the stronger is the 

impulsivity and the heavier is the tail, which means that the probability 

of a random variable far from the center is larger; the larger 𝛼 is, the 

more "plumpy" the probability density distribution curve is, and the 

lighter the tail is. If 𝛼 = 2 , the 𝛼 -stable distribution becomes the 

Gaussian distribution. If 𝛼 = 1 and 𝛽 = 0, the 𝛼-stable distribution 

is the Cauchy distribution. 

The scale parameter is 𝛾, which is similar to the variance of a Gaussian 

distribution, and its value must be positive. It characterizes the degree 

of data concentration. The larger 𝛾  is, the greater is the degree of 

dispersion of the data around the mean. 

The symmetry parameter is 𝛽 ; it determines the slope of the 

distribution. If 𝛽 = 0 , it yields the symmetric 𝛼 -stable distribution 

(𝑆𝛼𝑆  distribution). The configurations 𝛼 ≠ 1 , 𝛽 > 0  and 𝛽 < 0 

corresponds to distributions inclined to the right and to the left, 

respectively. However, when 𝛼 = 1, the situation is reversed. 

The location parameter is 𝛿 , which corresponds to the mean and 

median of the 𝛼-stable distribution. It can be any real number, and it 

determines the position of the PDF. 

When 𝛿 = 0  and 𝛽 = 0 , one has the zero mean 𝑆𝛼𝑆  distribution, 

and its characteristic function is: 

𝜑(𝑠) = exp[|𝛾𝑠|𝛼]. 
(81) 

 Statistical distributions 

We present in this section statistical distributions of SAR images based 

on the generalized central limit theorem. They are built on the different 

distribution models for the real and imaginary components. As shown 

in Figure 9, the “Yellow shading box with embedded ‘GCL’” denotes 

the “Generalized central limit theorem model” which inputs the 

statistical distribution of the real and imaginary components, and 

outputs the distribution of SAR image intensity. If the real and 

imaginary components of the scattered field obey an infinite variance 

distribution, and assume the number of scatterers 𝑁 → ∞ , then the 

real and imaginary components of the scattered field obey an SαS 

distribution according to the generalized central limit theorem, and the 

scattered amplitude follows a heavy-tailed Generalized Rayleigh 

distribution ( SαSGR  distribution) [20]. It has been introduced in 

Section 2.2, the Gaussian distributed real and imaginary components 

produce the Rayleigh speckle model based on the central limit theorem. 

Generalizing Gaussian distribution to the generalized gamma or the 

generalized Gaussian distribution would give rise to the Generalized 

Gaussian Rayleigh distribution ( GGR  distribution) [21] and 

Generalized Gamma Rayleigh distribution (GΓR distribution) [22] for 

the scattered amplitude. The density expressions are given below.  

 

 

 

Figure 9 Statistical distributions of scattered intensity based on generalized central limit theorem model 

a) 𝑺𝜶𝑺𝑮𝑹 distribution  

The SαSGR distribution is derived from the assumption that the real 

and imaginary components of the scattered field obey the joint SαS 

distribution based on the generalized central limit theorem. The 

characteristic function of the joint SαS distribution is [20]: 

𝜓(𝑡1, 𝑡2) = exp(−𝛾|𝒕|
𝛼), 

(82) 

where 𝒕 = [𝑡1, 𝑡2], |𝒕| = √𝑡1
2 + 𝑡2

2. 
The SαSGR distribution of scattered amplitude is [20]: 

𝑝SαSGR(𝐴; 𝛾, 𝛼) = 𝐴∫ 𝑠 exp(−𝛾𝑠𝛼) 𝐽0(𝑠𝐴)𝑑𝑠 
∞

0

, 
(83) 

where 𝐽0(∙) is the first-order zero-order Bessel function. 

The corresponding 𝑟-order moment is [20]: 

E{𝐴𝑟} =
2𝑟+1Γ(

𝑟
2
+ 1)

Γ(−
𝑟
2
)

𝛾𝑟/𝛼Γ(−
𝑟
𝛼
)

𝛼
,−2 < 𝑟 < −

1

2
. 

(84) 

If 𝛼 = 2, the SαSGR distribution becomes the Rayleigh distribution: 

𝑝(𝐴; 𝛾) =
𝐴

2𝛾
exp (−

𝐴2

4𝛾
). 

(85) 

b) GGR distribution 

The central limit theorem assumes that the real and imaginary parts of 
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the scattered field obey the Gaussian distribution. This model has a 

limited scope of application. In order to be applicable to more 

scenarios, the Gaussian distribution can be generalized to the 

generalized Gaussian distribution. Then it can be derived that the 

amplitude of scattered field obeys the GGR distribution [21]. 

The PDF of generalized Gaussian distribution is: 

𝑝(𝑢; 𝛾, 𝑐,𝑚) =
𝛾𝑐

2Γ (
1
𝑐
)
exp[−|𝛾(𝑢 −𝑚)|𝑐] ,

𝑐, 𝛾 > 0,𝑚 ∈ 𝑅. 
(86) 

If 𝑐 = 2, the generalized Gaussian distribution becomes a Gaussian 

distribution. 

The PDF of GGR distribution is [21]: 

𝑝GGR(𝐴) =
𝛾2𝑐2𝐴

𝛤2(
1
𝑐
)
∫ exp{−(𝛾𝐴)𝑐(|cos 휃|𝑐
𝜋
2

0

+ |sin 휃|𝑐)} 𝑑휃. 

(87) 

If 𝑐 = 2, the GGR distribution becomes a Rayleigh distribution. 

c) 𝑮𝜞𝑹 distribution 

Assuming that the real and imaginary parts of the scattered field obey 

the two-sided generalized gamma distribution (GΓD ), respectively, 

then it can be deduced that the amplitude of scattered field obeys the 

generalized Gamma Rayleigh distribution (GΓR distribution) [22, 62]. 

The PDF of the two-sided GΓD is [22]: 

𝑝(𝑢) =
𝜈

2휂Γ(𝜅)
(
|𝑢|

휂
)

𝜅𝜈−1

exp {−(
|𝑢|

휂
)

𝜈

}，𝜈 > 0, 𝜅

> 0, 휂 > 0. 
(88) 

If 𝜅𝜈 = 1, the two-sided GΓD becomes a generalized Gaussian  

distribution. If 𝜈 = 2，𝜅 = 1/2 , the two-sided GΓD  becomes a 

Gaussian distribution. If 𝜈 = 1, 𝜅 = 1, the two-sided GΓD becomes 

a Laplacian distribution. 

The PDF of the GΓR distribution is: 

𝑝GΓR(𝐴)

= [
𝜈

휂𝜅𝜈𝛤(𝜅)
]
2

𝐴2𝜅𝜈−1∫ |cos 휃 sin 휃|𝜅𝜈−1 exp {−(
𝐴

휂
)
𝜈

(|cos 휃|𝜈
𝜋
2

0

+ |sin 휃|𝜈)} 𝑑휃. 

(89

) 

If 𝜈 = 2, 𝜅 = 1/2 , the GΓR  distribution becomes a Rayleigh 

distribution. If 𝜅𝜈 = 1 , the GΓR  distribution becomes a GGR 

distribution. 

 Statistical modeling based on incoherent scatterer sum 

model 

 Incoherent scatterer sum model 

The incoherent scatterer sum model, called “the surface model” in [11, 

12], is an approximate model which is more commonly used in clutter 

simulation [13]. For low-resolution SAR images, the scattered field 

can be modeled as the sum of a large number of randomly distributed 

scattered components. In this case, phase coherence has been lost 

between different scatterers, therefore, the scattered intensity 𝜎  is 

approximated as multiple non-coherent summation of point scatterers 

[10-12]: 

𝜎 =∑𝑎𝑖
2

𝑁

𝑖=1

. 
(90) 

The Laplace transform of the scattered intensity is [10]: 

𝑄𝑁(𝑠) = 〈exp(−𝑠𝜎)〉 = 〈exp(−𝑠𝑎
2)〉𝑁. 

(91) 

 Statistical distributions 

As shown in Figure 10, the “Yellow shading box with embedded ‘ISS’” 

denotes the “Incoherent scatterer model” which inputs the statistical 

distribution of the number of scatterers, and outputs the distribution of 

SAR image intensity. Under the incoherent scatterer sum model, when 

the number of scatterers 𝑁 in a single resolution cell is infinite, the 

intensity distribution of scattered field is an impulse function [10]; 

when 𝑁  is a variable that obeys the negative binomial distribution 

with an infinite mean, the intensity of the scattered field obeys a 

gamma distribution [10, 63]. The statistical distributions under the 

incoherent scatterer sum model is given below.  
 

 

Figure 10 Statistical distributions of scattered intensity based on 

incoherent scatterer sum model 

a) Impulse function 

When the number 𝑁  of scatterers in a resolution cell is an infinite 

constant, the distribution of scattered intensity is an impulse function. 

Dividing 𝑎 by √𝑁 in the Laplace transform 𝑄𝑁(𝑠) of the scattered 

intensity in Eq. (91), if 𝑁 → ∞ , the Laplace transform 𝑄𝑁(𝑠)  and 

corresponding PDF by inverse Laplace transform is[63]: 

lim
𝑁→∞

𝑄𝑁(𝑠) = exp(−𝑠〈𝑏
2〉), 

(92) 

𝑝(𝜎) = 𝛿(𝜎 − 〈𝜎〉), 
(93) 

where 𝛿(∙) denotes impulse function. 

The scattered intensity is therefore a constant in this limit. 

b) Gamma distribution 

Section 2.2 introduces the modeling of the gamma distribution based 

on the Rayleigh speckle model. This section will give the other two 

modeling processes for the gamma distribution: 1) the gamma 

distribution under the incoherent scatterer sum model; 2) the gamma 

distribution by solving the rate equation which describes the 

continuous fluctuations of birth-and-death immigration model. 

1) When the number of scatterers in a resolution cell obeys the negative 

binomial distribution with an infinite mean �̅� as shown in Eq. (41), 

then the scattered intensity obeys the gamma distribution [10, 63]. The 

derivation process is given below. 

Dividing 𝑎  by √�̅�  for 𝑄𝑁(𝑠)  as shown in Eq. (91), the average 

form of 𝑄𝑁(𝑠) can be written as: 

𝑄�̅�(𝑠) = [1 + (�̅�/𝛼)(1 − 〈exp(−𝑠𝑎
2/�̅�)〉)]−𝛼 . (94

) 
where 〈∙〉 denotes the expectation. 

If �̅� → ∞, the limit form of Eq. (94) is: 

lim
�̅�→∞

𝑄�̅�(𝑠) = (1 + 𝑠〈𝜎〉/𝛼)
−𝛼 , 

(95) 

then the gamma distributed scattered intensity can be obtained using 

the inverse transform on Eq. (95):  
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𝑝(𝜎) = (
𝛼

〈𝜎〉
)
𝛼 𝜎𝛼−1

Γ(𝛼)
exp (−

𝛼𝜎

〈𝜎〉
). 

(96) 

2) The scattered intensity 𝜎 is considered as a continuous fluctuation 

controlled by the process of birth-and-death immigration model. The 

solution of the rate equation will produce a scattered intensity of 

gamma distribution [63]. 

Gamma distributed intensity is generated by the following rate 

equation which is a continuum analogue of birth-and-death 

immigration model: 

𝜕𝑃

𝜕𝑡
= 𝜆𝜎

𝜕2𝑃

𝜕𝜎2
+ [2𝜆 − 𝜈 + (𝜇 − 𝜆)𝜎]

𝜕𝑃

𝜕𝜎
+ (𝜇 − 𝜆)𝑃, (97) 

where 𝜆 is birth rate, 𝜇 is death rate, 𝜈 is immigration rate. 

The solution of Eq. (97) is most readily accomplished in terms of the 

generating function of 𝑃(𝜎, 𝑡) by Laplace transform: 

𝑄(𝑠, 𝑡) = 〈exp(−𝑠𝜎)〉, 
(98) 

which satisfies the partial differential equation: 
𝜕𝑄

𝜕𝑡
= −𝑠 [𝜈 + (𝜇 − 𝜆 + 𝜆𝑠)

𝜕

𝜕𝑠
]𝑄. (99) 

Assume the initial intensity is 𝜎0, and the boundary conditions on 𝑄 

are: 

𝑄(0, 𝑡) = 1;  𝑄(𝑠, 0) = exp(−𝑠𝜎0), (100) 

and then the solution can be obtained as: 

𝑄(𝑠, 𝑡)

= (
𝜆 − 𝜇

𝜆 − 𝜇 + 𝜆(휃 − 1)𝑠
)
𝜈/𝜆

exp [
𝜎0(𝜇 − 𝜆)휃𝑠

𝜆 − 𝜇 + 𝜆(휃 − 1)𝑠
], (101) 

where 

휃(𝑡) = exp[(𝜆 − 𝜇)𝑡]. 
(102) 

If 𝜇 > 𝜆 and 𝑡 → ∞, then the equilibrium distribution is: 

𝑄(𝑠) = (
𝜆 − 𝜇

𝜆 − 𝜇 − 𝜆𝑠
)
𝜈/𝜆

. (103) 

The inverse Laplace transformation of Eq. (103) gives the following 

gamma distribution: 

𝑝(𝜎) = [
(𝜇 − 𝜆)

𝜆
]

𝜈/𝜆
𝜎𝜈/𝜆−1

Γ(𝜈/𝜆)
exp [−

(𝜇 − 𝜆)𝜎

𝜆
]. (104) 

Take 𝑛 = 𝜈/𝜆, ℴ = 𝜈/(𝜇 − 𝜆), the above expression is equivalent to 

𝑝Gamma𝜎 in Table 2. 

3 Statistical modeling based on 
empirical model 
Differently from the statistical modeling based on the coherent 

scatterer model defined earlier, the statistical modeling based on the 

empirical model no longer considers the scattering process, but starts 

directly from the image itself. The main target of this approach is to 

find a tractable distribution that is consistent with the actual SAR 

images. 

As shown in Figure 11, according to the presence of analytical 

expressions and the complexity of the model, the empirical statistical 

modeling can be classified into three categories: (i) single distribution, 

(ii) finite mixture, and (iii) non-parametric model.  

The single distribution approach adopts only one certain mathematical 

distribution to model the image; this is usually suitable for relatively 

simple and uniform regions. Finite mixtures describe SAR images 

using a linear combination of one kind of distribution, or a combination 

of multiple distributions; the added complexity is suitable for relatively 

complex scenes. The non-parametric approach consists in choosing a 

model with more parameters to closely fit actual data; it is usually 

suitable for very complicated scenes. This kind of model is complex 

and there is no analytic expression, unlike the first two approaches. 

 

 

Figure 11 Statistical distributions of scattered intensity based on empirical model 
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Table 3: Statistical distribution and characteristics of single empirical distribution model 

Distribution 

type 
Probability density function (PDF) Mean Variance 𝒓-order moment 

Log-normal 

distribution 
𝑝𝐿𝑁(𝑧; 𝛽, 𝑉) =

1

𝑧√2𝜋𝑉
exp [−

(ln 𝑧 − 𝛽)2

2𝑉
] exp [𝛽 +

𝑉

2
] exp(2𝛽 + 𝑉) (exp(𝑉) − 1) 𝐸{𝑍𝑟} = exp [𝑟𝛽 +

𝑟2𝑉

2
] 

Weibull 

distribution 
𝑝𝑊𝐵(𝑧; 𝑐, 𝑏) =

𝑐𝑧𝑐−1

𝑏𝑐
exp [− (

𝑧

𝑏
)
𝑐

] 𝑏Γ (1 +
1

𝑐
) 𝑏2 [Γ (

2

𝑐
+ 1) − Γ2(

1

𝑐
+ 1)] E{𝑍𝑟} = 𝑏𝑟Γ(

𝑟

𝑐
+ 1) 

Fisher 

distribution 

𝑝𝐹(𝑧; 𝐿,𝑀, 𝜇) =
Γ(𝐿 +𝑀)

Γ(𝐿)Γ(𝑀)

𝐿

𝑀𝜇

(
𝐿𝑧
𝑀𝜇

)
𝐿−1

(1 +
𝐿𝑧
𝑀𝜇

)
𝐿+𝑀, 

𝐿 > 0,𝑀 > 0 

𝑀

𝑀 − 1
𝜇 

𝑀2𝜇2(𝐿 + 𝑀 − 1)

𝐿(𝑀 − 1)2(𝑀 − 2)
 __ __ 

Generalized 

gamma 

distribution 

(𝐆𝚪𝐃 − 𝟏) 

𝑝𝐺𝛤𝐷1(𝑧; 𝑎, 𝑏, 𝑣) =
𝑏

𝑎Γ(𝑣)
(
𝑧

𝑎
)
𝑏𝑣−1

exp [− (
𝑧

𝑎
)
𝑏

] 𝑎
Γ(
1
𝑏
+ 𝑣)

Γ(𝑣)
 

𝑎2

Γ2(𝑣)
[Γ(

2
𝑏
+𝑣)Γ(𝑣)

−Γ2 (
1
𝑏
+𝑣)] 

E{𝑥𝑟} = 𝑎𝑟
Γ(
𝑟
𝑏
+ 𝑣)

Γ(𝑣)
 

Generalized 

gamma 

distribution 

(𝐆𝚪𝐃 − 𝟐) 

𝑝𝐺𝛤𝐷2(𝑧; 𝑣, 𝜅, 휂)

=
|𝑣|𝜅𝜅

휂Γ(𝜅)
(
𝑧

휂
)
𝜅𝑣−1

exp [−𝜅 (
𝑧

휂
)
𝑣

], 

𝑣 ≠ 0, 𝜅 > 0, 휂 > 0 {
 
 

 
 휂

𝜅1/𝑣

Γ(𝜅 +
1
𝑣
)

Γ(𝜅)
,
1

𝑣
> −𝜅  

∞,   otherwise

 

휂2

Γ2(𝜅)𝜅
2
𝑣

[Γ(𝜅+
2
𝑣
)Γ(𝜅) 

−Γ2 (𝜅 +
1

𝑣
)], 

1

𝑣
> −𝜅,

2

𝑣
> −𝜅 

E{𝑥𝑟} = {

휂𝑟

𝜅𝑟/𝑣

Γ(𝜅 +
𝑟
𝑣
)

Γ(𝜅)
,
𝑟

𝑣
> −𝜅  

∞,   otherwise

 

 

 

Table 4: Parameter estimation formulas of MoLC method for amplitude distributions 

Distribution type Probability density function (PDF) Parameters Estimation formula of MoLC 

Rayleigh distribution 𝑝(𝐴) =
2𝐴

ℴ
𝑒−

𝐴2

ℴ  ℴ 𝑘1 =
(lnℴ + Ψ(1))

2
 

Square root gamma 
distribution 

𝑝(𝐴) =
2

Γ(𝑛)
(
𝑛

ℴ
)
𝑛

𝐴2𝑛−1𝑒−𝑛𝐴
2/ℴ 

𝑛, 
ℴ 

2𝑘1 = lnℴ + Ψ(𝑛) − ln 𝑛 

4𝑘2 = Ψ(1, 𝐿) 

K distribution 

𝑝(𝐴; 𝛽, 𝛼, 𝑛)

=
4𝛽𝑛𝐴

Γ(𝑛)Γ(𝛼)
(𝛽𝑛𝐴2)(𝛼+𝑛)/2−1𝐾𝛼−𝑛(2𝐴√𝛽𝑛) 

𝛽, 
𝛼, 
𝑛 

2𝑘1 = ln𝛽 + Ψ(𝑛) − ln 𝑛 + Ψ(𝛼) 
4𝑘2 = Ψ(1, 𝑛) + Ψ(1, 𝛼) 
8𝑘3 = Ψ(2, 𝑛) + Ψ(2, 𝛼) 

𝐒𝛂𝐒𝐆𝐑 distribution 𝑝𝐴(𝐴; 𝛾, 𝛼) = 𝐴∫ 𝑠 exp(−𝛾𝑠𝛼) 𝐽0(𝑠𝐴)𝑑𝑠 
∞

0

 
𝛾, 
𝛼 

𝛼𝑘1 = Ψ(1)(𝛼 − 1) + 𝛼 ln 2 + ln 𝛾 

𝑘2 = Ψ(1,1)𝛼−2 

𝐆𝐆𝐑 distribution 
𝑝𝐴(𝐴; 𝛾, 𝑐) =

𝛾2𝑐2𝐴

𝛤2(
1
𝑐
)
∫ exp{−(𝛾𝐴)𝑐(|cos 휃|𝑐
𝜋
2

0

+ |sin 휃|𝑐)} 𝑑휃 

𝛾, 
𝑐 

𝑘1 =
1

𝑐
Ψ (

2

𝑐
) − ln 𝛾 −

1

𝑐
G1 (

1

𝑐
)G0 (

1

𝑐
)
−1

 

𝑘2 =
1

𝑐2
Ψ(1,

2

𝑐
) +

1

𝑐2
G2 (

1

𝑐
) G0 (

1

𝑐
)
−1

−
1

𝑐2
G1 (

1

𝑐
)
2

G0 (
1

𝑐
)
−2

 

𝐆𝚪𝐑 distribution 

𝑝𝐴(𝐴; 𝜈, 휂, 𝜅) = [
𝜈

휂𝜅𝜈𝛤(𝜅)
]
2

𝐴2𝜅𝜈−1 ∙ 

∫ |cos 휃 sin 휃|𝜅𝜈−1 exp {− (
𝐴

휂
)
𝜈

(|cos 휃|𝜈
𝜋
2

0

+ |sin 휃|𝜈)} 𝑑휃, 𝜈 =
1

𝜛
 

𝜈, 
휂, 
𝜅 

𝑘1 = ln 휂 + 𝜛Ψ(2𝜅) − 𝜛
G1(𝜅,𝜛)

G0(𝜅, 𝜛)
 

𝑘2 = 𝜛2 [Ψ(1,2𝜅) +
G2(𝜅, 𝜛)

G0(𝜅, 𝜛)
−
G1
2(𝜅, 𝜛)

G0
2(𝜅, 𝜛)

] 

𝑘3 = 𝜛3 [Ψ(2,2𝜅) −
G3(𝜅, 𝜛)

G0(𝜅, 𝜛)
+ 3

G2(𝜅, 𝜛)G1(𝜅,𝜛)

G0
2(𝜅, 𝜛)

− 2
G1
3(𝜅, 𝜛)

G0
3(𝜅, 𝜛)

] 

Log-normal distribution 𝑝(𝐴; 𝑉, 𝛽) =
1

𝐴√2𝜋𝑉
exp [−

(ln 𝐴 − 𝛽)2

2𝑉
] 

𝑉, 
𝛽 

𝑘1 = 𝛽 

𝑘2 = 𝑉 

Weibull distribution 𝑝(𝐴; 𝑏, 𝑐) =
𝑐𝐴𝑐−1

𝑏𝑐
exp [− (

𝐴

𝑏
)
𝑐

] 
𝑏, 
𝑐 

𝑘1 = ln 𝑏 + Ψ(1)𝑐
−1 

𝑘2 = Ψ(1,1)𝑐−2 

Fisher distribution 𝑝(𝐴; 𝐿,𝑀, 𝜇) =
Γ(𝐿 + 𝑀)

Γ(𝐿)Γ(𝑀)

𝐿

𝑀𝜇

(
𝐿𝐴
𝑀𝜇

)
𝐿−1

(1 +
𝐿𝐴
𝑀𝜇

)
𝐿+𝑀 

𝐿, 
𝑀, 
𝜇 

𝑘1 = ln 𝜇 + (Ψ(𝐿) − ln 𝐿) − (Ψ(𝑀) − ln𝑀) 
𝑘2 = Ψ(1, 𝐿) + Ψ(1,𝑀) 
𝑘3 = Ψ(2, 𝐿) − Ψ(2,𝑀) 

Generalized gamma 
distribution 

𝑓(𝐴; 𝑎, 𝑏, 𝑣) =
𝑏

𝑎Γ(𝑣)
(
𝐴

𝑎
)
𝑏𝑣−1

exp [− (
𝐴

𝑎
)
𝑏

] 
𝑎, 
𝑏, 
𝑣 

𝑘1 = Ψ(𝑣)/𝑏 + ln 𝑎 

𝑘2 = Ψ(1, 𝑣)/𝑏2 

𝑘3 = Ψ(2, 𝑣)/𝑏3 

Note: 𝑲𝒗(∙) is the second type of modified Bessel function, 𝚿(∙) denotes the digamma function, 𝚿(𝒊,∙) represents the 𝒊-order polygamma function, 𝐆𝒗(𝝀) is an integral 
function introduced in [21]: 

𝐆𝒗(𝝀) = ∫
𝐥𝐧𝒗𝑨(𝜽, 𝝀)

𝑨(𝜽, 𝝀)𝟐𝝀
𝐝𝜽

𝝅/𝟐

𝟎

, 𝒗 = 𝟎, 𝟏, 𝟐;  𝑨(𝜽, 𝝀) = |𝐜𝐨𝐬 𝜽|𝟏/𝝀 + |𝐬𝐢𝐧 𝜽|𝟏/𝝀 

𝐆𝒊(𝒌,𝝕) is an integral function introduced in [22]: 

𝐆𝒊(𝒌,𝝕) = ∫ |𝐜𝐨𝐬 𝜽𝐬𝐢𝐧 𝜽|
𝒌
𝝕−𝟏

𝐥𝐨𝐠𝒊𝑨(𝜽, 𝝀)

𝑨(𝜽, 𝝀)𝟐𝒌
𝐝𝜽

𝝅/𝟐

𝟎

;  𝑨(𝜽, 𝝀) = |𝐜𝐨𝐬 𝜽|𝟏/𝝀 + |𝐬𝐢𝐧 𝜽|𝟏/𝝀 
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Table 5: Summary of single-pixel statistical modeling 

Models 
Model complexity & 

physical meaning 
Distributions 

Existence of 
analytical PDF 

Application scope 

Rayleigh 
speckle 
model 

Low model complexity 

& 

weak physical 
meaning 

Negative exponential 
distribution 

Yes Widely used in single-look intensity image of homogenous area 

Rayleigh distribution Yes Widely used in single-look amplitude image of homogenous area 

Gamma distribution Yes Widely used in multi-look intensity image of homogenous area 

Square root gamma 
distribution 

Yes Widely used in multi-look amplitude image of homogenous area 

Product 
model 

Less high model 
complexity 

& 

Less strong  physical 
meaning 

G distribution Yes 
Used in homogenous, inhomogeneous, extremely inhomogeneous 
areas; suitable for single/multi-look intensity or amplitude image 

Gh distribution Yes Used in extremely inhomogeneous urban areas and mixed terrain areas; 

GC distribution Yes Used in sea and land areas of medium-resolution (15m2/30 m2) 

Non-Rayleigh 
speckle 
model 

High model 
complexity 

& 

strong physical 
significance 

G0 distribution Yes 
Used in homogenous, inhomogeneous, extremely inhomogeneous 
areas; suitable for single/multi-look intensity or amplitude image 

K distribution Yes 
Widely used in medium inhomogeneous area; 
suitable for single/multi-look intensity or amplitude image 

W distribution Yes 
Used in medium inhomogeneous area; 
suitable for single/multi-look intensity or amplitude image 

U distribution Yes 
Used in medium inhomogeneous area; 
suitable for single/multi-look intensity or amplitude image 

Rice distribution Yes Used in low-resolution images with targets in weak clutter 

RiIG distribution Yes Used in SAR amplitude image or ultrasound image 

Generalized 
central limit 

theorem 
model 

Less high model 
complexity 

& 

Less strong  physical 
meaning 

GGR distribution No 
Used for multiple types of terrains (such as urban areas, farmland, lakes, 
mountains) in multi-polarized channels 

GΓR distribution No 

Used for homogenous or inhomogeneous SAR amplitude image with 
multiple types of terrains (such as urban areas, farmland, and 
mountains) 

SαSGR distribution No Used for Long-tailed amplitude image of urban area 

Single 
empirical 

distribution 
model 

Low model complexity 

& 

no clear physical 
meaning 

Log-normal distribution Yes 
Used for medium-resolution amplitude images for sea clutter and 
homogenous urban 

Weibull distribution Yes Used for medium-resolution amplitude or intensity images 

Fisher distribution Yes 
Used in homogenous, inhomogeneous, extremely inhomogeneous 
areas; suitable for single/multi-look intensity or amplitude image 

Generalized gamma 
distribution 

Yes 

Used for homogenous or inhomogeneous SAR amplitude/intensity 
image with multiple types of terrains (such as urban areas, farmland, 
and mountains) 

Finite 
mixture 

statistical 
model 

High model 
complexity 

& 

weak physical 
significance 

Mixed K-distribution or 
mixed log-normal 

distribution 

Yes Used for homogenous or inhomogeneous high-resolution SAR images 

Dictionary-based 
mixture distribution 

model 
Yes 

Used for complex scenes composed by multiple types of terrains with 
medium, high or ultra-high resolution. 

Non-
parametric 
statistical 

model 

High model 
complexity 

& 

no clear physical 
meaning 

Parzen-window method No Used for complex scenes composed by multiple types of terrains 

SVM method No Used for complex scenes composed by multiple types of terrains 

Neural network method No Used for complex scenes composed by multiple types of terrains 
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Figure 12 Overall framework of single-pixel statistical modeling 
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Figure 13 Relationship between the major statistical distributions 

 

 Single empirical distribution model 

The most commonly used single empirical models include: the 

lognormal, Weibull, Fisher, and GΓD  (generalized gamma) 

distributions. These laws are suitable for both amplitude and 

intensity data. The PDF and statistical characteristics of these 

distributions are summarized in Table 3. These empirical 

distributions only fit the SAR image mathematically and the 

parameters of empirical distributions do not necessarily have 

interpretability in terms of the physics of image formation. For 

example, there is no “number of looks”, and no “texture parameter”. 
The Log-normal distribution is mainly used for sea clutter of high-

resolution radar [64-66]. It also can be used to describe areas with 

drastic spatial variation, such as urban areas [1]. The Weibull 

distribution can be used to describe land [67], weather [68] and sea-

ice [1, 69] clutter. The Fisher distribution [70] is used to describe 

non-uniform SAR images of high-resolution [21]; it is a 

reparametrization of the 𝐺0 distribution. 

The generalized gamma distribution (GΓD ) was first proposed by 

Stacy [71, 72] denoted as “GΓD − 1 ” in Table 3. It can flexibly 

degenerate into multiple distributions under certain conditions, such 

as the Rayleigh, exponential, Nakagami, gamma, Weibull, and log-

normal distributions. The flexibility of the GΓD make it widely used. 

Anastassopoulos et al. [40] used the GΓD  to describe the speckle 

and RCS components of the SAR clutter to derive the GC distribution 

which has been introduced in Section 2.3.2. Li et al. [62] gave 

another expression to characterize the GΓD, denoted “GΓD − 2” in 

Table 3, and it is experimentally verified that GΓD can be applied to 

many types of land-cover. 

For the PDF of GΓD − 1  in Table 3, if 𝑏 = 1, 𝑣 = 1 , the GΓD 

becomes the exponential distribution. If 𝑏 = 𝑐/2, 𝑣 = 1 , the GΓD 

is the Weibull distribution. If 𝑏 = 1, the GΓD becomes the gamma 

distribution. If 𝑏 = 2, 𝑣 = 1 , the GΓD  becomes the Rayleigh 

distribution. If 𝑏 = 1, 𝑣 →∞ , the GΓD  degrades into the log-

normal distribution. If 𝑏 = 2 , the GΓD  degenerates to Nakagami 

distribution. 

For the PDF of GΓD − 2  in Table 3, if 𝑣 = 2, 𝜅 = 1 , GΓD 

degenerates to a Rayleigh distribution. If 𝑣 = 1, 𝜅 = 1 , GΓD 

becomes the exponential distribution. If 𝑣 = 2, GΓD degrades into 

Nakagami distribution. If 𝑣 = 1 , GΓD  degenerates to the gamma 

distribution. If 𝑣 = −1 , GΓD  becomes the inverse gamma 

distribution. If 𝜅 →∞, GΓD degrades into log-normal distribution. 

If 𝜅 = 1, GΓD is a Weibull distribution. 

 Finite mixtures 

All the statistical distributions mentioned above belong to the 

parametric method [1, 26], and each is usually applicable for a 

specific applicable scene. However, usually there are usually 

multiple types of targets in a remote sensing image. Also, with the 

acquisition of high-resolution and ultra-high resolution SAR images, 

more details are highlighted, making it difficult to model SAR 

images with only one kind of statistical distribution [1].  

To solve this problem, the Finite mixture model (FMM) [29, 73] has 

attracted the attention of scholars. The high flexibility of the FMM 

model makes it widely used in the fields of pattern recognition [74, 

75], signal and image analysis [76-78] , machine learning [79, 80], 

and remote sensing [78, 81-83]. The FMM is a semi-parametric 

method which models the unknown probability distribution as a 

linear combination of parameterized mixture components, each 

mixture component belonging to a dictionary of SAR-specific 

distributions [29]. 

The FMM models the PDF of the SAR amplitude image 𝑧  as a 

linear combination of 𝑘 mixture components [29, 30]: 

𝑓𝑧(𝑧|𝑀) =∑𝛼𝑖𝑓𝑖(𝑧|𝑚𝑖)

𝑘

𝑖=1

, 
(105) 

where 𝑓𝑖(∙ |𝑚𝑖) , 𝑖 = 1,2, … , 𝑘  represents the probability 

distribution of the mixture component with parameters 𝑚𝑖 , and 
{𝛼1, … , 𝛼𝑘} is a set of mixing proportions such that: 

∑𝛼𝑖

𝑘

𝑖=1

= 1，0 ≤ 𝛼𝑖 ≤ 1, (106) 

where 𝑀 is a set collecting all the parameters of FMM, which is 

𝑀 = {𝑚1, … ,𝑚𝑘 , 𝛼1, … , 𝛼𝑘}. 

The distribution of each mixture component can be selected from the 

statistical distributions introduced earlier. The selected 𝑅 types of 

mixture components 𝑓𝑗(∙ |𝜉𝑗)，𝑗 = 1,2, … , 𝑅 make up a dictionary 

𝒟 = {𝑓1 , 𝑓2, … , 𝑓𝑘} , where 𝜉𝑗  represents the parameter of each 

mixture component distribution [30]. 

Consider the 𝑘  independent random variables {𝐴1, … , 𝐴𝑘}  with 

distributions characterized by the densities {𝑓1 , … , 𝑓𝑘}. Assume that 

the observation of the experiment consists in first choosing one of 

these random variables with probability {𝛼1, … , 𝛼𝑘} , and then 

sampling from it. In other words, 

𝐴 = {
𝐴1 with probability   𝛼1,

⋮
𝐴𝑘  with probability  𝛼𝑘.

 

The resulting random variable 𝐴  obeys the mixture distribution 

characterized by the 𝑘  laws {𝑓1 , … , 𝑓𝑘}  with proportions 

{𝛼1, … , 𝛼𝑘}. 
Given a SAR image and a dictionary, it is necessary to use an 

optimization method to determine the optimal number 𝑘 of mixed 

components, the mixing proportion 𝛼𝑘  and the distribution 

parameter 𝑚𝑖 of each mixture component. 

Blake et al. [14, 15] experimentally verified that using only a single 

probability distribution, such as the K, log-normal, Weibull, gamma, 

exponential distribution, etc., it is not possible to accurately model 
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high-resolution SAR images. The authors’ experiments show that the 

mixed distribution composed by two K-distributions or two log-

normal distributions can be used to describe high-resolution SAR 

clutter. It is because the model is expanded from a single two-

parameter probability distribution to the double five-parameter 

probability distribution which can better describe the complexity of 

high-resolution images. Blacknell [84, 85] proposed a correlated 

Gaussian mixture distribution (GMD) model to approximate the 

correlated K-clutter image in the logarithmic domain, and the model 

is applied to target detection which shows that the GMD model 

realizes better detection result compared with a single Gaussian 

distribution. At the same time, it is easier for the GMD model to 

introduce correlation information than other distributions. The 

introduction of correlation information can also significantly 

improve the performance of target detection. 

Moser et al. [30] used a FMM to model medium resolution SAR 

amplitude images. Each mixture component is selected from a 

dictionary of six specific distributions including: log-normal, 

Nakagami, GGR, SαSGR, Weibull and K. The authors proposed a 

DSEM (‘dictionary-based’ stochastic expectation maximization 

method). It can automatically estimate parameters of the optimal 

mixture model combined with MoLC (method-of-log-cumulants) 

method and the parameters includes the number, the type as well as 

the distribution parameters of the mixed components. Furthermore, 

EDSEM (enhanced DSEM) is proposed in [83] which can more 

quickly estimate the number of mixed components. EDSEM further 

extended the DSEM algorithm for medium-resolution SAR images 

to very high-resolution image, and the dictionary is extended to eight 

probability distributions by adding the Fisher and GΓD laws. 

 Non-parametric modeling 

The statistical modeling distributions reviewed previously are based 

on parametric or semi-parametric methods. This section introduces 

statistical modeling based on non-parametric methods. Non-

parametric methods do not assume any analytical expression for the 

probability distribution governing the process, therefore they are 

more flexible, but there are some hyper-parameters need to be set [26, 

30]. Typical non-parametric methods mainly include the Parzen-

window [17, 86], support vector machines (SVM) [19, 87], ANN 

(artificial neural networks) [18, 88], and deep neural networks [32, 

33, 89-91]. These methods adopt complex techniques to estimate 

statistical properties of the data based on a large number of sample 

data. They are mainly applied in despeckling [32, 33, 90, 91], image 

classification [18, 92], and ship detection [93, 94]. 

a) Parzen-Rosenblatt window  

The Parzen-window method [17, 86], also known as the Parzen-

Rosenblatt window method and kernel density estimation, was 

proposed by Parzen and Rosenblatt. It is a widely used non-

parametric approach to estimate the PDF based on a sample. Two-

dimensional Parzen-window can be written as [17]： 

𝑝(𝑧) =
1

𝑛
∑

1

ℎ2
𝜙 (
𝑧𝑖 − 𝑧

ℎ
)

𝑛

𝑖=1

, 
(107) 

where 𝑧𝑖 , 𝑖 = 1,2,… , 𝑛  are samples, 𝜙(∙)  is the window function 

of size ℎ: 

𝜙 (
𝑧𝑖 − 𝑧

ℎ
) = {1        |

𝑧𝑖 − 𝑧

ℎ
| ≤

1

2
,

0            otherwise.

 
(108) 

There are many other choices for 𝜙(∙) such as the square, Gaussian, 

and hyper-spherical windows [86]. 

b) SVM method 

The SVM [87] method is used to estimate the PDF for the supervised 

classification of SAR images in [19]. The estimated cumulative 

distribution function (CDF) �̂�(𝑥) and PDF �̂�(𝑥) are expressed as: 

�̂�(𝑥) =∑𝛽𝑖𝐾(𝑥𝑖 , 𝑥)

𝑛

𝑖=1

, �̂�(𝑥) =∑𝛽𝑖𝐾(𝑥𝑖 , 𝑥)

𝑛

𝑖=1

, 
(109) 

where {𝛽𝑖: 𝑖 = 1,2,… , 𝑛}  is the set of weight coefficients, 𝐾(∙,∙) 
denotes the kernel function and 𝐾(∙,∙) is the cross-kernel function 

which are related by: 

𝐾(𝑥, 𝑧) = ∫ 𝐾(𝑥, 휁)d휁
𝑧

0

，0 ≤ 𝑥, 𝑧 ≤ 1. 
(110) 

A variety of estimation algorithms for support vector (SV) regression 

are given in [87]. Here, the specific algorithm process of a 

generalized square loss SV regression with dictionary of kernels is 

given. Select a Gaussian cross-kernel function with variance 𝜎2: 

𝐾(𝑥, 𝑧) =
1

𝜎√2𝜋
exp [−

(𝑥 − 𝑧)2

2𝜎2
], 

(111) 

and given a dictionary composed by cross-kernels {𝐾1(∙,∙), 𝐾2(∙

,∙), … , 𝐾𝜅(∙,∙)}  with 𝜅  parameters {𝜎1, … , 𝜎𝜅} , the estimated PDF 

can be written as: 

�̂�(𝑥) =∑∑𝛽𝑖
𝑗
𝐾𝑗(𝑥𝑖 , 𝑥)

𝜅

𝑗=1

𝑙

𝑖=1

, 
(112) 

where 𝛽𝑖
𝑗
(𝑖 = 1,2,… , 𝑙; 𝑗 = 1,2,… , 𝜅)  are the weight coefficient 

which satisfy: 

∑∑𝛽𝑖
𝑗

𝜅

𝑗=1

𝑙

𝑖=1

= 1,𝛽𝑖
𝑗
≥ 0. 

(113) 

The optimization goal of the algorithm is [19]: 

{
 
 
 
 
 

 
 
 
 
 

min
{𝛽𝑖

𝑗
,𝜉𝑖}
[∑𝜉𝑖

2

𝑙

𝑖=1

+ 𝐶∑∑
𝛽𝑖
𝑗

𝜎𝑗

𝜅

𝑗=1

𝑙

𝑖=1

]

∑∑𝛽𝑖
𝑗
𝐾𝑗(𝑥𝑖 , 𝑥𝑟)

𝜅

𝑗=1

𝑙

𝑖=1

+ 𝜉𝑟 = 𝑃𝑙(𝑥𝑟)，𝑟 = 1,⋯ , 𝑙

∑∑𝛽𝑖
𝑗

𝜅

𝑗=1

𝑙

𝑖=1

= 1

𝛽𝑖
𝑗
≥ 0，(𝑖 = 1,2,⋯ , 𝑙; 𝑗 = 1,2,⋯ , 𝜅)

, 
(114) 

where {𝜉𝑖: 𝑖 = 1,2, … , 𝑙} is the relaxation vector, and 𝐶 is a given 

empirical parameter. 

c) Neural networks  

Statistical modeling based on neural network methods are usually 

combined with applications such as image despeckling [32, 33, 90, 

91], and image classification [18, 92], among other applications. 

Neural networks can be regarded as a non-linear model with a large 

number of parameters.  

This approach had two stages of development: artificial neural 

networks (ANN), and deep neural networks. The ANN proposed in 

1943 are shallow networks mainly comprised of two key steps: 

feature extraction, and classification [18]. They are limited by the 

choice of features and the computational burden. Deep neural 

networks [95], as proposed in 2006, built on a many-layer structure 

which can automatically extract the statistical features of images 

based on a large number of training samples and classify them [89]. 
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As the most representative deep neural network, convolutional neural 

networks (CNN) [96] have achieved such good results in image 

processing that they became a research focus in recent years [97]. It 

is totally data-driven which is difficult to be analyzed from a physical 

perspective. 

4 Model assessment and parameter 
estimation 
We have already reviewed various statistical distributions based on 

different models, and every statistical distribution has its own 

applicable scenarios. The next step is choosing a model, and 

performing parameter estimation according to the specific 

application. This section will introduce several model assessment 

and parameter estimation methods. 

The main statistical model assessment tests are based distances or 

divergences: 𝜒2  [98, 99], Kolmogorov-Smirnov [99, 100], 

Kullback-Leibler (K-L) [101], and D’ Agostino-Pearson [99], among 

others. The parameter estimation methods mainly include: Method 

of Moments (MoM) [98], Maximum Likelihood (ML) method [98], 

and Method of Logarithmic Cumulants (MoLC) [102]. Most of the 

model assessment and parameter estimation methods are classical 

methods which could be learned in specific references. Due to space 

limitations, they will not be described in detail here. In particular, we 

review the widely used MoLC method [22, 62, 103], and Table 4 

summarizes the parameter estimation formulas of MoLC method for 

10 amplitude distributions [30, 62, 83]. 

The MoLC method is a parameter estimation method based on the 

Mellin transform of the PDF, proposed by Nicolas et al. [102] in 

2002. Compared with MoM, MoLC has higher parameter estimation 

accuracy [104]. 

The first characteristic function of the second kind is defined as the 

Mellin transform of a function 𝑝(𝑥) with the domain 𝑅+ [105]: 

𝜙(𝑠) = MT[𝑝(𝑥)](s) = ∫ 𝑥𝑠−1𝑝(𝑥)d𝑥
∞

0

. 
(115) 

The second kind moments called log-moments, are the derivative of 

the first characteristic function of the second kind evaluated at 𝑠 =
1 . Such moments can be written in two ways by virtue of a 

fundamental property of the Mellin transform:  

�̃�𝑟 =
d𝑟𝜙(𝑠)

d𝑠𝑟
|
𝑠=1

= ∫ (ln 𝑥)𝑟𝑝(𝑥)d𝑥
∞

0

，𝑟 = 1,2, ….  
(116) 

For discrete cases, the log-moments can be written as: 

�̃�𝑟 =
1

𝑁
∑(ln 𝑥𝑖)

𝑟

𝑁

𝑖=1

，𝑟 = 1,2,…. 
(117) 

The second characteristic function of the second kind is defined as 

the natural logarithm of the first characteristic function of the second 

kind: 

𝜉(𝑠) = ln𝜙(𝑠). 
(118) 

The derivative of the second characteristic function of the second 

kind, evaluated at 𝑠 = 1, defines second kind cumulants, called log-

cumulants [102, 106]: 

�̃�𝑟 =
d𝑟𝜉(𝑠)

d𝑠𝑟
|
𝑠=1

. 
(119) 

The relationships between the log-moments and log-cumulants and 

the first three log-cumulants can be written as: 

�̃�𝑟 = �̃�𝑟 −∑(
𝑟 − 1
𝑖 − 1

) �̃�𝑖

𝑟−1

𝑖=1

�̃�𝑟−𝑖 , 

�̃�1 = �̃�1, 

�̃�2 = �̃�2 − �̃�1
2, 

�̃�3 = �̃�3 − 3�̃�1�̃�2 + 2�̃�1
3. 

(120) 

Given 𝑁  samples 𝑥𝑖(𝑖 = 1,2, … ,𝑁) , the estimation of the log-

cumulants of the first three orders is given by the solution of: 

�̂�1 =
1

𝑁
∑[ln 𝑥𝑖]

𝑁

𝑖=1

, 

�̂�2 =
1

𝑁
∑[(ln 𝑥𝑖 − �̂�1)

2
]

𝑁

𝑖=1

, 

�̂�3 =
1

𝑁
∑[(ln 𝑥𝑖 − �̂�1)

3
]

𝑁

𝑖=1

. 

(121) 

5 Conclusion 

 Summary of single-pixel statistical modeling 

Table 5 summarizes all statistical distribution models reviewed in 

this paper in terms of the complexity, the physical meaning, the 

existence of analytical expression of the PDF, and the scope of 

application. Figure 12 presents the whole view of the relationships 

among different models. Figure 13 summarizes the relationship 

between the major statistical distributions. It shows that: 

- except for the lognormal distribution, all the distributions 

shown here can be degenerated into Rayleigh 

distributions; 

- the Fisher distribution and the 𝐺  distribution can be 

equivalently transformed; 

- the K, 𝐺ℎ , 𝐺0  distributions are special cases of 𝐺 

distribution; 

- the Gamma distribution could be degenerated from the K 

distribution, the generalized Gamma distribution or the 

𝐺0 distribution; 

- the log-normal distribution and the Weibull distribution 

can be degenerated from the generalized Gamma 

distribution; 

- the negative exponential distribution can be degenerated 

from either the Gamma distribution or the Weibull 

distribution; 

- the Rice distribution is a special case of RiIG distribution; 

- the GGR distribution can be degenerated from the GΓR 

distribution. 

The parameter relationships of these distribution conversions and 

degenerations can be found in the previous sections. 

 Outlook 

The statistical modeling of SAR images is an important means of 

extracting information from the data. Intended as a comprehensive 

reference for further development in the field, this paper reviews the 

development of the single-pixel statistical modeling of SAR image. 
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It categorized the most important models into two main types, i.e. the 

coherent scatterer model based on random walk model, and the 

empirical model. The coherent scatterer model describes the 

scattered field of a resolution cell as a coherent superposition of 

multiple scatterers. It is more physically plausible. Under different 

conditions, five types of statistical models can be developed based 

on the coherent scatterer model, i.e. the Rayleigh speckle model, the 

product model, the non-Rayleigh speckle model, the generalized 

central limit theorem model, and the incoherent scatterer sum model. 

Based on these five types of statistical models, we reviewed 

seventeen statistical distributions (see Figure 12). Empirical models 

can be divided into three types: single empirical distribution model, 

finite mixture statistical model and non-parametric statistical model. 

We recalled seven statistical distributions based on these models (see 

Figure 12). Empirical models are easy to apply, they do not involve 

specific scattering processes, but they are not physically explainable. 

The source code for the for the PDFs and plots is available at 

https://github.com/dxyue/StatisticalModeling.git . 

The rapid development of radar system technologies lead to the 

emergence of new types of SAR images, including polarimetric SAR 

(PolSAR) [2], interferometric SAR [107], bistatic and multistatic 

constellation SAR [108-112] and quantum radar [113]. For example, 

the advanced non-interrupted synchronization scheme for 

spaceborne bistatic SAR in [108] demonstrates superiority over 

techniques of existing systems such as TanDEM-X and is promising 

in the future spaceborne bistatic and multistatic systems. Another 

example is quantum radar which may greatly enhance receiver 

sensitivity. These new types of SAR data have brought higher 

requirements and more opportunities to the task of image 

interpretation. For the outlook, five aspects are discussed as follows: 

(1) To fit different scenarios and different users, various statistical 

models have been developed. However, they mainly come from the 

approximation or improvement of classical physical models. It is 

better to build these statistical models under a unified framework. 

The most suitable model can be selected for a specific scenario. It 

can also lower the threshold for beginners to understand the 

statistical modeling of SAR images. Therefore, a general statistical 

framework for SAR images stems as an important research topic. 

This paper provides an important reference for future study of a 

generalized statistical framework. 

(2) Existing statistical modeling of SAR images is mainly for single-

pixel statistical modeling, which is not sufficient for mining 2D 

image information. Two-pixel statistical features such as correlation 

functions can further describe SAR texture features. However, 

research on correlated textures is far less ubiquitous than single-pixel 

statistical modeling, and the existing texture representation models 

are either too complex or purely empirical. Therefore, simple but 

effective textures characterization is another important research 

direction. 

(3) Existing statistical models of SAR images mainly describe the 

homogenous clutter texture, and do not involve the position or 

boundary of textures. However, actual SAR images are often 

composed of a variety of terrain surfaces with relatively clear 

boundaries. Therefore, further inclusion of boundaries of 

homogenous clutter texture to form a two-layer semantic map is also 

a valuable research topic. 

(4) PolSAR images contain richer scene information compared with 

the single-channel SAR data [2]. The statistical analysis [114, 115] 

of PolSAR images plays an important role for its interpretation such 

as image segmentation [116, 117] and classification [118-122], 

change detection [123-128], target detection [129, 130] and 

despeckling [131-134]. Many statistical distributions for PolSAR 

data can be seen as an extension of single-channel statistical 

modeling reviewed in this paper. The scaled complex Wishart 

distribution is employed as a statistical model for homogeneous 

regions in PolSAR images [115]. And the product model has 

developed many statistical distributions to describe the 

nonhomogeneous regions in PolSAR images such as the polarimetric 

𝐺𝑃  distribution, 𝐾𝑃  distribution, 𝐺𝑃
0  distribution, 𝑈  distribution 

and so on [114, 120]. The expansion from single-channel statistical 

modeling to polarimetric statistical modeling and the study of 

polarimetric statistical modeling will provide an important research 

foundation for the wide application of PolSAR images. 

(5) Quantum technology [135] may bring change to both radar 

systems and image interpretation.  

On the one hand, the development of quantum device in quantum 

radar [113] is based on the mechanisms of quantum physics. 

Quantum radar has been proved to have the potential to break the 

limit of conventional radar detection performance such as system 

sensitivity [136] and target detection capability [137]. Several 

quantum radar concepts such as quantum radar equation, quantum 

radar cross section (QRCS) and quantum detection theory have been 

researched recently [137-139]. Quantum entanglement is a quantum 

phenomenon where multiple particles are linked together in a way 

such that the measurement of one particle's quantum state determines 

the possible quantum states of the other particles [113]. It leads to 

correlations between observable physical properties of the systems 

[113, 136]. It has been shown the resolution of quantum radar 

systems using entangled photons is higher then that of non-entangled 

quantum radar [140]. As the further development of quantum radar 

theory and core techniques, the corresponding statistical modeling 

should be a studied.  

On the other hand, the principles of quantum computing [135], such 

as uncertainty, superposition, interference and implicit parallelism, 

make it have better diversity and better trade-off between the 

exploration and the exploitation than common evolutionary 

algorithms [141]. These principles have inspired many evolutionary 

computing algorithms to solve the optimization problem in SAR 

image segmentation, such as quantum clonal selection clustering 

(QCSC) algorithm [142], quantum immune fast spectral clustering 

(QIFSC) approach [143] and quantum-inspired multiobjective 

evolutionary clustering (QMEC) algorithm [141]. These research 

results demonstrate the application value of quantum computing in 

the field of SAR image modeling and data processing. 
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