
Debugging Agent Programs with “Why?” Questions

Michael Winikoff
Department of Information Science

University of Otago
Dunedin, New Zealand

michael.winikoff@otago.ac.nz

ABSTRACT
Debugging is hard, and debugging cognitive agent programs is par-
ticularly hard, since they involve concurrency, a dynamic environ-
ment, and a complex execution model that includes failure han-
dling. Previous work by Ko & Myers has demonstrated that pro-
viding Alice and Java programmers with software that can answer
“why?” and “why not?” questions can make a dramatic difference
to debugging performance. This paper considers how to adapt this
approach to cognitive agent programs, specifically AgentSpeak. It
develops and formalises definitions for “why?” and “why not?”
questions and associated answers, and illustrates their application
using a scenario.

Keywords
Programming languages and frameworks for agents and multi-agent
systems, Development techniques, tools, and platforms

1. INTRODUCTION
Debugging agent systems is hard. Agent programs are concur-

rent, distributed, often situated in dynamic environments where
things can go wrong, and some cognitive agent languages use an
execution model that is complex, and that may include failure han-
dling. All of these factors make debugging agent programs quite
challenging.

One exciting recent approach is the use of question-based de-
bugging. Proposed for Alice, and subsequently Java, by Ko & My-
ers [11, 12], the key idea is to provide programmers with software
that allows them to indicate, say, a step in the execution trace, ask
“why did this happen?”, and get an explanation from the system.
Their Whyline system also allows the programmer to get answers
to questions of the form “why did 〈something else〉 not happen?”.

Ko & Myers’ evaluation of the WhyLine demonstrated a dra-
matic difference: use of the Whyline by Alice programmers re-
duced debugging time by a factor of 8 [11], and two evaluations
with Java programmers found that (i) novice users with the Why-
line were around twice as fast as more experienced programmers
without the Whyline; and (ii) with a larger system, significantly
more of the Whyline users were able to debug successfully [12].

This paper adapts the question-based debugging approach to ag-
ents, specifically using AgentSpeak, a well-known cognitive agent
programming language. Our key contributions are: articulating a

Appears in: Proc. of the 16th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2017),
S. Das, E. Durfee, K. Larson, M. Winikoff (eds.),
May 8–12, 2017, São Paulo, Brazil.
Copyright c© 2017, International Foundation for Autonomous Agents and Multiagent
Systems (www.ifaamas.org). All rights reserved.

general principle for defining explanations for “why” and “why
not” questions; formal definitions of a range of question types;
formal definitions of the answers to these question types; and a
demonstration of the approach using an example scenario.

Compared with Ko & Myers, one significant difference is that
our setting is an agent language, rather than Alice or Java. A second
significant difference is that their approach is defined operationally:
the tracing of execution is defined at a low level by instrumenting
bytecode, and the process of providing answers to questions is de-
fined as an algorithm, but not justified in any formal way. By con-
trast, our approach is formally defined and well founded: tracing is
done in a clear and complete way at a high level, and the principle
for defining explanations allows us to define a completeness result.

Interestingly, this paper is not the first to propose using questions
to debug agent programs: this was initially proposed by Hindriks
back in 2012 [9]. It appears that Hindriks was not aware of the
earlier Whyline work. This paper builds on Hindriks’ paper in two
ways. Firstly, it caters for plans that are triggered by events, and
that have plan bodies that are sequences of steps, some of which
may be sub-goals. By contrast, Hindriks’ work is set in the con-
text of the GOAL programming language where plans are simpler
(in essence condition-response pairs, although GOAL does provide
modules that provide means of focussing on particular rules). Sec-
ondly, Hindriks’ paper is informal, and sketches questions and an-
swers informally (in English). By contrast, this paper defines an-
swers formally. Additionally, Hindriks’ paper does not consider
how traces are captured, which we define in Section 2, and it does
not appear that his (informal) definitions had been implemented.
By contrast, the definitions in this paper have been implemented.

There are various debugging tools for agent programs (e.g. [1, 3,
5, 8, 13]). They tend to provide the programmer with the ability to
trace the program’s execution, set breakpoints, and inspect the state
of execution. What they do not do is provide the programmer with
support to navigate and interpret the often rather large amount of
information that results from tracing. There has been some work
that has considered analysing and visualising multi-agent system
execution (e.g. [2]), which is complementary to our work in that it
focusses on visualising the whole of execution at once, rather than
on navigating and interpreting parts of the execution. The work of
Lam & Barber [15, 16] provides such visualisation, but also sup-
ports the programmer in answering “why?” questions about the
behaviour of the program. However, this is done by the program-
mer navigating a graph of concepts, where links are retrospectively
inferred from log files.

There is also work that is focussed on testing, rather than on
debugging (e.g. [7, 14, 18, 19, 20, 21, 22, 23, 24]), the difference
being that the focus is on finding failures, as opposed to locating
the program fault that led to the failure.

The remainder of this paper briefly defines an AgentSpeak-like
language (syntax & semantics) including a definition of tracing
(Section 2), and then proceeds to the core of the paper: definitions
of the questions that can be asked and how to derive answers (Sec-
tion 3). These are illustrated using a scenario (Section 4), and we
then conclude (Section 5).

2. BACKGROUND: AGENTSPEAK
The following grammar defines an AgentSpeak-like language1.

A program Π is a set (actually ordered list) of plans πi. A plan πi
is of the form +!t : G ← P . The guard G is a logical formula
where textually ∧ and ¬ are rendered as & and ˜ respectively (note
that t is a term). A plan body P is either empty (denoted “true”)
or a sequence of steps S1; . . . ;Sn (n ≥ 1) where each step can be
one of: belief addition +t or deletion −t, testing a condition ?G,
an action A or posting an event !t, where t is a term.

Π ::= π∗

π ::= +!t : G← P

G ::= term | G1 ∨G2 | G1 ∧G2 | ¬G
P ::= S1(;Si)

∗ | true
S ::= +term | −term | ?G | !t | A
A ::= term

We now briefly define the semantics. The semantics (Figure 1)
use 4 and 8 as semantic-level constructs (i.e. not program con-
structs) that denote the success or failure of part of an execution.
For example, testing a condition resolves to 4 if that condition
holds, and 8 if it does not. A plan transition is defined over a con-
figuration 〈B,P 〉 where B is the belief base, and P is the plan
body being executed; we also define agent transitions over con-
figurations 〈B,Γ〉 where Γ is a multiset of plan body instances
(i.e. intentions). The rules (see Figure 1) are in standard Plotkin
structured-operational-semantics style (ignore the text above the ar-
rows for now).

These rules are fairly straightforward: a condition test ?c suc-
ceeds if it holds with respect to the current belief-base (rule 1) and
fails if it doesn’t (rule 2). An action A can fail (rule 4) or succeed
(rule 3, in which case the belief base is updated with the conse-
quences of its execution, denoted B′ = conseq(A,B)). Belief
changes always succeed and update the belief base B (+b rule 5,
and −b rule 6). Rule 7 specifies that a sequence S1;S2 is executed
by executing the first step, and then using the auxiliary function .̂ . .
(explained below) to clean up.

Event posting is a little more complex. An event is handled by
collecting all applicable2 plan body instances ∆, and selecting one
of them (by default the first, i.e. ∆ is actually a sequence, not a
set) using select(∆) (defined in Figure 1). Note that the second
case in select indicates that if there are no options remaining, then
attempting to select an option results in failure.

The definition of select uses an auxiliary construct . to “attach”
a set of backup options to a selected plan body. Note that the def-
inition of .̂ . . specifies that the options are discarded when a plan
succeeds (4̂ . S = 4) and that a failed step that has a backup op-
tion should use that backup option (8̂ .∆ = select(∆)). We then
need to specify that the “attach” construct is simply handled by ex-
ecuting the plan body (rule 8). Then the semantics of posting an
1There are a few minor differences compared with Rao’s original
language [25].
2A plan π = +!t:G←P is relevant for an event e if its trigger t
unifies with the event, and it is applicable if, in addition, its context
condition G is true.

event (rule 9) is specified by computing ∆ (defined in the bottom
left of Figure 1) and selecting an option.

The auxiliary function to simplify .̂ . . is defined in the last row of
Figure 1. In essence it simplifies the program. For instance, 4;S
is simplified to S, which captures that if the first statement in a se-
quence has succeeded, then move on to the second. The fourth case
implements failure handling: a failure (8) with alternative options
available is simplified by selecting one of those options.

Having defined transitions over individual intentions, we now
define a transition rule over an agent configuration (rule A). We
assume an auxilliary function {̃P} which returns {P} except that
{̃P} = ∅ if P ∈ {4,8}. This has the effect of removing com-
pleted intentions from Γ.

Although not part of the AgentSpeak language, we need to briefly
explain how we handle the environment. We specify the environ-
ment in terms of action properties. An AgentSpeak program does
not include information about action properties (e.g. pre-conditions).
Rather, we use a separate environment specification that, for each
action, indicates (i) the conditions under which the action will be
successful (its pre-condition pre(A)), and (ii) what are the effects
of performing the action. The action’s effects include not just the
direct post-conditions (e.g. that putting a block down means you
are no longer holding it), but also the percepts that result from the
action (e.g. if the block is being put down in the dropzone, and
it’s the correct colour, then the agent is told about the new desired
colour). Exogenous actions can be handled by making their effects
part of the effects of an action.

In order to debug programs we need to not just execute them,
but also capture the execution. The semantics in Figure 1 therefore
also capture traces: the text above the arrow is a trace term. For
example, rule 3 indicates that when an action A is successfully ex-
ecuted, it results in a term act4

N (A,B,B′). The grammar below
defines the trace terms, where N is a (numerical) identifier for the
step (used to disambiguate where, for instance, the same action is
performed multiple times during execution; we assume that N in-
creases over time), B and B′ are the beliefset (respectively before
and after the action’s effects, but for other rules we only capture
the beliefset resulting from the transition), and 4 and 8 indicate
whether the transition is a successful or failed one. Finally, in the
transition for events ∆ is the set of alternatives.

Tr ::= test4
N (c) | test8

N (c) | act4
N (A,B,B′) | act8

N (A,B)

| addbN (b,B,B′) | delbN (b,B,B′)

| callN (∆, B,B′, T r′) | trueN
| Tr1;Tr2

Now, a trace can be a linear sequence, but it turns out to be useful
to capture the hierarchical structure. In order to obtain hierarchical
traces that reflect the structure of the calls, rather than a linear se-
quence, we use a variant rule (9′). This performs all the transitions
associated with the sub-goal, and packages up the resulting trace
into a trace term Tr′ that is part of the trace term for the call. The
condition P ∈ {4,8} specifies that the execution of the sub-goal
has completed. As usual we use −→∗ to denote the transitive clo-
sure of −→, but where traces are collected into sequence (rule ∗ in
Figure 1).

Formally, given an initial beliefset B0 and a top-level goal !t,

we have that 〈B0, !t〉
Tr

−→∗ 〈B,P ′〉 where P ′ is either 4 or 8,
and Tr is a trace term that captures the execution. We use T to
denote the trace resulting from executing the top-level goal. We
overload notation by defining Tr ∈ T to be true if Tr is a trace
term that appears within T (either as an element of a sequence, or as

B |= c

〈B, ?c〉
test4

N (c)
−−−−−→ 〈B,4〉

1
B 6|= c

〈B, ?c〉
test8

N (c)
−−−−−→ 〈B,8〉

2
B |= pre(A) B′ = conseq(A,B)

〈B,A〉
act4

N (A,B,B′)
−−−−−−−−−→ 〈B′,4〉

3
B 6|= pre(A)

〈B,A〉
act8

N (A,B)
−−−−−−−→ 〈B,8〉

4

〈B,+b〉 addbN (b,B,B∪{b})−−−−−−−−−−−−→ 〈B ∪ {b},4〉
5

〈B,−b〉 delbN (b,B,B\{b})−−−−−−−−−−−→ 〈B \ {b},4〉
6

〈B,S1〉
Tr−→ 〈B′, S′1〉

〈B, (S1;S2)〉 Tr−→ 〈B′, ̂(S′1;S2)〉
7

〈B,P 〉 Tr−→ 〈B′, P ′〉

〈B,P .∆〉 Tr−→ 〈B′, P̂ ′ .∆〉
8

〈B, !e〉 −→ 〈B, select(∆)〉 9

〈B, select(∆)〉
Tr′

−→∗ 〈B′, P 〉 P ∈ {4,8}

〈B, !e〉 callN (∆,B,B′,Tr′)−−−−−−−−−−−−→ 〈B′, P 〉
9′

〈B, true〉 trueN−−−−→ 〈B,4〉
10

〈B,P 〉 −→ 〈B′, P ′〉

〈B,Γ] {P}〉 −→ 〈B′,Γ] {̃P ′}〉
A

〈B,P 〉 Tr1−−→ 〈B′′, P ′′〉 〈B′′, P ′′〉 Tr2−−→
∗
〈B′, P ′〉

〈B,P 〉 Tr1;Tr2−−−−−→
∗
〈B′, P ′〉

∗

∆ = {Pθ | (+t:G←P) ∈ Π
∧ tθ = e ∧B |= Gθ} select(∆) =

{
P . (∆ \ {P}) if P ∈ ∆
8 if ∆ = ∅

4̂;S = S 8̂;S = 8 4̂ .∆ = 4

8̂ .∆ = select(∆) Ŝ = S otherwise

Figure 1: AgentSpeak Semantics

a sub-trace (last argument of callN). We also overload ∈ to check
whether a step S appears in a sequence of steps P (formally: S ∈
P iff P = S1; . . . ;S; . . . ;Sn), and to check if a step S appears in
a plan π (formally: S ∈ π iff S ∈ P where π = +!t:G←P).

Given an implementation of AgentSpeak, it could be modified
to collect a trace. Alternatively, one could use a modified AgentS-
peak meta-interpreter [28] that is extended to capture traces. This
is obviously not efficient, but would be adequate for prototyping,
and for debugging smaller programs.

3. POSING AND ANSWERING QUESTIONS
The basic principle for answering a “why” question is the follow-

ing: if we consider the semantics as being non-deterministic, and
describing all possible executions, then an explanation for “why
did you do 〈this〉?” is a (prior) point in the execution where there
was a choice, and making a different choice would not have led to
“〈this〉” being done. This basic principle gives us a basis for for-
mulating a completeness result. Suppose that we have defined a
particular question type (e.g. “why did you do step S at point N?”)
and a way of deriving an answer, i.e. an explanation, for a question
of that type given a particular trace. Then the way of deriving the
answer is complete if and only if it is able to provide all possible
explanations (i.e. earlier points in the execution where a different
choice could have been taken that would have affected the answer
to the question).

Clearly, there are many possible answers that could be given,
since any action depends on many prior choice points. In this work
the overarching goal is to support a programmer to debug their pro-
gram, so a key consideration is what answer(s) would the program-
mer find most useful? As a general principle, we answer in terms
of the closest choice point, and allow the programmer to repeat the
“why” question with respect to the answer to find causes that are
further away. This process will be familiar to any parent of young
children. Also familiar to parents will be the need for a “because”
base case. Any query relating to the initial goal will be met with
“because that was the initial goal that you specified”.

In considering the possible types of questions we follow Hin-
driks [9] in distinguishing between doing and knowing (more pre-
cisely believing): we therefore can ask an agent why it believes

something, or why it did a certain action (more generally, a step).
In addition to being able to ask why an agent did or believed some-
thing, it can also be useful to explore why it did not do or be-
lieve something that we expected it to do or believe. This gives
us four main types of questions: “why did you do step S at N?”
(formally: whyN (S)), “why did you believe condition C at point
N?” (whyN (C)), “why did you not do step S at point N?” (for-
mally3 whyN (S)), and “why did you not believe C at point N?”
(whyN (C)).

In defining how to answer question of these types it turns out
(see Section 3.1) that we also need to be able to pose and answer
a number of auxiliary question types: “why did step S at point N
succeed/fail?” (formally: why4(SN) or why8(SN)), and “why
was plan π selected at N?” (formally: why∆

N (π), where N is
the point at which the event was posted, which is where the set
of applicable plans is computed4).

Turning to answers, an answer to one of the four main “why”
questions is one or more prior steps and/or prior beliefs. For exam-
ple, an explanation for why a certain action was done at a certain
point in time may be in terms of previous steps (e.g. an event being
posted) and certain beliefs holding at past time points. Formally, we
use SN to designate the occurrence of step S at point N , and CN
to indicate that the condition C was believed at point N , we also
use C≤N to indicate that condition C held at all execution points
prior to and including N . We use NAPN to indicate “No Appli-
cable Plan at N”: this is used to explain why an event failed. We
allow answers to be combined with conjunction and disjunction. It
is also possible for an answer to be false (“⊥”) which indicates that
the question is wrong, e.g. asking why a step was done when in
fact the step was not done. An answer of true (“>”) indicates that
something was inevitable, for example, a belief update succeeding.

This gives us the following definitions for the possible (formal)
forms of questions (Q) and answers (A).

Q ::= whyN (S) | whyN (S) | whyN (C) | whyN (C)

| why4(SN) | why8(SN) | why∆
N (π)

3We use an overline to denote negation.
4This corresponds to an “eager” evaluation of context conditions,
which is done by some, but not all, BDI agent platforms [28].

A ::= > | ⊥ | SN | CN | C≤N | NAPN | A1 ∧A2 | A1 ∨A2

An answer to a question that is of the form SN or CN has a corre-
sponding follow-up question whyN (S) or whyN (C).

Each question is asked with respect to a given step in the trace.
We assume that we can uniquely identify steps (e.g. that when we
say “why did you do putDown?” that we can use an additional ID to
distinguish between multiple occurrences of the putDown action).
In terms of a user interface, we envisage (following the Whyline),
that a programmer would be able to select a step in the trace, and,
using a menu, ask “why did you do this?”, “why did you not do
〈select other possible steps〉?”, “why did you believe 〈specify con-
dition〉?”, “why did you not believe 〈specify condition〉?”. We also
envisage that a part of an answer (CN or SN) can be selected, and
the corresponding follow-up question posed.

3.1 “Why did you do . . . ”
We begin by considering the explanations for why a particular

step S was performed at point N (formally: whyN (S)).
Following the basic principle outlined earlier, we consider the se-

quence of steps that result in S, and at each point, what else could
have happened. We begin with the posting of the event !t that re-
sulted in the selection of the plan π = +!t:G←P where S is one of
the steps in P . Figure 2 shows the execution from !t, including an
indication of where there were alternatives, i.e. where things could
have gone differently.

-•
N0

〈B, !t〉
-•
N1

P ∈ ∆
〈B, select(∆)〉

�
�
��

selected
other plan

-•
〈B,S1〉
�
�
��

-•
〈B1, S2〉
�
�
��

S1 fails S2 fails

•
〈Bi−1, S〉
�
�
��

S fails

-

8 8 8
4 4 4 •

Figure 2: Possible executions from !t resulting in step S

Beginning with posting the event !t (at N0), a set of applicable
plans ∆ is computed. In order for S to be done, the plan in question
π = +!t:G←P (where S ∈ P) must be selected, which requires
that it be applicable (P ∈ ∆, i.e. that its context condition holds
at N0, formally: B |= G), and that it is the first applicable plan,
which is the case if all earlier relevant plans are not applicable.
Once π has been selected, in order for the execution of P to lead to
S, each of the steps Si preceding S in the plan body P must have
succeeded. Collecting these conditions we have that in order for
posting !t to result in S, we must have that: !t was posted at N0

(formally: !tN0); and the plan’s context condition holds (formally:
GN0 , where π = +!t:G←P , and S ∈ P); and for all relevant
plans πi = +!t : Gi ← Pi that precede π we have that the context
conditionGi does not hold (formally: (¬Gi)N0); and for each step
Si that appears before S in P , step Si succeeds (why4(Si), defined
in Section 3.1.1).

Formally, the answer to whyN (S), given that the trace contains
a trace term callN0(∆, B,B′, T r′) where the selected plan is π =
+!t:G←P , P ∈ ∆, and P = S1; . . . ;Sk;S; . . ., is:

whyN (S) = !tN0 ∧ why
∆
N0

(π) ∧
∧
i≤k

why4(Si)

where why∆
N0

(π) = GN0 ∧
∧
πi before π(¬Gi)N0 .

Rendered in English, this says “step S was done because event !t
was posted atN0, and plan π’s context conditionG was true atN0,
and π was selected at N0 (because all earlier plans πi, had context
conditions that did not hold at N0), and all of the steps Si before

S succeeded”. A programmer could then ask follow-up questions
about each of the components of this explanation, e.g. “why was !t
posted atN0?”, “why did you believeG atN0?”, “why did you not
believe Gi at N0?”, and “why did step Si succeed?”.

However, the scenario in Figure 2, and the discussion so far, are
actually incomplete, since they assume that the statement of inter-
est S is in the first plan to be selected. But it is also possible that the
first selected plan fails, and then an alternative plan is used which
leads to S being done. Dealing with this requires generalising the
explanation for why the plan π containing S was selected: in or-
der for π to be selected, we require that any relevant plans that
occur before π must either not be applicable (as above) or must
have already been tried, and failed (new case). This intuition is for-
malised below in Section 3.1.2, and replaces the earlier definition
of why∆

N0
. The definition for whyN (S) is modified by defining π

to be not the first plan that is selected, but the plan πi whose plan
body Pi contains S (formally: S ∈ πi). Note that we do not re-
quire that πi succeeds: it could be that it gets as far as S, and then
subsequently fails.

Hindriks’ informal definition of an explanation for why an action
was performed [9] comprises two parts: the condition of the rule
that applied, and the pre-condition of the action. By contrast, our
definition, which deals with a setting where plans have bodies with
sequences of steps, and are triggered by events, is more complex.
It also caters for failure recovery.

Before proceeding to consider the question type “why do you
believe C?” we first deal with the auxiliary question types: “why
did step S succeed/fail?” and “why was plan π selected?”

3.1.1 “Why did step S succeed/fail?”
We now turn to defining why a step succeeds (respectively fails).

Intuitively, from the semantics, a belief modification (+t or−t) al-
ways succeeds. A condition check (?G) succeeds iff the condition
G holds. An action A succeeds iff its pre-condition pre(A) holds.
Finally, an event !t succeeds if there is at least one applicable plan,
and if either the selected plan succeeds (all its steps succeed), or
some number of plans fail but alternative plans exists and eventu-
ally a selected plan succeeds.

The following equations formalise this intuition. It turns out to
have some complications. Firstly, in order to explain why an event
succeeded (respectively failed) we need to provide explanations
for the success (resp. failure) of program fragments (alternatives
and sequences). Since program fragments do not have identifiers
(N) we need to this this with respect to (compound) trace terms,
rather than with respect to a given location. More precisely, the
initial query is a single step S with an associated location N . We
answer it by looking up the corresponding trace term (see table
below). If there is not a corresponding trace term, then the an-
swer is “⊥” (i.e. “actually it didn’t”). Otherwise we use functions
why4(P, Tr) and why8(P, Tr) that are given the program frag-
ment and trace term. For compound P (e.g. P = S1;S2) the trace
term will itself be compound (Tr1;Tr2). Formally:

why4(SN) = if Tr ∈ T then why4(S, Tr) else ⊥
why8(SN) = if Tr ∈ T then why8(S, Tr) else ⊥

where Tr is the corresponding trace term for S

The corresponding trace term Tr for step S in the context of
why4 or why8 is defined in Table 1.

The equations in Figure 3 definewhy4(S, Tr) andwhy8(S, Tr).
These functions return an answer formula (following the grammar
for A). This is simplified (e.g. ⊥ ∨ X ⇒ X , ⊥ ∧ X ⇒ ⊥,
>∨X ⇒ >, >∧X ⇒ X , etc.) before being reported to the user.

For true, +b and−b, we have thatwhy4(S, Tr) is just>, since

Context Step Corresponding Trace Term
4 AN act4

N (A,B,B′)
8 AN act8

N (A,B)
4 ?CN test4

N (C)
8 ?CN test8

N (C)
4 or 8 +b addbN (b,B,B′)
4 or 8 −b delbN (b,B,B′)
4 or 8 trueN trueN
4 or 8 !tN callN (∆, B,B′, T r′)

Table 1: Corresponding trace term for a given term

these steps always succeed. Similarly, why8(S, Tr) is ⊥ for these
step types, since they cannot fail, so the answer to “why did it fail?”
(why8) is always “actually it didn’t” (⊥). An action A that suc-
ceeds is explained by its pre-condition being true when it is per-
formed, and an action’s failure is explained by its pre-condition
being false; similarly a condition ?C’s success is explained by the
condition C holding atN , and its failure by the condition not hold-
ing at N (note that N appears in Tr, e.g. Tr = act4

N (A,B,B′)).
For why4(!t, T r) there are two cases (note: in Figure 3 “where”

clauses apply to both preceding equations, i.e. to both why4 and
why8). Firstly, if the set of applicable plans is empty, then the event
cannot succeed, sowhy4(!t, T r) is⊥when ∆ = ∅. Otherwise, the
explanation for the success of the sub-goal t is the combination of
an explanation for why the execution of the selected plan P . ∆′

eventually succeeded, and for why the plan that ended up being suc-
cessful was selected (why∆

N (πj), defined in the next section). We
identify πj by finding the plan that succeeded, i.e. the πj ∈ Π that
has an explanation for its success (why4(Pj , T rj) 6= ⊥, where
Trj is a subtrace5 of Tr). Note that this means that the explanation
for why P . ∆ succeeded does not need to include an explana-
tion for why a given plan was selected, since that is provided by
why∆

N (πj).
Now turning to why8(!t, T r) we have two cases: if the set of

applicable plans is empty (∆ = ∅) then the event’s failure is ex-
plained by the lack of applicable plans (NAPN), otherwise, the
event’s failure is explained by the reasons for why every applicable
plan failed. Note that we do not include an explanation for plan
selection, since all applicable plans must be tried (and must fail)
in order for an event to fail. However, one piece of information
that might be of interest to a programmer is why certain plans were
not applicable. The definition could be extended to include this if
desired by adding a variant of why∆

N (Tr) that was of the form if
Pi ∈ ∆ then > else (¬Gi)N .

For an alternative P . ∆ the explanation for why it succeeded
is a combination of two cases: either P succeeded, in which case
the explanation is why did P succeed; or P failed, in which case
the explanation is the combination of an explanation for why P
failed, and for why the remainder P∆ that was selected next from
∆ succeeded (recall that P∆ is actually of the form P ′ .∆′). In the
case where ∆ is empty, only the first case applies. The explanation
for why P .∆ failed is a combination of the explanations for why
P failed, and why P∆ failed (unless ∆ = ∅, in which case we just
have why8(P, Tr)).

For a sequence P1;P2 the explanation for its success is the com-
bination of explanations for why P1 succeeded and why P2 suc-
ceeded. On the other hand, the explanation for the failure of P1;P2

has two cases: either P1 has failed (in which case it is explained),

5We define a subtrace as: T ≺ T0 iff ∃T1, T2 : T1;T ;T2 ≡ T0 ∨
T1;T ≡ T0 ∨ T ;T2 ≡ T0.

why4(true, Tr) = >
why8(true, Tr) = ⊥
why4(+b, T r) = >
why8(+b, T r) = ⊥
why4(−b, T r) = >
why8(−b, T r) = ⊥
why4(A, Tr) = (pre(A))N

why8(A, Tr) = (¬pre(A))N

why4(?C, Tr) = CN

why8(?C, Tr) = (¬C)N

why4(!t, T r) =
if ∆ = ∅ then ⊥ else
why∆

N (πj) ∧ why4(P .∆′, T r′)

why8(!t, T r) =
if ∆ = ∅ then NAPN else
why8(P .∆′, T r′)

where Tr = callN (∆, B,B′, T r′)

and select(∆) = P .∆′

and, for why4(!t, T r) when ∆ 6= ∅,
πj = +!t:Gj←Pj ∈ Π ∧ Pj ∈ ∆

and ∃Trj ≺ Tr′ : why4(Pj , T rj) 6= ⊥

why4(P.∆, T r) =
if ∆ = ∅ then why4(P, Tr) else
why4(P, Tr) ∨
(why8(P, Tr1) ∧ why4(P∆, T r2))

why8(P.∆, T r) =
if ∆ = ∅ then why8(P, Tr) else
why8(P, Tr1) ∧ why8(P∆, T r2)

where Tr ≡ Tr1 ; Tr2

and P∆ = select(∆)

why4(P1;P2, T r) = why4(P1, T r1) ∧ why4(P2, T r2)

why8(P1;P2, T r) =
why8(P1, T r) ∨
(why4(P1, T r1) ∧ why8(P2, T r2))

where Tr ≡ Tr1 ; Tr2

Figure 3: Definition of why4 and why8

or P1 succeeded and P2 failed, in which case the explanation is a
combination of these two explanations.

For the various cases where Tr ≡ Tr1;Tr2 we split Tr in a
way that matches the execution, for instance, for P1;P2, Tri is the
part of the trace that corresponds to the execution of Pi. In the
implementation this is done by passing the whole trace to the first
sub-program to execute, and the trace that is unused is returned,
and then passed to the next sub-program.

3.1.2 “Why was plan π selected?”
As discussed earlier, a plan π is selected because: (i) its context

condition is true at the point of selection, and (ii) all the relevant
plans that appear before it in the plan library Π either are not appli-
cable, or have already been tried, and have failed.

We formalise this as a conjunction that for each πi that comes be-
fore π in the relevant plan list Πt includes either an explanation that
πi was actually not applicable ((¬Gi)N), or, for applicable plans
(i.e. Pi ∈ ∆, where πi = +!t:Gi←Pi), an explanation for why it
failed (why8(Pi, T ri), where Tri is the appropriate subtrace).

why∆
N (πj) = (Gj)N ∧∧

i<j

if Pi ∈ ∆ then why8(Pi, T ri) else (¬Gi)N

where Tr = callN (∆, B,B′, T r′) ∈ T
and Πt = {πi | πi ∈ Π ∧ πi = +!t:Gi←Pi}
and πj = +!t:Gj←Pj ∈ Πt ∧ Pj ∈ ∆

and πi = +!t:Gi←Pi
and for i < j where Pi ∈ ∆, Tri ≺ Tr′

is such that why8(Pi, T ri) 6= ⊥

3.2 “Why do you believe . . . ”
In order to answer the question “why do you believe condition

C at point N?” (formally: whyN (C)) we need to firstly consider
where C is true. We define three cases. Firstly, it may be the case
that C was true from the start of execution, and remained true until
N . In this case we use the answer C≤N . Secondly, it could in
fact be the case that C is not true at N , in which case the answer to
whyN (C) is⊥. Finally, the (normal and expected) case is whereC
became true at some point before N , as a result of a step S at point
N1 (where N1 < N). Specifically, S is such that before S was
performed the condition C did not follow from the agent’s beliefs
(B 6|= C), but after S it did (B′ |= C). Part of the explanation
then for why C is believed at N , is that S was performed at N1

(formally: SN1). We also require that C remains true between N1

and N (formally: ¬∃Tr ∈ T :N1 < Tr.N ≤ N ∧ Tr.B 6|= C,
where we use the notation Tr.X to refer to the component of Tr
named X , e.g. Tr.B, Tr.N , Tr.B′).

However, there is more to the explanation than just SN1 . The
step S may have only contributed part of C. For example, if
C = p ∧ q and S = +p, then in order for S to result in a be-
liefset B′ |= p ∧ q we must have that B |= q. In other words, in
addition to the explanation of whyN (C) being SN1 , we also need
that the agent’s beliefs just before S support the “rest” of C. If C
includes negations, then this requirement may include that B does
not contain certain beliefs. Below we simply (informally) define
C0 as the condition that must hold before S (i.e. atN1) in order for
C to hold after S (space precludes a formal definition).

whyN (C) =

 C≤N if ∀Tr ∈ T :Tr.N≤N ⇒ Tr.B |= C
⊥ if ∀Tr ∈ T :Tr.N=N ⇒ Tr.B 6|= C
SN1 ∧ (C0)N1 otherwise

where Tr ∈ T ∧N1=Tr.N ∧N1 < N

∧ Tr.B 6|= C ∧ Tr.B′ |= C

∧ ¬∃Tr ∈ T :N1 < Tr.N ≤ N ∧ Tr.B 6|= C

and S is the step at N1

and C0 is the condition required at N1 so that Tr.B′ |= C

There is one final additional complication. If we consider things
from the perspective of all possible executions, then we need to also
consider what else might have happened in betweenN1 andN 6. So
for each step betweenN1 andN , we need to include an explanation
for that step, since if it had been done differently (e.g. a condition
test had failed instead of succeeding, or a different plan had been
selected) then step S might not occur, orC may not have held atN .

6Note that we do not need to consider other possible executions
prior to N1, since the explanation includes that S was done at N1,
and if the programmer asks why S was done at N1, then earlier
alternative executions are considered.

However, we do not include this in the definition above (thus mak-
ing it intentionally incomplete7) since this additional explanation is
arguably not helpful: a programmer asking why C is believed at N
really wants to know the information above (where did C become
true), and doesn’t want this to be cluttered by explanations for why
every intervening step occurred.

Hindriks’ definition for how to explain why an agent has a certain
belief is similar: either the belief is universally true (in his case a
consequence of domain knowledge, since he does not allow initial
beliefs), or it is the result of a belief change. He does not consider
the requirement for “residual” conditions (C0), i.e. when a change
only made a condition true because C0 already held.

3.3 “Why don’t you believe . . . ”
Hindriks argues, based on Prolog’s closed-world assumption, that

“why did you not believe C?” can be treated as being equivalent
to “why did you believe ¬C?”. This would provide a simple def-
inition: whyN (C) = whyN (¬C). However, we argue that this
is not always an adequate explanation. Suppose that at point N2

the condition C does not hold, and the programmer was expecting
it to hold. It is possible that C does not hold at N2 because it was
made false earlier (in which case whyN (C) will be an explanation
in terms of a step S at an earlier point N1). But it is also possi-
ble that C does not hold at N2 because something that should have
been done, was not done. In other words, a step S that would have
made C true was not done. This gives an alternative explanation:

whyN (C) = whyN (¬C) ∨
∨

π∈Π∧S∈π
S;C∧N′<N

whyN′(S)

This finds a step S that appears in a plan π, and includes as a possi-
ble explanation for why C was not believed, the explanation for
why S was not done at an earlier point N ′. The step S is re-
quired to be one that contributes towards the condition C (nota-
tion: S ; C). Briefly, the step +t contributes towards the condi-
tion t, step −t contributes towards ¬t, and an action A with post-
condition post(A) contributes towards any p ∈ post(A). We also
have that S ; C implies that S ; C ∧ C′ and S ; C ∨ C′.

It is worth emphasising that these alternative explanations are
speculative, and that there may be many explanations, since we
consider a range of possible plans and possible time points N ′. It
therefore may be more helpful to the programmer to only provide
these explanations if requested, or in the case wherewhyN (¬C) =
(¬C)≤N (i.e. where C has never held up to N).

3.4 “Why didn’t you do . . . ”
This question is used when the programmer was expecting a par-

ticular step S′ to have been done, but it wasn’t. We assume that the
programmer poses this question in response to a particular step that
was done, but was not expected. However, since, in AgentSpeak,
the selection of a step to be done is determined by earlier plan selec-
tion, this query is really not about step S′ atN , but about the earlier
selection of the plan that led to S′ being done at N , and whether
an alternative plan could have been selected that would have led
to S being done. We assume that the programmer is looking for a
direct explanation, that is, a possible alternative plan that contains
S, rather than a plan that results in another plan that results in S.

So, when the question whyN (S) is posed, the first step to an-
swering it is to find the event t whose posting led to the execution
7In order to make the definition technically complete we would
need to add to the explanation a conjunction over all steps S be-
tween N1 and N , an explanation for why the step succeeded (re-
spectively failed).

of the step S′ at N . Formally: callN0(∆, B,B′, T r′) ∈ T where
S′ ∈ P ′ and P ′ ∈ ∆ and S′ is the step that was done atN (denoted
below S′@N).

We then consider the desired step S. In the following we focus
on the case where there is exactly one plan π that is relevant, and
whose body contains S. If no such plan exists, then there is no
way that the event could have led directly to S. If there are multi-
ple plans containing S then each is considered separately, and the
explanation is the disjunction of the individual explanations (not
shown below).

To explain why S was not performed we need to consider three
cases. Firstly, it is possible that the plan π = +!t:G←P containing
S was simply not applicable, in which case the explanation is sim-
ply (¬G)N0 (along with the explanatory text that this is the context
condition of the plan that would have done S). Secondly, if π is
applicable it may have been reached, and (since it is applicable),
selected, but have failed before reaching the desired step S. In this
case the explanation is that the desired plan was selected but failed
before reaching S due to why8(P, Trp) (where Trp is the part of
the trace Tr′ corresponding to the execution of P). Thirdly, an ap-
plicable π may not have been reached because an earlier plan has
succeeded, in which case the explanation is that the plan was not
reached because an earlier plan succeeded due to why4(Pj , T rj)
where Pj ∈ ∆ is the plan body that succeeded, and Trj is the part
of the trace Tr′ corresponding to the execution of Pj .

whyN (S) = (!t)N0 ∧

 (¬G)N0 if P 6∈ ∆
why8(P, Trp) if failed(P, Tr′)
why4(Pj , T rj) otherwise

where callN0(∆, B,B′, T r′) ∈ T
and ∃S′:S′ ∈ P ′ ∧ P ′ ∈ ∆ ∧ S′@N
and S ∈ P where π = +!t:G←P ∧ π ∈ Π

and failed(P, Tr′) = ∃Trp ≺ Tr′ s.t. why8(P, Trp) 6= ⊥
and (for 2nd case) Trp ≺ Tr′ such that why8(P, Trp) 6= ⊥
and (for 3rd case) Pj ∈ ∆ ∧ Trj ≺ Tr′ s.t. why4(Pj , T rj) 6=⊥

Finally, as always (but not shown in the definition above), it is
possible that the answer to “why did you not do S?” is “actually I
did” (“⊥”). Note that it is possible that S was done after point N .
This still yields a response of⊥, but we would also point out to the
programmer that S had been done, just not yet.

By contrast, in Hindriks’ framework he simply considers the
point in time where A was done, and then considers the selection
of rules at that point. However, we need to consider multiple time
points, since we have plans with bodies that can contain sequences
of steps.

4. IN ACTION: AN EXAMPLE SCENARIO
We now illustrate the use of the question-based debugging frame-

work using an example scenario. We use a single agent version of
the Blocks World for Teams (BW4T) [10]. In brief, this involves an
agent that roams an environment of rooms and corridors, seeking
to find coloured blocks, and deliver to a dropzone a pre-specified
sequence of block colours. An example AgentSpeak program to
deliver blocks in the desired order is in Figure 4.

This program runs in an environment that defines the follow-
ing four actions. (i) putDown with pre-condition that a block is
being held (holding(B)), and consequence deleting holding(B)
and colour(B,C). If the block is being putDown at the dropzone,
and is of the correct colour, then the consequences also update the
nextColour(C) belief, delete the belief colour(B,C), and add
that colour C and block B have been delivered (delivered(B),

1 +!deliver : nextColour(done)← +done. % If done then stop
2 % select a block of the right colour and go get and deliver it
3 +!deliver : colour(B, C) ∧ nextColour(C) ∧ ¬holding(B)←

gotoBlock(B) ; pickUp ; !deliver.
4 +!deliver : holding(B) ∧ colour(B,C) ∧ nextColour(C)←

goto(dropzone) ; putDown ; !deliver.
5 % if holding a block that is not the next colour required then

put it down (this may occur if e.g. someone else delivers a
block, so the next colour changes)

6 +!deliver : holding(B) ∧ colour(B,C) ∧ ¬nextColour(C)←
putDown ; !deliver.

7 % if I know of a place that I’ve not yet visited then go there
(explore)

8 +!deliver : place(P) ∧ ¬beenthere(P)← goto(P) ; !deliver.
9

10 %%% Initial beliefs
11 belief(nextColour(red)). belief(at(corridor)).
12 belief(place(room1)). belief(place(room2)).
13 belief(place(room3)). belief(place(room4)).

Figure 4: Example Program for BWT

delivered(C)); (ii) pickUp with pre-condition that the agent is at
a block and is not already holding a block (atBlock(B) ∧ ¬hold-
ing(B′)), and has the effect of removing atBlock(B) and adding
holding(B), (iii) goto(P) with trivial precondition (true) which
moves to place P (either a room or the dropbox), with the effect of
removing any atBlock(B) and at(B) beliefs, adding at(P), and
also noting that the agent has beenthere(P), and, ifP 6=dropzone,
also adding beliefs colour(Block, Colour) for any blocks that are
atP ; and (iv) gotoBlock(B) which goes to a blockB (pre-condition
¬delivered(B)), and, like goto(P), deletes existing atBlock(B′)
and at(B′), and adds atBlock(B).

The program in Figure 4 is run in a scenario where rooms 1-
4 contain respectively red, blue, blue, and yellow blocks, and the
desired sequence is red, yellow, blue. This results in the following
sequence of actions (the numbers 1-19 are the order, not the actual
N in the trace; only actions are shown, except for call(deliver) at
line 15).

1 goto(room1)
2 gotoBlock(b1) % red
3 pickUp
4 goto(dropzone)
5 putDown % now need yellow ...
6 goto(room2) % exploring ...
7 goto(room3)
8 goto(room4)
9 gotoBlock(b4) % yellow

10 pickUp
11 goto(dropzone)
12 putDown % now need blue ...
13 gotoBlock(b3) % blue
14 pickUp
15 call(deliver)
16 gotoBlock(b2) % blue
17 pickUp % FAILED (because already holding b3)
18 goto(dropzone)
19 putDown % now done

An obvious problem with this execution is that the pickUp at
line 17 failed. The remainder of this section shows how question-
based debugging can be used to debug this program. Note that

Q1: whys(pickUp,12146,Why).
A1: Why = and(and(posted(deliver,12142),cond(colour(b2,blue)&nextColour(blue)&

~holding(b2),12142)), and(notcond(nextColour(done),12142),pre(~delivered(b2),12144)))
Q2: whyns(goto(dropzone),12146, Why).
(the system explains that goto(dropzone) was actually done at 12148 and gives the plan)
A2: Why = bot
Q3: whyc(colour(b2,blue)&nextColour(blue)& ~holding(b2), 12142, Why)
A3: Why = and(done(putDown,12076),bel(and(colour(b2,blue),~holding(b2)),12076))
Q4: whyc(~holding(b2), 12076, Why).
A4: Why = clessthan(~holding(b2),12076)

Figure 5: Actual questions and answers from the implementation

all queries and associated responses below are generated by the
implementation, and translated into English. Figure 5 shows the
actual queries and responses from the implementation.

The point at which the program behaved unexpectedly was the
failure of the pickUp action at line 17. The programmer therefore
begins by asking why the program did that action Q1: Why did you
do pickUp at 17? (formal: why17(pickUp)) This results in the an-
swer A1: Because earlier in the trace the event deliver was posted
at 15; and it was handled by plan with (true) context condition
colour(b2, blue)∧nextColour(blue)∧¬holding(b2) (since the
previous plan’s context condition nextColour(done) was false);
and the preceding step in the plan body (gotoBlock(b2)) had a true
pre-condition (¬delivered(b2)).

The programmer considers these reasons. The event deliver be-
ing posted is correct, but the plan in question (line 3 of Figure 4),
should not have been selected: since the agent is already holding
block b38, it should proceed to deliver it, rather than picking up an-
other block. The programmer therefore asks Q2: Why didn’t you
do goto(dropzone) instead? (formal: why17(goto(dropzone)))
This results in the answer that A2: actually the program did do
goto(dropzone), but later in the execution.

That the correct plan did end up being used suggests to the pro-
grammer that there is an issue with either the context condition of
the second plan (line 3), or in the ordering of the plans. In order
to assess this, the programmer asks Q3: why was the context con-
dition of the second plan believed at the point when the event was
posted? (Formal: why15(colour(b2, blue)∧nextColour(blue)∧
¬holding(b2))). This yields A3: because putDown was done at
line 12 where colour(b2, blue) ∧ ¬holding(b2)) was true.

The programmer considers each of these conditions: the put-
Down at line 12 is correct, and, since room 2 has been visited, the
agent should believe colour(b2, blue). The programmer therefore
queries the third condition Q4: why did I believe ¬holding(b2) at
12? (Formal: why12(¬holding(b2))) This yields the answer that
A4: ¬holding(b2) has been true since the start of execution. That
the condition has not changed seems odd, and this prompts the pro-
grammer to consider whether it is correct. They then realise that
the condition is wrong: the plan should be prevented from being
applicable if the agent is already holding any block, in other words,
the condition should be ¬holding(B′), rather than checking for
the specific block B.

It is worth emphasising that this is a very simple example. How-
ever, our experience is that even for such simple programs, debug-
ging can be very difficult, since it can require the programmer to
work backwards through the causal chain that resulted in a partic-
ular action, which can be quite difficult, since the cause and effect
8This is inferred from the pickUp at line 14. A prudent programmer
might check that the agent does actually believe it is holding block
b3 using why15(holding(b3)).

can be far apart [6]. One of the difficulties is identifying why a par-
ticular context condition was true, when it should not have been.
Using a traditional debugging tool, the programmer has to work
backwards through execution, searching for a state of the agent’s
beliefs where the context condition becomes false. This is both
time consuming and error-prone, and is actually not supported well
by existing tools, since it requires going backwards through the ex-
ecution. By contrast, our question-based debugging system is able
to answer such questions (“why did you believe C at N?”), pin-
pointing for the programmer the location at which the condition
became true.

5. CONCLUSION
We have proposed the use of question-based debugging for (cog-

nitive) agent programs, and provided formal definitions of question
types and their associated answers. These were implemented, and
illustrated using a scenario.

Future work includes: (i) Designing and developing a user in-
terface for the system, and using it to conduct an empirical eval-
uation with users. The evaluations done with Alice and Java [11,
12] showed substantial benefits, and we would expect to see sub-
stantial benefits for our approach compared with traditional debug-
ging, given the difficulty (noted in the previous section) of follow-
ing causal chains. (ii) The current implementation is a prototype,
and further development is required to make it more scalable, to
deal with multiple agents, and to correctly deal with multiple appli-
cable instances of a single plan. (iii) Extending to handle plans that
are triggered by belief additions (+b : G ← P), and extending to
handle debugging when there are multiple concurrent intentions9.
(iv) We would also want to formally state and prove a complete-
ness result for our definitions. (v) Considering whether the reason-
ing could be formulated within an adbuctive reasoning framework.
(vi) Finally, another interesting avenue to explore is declarative de-
bugging [17, 26, 27]. Declarative debugging can also be seen as a
form of question-based debugging, but it differs in two key aspects.
Firstly, the sequence of questions is (usually) [4] determined by
software, not by the user (although more recent tools do permit free
user exploration). Secondly, in declarative debugging the questions
being asked (of the user) are of the form “is this correct?”. It would
be interesting to consider how to adapt declarative debugging to
agent systems, and how to integrate it with the “Why?” approach.

Acknowledgements
I would like to thank Martin Purvis, Stephen Cranefield, and Koen
Hindriks for discussions related to this work.

9The definition of whyN (C) already permits S to be from a paral-
lel intention, so this extension may be relatively straightforward.

REFERENCES
[1] R. Bordini, M. Dastani, and M. Winikoff. Current issues in

multi-agent systems development. In Post-proceedings of the
Seventh Annual International Workshop on Engineering
Societies in the Agents World., volume 4457 of LNAI, pages
38–61, 2007.

[2] J. A. Botía, J. M. Hernansáez, and A. F. Gómez-Skarmeta.
On the application of clustering techniques to support
debugging large-scale multi-agent systems. In R. H. Bordini,
M. Dastani, J. Dix, and A. El Fallah Seghrouchni, editors,
post-proceedings of the 4th International Workshop on
Programming Multi-Agent Systems (ProMAS, 2006), volume
4411 of LNCS, pages 217–227. Springer, 2007.

[3] L. Braubach, A. Pokahr, and W. Lamersdorf. Jadex: A
BDI-Agent System Combining Middleware and Reasoning.
In R. Unland, M. Calisti, and M. Klusch, editors, Software
Agent-Based Applications, Platforms and Development Kits,
pages 143–168. Birkhäuser, 2005.

[4] D. Cheda and J. Silva. State of the practice in algorithmic
debugging. Electr. Notes Theor. Comput. Sci., 246:55–70,
2009.

[5] R. Collier. Debugging agents in agent factory. In R. H.
Bordini, M. Dastani, J. Dix, and A. El Fallah Seghrouchni,
editors, post-proceedings of the 4th International Workshop
on Programming Multi-Agent Systems (ProMAS, 2006),
volume 4411 of LNCS, pages 229–248. Springer, 2007.

[6] M. Eisenstadt. My hairiest bug war stories. Commun. ACM,
40(4):30–37, Apr. 1997.

[7] E. E. Ekinci, A. M. Tiryaki, Ö. Çetin, and O. Dikenelli.
Goal-oriented agent testing revisited. In M. Luck and J. J.
Gomez-Sanz, editors, Agent-Oriented Software Engineering
IX, volume 5386 of LNCS, pages 173–186. Springer, 2009.

[8] J. J. Gomez-Sanz, J. Botía, E. Serrano, and J. Pavón. Testing
and debugging of MAS interactions with INGENIAS. In
M. Luck and J. J. Gomez-Sanz, editors, Agent-Oriented
Software Engineering IX, volume 5386 of LNCS, pages
199–212. Springer, 2009.

[9] K. V. Hindriks. Debugging is explaining. In I. Rahwan,
W. Wobcke, S. Sen, and T. Sugawara, editors, PRIMA 2012:
Principles and Practice of Multi-Agent Systems, volume
7455 of LNCS, pages 31–45. Springer, 2012.

[10] M. Johnson, C. M. Jonker, M. B. van Riemsdijk, P. J.
Feltovich, and J. M. Bradshaw. Joint Activity Testbed:
Blocks World for Teams (BW4T). In Workshop on
Engineering Societies in the Agents World (ESAW), volume
5881 of LNCS, pages 254–256. Springer, 2009.

[11] A. J. Ko and B. A. Myers. Debugging Reinvented: Asking
and Answering Why and Why Not Questions about Program
Behavior. In W. Schäfer, M. B. Dwyer, and V. Gruhn,
editors, 30th International Conference on Software
Engineering (ICSE, pages 301–310. ACM, 2008.

[12] A. J. Ko and B. A. Myers. Extracting and Answering Why
and Why Not Questions about Java Program Output. ACM
Trans. Softw. Eng. Methodol., 20(2), 2010.

[13] V. J. Koeman and K. V. Hindriks. Designing a source-level
debugger for cognitive agent programs. In Q. Chen,
P. Torroni, S. Villata, J. Hsu, and A. Omicini, editors, PRIMA
2015: Principles and Practice of Multi-Agent Systems, pages
335–350. Springer, 2015.

[14] V. J. Koeman, K. V. Hindriks, and C. M. Jonker. Automating
failure detection in cognitive agent programs. In Proceedings

of the 2016 International Conference on Autonomous Agents
and Multiagent Systems (AAMAS), pages 1237–1246, 2016.

[15] D. N. Lam and K. S. Barber. Comprehending agent software.
In Proceedings of the Fourth International Joint Conference
on Autonomous Agents and Multiagent Systems (AAMAS),
pages 586–593. ACM, 2005.

[16] D. N. Lam and K. S. Barber. Debugging agent behavior in an
implemented agent system. In R. H. Bordini, M. Dastani,
J. Dix, and A. El Fallah Seghrouchni, editors,
post-proceedings of the 2nd International Workshop on
Programming Multi-Agent Systems (ProMAS, 2004), pages
104–125. Springer, 2005.

[17] L. Naish. A declarative debugging scheme. Journal of
Functional and Logic Programming, 1997(3), 1997.

[18] C. Nguyen, S. Miles, A. Perini, P. Tonella, M. Harman, and
M. Luck. Evolutionary testing of autonomous software
agents. In Proceedings of the 8th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS),
pages 521–528. IFAAMAS, May 2009.

[19] C. D. Nguyen, A. Perini, and P. Tonella. Experimental
evaluation of ontology-based test generation for multi-agent
systems. In M. Luck and J. J. Gomez-Sanz, editors,
Agent-Oriented Software Engineering IX, volume 5386 of
LNCS, pages 187–198. Springer, 2009.

[20] C. D. Nguyen, A. Perini, and P. Tonella. Goal-Oriented
Testing for MASs. International Journal of Agent-Oriented
Software Engineering, 4(1):79–109, 2010.

[21] C. D. Nguyen, A. Perini, P. Tonella, S. Miles, M. Harman,
and M. Luck. Evolutionary testing of autonomous software
agents. In Autonomous Agents and Multi-Agent Systems
(AAMAS), pages 521–528, 2009.

[22] L. Padgham, Z. Zhang, J. Thangarajah, and T. Miller.
Model-based test oracle generation for automated unit
testing of agent systems. IEEE Transactions on Software
Engineering, 39(9):1230–1244, 2013.

[23] D. Poutakidis, L. Padgham, and M. Winikoff. Debugging
Multi-Agent Systems Using Design Artifacts: The Case of
Interaction Protocols. In Proceedings of the first
international joint conference on Autonomous Agents and
Multiagent Systems (AAMAS), pages 960–967. ACM, 2002.

[24] D. Poutakidis, M. Winikoff, L. Padgham, and Z. Zhang.
Debugging and testing of multi-agent systems using design
artefacts. In R. H. Bordini, M. Dastani, J. Dix, and A. El
Fallah Seghrouchni, editors, Multi-agent Programming:
Languages, Tools, and Applications, chapter 7, pages
215–258. Springer, 2009.

[25] A. S. Rao. AgentSpeak(L): BDI agents speak out in a logical
computable language. In W. V. de Velde and J. Perrame,
editors, Agents Breaking Away: Proceedings of the Seventh
European Workshop on Modelling Autonomous Agents in a
Multi-Agent World (MAAMAW’96), volume 1038 of Lecture
Notes in Artificial Intelligence, pages 42–55. Springer, 1996.

[26] E. Y. Shapiro. Algorithmic Program Debugging. MIT Press,
Cambridge, MA, USA, 1983.

[27] L. Sterling and E. Y. Shapiro. The Art of Prolog - Advanced
Programming Techniques, 2nd Ed. MIT Press, 1994.

[28] M. Winikoff. An AgentSpeak Meta-interpreter and Its
Applications. In R. H. Bordini, M. Dastani, J. Dix, and
A. El Fallah Seghrouchni, editors, post-proceedings of the
3rd International Workshop on Programming Multi-Agent
Systems (ProMAS, 2005), volume 3862 of LNCS, pages
123–138. Springer, 2005.

