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Abstract. Autonomous systems are rapidly transitioning from labs into our lives.
A crucial question concerns trust: in what situations will we (appropriately) trust
such systems? This paper proposes three necessary prerequisites for trust. The
three prerequisites are defined, motivated, and related to each other. We then con-
sider how to realise the prerequisites. This paper aims to articulate a research
agenda, and although it provides suggestions for approaches to take and direc-
tions for future work, it contains more questions than answers.

1 Introduction

The past few years have witnessed the rapid emergence of autonomous systems in our
lives. Whether in the form of self-driving cars on the road, Unmanned Aerial Vehicles
(UAVs) in the skies, or other, less media-grabbing forms, autonomous systems have
recently been transitioning from labs and into our lives at a rapid pace.

A crucial question that needs to be answered before deploying autonomous sys-
tems is that of trust: to what extent are we comfortable with trusting software to make
decisions, and to act on these decisions, without intervening human approval?

This paper explores the question of trust of autonomous systems. Specifically, it
seeks to answer the question:

In what situations will humans (appropriately) trust autonomous systems?

In other words, assume that we are dealing with a specific problem and its context,
where the context includes such things as the potential consequences (safety, social,
etc.) of the system’s behaviour. We then seek to know what prerequisites must hold in
order for people to be able to develop an appropriate level of trust in a given autonomous
system that solves the specific problem. By “appropriate level of trust” we mean that a
system that is worthy of being trusted becomes trusted, but a system that is not worthy
of trust becomes untrusted.

We consider the question of trust from the viewpoint of individual people. We
choose to adopt this lens, rather than, say, considering the viewpoint of society as a
whole, for a number of reasons. Firstly, individual trust is crucial: the viewpoint and
policies of a society are clearly based on the viewpoints of the individuals in the soci-
ety1. Secondly, individuals are more familiar to us, and hence easier to analyse. Finally,

1 Although not all individual viewpoints receive equal prominence, which can lead to govern-
ment policies being out of step with the desires of the population.



and most importantly, we can study individual humans through various experiments
(e.g. surveys). This allows us to seek to answer the question of the prerequisites for
trust using experimental methods (e.g. social science, marketing, psychology).

Before proceeding to explore the prerequisites for trust, we need to briefly clarify
what this paper is not about, and indicate the assumptions that we are making. This
paper is about trusting autonomous systems (i.e. systems empowered to make decisions
and act on them). Although autonomous systems often use Artificial Intelligence (AI)
techniques, they are not required to be intelligent in a general sense. Thus this paper
is not about the issues associated with trusting human-level AI, nor is it about issues
relating to hypothetical super-intelligence [31]. This paper is also not about the broader
social consequences of deploying autonomous systems. For example, the impact of
AI and automation on the patterns and nature of employment [47,46,4,12]. These are
important issues, and they do affect the extent to which a society will allow autonomous
systems to be deployed. However, they are out of scope for this paper, since they require
social rather than technological solutions.

We make two assumptions. Firstly, we assume that we are dealing with systems
where the use of autonomy is acceptable. There are some systems where human in-
volvement in decision making is essential. For example, an autonomous system that
handed down prison sentences instead of a human judge may not be socially accept-
able. There is also a strong case for banning the development of autonomous weapons2.
We do note that cases where autonomy is unacceptable are not fixed, and may vary as
trust develops. For instance, if it is shown that software systems are able to make more
consistent and less biased decisions than human judges, then it may become acceptable
to have autonomous software judges in some situations. Secondly, in this paper we do
not consider systems that learn and change over time. Learning systems pose additional
challenges, including the potential inadequacy of design-time verification, and dealing
with emergent bias [5].

The sorts of systems that are within scope include autonomous UAVs, self-driving
cars, robots (e.g. nursebots), and non-embodied decision making software such as per-
sonal agents and smart homes.

This paper is a “blue sky” paper in that it doesn’t provide research results. Instead,
it seeks to pose challenges, and articulate a research agenda. The paper does provide
some answers in the form of suggestions for how to proceed to address the challenges,
but largely it provides questions, not answers.

1.1 Related work

Whilst there is considerable literature devoted to the fashionable question of trusting
human-level or super-intelligent AI, there is considerably less literature devoted to the
more mundane, but immediate, issue of trusting autonomous (but less intelligent) sys-
tems.

Fisher et al. [23] consider trust in driverless cars. Like us, they flag legal issues and
the importance of verification. This paper differs from their work in considering legal
factors in a broader context of recourse (where legal recourse is only one of a range of

2 http://futureoflife.org/open-letter-autonomous-weapons/
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options), and in considering additional factors relating to formal verification. We also
posit that explanation is important to trust. On the other hand, they also consider human
factors, such as driver attention, which are relevant for cars that have partial autonomy,
where the human driver needs to be ready to take back control in certain situations.

Helle et al. [28] consider, more narrowly, challenges in testing autonomous sys-
tems. They also reach the conclusion that formal verification is required, and, like the
earlier work of Fisher et al. [19,22,23], propose verifying the decision making process
in isolation. However, they also highlight the need to do complete system testing to
ensure that the system works in a real environment. Where extensive real-world testing
is impractical, they highlight virtual testing (with simulations) as an approach that can
help. Helle et al. also have other recommendations that concern testing, such as using
models, testing early and continuously, and automating test generation.

A recent Harvard Business Review article [5] argued that “Trust of AI systems will
be earned over time, just as in any personal relationship. Put simply, we trust things that
behave as we expect them to”. The article went on to highlight two key requirements for
trust: bias, and more generally algorithmic accountability, and ethical systems. They ar-
gue that for AI to be trusted, there need to be mechanisms for dealing wit bias (detecting
and mitigating). More relevant to this paper, they go on to argue that bias is a specific as-
pect of the broader issue of algorithmic accountability, and they argue that “AI systems
must be able to explain how and why they arrived at a particular conclusion so that a
human can evaluate the system’s rationale”. They further propose that this explanation
should be in the form of an interactive dialogue. They also argue that AI systems should
include explicit representation and rules that embody ethical reasoning (see Section 3).

Abbass et al. [1] discuss the relationship between trust and autonomy, considering
high-level definitions of concepts such as trust. The paper does not provide clear an-
swers to what is required for trust. Similarly, a meta-analysis of literature on factors
affecting trust in human-robot interaction [26] found that the most important factors
affecting trust related to the performance of the robot (e.g. behaviour, predictability,
reliability). However, they did not provide a clear picture of which specific factors, and
also noted that further work was required, since some factors were not adequately in-
vestigated in the literature.

In parallel with the original version of this paper being written, a report on Ethically
Aligned Design [45] was being developed. This report is broader in scope than this
paper, but provides independent support for the points made here.

Finally, there is also a body of work on computational mechanisms to make recom-
mendations, and to manage reputation and trust between software agents (e.g. [38,36]).
However, this work focuses on trust of autonomous systems by other software, rather
than by humans. This makes it of limited relevance, since it does not consider the com-
plex psychological and social factors that inform human trust. A human does not decide
to trust a system using just a simple calculation based on the history and evidenced re-
liability of the system in question.

The remainder of this paper is structured as follows. Section 2 introduces, defines,
and motivates the three prerequisites that we identify. Section 3 introduces a fourth
element (representing human values and using them in a reasoning process), that we do
not consider essential, but that supports the prerequisites. Section 4 and 5 discuss how to



tackle the prerequisite of being able to explain decisions, and verification & validation,
respectively. We conclude in Section 6.

2 Prerequisites to Trust

We propose that there are three required prerequisites to (appropriately) trusting an
autonomous system:

1. a social framework that provides recourse, should the autonomous system make a
decision that has negative consequences for a person;

2. the system’s ability to provide explanations of its behaviour, i.e. why it made a
particular decision; and

3. verification & validation of the system, to provide assurance that the system sat-
isfies key behavioural properties in all situations.

However, we do not claim that these three prerequisites are sufficient. We do argue
that all three are necessary, but it may be that other prerequisites are also necessary.
Identifying other prerequisites to trust is therefore an important part of answering the
key question posed in Section 1.

A key message of this paper is that answering the key question requires a broad
programme of research that spans technological sub-questions (e.g. formal verification,
explanation) as well as social science sub-questions (e.g. when would humans trust
autonomous software, what sort of explanations are helpful), and psychological sub-
questions (e.g. how is trust affected by anthropomorphism, and how do characteristics
of software affect the extent to which it is ascribed human characteristics).

The remainder of this section briefly outlines the three prerequisites. For each pre-
requisite we briefly define what it is, and motivate the need for that prerequisite (“why”).
We also draw out the relationships between the three prerequisites (summarised in the
diagram below). The subsequent sections consider for each prerequisite how that pre-
requisite might be addressed. Note that for recourse we only discuss “what” and “why”
in this section, not “how” in a subsequent section. This is because the “how” is a social
and legal question, and is out of scope for this paper. On the other hand, Section 3 dis-
cusses value-based reasoning, which is not an essential prerequisite (hence not in this
section), but which can support both verification & validation, and explanations.

V&V Recourse Explanations

Value-based reasoning

supports

used supports

2.1 Recourse: law & social frameworks

We begin with the notion of recourse. In a sense, this prerequisite provides a safety net.
We know that no person or system is perfect, and that even given a best possible set of



practices in developing an autonomous system, it will have a non-zero rate of failure.
The notion of recourse is that if an autonomous system does malfunction, that there is
some way to be compensated for the negative consequences. We therefore argue that
recourse is a necessary prerequisite to trust because it supports trusting a system that is
less than 100% perfect, and in practice no system is 100% perfect.

Although the term “recourse” may suggest a mechanism where an affected indi-
vidual uses the legal system to obtain compensation from another “person” (for au-
tonomous systems, likely the corporation that developed the system), there are other
possible social mechanisms that could be used, such as following an insurance model.
For example, a form of “autonomous cars insurance” could cover people (pedestrians,
cyclists, passengers, and other drivers) in the event that an autonomous vehicle malfunc-
tioned in a way that caused harm. This insurance would ideally cover all people, and
there are various models for universal insurance that could be used. For instance, New
Zealand has a national comprehensive insurance scheme that automatically provides all
residents and visitors with insurance for personal injury (www.acc.co.nz).

Being able to establish a justification for compensation, be it via legal proceed-
ings or as some sort of insurance claim, would require that autonomous systems record
enough information to permit audits to be undertaken, and the cause of harm identified.
The ability of an autonomous system to explain why it made a decision can therefore
support the process of seeking recourse by providing (part of) the evidence for harm.

While the existence of a recourse mechanism is identified as a prerequisite for trust
of autonomous systems, this area is not a focus of this paper, and we do not discuss it
further. More broadly, but also out of scope for this paper, are issues relating to gover-
nance, regulation, and certification.

2.2 Explanations

“. . . for users of care or domestic robots a why-did-you-do-that button which,
when pressed, causes the robot to explain the action it just took” [45, Page 20]

A second prerequisite that we argue is essential to (appropriate) trust is the ability of
an autonomous system to explain why it made a decision. Specifically, given a particular
decision that has been made, the system is able to be queried, and provide to a human
user an explanation for why it made that decision. The explanation needs to be in a form
that is comprehensible and accessible, and may be interactive (i.e. take the form of a
dialogue, rather than a single query followed by a complex answer).

There is a range of work, conducted in the setting of expert systems, rather than
autonomous systems, that considers what is required for experts to trust systems. This
work highlights explanation as an important factor in trust. For example, Teach & Short-
liffe [44] considered attitudes of physicians (medical practitioners) towards decision
support systems, including exploring the functionality and features that such systems
would require in order to be acceptable to physicians. They noted (all emphasis is in the
original) that

“An ability of a system to explain its advice was thought to be its most impor-
tant attribute. Second in importance was the ability of a system to understand

http://www.acc.co.nz


and update its own knowledge base. . . . Physicians did not think that a system
has to display either perfect diagnostic accuracy or perfect treatment planning
to be acceptable” (page 550)

They go on to recommend (p556) that researchers should:

“Concentrate some of the research effort on enhancing the interactive capabil-
ities of the expert system. The more natural these capabilities, the more likely
that the system will be used. At least four features appear to be highly desirable:

(a) Explanation. The system should be able to justify its advice in terms that
are understandable and persuasive. . . .

(b) Common sense. The system should “seem reasonable” as it progresses
through a problem-solving session. Some researchers argue that the op-
eration of the program should therefore parallel the physician’s reasoning
processes as much as possible. . . .

(c) Knowledge representation. The knowledge in the system should be easy to
bring up to date, . . .

(d) Useability [sic] . . . ”

they also recommend (p557) that researchers

“Recognize that 100% accuracy is neither achievable nor expected. Physicians
will accept a system that functions at the same level as a human expert so long
as the interactive capabilities noted above are a component of the consultative
process.”

In other words, the system always being right was seen by physicians as being less
important, whereas the system being able to be understood was more important.

Stormont [43] considers trust of autonomous systems in hazardous environments
(e.g. disaster zone rescue). He notes that while reliability is important, “a more im-
portant reason for lacking confidence may be the unpredictability of autonomous sys-
tems.” [43, Page 29]. In other words, autonomous software can sometimes do unex-
pected things. This can be a good thing: in some cases a software system may be able
to find a good solution that is not obvious to a human. We argue that this supports the
need for explanations: if a system is able to behave in a way that doesn’t obviously
make sense to a human, but is nonetheless correct, then in order for the system to be
appropriately trusted, it needs to be able to explain why it made its decisions. These ex-
planations allow humans to understand and learn to trust a system that performs well. A
difference between Stormont and Teach & Shortliffe is that the latter argue for the sys-
tem to mirror human decision-making in order to be comprehensible (point (b) quoted
above), whereas Stormont sees the benefit of allowing software to find solutions that
may not be obvious to humans.

As noted earlier, providing explanations can support the process of building a case
for compensation. The provision of explanations can benefit from using value-based
reasoning (see Section 3).



2.3 Verification & Validation (V&V)

“It is possible to develop systems having high levels of autonomy, but it is the
lack of suitable V&V methods that prevents all but relatively low levels of au-
tonomy from being certified for use.” [15, Page ix]

Before deploying any software system, we need to have confidence that the system
will function correctly. The strength of the confidence required depends on the conse-
quences of the system malfunctioning. For non-safety-critical software, this confidence
is obtained by software testing. However, autonomous systems can exhibit complex be-
haviour that makes it infeasible to obtain confidence in a system via testing [51,53].
This therefore necessitates the use of formal methods as part of the design process.

While there may be situations where humans are willing to trust their lives to sys-
tems that have not been adequately verified, we argue that this is a case of excessive,
and inappropriate, trust. If a system can potentially make a decision that, knowingly,
results in harm to a human, then we should have strong assurance that this either does
not occur, or occurs only under particular conditions that are well understood, and con-
sidered acceptable. The need for confidence in a system’s correct functioning, and, for
autonomous systems, the need to use formal methods, has been well-recognised in the
literature (e.g. [28,23,15,17]).

3 Value-Based Reasoning

We have argued that recourse, explanations, and V&V are prerequisites that are essen-
tial (but not necessarily sufficient) to having appropriate human trust in autonomous
systems. In addition we now propose a fourth element: value-based reasoning. We do
not consider value-based reasoning to be an essential prerequisite, but explain below
why it may be desirable, and how it supports two of the prerequisites. As noted earlier,
a recent HBR article [5] argued that ethics can, and should, be codified and used in
reasoning. Similarly, van Riemsdijk et al. [40] had earlier argued that socially situated
autonomous systems (e.g. personal assistants and smart homes) should represent and
use norms to reason about situations where norms may conflict.

By value-based reasoning we mean that the autonomous system includes a repre-
sentation for human values (e.g. not harming humans), and that it is able to conduct
reasoning using these human values in order to make decisions, where relevant. One
(widely discussed) example is the use of ethical reasoning in autonomous vehicles [6].
However, using human values in the reasoning process can be beneficial not just in life-
and-death situations. Consider a system that takes care of an aged person, perhaps with
dementia or Alzheimer’s disease. There are situations where competing options may
be resolved by considering human values, such as autonomy vs. safety, or privacy vs.
health. Perhaps the elderly person wants to go for a walk (which is both healthy, and
is aligned with their desire for autonomy), but for safety reasons they should not be
permitted to leave the house alone. In this example, the system needs to decide whether
to allow the person it is caring for to leave the house, and, if so, what other actions may
need to be taken. The key point is that in different situations, different decisions make
sense. For instance, if a person is at a high risk of becoming lost, then despite their



desire for autonomy, and the health benefits of walking, they should either be prevented
from leaving, or arrangements should be made for them to be accompanied.

Value-based reasoning can be used to support two of the prerequisites. Firstly, we
conjecture that the existence of a computational model of relevant human values could
be used as a basis for providing higher level, more human-oriented, explanations of
decisions. Secondly, in some situations, having an explicit model of values (or, perhaps
more specifically, ethics) would be required to be able to verify certain aspects of an
autonomous system’s behaviour, for instance that the system’s reasoning and decisions
take certain ethical considerations into account. For example, a recent paper by Dennis
et al. [20] proposes to use formal methods to show that an autonomous system behaves
ethically, i.e. that it only selects a plan that violates an ethical principle when the other
options are worse. For instance, a UAV may select a plan that involves colliding with
airport hardware (violating a principle of not damaging property) only in a situation
where the other plans involve worse violations (e.g. collision with people or manned
aircraft).

In some situations doing value-based reasoning will not be feasible. For instance, in
a real autonomous vehicle, the combination of unreliable and noisy sensor data, unreli-
able actuators, the inherent unpredictability of consequences (partly due to other parties
acting concurrently), and the lack of time to reason, means that in all likelihood, an au-
tonomous vehicle will not be able to make decisions using utilitarian ethical reasoning.
On the other hand, there may be applications (e.g. military) where software being able
to conduct ethical reasoning would be considered to be very important [2].

Key research questions to consider in order to achieve value-based reasoning are:

– What values should be represented, and at what level of abstraction?
– How should reasoning about values be done, and in particular, how does this inter-

act with the existing decision making process?
– How can values be utilised in providing explanations? And are such explanations

more accessible to people than explanations that do not incorporate values?
– Given an agent with value-based reasoning, what sorts of verification can be done

that makes use of the existence of values?

Cranefield et al. [14] present a computational instantiation of value-based reasoning
that provides initial answers to some of these questions. Specifically, they present an
extension of a BDI language that takes simply-represented values into account when
selecting between available plans to achieve a given goal.

4 Explanations

As noted earlier, an important element in trust is being able to understand why a system
made certain decisions, leading to its behaviour. Therefore, there is a need to develop
mechanisms for an autonomous system to explain why it chose and enacted a particular
course of action.

Since explanations can be complex (e.g. “I performed action a1 because I was trying
to achieve the sub-goal g2 and I believed that b3 held . . . ”), in order to be comprehen-
sible, they need to be provided in a form that facilitates navigation of the explanation.



This navigation can be in the form of a user interface that allows the explanation to
be explored, or by having the explanations take the form of a dialog with the system
(e.g. [13]).

Although there has been earlier work on explaining expert system recommenda-
tions, which may be useful as a source of ideas, the problem here is different in that we
are explaining a course of action (taken over time, in an environment), not a (static) rec-
ommendation. Consequently, we are not dealing with deductive reasoning rules (as in
expert systems), but with practical reasoning (although more likely to focus on means-
end-reasoning than on deliberation, i.e. the focus is more likely to be on achieving rather
than selecting goals).

Mechanisms for providing explanations obviously depend on the internal reasoning
mechanism used and the representation of practical reasoning knowledge. For instance,
Broekens et al. [11] assume a representation in terms of a hierarchy of goals, also in-
cluding beliefs and actions. If it turns out that explanations in terms of goals and beliefs
are natural for humans to understand (which we might expect to be the case, since we
naturally use “folk psychology” to reason about the behaviour of other humans), then
that may imply that we want to have the autonomous system represent its knowledge
in the form of plans to achieve its goals. However, it may also be possible to explain
decisions made by a non-goal-based reasoning process, by using a separate represen-
tation in terms of goals. Although this would mean that the agent reasoning can use
any mechanism and representation, it introduces the potential for the actual reasoning
and the goal representation used for explaining to differ. Finally, it is also possible to
provide explanations based solely on the observed behaviour of the system (i.e. without
having an accessible or useful internal representation of the system’s decision making
process), but this approach has drawbacks due to the limited information available [25].

There has been some work on mechanisms for autonomous systems to provide ex-
planations (e.g. [11,27,54]), but more work is needed. In particular, it is important for
future work to take into account insights from the social sciences [35]. Although there
may well be differences between how humans explain behaviour and how we want au-
tonomous systems to explain their behaviours, it makes sense to at least be aware of the
extensive body of work on how humans explain behaviour, e.g. [34].

Harbers [27] assumes that there is a goal tree that captures the agent’s reasoning.
The goal tree relates each goal to its sub-goals, and is indicated as being an “or” decom-
position, “all” decomposition, “seq” (sequence) decomposition, or “if” decomposition.
Each goal to sub-goal relationship is mediated by an optional belief that allows the
sub-goal to be adopted (e.g. the sub-goal “prepare the fire extinction” is mediated by
the belief “at incident location” [27, Figure 4.4]). The leaves of the tree are actions.
The goal-tree is the basis for the implementation of the agent (using the 2APL agent
programming language). A number of different explanation rules are considered. For
instance, explaining an action in terms of its parent goal, or in terms of its grandpar-
ent goal, or in terms of beliefs that allowed the action to be performed, or in terms of
the next action to be done (e.g. “I did action a1 so I could then subsequently do action
a2”). Harbers reports on an experiment (with human subjects) using a simple fire fight-
ing scenario, where the tree of goals contains 26 goals, and where the agent executes
a sequence of 16 actions. The experiment aims to find out which explanation rules are



preferred. She finds that in general there is not a consistent preference: for some actions
a particular rule (e.g. the parent goal) is the commonly preferred explanation, whereas
for other actions, the next action is the commonly preferred explanation. Harbers pro-
posed that an action ought to be explained by the combination of its parent goal and
the belief that allowed the action to be performed (which was not an explanation rule
used in her experiment), but also defined two exceptional situations for which different
explanations should be used. Broekens et al. [11] report on a similar experiment, and
also find that there is not a single explanation rule that is the best for all situations.

One characteristic of the rules used by Harbers and by Broekens et al. is that they
are (intentionally) incomplete: given an action, each rule selects only part of the full ex-
planation. For instance, a rule that explains an action in terms of its parent goal ignores
the beliefs that led to that goal being selected. By contrast, Hindriks [29] defines (infor-
mal) rules that yield a more complete explanation. More recently, Winikoff [54] builds
on Hindriks’ work by systematically deriving formally-defined rules that are then im-
plemented. Winikoff also explicitly defines (but does not prove) a completeness result:
that, given their derivation, the rules capture all the explanatory factors. However, this
work aims to support programmers debugging a system, rather than human end-users
trying to understand a system’s behaviour (presumably without a detailed understand-
ing of the system’s internals!). Additionally, the completeness of the rules comes at a
cost: the explanations are larger, and therefore harder to comprehend.

Finally, as mentioned in the previous section, it may be desirable to include human
value-based reasoning into the decision process, which then poses the question of how
to exploit this in the provision of explanations.

We therefore have the following research questions:

– How can an autonomous system provide explanations of its decisions and actions?
– What forms of explanation are most helpful and understandable? Is it helpful to

structure explanations in terms of folk psychology constructs such as goals, plans
and beliefs?

– How can explanations be effectively navigated by human users? In what circum-
stances is it beneficial to provide an explanation in the form of a dialogue?

– What reasoning processes and internal representations facilitate the provision of
explanations? Does there need to be some representation of the system’s goals?

– What is the tradeoff between using the same representation for both decision mak-
ing and explanation, as opposed to using a different representation for explanation?

– How well can explanations be provided without a representation for the system’s
decision making knowledge and process (i.e. based solely on observing the sys-
tem’s behaviour)?

– How can explanations be provided that exploit the presence of representations of
human values in the reasoning process? Are such explanations more accessible to
people than explanations that do not incorporate human values?

Note that we are assuming a setting where a system deliberates and acts autonomously,
and may be required to provide after-the-fact explanations (to help a human understand
why it acted in certain ways, or to provide evidence for compensation, in the event of
harm). However, another setting to be considered is where autonomous software works
closely with humans, as part of a mixed team. In this sort of setting it is important not



just to be able to explain after the fact, but also to provide updates during execution so
that team members (both human and software) have sufficient awareness of what other
team members are doing, or are intending to do. Doing this effectively is a challenge,
since a balance needs to be struck between sharing too little (leading to inadequate
awareness, and potential coordination issues) or too much (leading to overloading hu-
man team members with too much information). There has been some work that has
explored this issue (e.g. [33,42]). However, this is not related to trusting autonomous
systems in a general setting, but to the effectiveness of working with software in mixed
human-agent teams.

5 Verification & Validation

We have already noted that we need to have a way of obtaining assurance that an au-
tonomous software system will behave appropriately, and that obtaining this assurance
will require formal methods. We now consider the challenges involved in doing so,
highlight some approaches, and pose research questions.

Work on techniques for verifying autonomous systems goes back at least 15 years
(e.g. [56]). However, current state-of-the-art techniques are still only able to verify small
systems [56,7,37,17,21,22,19]. Given the work that has been done, and the foundations
provided by earlier work on verification of (non-autonomous) software, continuing to
improve verification techniques is important future work, and eventually the techniques
will be able to deal with realistically-sized systems. A number of ideas have been pro-
posed that reduce the complexity of verification.

Firstly, Fisher et al. [19,23,22] have proposed to reduce the complexity of verify-
ing autonomous systems by focussing on verifying the system’s decision making in
isolation. The correct functioning of sensors and effectors is assessed separately, which
requires end-to-end testing, possibly involving simulation [28]. Verifying decision mak-
ing not only improves efficiency, but also allows verification to consider whether a bad
decision is made in error (e.g. due to missing information), or intentionally, which is an
important distinction [32,3].

Secondly, Bordini et al. [8] have proposed using slicing to reduce the complexity
of verification. The basic idea is that given a particular property to be verified, instead
of verifying the property against the agent program, one first generates a specialised
version of the program that has been “sliced” to remove anything that does not affect
the truth of the property being verified. The property is then verified against the “sliced”
program. There is scope for further work, including considering other forms of program
transformation prior to verification. For instance, there is a body of work on partial
evaluation3 [30] that may be applicable.

Thirdly, there are various approaches that reduce the complexity of verifying a large
system by verifying parts of the system separately, and then combining the verifications.
One well-known approach uses assume-guarantee rules (e.g. [24]). It would be useful
to consider adapting this approach for use with autonomous systems. In the case that

3 Partial evaluation is the process of taking a program and some of its inputs and producing a
specialised program that is able to accept the remaining inputs and compute the same results
as the original program, but more efficiently.



the system’s decision making is represented in terms of a hierarchy of goals, it may be
that sub-goals provide a natural point of modularity, i.e. that one can verify sub-goals
in isolation, and then combine the results.

In addition to these research strands, which aim to make verification practical for
real agent programs, there is another issue to consider: where does the formal specifica-
tion come from? Verification takes a property and checks whether this property holds,
but in order to be confident that a system (autonomous or not) will behave appropri-
ately, we need to be confident that the collection of properties being verified adequately
capture the requirements for “appropriate behaviour” [41].

In some cases there may be existing laws or guidelines that adequately specify what
is “appropriate behaviour” for a given context, for instance, the Rules of the Air4 de-
scribe how a pilot must behave in certain situations5, and can be used as a source for
properties to be verified [50]. However, sometimes such guidelines do not exist, or they
may be incomplete. For example, important constraints may not be explicitly stated, if
they are “obvious” to humans, such as that a pilot should not accelerate in a way that
exceeds human tolerances.

We therefore propose the development of a process for systematically deriving the
properties to be verified from the system’s design and a collection of high-level generic
properties (e.g. “cause no harm”, “always ensure others are aware of your intentions”
- important for predictability). We assume that the autonomous software is developed
using a well-defined methodology [55] which uses design models (e.g. goal model,
interaction protocols) as “stepping stones” in the development process that results in
software. The properties to be verified (“Formal Specification” in Figure 1) are derived
by taking (1) a collection of generic high-level properties which apply to any system,
expressed in an appropriate notation, and applying (2) a well-defined process for deriv-
ing a fault model [48] from the high-level properties and the system’s design models.
We then need a well-defined process (3) for deriving the required formal specification
properties from the fault model.

Design
Process

Design
Models

(1) Generic 
 High-Level 
 Properties

(2) Fault
Model

Software

Formal
Specification

(3)

Model
Checker Yes/No

Fig. 1. Proposed process for systematically deriving properties to be verified

For instance, given a high-level property of “not harming people”, one might ex-
amine the system’s design (along with information on its environment, and domain

4 https://www.easa.europa.eu/document-library/regulations/
commission-implementing-regulation-eu-no-9232012

5 For example, that when two planes are approaching head on and there is a danger of collision,
that the pilots should both turn to their right.

https://www.easa.europa.eu/document-library/regulations/commission-implementing-regulation-eu-no-9232012
https://www.easa.europa.eu/document-library/regulations/commission-implementing-regulation-eu-no-9232012


knowledge regarding the consequences of various actions) to derive a fault model that
captures the specific ways in which the system’s decisions might lead to harming peo-
ple. As an example, consider a robot assistant (“Care-O-bot”) [49] that resides in a home
along with an elderly person being cared for. We would consider how harm to the person
being cared for can occur in relation to the system’s requirements. Since the system is
responsible for managing medication, we might identify that administering medication
incorrectly, or failing to remind the person to take their medication, are possible ways
in which harm can be caused. Similarly, the system failing to promptly seek help in the
event of an accident, adverse medical event or other emergency (e.g. fire, earthquake)
would be another way in which the person being cared for could be harmed. This anal-
ysis process contextualises the threats to the high-level properties in the circumstances
of the system, and results in a fault model, which captures specific ways in which the
system at hand might violate the high-level properties. We then need to have a way of
deriving from the fault model specific properties to be verified, in an appropriate formal
notation. The collection of high-level properties (1), process for deriving a fault model
for a given system (2), and method for deriving formal properties from the fault model
(3) all need to be developed, along with appropriate notations.

Finally, as noted in the previous section, the internal reasoning process and asso-
ciated representation matters. What sort of reasoning mechanisms and knowledge rep-
resentations should be used to facilitate verification? Fisher et al. [22] have argued, in
the context of verifying autonomous systems, that the systems should be developed in
terms of beliefs, goals, plans, and actions, i.e. using a BDI (Belief Desire Intention) [39]
agent-oriented programming language such as Gwendolyn6 [18].

We therefore have the following research questions:

– How can agent program slicing be improved? What other forms of program trans-
formation (e.g. partial evaluation) could be used to reduce the complexity of verifi-
cation?

– Can the decision making process for a given autonomous system be verified in
a modular way, perhaps using assume-guarantee reasoning (e.g. [24])? If so, can
goals and sub-goals be used as a natural point to divide into independent compo-
nents for verification?

– How can the properties to be verified be systematically derived?
– Should autonomous agents be programmed using a notation that supports represen-

tations for goals, beliefs, plans, and actions? If so, are existing BDI agent program-
ming languages adequate, or do they need to be extended, restricted, or otherwise
modified?

6 Discussion

In this paper we have considered the issue of trust, specifically posing the question: “In
what situations will humans (appropriately) trust autonomous systems?”

6 Other prominent BDI agent-oriented programming languages include Jason [9], Jadex [10],
JACK [52], and 2APL [16].



We argued that there are three prerequisites that are essential in order for appro-
priate trust in autonomous systems to be realised: having assurance that the system’s
behaviour is appropriate (obtained through verification & validation), having the sys-
tem be able to explain and justify its decisions in a way that is understandable, and
the existence of social frameworks that provide for compensation in the event that an
autonomous system’s decisions do lead to harm (“recourse”). We also discussed using
computational representations of human values as part of the decision making process
in autonomous software, and how this can support the other prerequisites.

However, while we have argued that these three prerequisites are necessary, we are
not in a position to claim that they are sufficient. Therefore, an overarching piece of
research is to investigate experimentally the extent to which humans are willing to trust
various autonomous systems given the prerequisites, and, especially, where people are
not willing to trust a system, to identify what additional prerequisite might be required
in order to enable (appropriate) trust.

We have discussed paths towards achieving the two technical prerequisites, and
posed specific research questions, thereby defining a research agenda. There is much
work to be done, and I hope that this paper will help to spur further discussion on what
is needed to have appropriate trust in autonomous systems, and encourage researchers
to work on the problems and questions articulated.
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24. Gheorghiu Bobaru, M., Păsăreanu, C.S., Giannakopoulou, D.: Automated Assume-
Guarantee Reasoning by Abstraction Refinement. In: Gupta, A., Malik, S. (eds.) Conference
on Computer Aided Verification (CAV), pp. 135–148. Springer Berlin Heidelberg (2008),
doi:10.1007/978-3-540-70545-1 14

25. Gomboc, D., Solomon, S., Core, M., Lane, H.C., van Lent, M.: Design Rec-
ommendations to Support Automated Explanation and Tutoring. In: Confer-
ence on Behavior Representation in Modeling and Simulation (BRIMS) (2005),
http://ict.usc.edu/pubs/Design%20Recommendations%20to%20Support%
20Automated%20Explanation%20and%20Tutoring.pdf

http://dx.doi.org/10.1007/3-7643-7348-2_7
http://dx.doi.org/10.1007/978-3-642-16178-0_5
http://dl.acm.org/citation.cfm?id=2616095
http://dl.acm.org/citation.cfm?id=2616095
http://dx.doi.org/10.24963/ijcai.2017/26
http://dx.doi.org/10.1007/s10515-014-0168-9
http://dx.doi.org/10.1016/j.robot.2015.11.012
http://dx.doi.org/10.1007/s10515-011-0088-x
http://dx.doi.org/10.1145/2494558
http://dx.doi.org/10.1049/etr.2014.0054
http://dx.doi.org/10.1007/978-3-540-70545-1_14
http://ict.usc.edu/pubs/Design%20Recommendations%20to%20Support%20Automated%20Explanation%20and%20Tutoring.pdf
http://ict.usc.edu/pubs/Design%20Recommendations%20to%20Support%20Automated%20Explanation%20and%20Tutoring.pdf


26. Hancock, P.A., Billings, D.R., Schaefer, K.E., Chen, J.Y.C., de Visser, E.J., Parasuraman, R.:
A meta-analysis of factors affecting trust in human-robot interaction. Human Factors 53(5),
517–527 (2011), doi:10.1177/0018720811417254

27. Harbers, M.: Explaining Agent Behavior in Virtual Training. SIKS dissertation series no.
2011-35, SIKS (Dutch Research School for Information and Knowledge Systems) (2011)

28. Helle, P., Schamai, W., Strobel, C.: Testing of Autonomous Systems - Challenges and Current
State-of-the-Art. In: 26th Annual INCOSE International Symposium (2016)

29. Hindriks, K.V.: Debugging is explaining. In: Rahwan, I., Wobcke, W., Sen, S., Sugawara, T.
(eds.) PRIMA 2012: Principles and Practice of Multi-Agent Systems. LNCS, vol. 7455, pp.
31–45. Springer (2012), doi:10.1007/978-3-642-32729-2 3

30. Jones, N.D.: An introduction to partial evaluation. ACM Comput. Surv. 28(3), 480–503
(1996), doi:10.1145/243439.243447

31. Kaplan, J.: Artificial Intelligence: Think Again. Communications of the ACM 60(1), 36–38
(January 2017), doi:10.1145/2950039

32. Lee, J.D., See, K.A.: Trust in automation: Designing for appropriate reliance. Human Factors
46(1), 50–80 (Spring 2004)

33. Li, S., Sun, W., Miller, T.: Communication in Human-Agent Teams for Tasks with
Joint Action. In: Dignum, V., Noriega, P., Sensoy, M., Sichman, J.S. (eds.) Coordina-
tion, Organizations, Institutions, and Norms in Agent Systems XI (COIN@AAMAS and
COIN@IJCAI post proceedings), pp. 224–241. Springer International Publishing, Cham
(2016), doi:10.1007/978-3-319-42691-4 13

34. Malle, B.F.: How the Mind Explains Behavior. MIT Press (2004), ISBN: 9780262134453
35. Miller, T.: Explanation in artificial intelligence: Insights from the social sciences. CoRR

abs/1706.07269 (2017)
36. Pinyol, I., Sabater-Mir, J.: Computational trust and reputation models for open multi-agent

systems: a review. Artificial Intelligence Review 40(1), 1–25 (2013), doi:10.1007/s10462-
011-9277-z

37. Raimondi, F., Lomuscio, A.: Automatic verification of multi-agent systems by model check-
ing via ordered binary decision diagrams. J. Applied Logic 5(2), 235–251 (2007)

38. Ramchurn, S.D., Huynh, D., Jennings, N.R.: Trust in multi-agent systems. The Knowledge
Engineering Review 19(1), 1–25 (2004), doi:10.1017/S0269888904000116

39. Rao, A.S., Georgeff, M.P.: BDI agents: From theory to practice. In: Lesser, V.R., Gasser, L.
(eds.) Conference on Multiagent Systems. pp. 312–319. The MIT Press (1995)

40. van Riemsdijk, M.B., Jonker, C.M., Lesser, V.R.: Creating socially adaptive electronic part-
ners: Interaction, reasoning and ethical challenges. In: Weiss, G., Yolum, P., Bordini, R.H.,
Elkind, E. (eds.) Conference on Autonomous Agents and Multiagent Systems (AAMAS).
pp. 1201–1206. ACM (2015), http://dl.acm.org/citation.cfm?id=2773303

41. Rozier, K.Y.: Specification: The biggest bottleneck in formal methods and autonomy. In:
Blazy, S., Chechik, M. (eds.) Verified Software. Theories, Tools, and Experiments (VSTTE),
Revised Selected Papers. LNCS, vol. 9971, pp. 8–26 (2016), doi:10.1007/978-3-319-
48869-1 2

42. Singh, R., Sonenberg, L., Miller, T.: Communication and shared mental models for teams
performing interdependent tasks. In: Osman, N., Sierra, C. (eds.) Autonomous Agents and
Multiagent Systems: AAMAS 2016 Workshops, Best Papers, pp. 163–179. Springer Inter-
national Publishing (2016), doi:10.1007/978-3-319-46882-2 10

43. Stormont, D.P.: Analyzing Human Trust of Autonomous Systems in Hazardous Environ-
ments. In: Metzler, T. (ed.) AAAI Workshop on Human Implications of Human-Robot In-
teraction, http://www.aaai.org/Library/Workshops/ws08-05.php. pp. 27–32. The AAAI
Press, Technical Report WS-08-05 (2008)

44. Teach, R.L., Shortliffe, E.H.: An Analysis of Physician Attitudes Regarding Computer-Based
Clinical Consultation Systems. Computers and Biomedical Research 14, 542–558 (1981)

http://dx.doi.org/10.1177/0018720811417254
http://dx.doi.org/10.1007/978-3-642-32729-2_3
http://dx.doi.org/10.1145/243439.243447
http://dx.doi.org/10.1145/2950039
http://dx.doi.org/10.1007/978-3-319-42691-4_13
http://arxiv.org/abs/1706.07269
http://dx.doi.org/10.1007/s10462-011-9277-z
http://dx.doi.org/10.1007/s10462-011-9277-z
http://dx.doi.org/10.1017/S0269888904000116
http://dl.acm.org/citation.cfm?id=2773303
http://dx.doi.org/10.1007/978-3-319-48869-1_2
http://dx.doi.org/10.1007/978-3-319-48869-1_2
http://dx.doi.org/10.1007/978-3-319-46882-2_10
http://www.aaai.org/Library/Workshops/ws08-05.php


45. The IEEE Global Initiative for Ethical Considerations in Artificial Intelligence and Au-
tonomous Systems: Ethically Aligned Design: A Vision For Prioritizing Wellbeing With
Artificial Intelligence And Autonomous Systems, Version 1. IEEE, http://standards.ieee.
org/develop/indconn/ec/autonomous systems.html (2016)

46. The White House: Artificial Intelligence, Automation, and the Econ-
omy. https://www.whitehouse.gov/sites/whitehouse.gov/files/documents/
Artificial-Intelligence-Automation-Economy.PDF (December 2016)

47. The White House: Preparing for the Future of Artificial Intelligence. https:
//www.whitehouse.gov/sites/default/files/whitehouse files/microsites/ostp/NSTC/
preparing for the future of ai.pdf (October 2016)

48. Vesely, W.E., Goldberg, F.F., Roberts, N.H., Haasl, D.F.: Fault tree handbook. Tech. Rep.
NUREG-0492, US Nuclear Regulatory Commission (January 1981)

49. Webster, M., Dixon, C., Fisher, M., Salem, M., Saunders, J., Koay, K.L., Dautenhahn, K.,
Saez-Pons, J.: Towards reliable autonomous robotic assistants through formal verification: A
case study. IEEE Transactions on Human-Machine Systems PP(99), 1–11 (2015)

50. Webster, M., Cameron, N., Fisher, M., Jump, M.: Generating certification evidence for au-
tonomous unmanned aircraft using model checking and simulation. Journal of Aerospace
Information Systems 11(5), 258–279 (2014), doi:10.2514/1.I010096

51. Winikoff, M., Cranefield, S.: On the Testability of BDI Agent Systems. Journal of Artificial
Intelligence Research (JAIR) 51, 71–131 (2014), doi:10.1613/jair.4458

52. Winikoff, M.: JACKTM Intelligent Agents: An Industrial Strength Platform. In: Bordini,
R.H., Dastani, M., Dix, J., Fallah-Seghrouchni, A.E. (eds.) Multi-Agent Programming: Lan-
guages, Platforms and Applications, pp. 175–193. Springer (2005)

53. Winikoff, M.: How testable are BDI agents? An analysis of branch coverage. In: Os-
man, N., Sierra, C. (eds.) Autonomous Agents and Multiagent Systems: AAMAS 2016
Workshops, Best Papers, pp. 90–106. Springer International Publishing, Cham (2016),
doi:10.1007/978-3-319-46882-2 6

54. Winikoff, M.: Debugging Agent Programs with “Why?” Questions. In: Das, S., Durfee, E.,
Larson, K., Winikoff, M. (eds.) Conference on Autonomous Agents and Multiagent Systems
(AAMAS) (2017)

55. Winikoff, M., Padgham, L.: Agent Oriented Software Engineering. In: Weiß, G. (ed.) Multi-
agent Systems, chap. 15, pp. 695–757. MIT Press, second edn. (2013)

56. Wooldridge, M., Fisher, M., Huget, M.P., Parsons, S.: Model checking multi-agent systems
with MABLE. In: Conference on Autonomous Agents and Multi-Agent Systems (AAMAS).
pp. 952–959. ACM Press (2002)

http://standards.ieee.org/develop/indconn/ec/autonomous_systems.html
http://standards.ieee.org/develop/indconn/ec/autonomous_systems.html
https://www.whitehouse.gov/sites/whitehouse.gov/files/documents/Artificial-Intelligence-Automation-Economy.PDF
https://www.whitehouse.gov/sites/whitehouse.gov/files/documents/Artificial-Intelligence-Automation-Economy.PDF
https://www.whitehouse.gov/sites/default/files/whitehouse_files/microsites/ostp/NSTC/preparing_for_the_future_of_ai.pdf
https://www.whitehouse.gov/sites/default/files/whitehouse_files/microsites/ostp/NSTC/preparing_for_the_future_of_ai.pdf
https://www.whitehouse.gov/sites/default/files/whitehouse_files/microsites/ostp/NSTC/preparing_for_the_future_of_ai.pdf
http://dx.doi.org/10.2514/1.I010096
http://dx.doi.org/10.1613/jair.4458
http://dx.doi.org/10.1007/978-3-319-46882-2_6

	Towards Trusting Autonomous Systems

