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Abstract—Melanoma is the deadliest form of skin cancer that
causes around 75% of deaths worldwide. However, most of the skin
cancers can be cured, especially if detected and treated early. Exist-
ing approaches have employed various feature extraction methods,
where different types of features are used individually for skin
image classification which may not provide sufficient information
to the classification algorithm necessary to discriminate between
classes, leading to sub-optimal performance. This study develops
a novel skin image classification method using multi-tree genetic
programming (GP). To capture local information from gray and
color skin images, Local Binary Pattern is used in this work. In
addition, for capturing global information, variation in color within
the lesion and the skin regions, and domain-specific lesion border
shape features are extracted. GP with a multi-tree representation
is employed to use multiple types of features. Genetic operators
such as crossover and mutation are designed accordingly in or-
der to select a single type of features at terminals in one tree of
the GP individual. The performance of the proposed method is
assessed using two skin image datasets having images captured
from multiple modalities, and compared with six most commonly
used classification algorithms as well as the standard (single-tree)
wrapper and embedded GP methods. The results show that the
proposed method has significantly outperformed all these clas-
sification methods. Being interpretable and fast in terms of the
computation time, this method can help dermatologist identify
prominent skin image features, specific to a type of skin cancer
in real-time situations.

Index Terms—Genetic programming, feature selection, feature
construction, image classification, melanoma detection.
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I. INTRODUCTION

SKIN cancer is the most common form of cancer, accounting
for nearly 40% of occurrences globally [1]. Melanoma

incidence has risen enormously over the past 30 years [2]. In
2019, there will be an estimated number of 96,480 new skin
cancer cases which may lead to 7,230 estimated deaths in the
US [2]. When diagnosed early, skin cancer is highly curable with
a survival rate of nearly 92% [2]. However if not detected early,
it spreads to other parts of the body which can be fatal [2].
Early diagnosis of skin cancer has become a top priority of
public health due to the rapid increase in incidence rate of skin
cancer particularly melanoma. New developments in the areas
of computer vision provide improved computer aided diagnostic
(CAD) systems which facilitate earlier diagnosis of various skin
cancers that require no biopsy.

Dermatologists generally follow a scoring method called
the ABCD rule of dermoscopy [3] which quantify four lesion
characteristics; Asymmetry, Border, Color, and Dermoscopic
structure, which help effectively separate different kinds of skin
images [4]. Another commonly used approach is the 7-point
check-list method (Asymmetry, Regression areas, Dots, Streaks,
Pigment network, Blue-whitish veil and presence/absence of six
colors; black, white, light-brown, dark-brown, red, and blue-
gray) [5]. These fundamental medical properties and availability
of skin images have attracted many researchers to make efficient
and effective CAD systems that can greatly help in early diag-
nosis. Researchers are interested to formulate methods that can
capture informative features similar to these medical properties
and, hence, incorporate both local and global features. Local
features extract information from a part of an image whereas
global features capture information from the whole image. How-
ever, automated skin image classification incorporates various
challenges mainly due to 1) the high inter-class variation of
melanomas, 2) the high intra-class similarity among various
types of skin cancers, 3) varying location of lesion in skin
images, and 4) presence of various artifacts in skin images, e.g.,
hair, gel, and reflection [6]. According, both local and global
features are often needed.

Genetic programming (GP) is an evolutionary computation
method that evolves computer programs (models or trees) to
solve a particular problem [7]. GP applies genetic operations
such as crossover and mutation to transform a population of

2471-285X © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Victoria University of Wellington. Downloaded on July 07,2020 at 00:03:18 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-6891-9887
https://orcid.org/0000-0003-4633-6135
https://orcid.org/0000-0002-4865-8026
https://orcid.org/0000-0003-4463-9538
mailto:qurrat.ul.ain@ecs.vuw.ac.nz
mailto:harith.al-sahaf@ecs.vuw.ac.nz
mailto:bing.xue@ecs.vuw.ac.nz
mailto:mengjie.zhang@ecs.vuw.ac.nz
https://ieeexplore.ieee.org


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE

computer programs iteratively into a new generation of pro-
grams [7]. GP typically represents a computer program in a
tree-like arrangement where terminal nodes and internal nodes
are made up of features and functions, respectively. Due to the
fact that all the features are not important for classification,
GP utilizes its implicit feature selection ability to automatically
select the important features as its terminals. The evolved trees
are the new constructed features from the original set of features
with high discriminating ability between classes, which greatly
helps in achieving good performance. In image analysis, GP
has been widely explored for a broad range of applications such
as object detection [8], feature extraction [9], feature construc-
tion [9], [10], evolving texture image descriptors [11], [12], and
classification [13], [14].

With its flexible representation, GP can evolve multiple trees
in a single individual, referred as multi-tree GP (MTGP) [15].
In this work, as we are interested to encompass the different
local, global, texture, and color image properties of the lesion
images in our classification model, we have employed MTGP
to effectively evolve multiple trees (constructed features) each
based on a specific property, e.g., one tree for gray-scale fea-
tures, one for pixel-based color features and another for bor-
der shape features. On the other hand, in a MTGP approach
evolving multiple trees based on all different type of features
may not result in meaningful constructed features. Similarly,
evolving these constructed features individually in a single-
tree GP approach will use only one specific property of skin
images (e.g. based on either local features or global features)
and, hence, may not provide sufficient information necessary
for classification. Moreover, using all these different features
together to evolve a single-tree GP-constructed feature has
resulted in poor performance. Therefore, MTGP is applicable
where different image properties (local, global, texture, and
color information) encompassed in different sets of features
are necessary to evolve good solution in order to get sufficient
informative features in terminal set. In the literature, MTGP has
been studies for automatically evolving image descriptors for
texture image classification [11], constructing features to create
benchmark datasets [16], self-assembling swarm robots [17],
and multi-class classification [18]. Based on the evaluation
criteria, feature selection algorithms are categorized into three
groups: filter, wrapper and embedded approaches. A wrapper ap-
proach includes a classification/learning algorithm in the feature
subset evaluation whereas a filter approach is independent of any
classification algorithm [19]. An embedded approach combines
feature selection and classifier learning into a single process [19].
Generally, filter-based methods ignore the performance of the se-
lected features on a classification algorithm while wrapper-based
methods evaluate the feature subsets based on the classification
performance, resulting in improved performance.

Unlike existing approaches, the proposed MTGP method
constructs informative features in a wrapper approach which are
provided to a machine learning classification algorithm (such as
k−nearest neighbor or decision trees) for classification. This
feature construction ability of our MTGP method generates
knowledge-guided features which help the classification algo-
rithm to produce good results.

In real-world situations, various optical devices are used in
the hospitals and medical centers to record skin images which
include specialized dermatoscope and standard camera. Images
taken from different optical devices might possess different
visual characteristics. In addition, with different camera settings,
characteristics like illumination, scale, and reflection might dif-
fer. Therefore, which feature extraction method can extract more
informative features for a specific kind of images (taken from
different devices) still needs thorough investigation. Different
from existing approaches which mainly focus on designing
a classification method for a single image modality (images
captured from one instrument), this study aims at developing
a robust skin cancer classification method which can produce
good results across multiple image modalities.

Therefore, accounting all the important factors discussed
above, we become interested in developing a method for real-
world skin image classification by designing a MTGP approach,
with multiple constructed features each of which evolves using
a particular set of features.

A. Goals

This work focuses on developing a novel method using the
multi-tree approach in GP while enhancing classification perfor-
mance using a wrapper approach for skin image classification.
This work aims at automatically generating a classification
model that uses features constructed from a variety of local
and global features having sufficient information to discrimi-
nate images of different classes. Different from most existing
approaches which can only provide effective results for a single
image modality, this method is developed for images captured
from multiple image modalities (devices). The following objec-
tives will be explored in this study:
� Developing a new multi-tree based GP method with a

wrapper approach having sufficient informative features
for binary and multi-class skin image classification prob-
lems.

� Assessing the performance of the proposed classification
method quantitatively and comparing it to six commonly
used classification algorithms and eight single-tree GP
methods on two real-world skin image datasets.

� Investigating the effectiveness of the proposed method on
datasets having images captured from multiple modalities
(specialized instruments and standard cameras).

� Investigating the efficiency of the proposed method in
terms of analyzing computation time to train the proposed
method and test its performance on the test images.

� Analyzing the interpretability of evolved GP-constructed
features.

� Investigating the different types of prominent features nec-
essary to provide sufficient information for the diagnosis
of skin images.

B. Organization

The rest of the paper is organized as follows. The background
and the related work are described in Section II. The proposed
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Fig. 1. Process of generating LBP histogram with LBP 8,1 code for sub-image having radius = 1, and neighboring pixels = 8.

MTGP method is described in detail in Section III. The ex-
periment design is presented in Section IV. Section V presents
and discusses the results of binary and multi-class classification
tasks. Section VI further analyses the results in terms of compu-
tation time, thoroughly examining a GP individual evolved by
the proposed method. Section VII provide conclusions obtained
from this work and highlights some future directions.

II. LITERATURE REVIEW

A. Background

1) Local Binary Pattern: Local binary patterns (LBP) is a
dense image descriptor that has been widely studied for feature
extraction in computer vision applications [20]. LBP scans an
image in a pixel-by-pixel manner using a window of fixed radius.
The intensity value of the central pixel is evaluated based on
the intensity values of neighboring pixels lying on the radius.
From these computed central pixel values, it then generates a
histogram (i.e. feature vector). Radius defines the distance (in
terms of number of pixels) between the central pixel and the
neighboring pixels. The process of generating LBP histogram is
shown in Fig. 1, where the radius and neighboring pixels are set
to 1 and 8, respectively. The central pixel value 150 is compared
to the eight neighboring pixel values 108, 132, 191, 83, 236,
46, 94, and 160. When the central pixel value is greater than the
neighboring value, it assigns “0,” else assigns “1”. It then follows
the pixels along a circle, i.e. clockwise or anti-clockwise to get an
8-digit binary code i.e., 11000001 which is converted to decimal
i.e., 131 and the size of the corresponding bin in the histogram is
increased by one. It then moves the sliding window and repeats
the process until the entire image is scanned to generate the
complete LBP histogram for an image.

Furthermore, LBP codes are divided into two categories:
uniform and non-uniform. A uniform LBP code does not have
more than two bit-wise transitions circularly from 1 to 0 or 0
to 1. For example, 11110000, and 10000111 are uniform codes,
whereas 00100110, 01011110, and 01011100 are non-uniform
codes. The size of the feature vector can be reduced from 2b bins
to b(b− 1) + 3 bins by using only uniform codes and omitting
non-uniform codes. Uniform codes identify the presence of
various texture patterns such as flat areas, line ends, corners,
edges, and dark spots in images. In skin images, uniform codes
can help detect blobs (flat areas) and streaks (line ends) which
may help distinguish between different classes of skin lesions.

2) Color Variation Features: Color characteristics inside the
lesion area are often used by dermatologists to identify the type
of skin cancer. According to dermatologists, melanoma skin

lesions are categorized by variegated coloring. The presence
of different colors, especially in the form of irregular patches
or veils (such as blue-whitish veil), induces high variance in
the red, green, blue (RGB) color space. In this work, the red,
green and blue color channel data of the pixels in the lesion
area and skin area are stored as LesionColor features. From
each color channel, mean μ and variance σ are calculated and
represented as μR, μG, μB and σR, σG, σB. To include
complex color distributions inside the lesion area, mean ratios
of the mean values are calculated which are represented as μR

μG
,

μR

μB
, μG

μB
. Variations in color of the skin lesion as compared to the

surrounding skin is also evaluated. These features are calculated
as μR

γR
, μG

γG
, μB

γB
, where γ is the mean value of the skin-only area

around the lesion. These 12 color variation features have been
adopted from [21].

3) Geometry-Based Features: The geometrical shape of the
border of the lesion is an important characteristic that pro-
vide diagnostic information about a type of skin cancer. Ac-
cording to the ABCD rule of dermoscopy [3], asymmetry is
assigned with the highest weight among the four features of
asymmetry, border irregularity, color variation and dermoscopic
structure. This work includes some standard geometry-based
features adopted from [22] and [23]. The details of these 11
geometry-based features are listed in Table I. Moreover, all the
images within each dataset in this study have similar spatial
resolution, which allows us to extract these geometrical fea-
tures i.e., area and perimeter, without any scale issue. When
images in a single dataset are not captured under standardized
conditions such as magnification and resolution, such datasets
usually require a normalization procedure before extracting
features.

B. Related Work

Earlier in 1994, an artificial neural network (ANN) approach
was designed to classify skin images as malignant or benign [24].
Using lesion shape and lesion color features, this approach
obtained good performance. However, it requires a dermatol-
ogist to identify the lesion boundaries manually, which makes
this system expensive to implement. In [22], a CAD system is
developed for melanoma classification which selects an optimal
set of features from different types of features such as texture,
border-based, and geometrical shape. To classify melanoma
and benign images, four classification algorithms (Naïve Bayes,
support vector machine (SVM), random forest, and hidden lo-
gistic model tree) are employed. Though this diagnostic system
produced very good results (91.26% with 23 features), it utilizes
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TABLE I
GEOMETRICAL BORDER SHAPE FEATURES

different types of features individually and lacks an appropriate
way to combine them.

The robustness of a CAD system is one of the most important
characteristics for dermoscopy images [25]. It is difficult to
develop a robust system for multi-source images acquired under
different conditions, such as varying illumination and different
acquisition devices. Hence, it has been suggested to use the
color constancy algorithms and the results of SVM have shown
increased performance using RGB histograms as features. For
effective feature learning from color images, a quaternion-based
grassmann average network (QGANet) is developed [26]. The
experiment results proved the goodness of the method on three
histopathological color image datasets. Since the QGANet al-
gorithm embeds the grassmann average network (GANet) into
a principal component analysis network (PCANet), the com-
putational complexity of QGANet is four times more than the
baseline GANet.

Identifying the score of the ABCD rule of dermoscopy has
been recently studied [4]. In pre-processing, Gabor filters and
active contours are utilized to detect lesion boundaries. The
extracted features, according to the ABCD rule, are used to
compute the total dermoscopy score, which is then used for
binary classification. The method has produced good sensitivity
and specificity results and revealed the potential of extracted
features in building a good classification model.

Adjed et al. [27] developed a binary classification method
for melanoma detection through fusion of texture and structure
features. The method extracts texture features from different
variants of LBP, and structure features from curvelet and wavelet
transforms. SVM classifier produced good results in terms of
sensitivity (78.93%) and specificity (93.25%).

Recently, Xie et al. [28] proposed an ANN-based ensemble
model for melanoma detection from skin images. The algorithm
works by first extracting the lesion area with a self-generating
neural network. Various types of features such as border, texture,
and color are extracted, which are then given to a neural network
ensemble method for binary classification. The results revealed
the goodness of the new border features, which played a vital
role in achieving improved accuracy.

For melanoma detection from skin images, Yu et al. [6]
developed a 2-stage convolutional neural network (CNN) ar-
chitecture. The first stage performs lesion segmentation using
a fully convolutional residual network and the second stage
performs classification with a very deep residual network. Their
results revealed the potential of very deep CNNs, even with
limited training data to solve such a complex task of melanoma
detection.

GP has been widely explored for image analysis [8], [9], [12],
[29], [30]. In 1996, Poli developed a GP-based method for image
segmentation and feature detection [29]. A set of requirements
for fitness function, terminal set, and function set in GP has been
outlined necessary to generate effective optimal filters in X-ray
coronarograms and brain MRI.

Ryan et al. [30] described a GP-based fully automated system
to detect Stage-1 breast cancer. The method detects suspicious
regions called regions-of-interest (ROI) and outputs the like-
lihood of malignancy. It is a seven stage method, where the
first five stages implement pre-processing, breast segmentation
and feature extraction, while the last two stages employ a multi-
objective GP approach for building and testing the classifier. Re-
sults have revealed the ability of GP to produce human-readable
solutions, and capable of examining the GP individuals.

Zhang et al. proposed a domain-independent approach to the
problem of multi-class object detection using GP [8]. The aim of
their method is to locate a number of objects of different classes
that are contained in a large image, and predict the class label
of each of the detected objects. The method is tested using three
datasets of increasing difficulty. The evolved program is capable
of performing object detection and multi-class classification
tasks.

Al-Sahaf et al. [12] developed a GP-based method to au-
tomatically generate an image descriptor i.e., a feature vector,
for texture image classification. The feature vector generated in
their approach is quite similar to LBP [20]. However, a domain-
expert designs the formulas in LBP, whereas these formulas
are automatically generated by GP in their work. Experiments
revealed the goodness of the proposed method in comparison to
other GP and non-GP methods. Iqbal et al. [31] improved the
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structure of the algorithm in [12] to perform transfer learning,
to cope with difficult texture image classification tasks. The
results proved the effectiveness of their method, showing ability
to solve even more difficult tasks which most other algorithms
cannot solve. Lensen et al. [9] developed a GP-based method
capable of performing multiple tasks in a single evolved GP
individual; region detection, feature extraction and binary image
classification. Their results have shown improved classification
performance compared to the existing GP approaches.

Recenlty Ain et al. [32] tackled the problem of skin im-
age classification using GP with a combination of biomedi-
cal (domain-specific) and LBP (domain-independent) features.
They have also designed a feature selection and feature con-
struction method by using local and global features in GP for
the task of melanoma detection [10]. Using a multi-tree GP in an
embedded approach, Ain et al. [33] proposed a binary classifi-
cation method to effectively identify melanoma in images. Their
method works by evolving multiple trees in a GP individual on
the training data, where each tree operates as a binary classifier.
The tree producing the best performance on the training data is
used to test the performance on the test data. They have identified
the important image features by analyzing the good evolved GP
programs, which can help dermatologists to make diagnosis in
real-world situations.

Several existing methods [6], [24], [28] have developed CNNs
for skin image classification which have shown good results,
but have some limitations. Most of these CNN architectures
are developed as a black-box; therefore, they are not inter-
pretable. Such classification models lack the ability to identify
prominent features in classifying skin images. Moreover, the
performance of a CNN is severely limited by amount of data
needed to train a classification model. Usually, CNNs require a
large number of training images to achieve sufficiently good
results. Generally, the medical data available in real world
applications is limited. Consequently, training a model with a
large dataset requires long computation time and hence, large
computing resources. Some existing approaches [21], [22], [27],
[28], [34] developed classification methods for melanoma de-
tection where various features are extracted from skin images.
These methods assessed the goodness of these features indi-
vidually using different machine learning classification algo-
rithms. However, they lack using a combination of different
types of features concurrently to achieve performance gains.
Performance can be improved by utilizing all these features
concurrently by designing an effective way of combining these
different types of features. Most existing methods have used
only one image modality (images captured from a single instru-
ment) to test the performance of their method(s). However, in
real-world situations, there are images captured from different
instruments and hence, these methods, developed for a single
image modality, cannot be applied to or may perform poorly
on other image modalities. Hence, there is a need for a classi-
fication method for skin images which, having sufficient infor-
mative features, has the ability to be applied to multiple image
modalities, easily interpretable in order to guide the dermatol-
ogist, and able to discriminate between various classes of skin
cancers.

III. THE PROPOSED METHOD

This section provides a detailed description of the proposed
MTGP wrapper method, which starts by presenting an overview
of the algorithm to evolve a GP individual in order to highlight
the key components of our proposed method, and how the
constructed features from the evolved individual are used for
classification. Then the program structure, i.e., the terminal and
the function sets, the crossover and mutation operators, and the
fitness function, are discussed.

The proposed method operates on a set of prede-
fined/extracted features which include local and global informa-
tion about the skin images. The local features are extracted with
the help of LBP descriptor which works with the pixel values and
can significantly capture informative features about various skin
properties such as lines/streaks, blobs, homogeneous regions,
and irregular border patterns. The global features are extracted
by focusing on shape and color variation characteristics of skin
lesions. These features are defined in [21] and [22]. These
features are of utmost importance because without using these
human crafted features, it is difficult to achieve good perfor-
mance for such a difficult task as skin image classification. These
global features capture the properties of asymmetry, border,
color and diameter (ABCD) rule of dermoscopy, which plays a
vital role for the dermatologist in distinguishing malignant from
benign images. Hence, incorporating these informative features
help the classifier learn better and produce an effective model.

A. The Overall Algorithm

The overall structure of the MTGP in a wrapper approach
for skin image classification is shown in Fig. 2. First, the four
types of features are extracted from each image of a dataset.
Hence, one image is represented by four feature vectors. Then
the dataset is divided into training and test sets. The MTGP
algorithm runs on the training set of the dataset to select a
subset of relevant features for each type of features among the
four feature types. It then constructs four features from these
selected features. In other words, GP evolves four trees in a
single individual based on the four types of features, which is
the evolutionary training process. Then the training set and the
test set are transformed to a new training set and a new test set by
constructing new features from the four trees evolved during the
training process. A classification algorithm (such as a decision
tree) is then trained on the transformed training set. The learned
classifier is then applied to the transformed test set to obtain the
final test classification performance.

B. GP Program Representation

In a GP individual, each tree is constructed from elements of
the terminal and the function sets. In this study, tree-based GP
is used to represent an individual. Furthermore, an individual
consists of four trees. The intuition behind evolving four trees
is that four different types of features are used which have been
extracted using different feature extraction methods described
in Section II-A. Each tree in a GP individual is generated using
a single type of features. For illustration (as shown in Fig. 3), the
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Fig. 2. Overview of the proposed method: Each image in the dataset is input to four feature extraction methods to obtain four feature vectors, namely LBPGray ,
LBPRGB LesionColor, and LesionShape, for each image. The training set is given to GP to evolve four trees each based on a single feature vector. Using
these four trees (constructed features), the training and test sets are transformed into new training and test sets. The transformed training set is provided to a
classification algorithm (such as a decision tree) to evolve a classification model. The learned classification model is applied to the transformed test set to obtain
the test classification performance.

Fig. 3. A GP individual with four trees, each evolved with a single type of
features.

terminal set of the first tree consists of LBPGray features only.
Similarly, the terminal sets of the second, third and fourth trees
consist of LBPRGB, LesionColor, and LesionShape features,
respectively. However, all the trees share the same function set
that consists of seven operators as described in Section III-D.

C. Terminal Set

The terminal set comprises of four types of features, which
are extracted from the feature extraction methods described in
Section II-A. The four types of features include;

1) LBPGray: 59 LBP features extracted from gray-level skin
images as described in Section II-A1(1), and using the
process shown in Fig. 1.

2) LBPRGB: 59 LBP features are extracted from from the
three color channels i.e., red, green, blue. They are con-
catenated to get a single feature vector having 177 (=
59 LBP features × 3 channels) LBPRGB features as
illustrated in Fig. 4.

3) LesionColor: The variation in color across the skin image
is calculated by 12 LesionColor features as described in
Section II-A(2).

4) LesionShape: The geometrical border shape properties are
calculated by 11 LesionShape features as described in
Section II-A(3).

Fig. 4. Step-by-Step procedure to generate the LBPRGB feature vector from
a color image.

The value of the ith feature for the above four types of features
is indicated by Gi, Ri, Ci, and Si, respectively, as shown by the
GP individual in Fig. 10. For LBPRGB and LBPGray features,
a window size of 3× 3 pixels and a radius of 1 pixel (LBP8,1)
is used, which are the simplest and the most commonly used
settings for extracting LBP features.

D. Function Set

The function set comprises the seven most commonly used
operators. There are four arithmetic operators {+,−,×, /}, two
trigonometric {sin, cos} operators, and one conditional operator
{if}. Among the four arithmetic operators, the first three oper-
ators works with their usual arithmetic meaning, however, the
last operator i.e., division is protected, which means it returns
zero when the denominator is zero. The conditional if operator
works with four input values and outputs the third input if the
first input is greater than the second input; else, it outputs the
fourth input.

E. Crossover and Mutation

To meet the objective of having only one type of features
in a single GP tree, genetic operators, such as crossover and
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Algorithm 1: Same-Index Crossover.

1: function CROSSOVER P1, P2 � Two GP
Individuals (parents), each having four trees

2: for i = 1 to 4 do
3: XOVER(P1

i , P 2
i ) � Crossover between

trees having same
4: type of features as terminals
5: end for
6: return C1, C2 � The two children obtained

after XOVER
7: end function

Algorithm 2: Same-Index Mutation.

1: function MUTATION(P1) � One GP Individual
(parent) having four trees

2: for i = 1 to 4 do
3: P1 ← init (Ti) � Generate a new tree with
4: a single type of features
5: MUTATE(Pi, P1) � Mutate the tree

from parent
6: individual with the new generated tree,
7: both having the same type of features
8: end for
9: returnC1 � One child obtained after

MUTATE
10: end function

mutation, are designed accordingly, which is called same-index-
crossover/mutation [16]. The step-by-step process is given in
Algorithms 1 and 2. This crossover/mutation guarantees that
the GP individual evolved at the end of the evolutionary process,
consists of four trees where each tree evolves from a single type
of features. For example, in case of crossover having two parents,
the tree generated using LBPRGB features in the first parent can
only crossover with the tree generated using the same LBPRGB

features in the second parent, and it is ensured that it cannot
crossover with LesionShape, LBPGray or LesionColor features
as described in Algorithm 1. Similarly, for example, in case
of mutation having one parent, a newly created tree generated
using LesionColor features can only mutate with a previously
generated tree in parent from LesionColor features as described
in Algorithm 2.

The traditional GP evolves one tree in its individual, hence,
for the crossover operation, one node from the tree is randomly
picked. The computational complexity of crossover in the tra-
ditional GP approach is θ(n), where n denotes the number of
trees. In this work, since a GP individual has four trees, the
computational complexity of the same-index crossover (Algo-
rithm 1) will be four times as the traditional GP, i.e., θ(4). Simi-
larly, the computational complexity of the same-index mutation
(Algorithm 2) will be four times more than the traditional GP
with one tree.

TABLE II
REAL-WORLD SKIN CANCER DATASETS

F. Fitness Function

The balanced classification accuracy is used as the fitness
function, which is defined as

fitness =
1

m

m∑

i=1

TPi

TPi + FNi
(1)

where m is the number of classes, TP refers to the true pos-
itive, FN refers to the false negative, and the ratio TPi

TPi+FNi

represents the true positive rate of a class. When there are
different number of instances in different classes (a class imbal-
ance problem), using balanced accuracy is more suitable than
the standard overall accuracy, which is the ratio between the
number of correctly classified instances and the total number
of instances. Using this fitness (Equation (1)), all four trees
(constructed features) are allowed to improve themselves during
the evolutionary process.

IV. EXPERIMENT DESIGN

The aim and design of the experiments are discussed in this
section. The discussion also includes the datasets, the other
classification methods used for comparison, the experiments and
the parameter settings.

A. Datasets

The proposed MTGP method is evaluated using two skin
image datasets. The two datasets are different from each other
in terms of size of images, instruments with which the images
are captured, presence of hair, reflection and gel artifacts, etc.
The details of these datasets are discussed below.

1) PH2: A dataset of dermoscopic images, namely PH2

[35], is used in this work. This dataset includes skin lesion
images, their binary masks, and their clinical diagnosis. The
details of image classes and number of images in each class is
given in Table II. In dermatology, atypical nevi refers to currently
non-malignant lesions which may develop cancerous cells later,
common nevi refers to non-malignant lesions, and melanomas
refer to malignant lesions. Samples of this dataset are presented
in Fig. 5(a). For the binary classification experiments, atypical
nevi class and common nevi class are together considered as one
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Fig. 5. Image samples from the two datasets.

class and denoted as “non-melanoma,” and melanoma class are
denoted as “melanoma”.

The dermoscopic images were captured from a Tuebinger
Mole Analyzer system with a resolution of 768× 560 pixels
and a magnification of 20×. Dermoscopy implies using an
optical device with a strong lighting system to thoroughly ex-
amine skin lesions at a higher magnification. To capture the
morphological structures inside the lesion area, a gel is applied
which helps capture these patterns from the inner layers of the
skin. Therefore, these images are rich enough to allow one to
detect presence/absence of skin cancer. However, some samples
in the dataset are clogged with hair and some have reflection
artifacts as shown in the second and fourth sample in Fig. 5(a),
respectively, which make the task of classification more difficult.
The images are 8-bit RGB color images. A dermatologist exam-
ined each image and provided these classification parameters;
manual segmentation of the skin lesions, Histopathology and
clinical diagnosis, and dermoscopic criteria based on the 7-point
check-list method. This dataset has been used in [36], [37].

2) Dermofit: The Dermofit Image Library has a total of 1,300
skin lesion images. The images are normal RGB captured with a
quality SLR camera under controlled (ring flash) indoor lighting.
There are ten categories of lesions in the dataset as listed in
Table II. Each image is studied by field experts: dermatologists
and dermatopathologists to provide a gold standard diagnosis.
Images consist of the lesion surrounded by normal skin. The
dataset also provides a binary mask with each lesion that denotes
the lesion area. For our experiments of detecting melanoma in a
binary classification setup, Melanocytic Nevus / Mole (ML) and
Melanoma (MEL) classes are used to explore a dataset of 407
total images. For multi-class classification, we have used the 10
classes.

B. Methods for Comparison

To evaluate the performance of the proposed MTGP method,
six classification methods are used: Naïve Bayes (NB), k-
Nearest Neighbor (k-NN) where k = 5, Support Vector Ma-
chines (SVMs) with a Radial Basis Function (RBF) kernel,
Decision Trees (J48) where the minimum number of instances
per leaf equals 2, Random Forest (RF), and Multilayer Per-
ceptron (MLP). These methods are implemented through the

commonly used Waikato Environment for Knowledge Analysis
package [38]. In a study [39] on kernel functions in SVM, it has
been shown that a non-linear kernel has the ability to achieve
similar or better performances than a linear kernel on numerical
data. For RF, the number of trees and the maximum depth of a
tree are set to 10 and 5, respectively. For MLP, the number of
units in a single hidden-layer, the momentum, learning rate, and
training epochs and are set to 20, 0.2, 0.1, and 60, respectively.
These parameters are adopted from a previous study [10] where
they are specified empirically as they show the best performance
amongst other settings.

C. Experiments

In this study, two sets of experiments are conducted each
of which aim at investigating a specific task. The first set of
experiments are designed for the task of melanoma detection,
which aims at distinguishing melanoma images from all the
given set of images; basically it is a binary classification task.
We also investigated the effectiveness of the proposed method
for multi-class classification in the second set of experiments.
The first task is relatively easy (two classes) as compared to
the second task (three classes in case of PH2 and ten classes in
Dermofit). For both sets of experiments, the results are compared
with other classification methods as described in Section IV-B.
The results of binary classification method are also compared
with the existing embedded approach for melanoma detec-
tion [33]. For both sets of experiments, GP is wrapped with six
classification algorithms namely NB, SVM, k-NN, J48, RF, and
MLP (each executed individually) to check which classification
algorithm works best for these skin image classification tasks.

The datasets are divided into training and test by 10-fold
cross validation using stratified random sampling. The number
of GP runs is 30 and the results are represented as the mean
and the standard deviation of the accuracy values. T0 evolve
an individual with four trees (four constructed features) on the
training data (9 folds), the fitness given in Equation (1) is used
for a classification algorithm such as NB, SVM, k-NN, J48, RF,
and MLP, which computes the balanced accuracy among all the
classes. These four constructed features are used to transform
the test data (one−fold). Using the different combinations of
folds, this procedure is repeated 10 times to get the accuracy for
10−fold cross validation. Therefore, for the 30 GP runs, we get
30 accuracy values each for training and test sets.

For the two classification tasks, the number of independent
runs for GP is 7200 (=12 (GP wrapper methods) × 30 (runs)
× 10 (folds) × 2 (datasets)). However, the number of fitness
evaluations in GP is huge, since it is calculated as the product
of the population size (1024), the number of generations (50)
and the number of independent runs (7200), and comes out to
be 3.69× 108 evaluations. For each of the 30 GP runs, different
random seeds are used. The MTGP method is implemented using
“Evolutionary Computing in Java” (ECJ) package [40].

D. Parameter Settings

The parameter settings of our proposed MTGP method are
listed in Table III. The evolutionary process stops when the
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TABLE III
PARAMETER SETTINGS OF THE PROPOSED MTGP METHOD

classification algorithm such as a decision tree achieves 100%
accuracy or a maximum of 50 generations is reached.

V. RESULTS AND DISCUSSIONS

The results of the experiments are presented and discussed
in this section. The results are represented as the mean and the
standard deviation (x̄± s) among the 30 GP runs as shown in
Tables IV and V, where the value of one GP run is computed as
the mean of applying 10-fold cross validation. The deterministic
methods are run once, therefore, their results are represented as
the mean of applying 10-fold cross validation.

To assess the significance of the proposed method, one sample
t-test and Wilcoxon signed-rank test both with a significance
level of 5% are used. On each dataset, the overall best perfor-
mance is made bold.
� One sample t-test is applied to check the significance

of the proposed stochastic method against the non-GP
deterministic methods. The symbol “↑” appears next to
the deterministic method that has been significantly out-
performed by the proposed method, and a “↓” is used to
indicate that the corresponding method has significantly
better performance than that of the proposed method.

� Wilcoxon signed-rank test is applied on the test results
of the proposed stochastic method against the other GP
stochastic methods to identify which method has better
ability to correctly classify the image instances. Two sym-
bols “+,” and “−” represent that the proposed method
significantly outperforms and does not significantly out-
perform the other method, respectively.

A. Binary Classification

The binary classification results are presented in Table IV.
Vertically, the table has five blocks where the first block shows
the results of the proposed MTGP wrapper method and the
existing MTGP embedded method, the second block shows
results of other non-GP methods, the third block shows results
of single-tree GP wrapper methods each using one type of fea-
tures, and the fourth shows results of single-tree GP embedded
methods. Horizontally, the table consists of five columns where
the first lists the classification algorithm, the second and third
columns show the training and test performances on the PH2

dataset, respectively, and the fourth and fifth columns show the
performances on the Dermofit dataset.

Among the six wrapper classification algorithms in our pro-
posed method (row 1 in Table IV), it has been observed that RF
and J48 achieved very good classification performance on the
training data. However, on the test data, RF achieved the highest

performances with 89.75± 1.55% and 95.35± 0.83% on PH2

and Dermofit datasets, respectively.
From the results of the statistical significance test presented in

Table IV, it is evident that the proposed MTGP method in a wrap-
per approach not only outperformed all the non-GP methods but
also outperformed all the single-tree GP wrapper and embedded
methods which proves the authenticity and effectiveness of the
MTGP method for melanoma detection.

B. Multi-Class Classification

The multi-class classification results are presented in Among
the six wrapper classification algorithms in our proposed method
(row 1 in Table IV), it has been seen that RF achieved the
highest classification performance on the training as well as test
data. J48 also produced nearly the same training performance,
however, remain far behind in producing similar results on test
data. RF has achieved 96.42± 1.45% and 80.74± 1.24% test
performances on the PH2 and Dermofit datasets, respectively.
It is important to note that PH2 dataset consists of three classes
and Dermofit consists of ten classes. Most of these classifiers
produce good results for a 3-class problem (in case of the PH2

dataset) such as J48 producing 80.64± 2.24% accuracy, how-
ever, only RF performed well enough for the 10-class problem
(in case of the Dermofit dataset).

From the statistical significance test given in Table V, it is
clear that the proposed method significantly outperformed all
the non-GP methods for this difficult task as well, which shows
the potential of our proposed MTGP method for skin image
classification problems.

C. Comparison With Other Classification Methods

The results in Tables IV and V show that our proposed
method has significantly outperformed all the non-GP classi-
fication methods. In particular, the “↑” sign appears next to the
classification performances of the six classification methods in
case of both datasets for both tasks i.e., binary and multi-class
classification. For melanoma detection in a binary classification
task, the highest performance is given by MLP (78.44%) in case
of PH2 dataset among these classification methods. However,
our MTGP approach has outperformed all the six classification
methods by providing an accuracy of 89.75± 1.55% on average
on the unseen data. Similarly, the highest performance is given
by J48 (73.98%) in case of Dermofit dataset. However, the
proposed method significantly outperformed all the six clas-
sification algorithms reaching an accuracy of 95.35± 0.83%.
For the complex task of multi-class classification, the highest
performance among the non-GP classification methods is given
by MLP on both datasets. However, our proposed method has
significantly outperformed MLP by achieving 96.42± 1.45%
and 80.74± 1.24% accuracy on average on PH2 and Der-
mofit dataset, respectively. These non-GP classification methods
have used all the four sets of features with a total of 259
(=177 (LBPRGB) + 59 (LBPGray) + 12 (LesionColor) +
11 (LesionShape)) features. Even then, these methods remain
unable to provide good performance. This is the main reason
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TABLE IV
RESULTS OF THE PROPOSED MULTI-TREE GP METHOD FOR BINARY CLASSIFICATION. COMPARISON BETWEEN THE PROPOSED MTGP METHOD, THE EXISTING

MTGP EMBEDDED METHOD, THE SINGLE-TREE GP METHODS, AND THE NON-GP CLASSIFICATION METHODS: ACCURACY (%) ON THE TRAINING AND THE TEST

SETS OF BOTH DATASETS

TABLE V
RESULTS OF THE PROPOSED MULTI-TREE GP METHOD FOR MULTI-CLASS CLASSIFICATION: ACCURACY (%) ON THE TRAINING AND THE TEST SETS OF

BOTH DATASETS

why these different types of features cannot achieve good perfor-
mance without using a suitable way of combining them. Hence,
we designed the MTGP approach which automatically evolves
good constructed features to help the classification algorithm
learn effectively to discriminate between multiple classes.

D. Comparison With Single-Tree GP Methods

In comparison to the single-tree GP methods for melanoma
detection, the MTGP method has more ability to discriminate be-
tween images of different classes. Our MTGP method constructs
four features, each fromLBPRGB ,LBPGray ,LesionColor and
LesionShape feature sets. These four constructed features are
then given to wrapper classification algorithm for classification,
e.g., RF. However, in case of single-tree GP method, GP evolves

a single tree (one feature) using one type of features as terminals,
which is given to the classification algorithm. From single-tree
GP results (Table IV), we can see that a classification algorithm
remained unable to perform well with only a single feature. We
selected RF as a wrapper classification algorithm for single-tree
GP methods as it produced highest results on all of the MTGP
approaches.

Furthermore, among the two datasets, it has been shown
that a particular type of features are important for classifying
images that belong to a particular dataset. For the PH2 dataset,
the LBPRGB features have produced the highest classification
accuracy (88.25± 3.02%) among the four single-tree GP wrap-
per methods. Hence, we can say that the LBPRGB has the
most potential to distinguish “benign” and “malignant” skin
lesion images taken from a dermatoscope (as shown in PH2

Authorized licensed use limited to: Victoria University of Wellington. Downloaded on July 07,2020 at 00:03:18 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

AIN et al.: GENERATING KNOWLEDGE-GUIDED DISCRIMINATIVE FEATURES USING GENETIC PROGRAMMING FOR MELANOMA DETECTION 11

Fig. 6. The average fitness value per generation on PH2 dataset for (a) binary
classification, and (b) multi-class classification, and on Dermofit dataset for (c)
binary classification, and (d) multi-class classification.

dataset) whereas, the LesionColor features have produced the
best results (92.31 ± 0.92%) among the four type of features
on standard camera images (as shown in Dermofit dataset). It
is evident from the results of single-tree GP embedded and
wrapper methods that selection of a suitable feature extraction
method largely impacts on achieving good performance. Hence,
we can say that images taken from a particular device requires
a particular feature extraction method necessary to obtain infor-
mative features. We observe a similar pattern while generating
a classification model using our multi-tree approach.

The existing skin image classification methods using GP [10],
[32] have employed the standard single-tree GP methods using
an embedded approach and test their performance on only a
single dataset. Moreover, GP has been used as an embedded
method for performing feature selection as well as classification
in the existing MTGP approach for melanoma detection [33].
All these existing works aim at only melanoma detection, i.e., a
binary image classification task. To the best of our knowledge,
this is the first time that MTGP is used in a wrapper approach,
which is effective both for the binary and multi-class skin
image classification tasks. Furthermore, our MTGP method in
a wrapper approach for binary classification has outperformed
all of these three existing methods in terms of classification
performance as discussed earlier in this section.

VI. FURTHER ANALYSIS

A. Overall Analysis

The average fitness value per generation of the 30 independent
runs (each having 10 independent runs for the 10 folds in
10−fold cross validation) using different seed values on the
training data of the two datasets is depicted in Fig. 6. Fig. 6(a)
and (b) show these plots for binary and multi-class classification

Fig. 7. The average computation time for binary classification using MTGP
wrapper and embedded approaches on the two skin image datasets.

on thePH2 dataset, respectively, and Fig. 6(c) and d) show these
plots on the Dermofit dataset.

For binary classification task (Fig. 6(a) and (c)), these graphs
show that on average the programs make larger jumps in the
first few generations than in the later generations. This trend
has been observed in all the six wrapped classifiers (NB, SVM,
k-NN, J48, RF, and MLP). In case of PH2 dataset using RF
classifier, as shown in Fig. 6(a), the fitness value has increased
from 92.41% to 99.08% in the first 20 generations compared to
the increase in fitness from 99.08% to 99.34% over the remainder
30 generations.

The plots for multi-class classification task (Fig. 6(b) and (d))
show different behavior compared to the binary classification
task (Fig. 6(a) and b)). There is an abrupt increase in the first few
generations (around 10) which becomes slightly insignificant in
later generations (last 40 generations). This trend is more visible
in case of thePH2 dataset as compared to Dermofit dataset where
a significant increase in fitness is only seen among the first 5
generations. In comparing RF and J48, we have seen that both
these classifiers have shown similar training curves except in the
case of multi-class classification on dermofit dataset where RF
outperforms J48 by a relevant margin as can be clearly seen in
Fig. 6(d).

B. Computation Time

The average training time needed for the proposed MTGP
method and to test its performance on the unseen data for solving
binary and multi-class classification tasks is presented in Figs. 7
and 8. We have also analyzed the training and test time required
for the existing single-tree GP approaches using a single type
of features, as shown in Fig. 9. Clearly, the time required to
train a classification algorithm is affected by the number of
images and classes in a dataset, the number of trees in the
evolved GP individual, the number of features used to evolve
an individual, and whether a wrapper or an embedded approach
is adopted. This happens because evaluating a population of
individuals having four trees necessarily requires more time as
compared to evaluating a population of individuals having one
tree. Similarly, during the evolutionary process, the same-index
crossover/ mutation is applied on four trees which has more
computational complexity, thereby takes more time as compared
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Fig. 8. The average computation time for multi-class classification using
MTGP wrapper approaches on the two skin image datasets.

to the simple crossover in case of the single-tree approaches.
Although the proposed method is more expensive, it does not
take more than 15 seconds on average to evolve a solution.
Furthermore, the embedded approaches are less expensive as
compared to wrapper approaches. In our wrapper approach, after
constructing new features, the original training and test datasets
are transformed to a new dataset (with the help of the constructed
features) which are then used to train (and test) a classification
algorithm (NB, SVM,k-NN, J48, RF, and MLP). Hence, training
a classification algorithm with the new constructed features
results in increased computation time.

In Fig. 7, among the six wrapper binary classification algo-
rithms, NB is the fastest to train a model. Overall, the fastest
and highest-performing average training time using the proposed
MTGP wrapper approach is given by RF on PH2 and Dermofit
datasets and takes only 71.7 and 297.5 seconds, respectively.
Similarly, having these trained methods at hand, they take only
0.9 and 1.2 milliseconds on average to test an unseen skin image.
Therefore, we can say that our proposed binary classification
method is very effective and efficient for melanoma detection
in real-time clinic situations and help dermatologists to decide
whether a biopsy is required or not in diagnosis of skin images.

For multi-class classification, Fig. 8(a) and (b) depict that
training a dataset with ten classes (Dermofit dataset) increases
the computation time by many folds as compared to training
a dataset with three classes (PH2 dataset). Since multi-class
classification methods require more training time as compared
to binary classification methods, this behavior can easily be
observed while comparing Figs. 7 and 8. However, an unseen
image can be tested in fractions of a second using these trained
models as shown by the test time depicted in Fig. 8(b).

We have also analyzed the computation time taken by the
single-tree GP methods for binary classification as presented by
the bar plots in Fig. 9. Clearly, the wrapper approaches take more
time to train a classification method as compared to embedded
approaches. Similarly, the bigger dataset (Dermofit) takes more
time as compared to the smaller dataset (PH2), regardless of
which approach (wrapper or embedded) is used. Having these
trained methods at hand, it takes only fractions of milli-seconds
to test their performance on the test image as shown in Fig. 9(b).
Overall, the embedded approaches are taking more test time as
compared to the wrapper approaches. This is due to the fact that

the evolved models in the embedded approaches have bigger
trees with larger number of features, and hence, have more
function nodes, which slightly increases computation time.

C. An Evolved GP Individual

GP evolves models that can be interpretable. To see why
our proposed MTGP in a wrapper approach can achieve good
classification results, we have analyzed a good GP individual
with four trees in Fig. 10 from the PH2 binary classification
experiments. The four constructed features have given 87.5%
accuracy on the test data. GP found this perfect solution giving
100% accuracy on the training data, just after 24 generations.
In Fig. 10, colored nodes show terminals, whereas white nodes
show functions. As discussed earlier in Section V, LBPRGB

features have the most potential compared to other feature types
to classify images in PH2 dataset. Since LBP captures local
pixel-based properties of an image, these features with gray and
color information can incorporate good discriminative informa-
tion regarding the presence or absence of melanoma in a skin
image. Furthermore, (LesionShape and LesionColor) features,
which capture the global properties such as geometrical border
shape and color variation between the lesion region and the skin
region, respectively cannot provide as good performance as LBP
feature.

In the LBPGray tree from Fig. 10(a), the features G10 and
G28 are selected twice and thrice, respectively. In addition,
the expression if(G28, G52, G24, G51) is selected twice. This
illustrates that these features possess good distinguishing ability
between classes. Among the 177 LBPRGB features, only six
prominent features (R1, R12, R26, R40, R116, and R136) are
used to construct a tree (Fig. 10(b)). Similarly, only six features
(G10, G24, G28, G30, G51, and G52) among the 59 LBPGray

features have been selected to build the tree in Fig. 10(a). The
LesionColor tree in Fig. 10(c) has been built from only two
features among the 12LesionColor features, and theLesionShape
tree in Fig. 10(d) has been constructed from six features among
the 11 LesionShape features. Hence, the feature selection and
construction ability of GP has provided discriminative con-
structed features as input to the decision tree classification algo-
rithm, which helps this classification method achieve promising
results.

In LesionColor tree (Fig. 10(c)), C0 and C5 representing the
mean of red color channel (μR) and the variance of blue color
channel (σB), are combined to produce a significant constructed
feature. In LesionShape tree (Fig. 10(d)), S0, S1, S5, S6, S8, and
S9 are selected which correspond to the geometrical shape
features: area, perimeter, irregularity indices A, C and D, and
the major asymmetry index. These shape features can assist the
dermatologist in real-time situations by providing significant
knowledge about the lesion geometrical properties and hence,
making a diagnosis much easier.

D. Feature Appearance in Constructed Features

GP automatically constructs new features by selecting more
relevant and discriminative features among the whole set of orig-
inal features. We have also explored and analysed this intrinsic
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Fig. 9. The average computation time for binary classification on (a) the training data, and (b) the test data, using different single-tree GP approaches based on a
single type of features on the two skin image datasets.

Fig. 10. A good evolved GP individual for PH2 dataset using a) LBPGray , b) LBPRGB, c) LesionColor, and d) LesionShape features producing 87.5%
accuracy on the test data in the binary classification task.

Fig. 11. The average frequency of features in trees, each evolved with a single
type of features on the PH2 dataset in the binary classification task using RF
as a classifier.

ability of GP to feature selection. Figs. 11 and 12 show the
bars for the average number of times each feature appears in
the constructed features among the 30 GP runs in the PH2 ex-
periments for binary and multi-class classification using RF as a

Fig. 12. The average frequency of features in trees, each evolved with a single
type of features on the PH2 dataset in the multi-class classification task using
RF as a classifier.

classifier, respectively. It is evident from these plots that there are
some features which are selected more frequently as compared
to other features, e.g., G58, the last feature among LBPGray

features in Fig. 11(a) appears almost twice as frequently as
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the other 58 LBPGray features. Similarly, R5, C11 and S10

have the highest frequency of occurrence among the LBPRGB,
LesionColor, and LesionShape features as shown in Fig. 11(b),
(c) and (d), respectively. We have seen a similar pattern while
having a closer look at Fig. 12 for multi-class classification task
in the PH2 experiments, where these features have the highest
frequency again except R5. This shows that these features have
significant discriminative ability between classes, not only for
binary classification task but also for multi-class classification.
R26 which also represents the same structural properties as R5,
has the highest frequency among LBPRGB in the multi-class
classification task.

For a deep analysis of these significant features (G58,C11 and
S10 for both tasks, R5 for binary classification task alone, and
R26 for multi-class classification task), digging further into the
local and global properties of these features, we see that G58

are the non-uniform LBP features combined in one bin for gray-
scale images. Though non-uniform features are not considered to
have discriminative properties for texture analysis (that is why
they are binned together in one bin), however, in our dataset,
the number of times these non-uniform features appear in one
class of images is quite different from their appearance in other
classes, which makes them highly significant. For LBPRGB

features, R5 and R26 corresponds to the two 3× 3 LBP win-
dows which both represent edges present in an image. Inside
the skin lesion, the different structures such as dots, streaks
and regression areas with varying colors are highlighted by
these pixel-level edge properties. Among the different classes,
these structures vary and hence, these edge detecting LBPRGB

features become prominent in distinguishing between classes.
Among LesionColor features, C11 corresponds to μB

μB
, which

shows the ratio between mean of blue color channel of the lesion
region and its surrounding skin region. AmongLesionShape fea-
tures,S10 is the most significant as its frequency is almost double
as compared to the other 11 LesionShape features (Figs. 11(d)
and 12(d)). It corresponds to asymmetry index, which provides
the necessary information about the shape, particularly being
computed from the asymmetry axes and area of the lesion. As
described earlier in Section II-A(3), our analysis also confirms
that asymmetry plays the most important and essential role in
making a diagnosis for the binary and multi-class classification
of skin cancer images.

VII. CONCLUSION

In this work, a novel method for skin cancer image classifi-
cation using MTGP in a wrapper approach has been developed.
The proposed method utilizes various local and global features
extracted from skin cancer images. These features have sufficient
information related to pixel-based RGB and gray-level proper-
ties, domain-specific geometrical shape characteristics, and vari-
ation in color within the lesion and the skin areas. These four type
of pre-extracted features are given to multi-tree GP to generate
four trees in a single GP individual by designing suitable genetic
operators such as same-index-crossover/mutation. This type of
crossover/mutation guarantees that each tree evolves from a
single type of features. These trees are considered as constructed

features, which are provided to a wrapper classification method
to generate a classification model.

Our MTGP method has significantly produced better results
than all the six commonly used classification algorithms (NB,
k-NN, SVM, J48, RF, and MLP), the eight single-tree GP
methods, and an existing MTGP embedded method. This shows
the evidence of effective feature construction, which results in
achieving good binary and multi-class classification results. We
have also analyzed an interesting behavior to select a suitable
feature extraction method in order to classify well a particular
type of images taken from a specific optical instrument. We
found that the local pixel-based features provide good discrimi-
nating knowledge to classify specialized (dermoscopy) images.
On the other hand, global color variation and border shape
features have more potential to discriminate images captured
from a standard camera.

Although the proposed method has dealt well with the prob-
lems of using various types of features effectively and has
provided good performance, it still has some limitations that will
be addressed in the future. One of the limitation of this method
is that it needs a binary mask usually provided by an expert
dermatologist along with the images. The proposed method has
used gray-scale and color features which have local and global
information, however, it can further improve its performance by
incorporating more information from frequency-based features
such as wavelet-based features. In the future, we will explore
employing pre-processing techniques to remove the various
artifacts from skin images such as dark corners, ink markers,
bubbles due to presence of gel, color chart used for measuring
the diameter, ruler marks and skin hair. It is a challenging task
to reduce noise from skin images without losing informative
features necessary to achieve performance gains. Moreover, we
would like to extend this work where GP will also be used for
feature extraction before employing feature selection and feature
construction.
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