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ABSTRACT
Ensembles of classifiers have proved to be more effective than a
single classification algorithm in skin image classification prob-
lems. Generally, the ensembles are created using the whole set
of original features. However, some original features can be re-
dundant and may not provide useful information in building good
ensemble classifiers. To deal with this, existing feature construction
methods that usually generate new features for only a single clas-
sifier have been developed but they fit the training data too well,
resulting in poor test performance. This study develops a new clas-
sification method that combines feature construction and ensemble
learning using genetic programming (GP) to address the above
limitations. The proposed method is evaluated on two benchmark
real-world skin image datasets. The experimental results reveal that
the proposed algorithm has significantly outperformed two existing
GP approaches, two state-of-the-art convolutional neural network
methods, and ten commonly used machine learning algorithms.
The evolved individual that is considered as a set of constructed
features helps identify prominent original features which can assist
dermatologists in making a diagnosis.

CCS CONCEPTS
• Computing methodologies → Genetic Programming; En-
semble methods; Feature selection; •Mathematics of computing
→ Dimensionality reduction; • Human-centered computing →
Information visualization.

KEYWORDS
Genetic Programming, ensemble classifiers, feature construction,
melanoma detection, multi-class classification

1 INTRODUCTION
Skin cancer is a major public health problem, with over five million
newly diagnosed cases every year in the United States [32]. In 2019,
the global incidence of skin cancer was estimated to be over 104,350
cases, with almost 11,650 deaths [32]. Melanoma is the most serious
form of skin cancer, which becomes life-threatening if not treated
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early [23]. Although the mortality is significant, when detected
early melanoma survival exceeds 95% [23]. Since this cancer is vis-
ible on the skin, it is potentially detectable at a very early stage
when it is curable. Because skin cancer treatment outcomes are
substantially improved by early diagnosis, better diagnostic tech-
niques using artificial intelligence and computer vision techniques
are in great demand.

Automated skin cancer recognition from images is a very chal-
lenging task due to the presence of hair, gel, and reflection artifacts
in the skin image, the huge intra-class variations with each cancer
type, and the high degree of inter-class visual similarity between
various types of skin cancers. These factors are the main obstacles
in extracting useful information from skin lesion images, thereby
stimulating the need to formulate methods that can capture infor-
mative features. The computer aided diagnostic (CAD) methods
are expected to somehow mimic the medical properties such as
the ABCD (Asymmetry, Border irregularity, Color variation and
Dermoscopic structure) rule of dermoscopy [33], and the 7-point
check-list method (Asymmetry, Streaks, Blue-whitish veil, Dots,
Regression areas, Pigment network, and presence of six colors: red,
white, light-brown, dark-brown, blue-gray, black) [5]. To incorpo-
rate these visual characteristics, the CAD systems utilize various
texture, color, frequency, local, and global features to include as
much information as possible. Using a single type of features may
not help the classification algorithm to achieve good results. More-
over, such diagnostic systems are potentially useful, which not only
diagnose a type of cancer quickly in real-time situations but also
identify significant features effectively to help the dermatologist
learn the critical visual patterns from these skin lesions.

The original set of features extracted from images may include
redundant or irrelevant features, and may not contain enough in-
formation for accurately classifying these images. In such cases,
feature selection (FS) and feature construction (FC) methods help
pick important features and generate new high-level features from
the original set of features to achieve improved performance [1, 34].
Genetic Programming (GP), a biologically inspired evolutionary
algorithm, evolves models in successive generations to solve a spe-
cific problem by applying genetic operators such as crossover and
mutation. GP keeps improving the evolved models iteratively by
measuring their goodness using a fitness function. The evolved
models can be considered as a classifier or a constructed feature,
depending on the problem at hand. GP has been used successfully
for FS and FC. However, generating new features specific to a single
classifier may fit the training data too well, thereby producing poor
results on the test data. An ensemble of classifiers combine the pre-
dictions of multiple classifiers and hence, each classifier contributes
to produce more accurate results [15]. This study combines the

https://doi.org/10.1145/3377930.3390228


benefits of feature construction and ensemble classification in a GP
framework to construct informative features for the tasks of binary
and multi-class skin cancer image classification.

In the recent years, convolutional neural networks (CNNs) have
become popular in skin image analysis. Codella et al. [11] used
the Caffe architecture to perform feature extraction. Esteva et al.
[12] used a huge private dataset which consists of both clinical and
dermoscopy images to train an Inception network from scratch,
aiming at a performance close to a human expert. However, the
deep learning approaches typically required thousands of images to
effectively train a model, and due to a “black-box architecture”, the
models may not directly provide insights of prominent features. In
addition, using a pre-trained CNN generally requires pre-processing
a dataset to the same input configurations for which that CNN was
originally designed for such as fixed-size images, and RGB or gray-
scale images, which increases the computation time and decreases
flexibility to apply to any size of image.

In order to deal with all these limitations, we are interested
to combine feature construction and ensemble learning using a
Genetic approach. Having multiple classifiers in an ensemble is
expected to generate more generic and informative features suitable
to multiple classifiers, thereby promoting generalization of the
evolved ensemble classifier. This works aims at investigating the
following objectives:

• Design a new feature construction method using GP to gen-
erate new features for an ensemble of classifiers.

• Assess the performance of the proposed classification
method in comparison to bagging, boosting, random forests,
other commonly used machine learning classification algo-
rithms, and the existing deep learning and GP methods on
two real-world skin cancer image datasets.

• Visualize the multiple constructed features and identify
prominent image features.

2 BACKGROUND
2.1 Feature extraction Methods
To convert images into feature vectors, the following common
feature extraction methods are reviewed, which are also used in
the proposed method.

2.1.1 Local Binary Patterns (LBP). It is a dense image descriptor
which has been successfully applied in computer vision applications
for feature extraction [27]. LBP scans the whole image in a pixel-
by-pixel fashion by using a sliding window of fixed radius. At
each location of the window, it computes the value of the central
pixel according to the intensity values of the neighboring pixels
situated on the radius. These computed values are used to generate
a LBP histogram (feature vector). LBP is divided into uniform and
non-uniform patterns. There are 28 bins but only 58 of them are
uniform. These uniform patterns have individual bins in the LBP
histogram, while non-uniform patterns are binned together in one
bin, making a total of 59 LBP features. Uniform patterns symbolize
edges, corners and flat regions in an image, while non-uniform
patterns cannot provide much textural information as shown in
Figure 1. In skin lesions, uniform patterns allow detection of corners
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Figure 1: Examples of Uniform and non-uniform LBP pat-
terns.

Figure 2: The greatest and shortest diameter for a der-
moscopy image.

(lesion boundary), streaks (line ends) and dots (flat regions), which
may help distinguish between different types of skin cancers.

2.1.2 Lesion Color Variation. Color is a significant component of
the asymmetry, border, color, and diameter (ABCD) rule [33] as
well as the 7-point checklist method [5]. These are the key medical
properties which play a vital role in classifying a skin lesion. The
number of colors present in a lesion generates huge variance in
the RGB color space. This makes the features extracted from RGB
color channels highly informative to discriminate between different
classes of images. These global color features are extracted from the
RGB color channel pixels in the segmented skin lesions. The mean
(µ) and variance (σ 2) of each channel is represented, respectively,
as µR, µG , µB and σ 2R, σ 2G , σ 2B. To include complex non-uniform
color distributions inside the lesion area, ratios of the mean values
are also computed, i.e., µRµG , µRµB ,

µG
µB . To incorporate color variations

of the lesion area with respect to the surrounding skin area, some
other ratios are also calculated such as µR

µR
, µGµG , µBµB , where µ shows

the mean value of surrounding skin area. These 12 global color
variation features are adapted from [31].

2.1.3 Lesion Geometrical Shape. Border shape and geometrical
properties of a lesion demonstrate significant diagnostic informa-
tion for detecting a type of cancer [14]. There are standard geometry
features such as area, perimeter, greatest diameter, asymmetry in-
dex, circularity index, irregularity index A, and irregularity index
B, which are adopted from [22]. Moreover, some other geometry
features such as shortest diameter, irregularity index C, irregularity
index D, and major and minor asymmetry indices are adopted from
[14]. The details of these measures can be found in [22] and [14].
The greatest and shortest diameter of a lesion are shown in Figure
2 which seems important in capturing the shape of the lesion.

2.1.4 Wavelet Decomposition. The pyramid-structured wavelet
analysis [10] captures both the local (detailed structure and internal
texture) and global (overall properties) information of the lesion.
We apply three-level pyramid-structured wavelet decomposition on
red, blue, green, and luminance color channels of the skin images.
The luminance is calculated as:

luminance = (0.3 × R) + (0.59 ×G) + (0.11 × B) (1)



Figure 3: A schematic three-level wavelet tree with nodes in
circle.

To extract informative features from the wavelet coefficients, eight
statistical measures and ratios are used which include energy, mean,
standard deviation, skewness, kurtosis, norm, entropy, and average-
energy. The details and mathematical expressions of these measures
can be found in [14]. Figure 3 shows a schematic representation of
wavelet tree where circles represent nodes. There are 13 nodes in
the wavelet tree (1 parent node which is the original image, and
4 nodes in each of the three subsequent levels (4 × 3 = 12)). The
eight measures computed on each tree node yield a total of 8 × 13
features, for each color channel. Hence, there are a total of 416 (= 8
measures × 13 nodes × 4 color channels) wavelet features extracted
in this study.

2.2 Related Work
Earlier in 2012, Barata et al. [8] developed an automatic system for
detection of pigment network in dermoscopy images. The system
uses a set of three sequential steps: 1) pre-processing to remove hair
and reflection artefacts, 2) detecting lines and pigment networks
inside lesion area in skin images using directional Gabor filters,
and 3) extracting features from the detected network to train an
AdaBoost algorithm. The system provided good results for detection
of pigment network, however, it does not provide information to
further classify lesions into benign and malignant classes.

Ferris et al. [13] developed a computer-assisted diagnosis of
dermoscopic images for classification of melanoma using random
forest. This system computes 54 features from the lesion area. Fit-
ness measures are sensitivity, specificity and area under the curve
(AUC), showing trade-off between sensitivity and specificity. A
study was conducted to compare the sensitivity and specificity of
the classifier 30 dermatology clinicians. The classifier produced
better sensitivity than dermatologists, however, produced lower
specificity than dermatologists. Before extracting features, lesions
are manually segmented which is time consuming and requires
expert knowledge.

The use of ensembles of CNNs has been recently utilized for
skin cancer image classification, which have shown promising re-
sults. Harangi et al. [17] used an ensemble of AlexNet, VGGNet,
and GoogLeNet, and their results show that the ensemble-based
approach outperformed all of its member CNNs. Valle et al. [35]
explored ensembles of CNNs and transfer learning. Their results
conclude that ensembles of models are a cost-effective alternative
to the unstable sequential designs. Xie et al. [36] developed an ar-
tificial neural network (ANN) based ensemble model to identify
tumors as benign or malignant. However, these deep learning ap-
proaches required thousands of images to effectively train a model,
thereby need huge computing resources that most universities and

research institutes cannot afford. Moreover, they remained unable
to identify prominent features.

Identification of suitable data augmentationmethods have gained
immense importance recently, which can generally cope well with
the limited size of datasets [29]. Transfer learning has gained atten-
tion, which has been explored with and without fine-tuning [25].
Moreover, other relevant criteria such as image size and selected
architecture in CNNs has recently been studied [35]. Such methods
require a lot of extra pre-processing work such as parameter tuning
and identifying suitable data augmentation strategies.

Garnavi et al. [14] developed a CAD system to classify melanoma
by employing various texture, border, and geometrical features.
This diagnostic system by selecting an optimal feature set achieved
an overall accuracy of 91.26%, with only 23 features. However,
various types of feature are not combined in a suitable way which
might limit the classification performance. Kawahara et al. [18]
demonstrated how filters from a pre-trained CNN can be used
to classify 10 classes of non-dermoscopy images in the Dermofit
dataset [6]. However, they reported a standard overall classification
accuracy of 81.80% for the highly imbalanced Dermofit dataset,
which is not suitable as it may give biased results towards classes
with more images.

Recently, Brinker et al. [9] proved that automated melanoma
image classification using CNN achieved significantly better re-
sults than board-certified dermatologists. Barata et al. [7] used
pre-trained DenseNet-161 architecture to perform a hierarchical
diagnosis for three skin cancer classes. Additionally, they provided
comparative studies on the importance of color normalization, le-
sion segmentation, and evaluation metrics. Their method required
the same input configurations on which the architecture was orig-
inally trained. Generally, reducing the size of a skin image may
distort aspect-ratio which may result in losing informative features.

GP has been widely explored for image analysis [4, 19, 30]. Ryan
et al. [30] described a fully automated procedure to perform Stage-1
breast cancer detection using GP. It is a multi-stage method that
mainly implements pre-processing, breast segmentation and feature
extraction. Results revealed the ability of GP to produce human-
readable solutions while being capable of examining the GP individ-
uals. Al-Sahaf et al. [4] designed a novel GP-based image descrip-
tor for multi-class texture image classification. Lensen et al. [19]
showed that GP can automatically select regions of interest, extract
informative features from these regions, and perform classification
to achieve improved classification performance. Tran et al. [34]
developed a feature selection and construction method using GP to
improve classification performance on high-dimensional data. Ain
et al. [2] proposed a binary classification method to effectively iden-
tify melanoma in images using GP. They have revealed the insights
of the evolved GP individuals, which are not only automatically
generated classification models but also are human-readable which
may help a dermatologist learn the informative features to make
diagnosis in real-world situations.

3 THE PROPOSED METHOD
This section presents our proposed algorithm, i.e., multiple feature
construction with ensemble classification (MFCEC) using GP for
skin cancer image classification.
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Figure 4: The workflow of the proposed algorithm.

3.1 Terminal Set and Function Set
The terminal set consists of five feature sets:

• LBP extracted from RGB color channel images (LC ),
• LBP extracted from gray image (LG ),
• global color variation features (CV ),
• lesion geometrical shape features (S), and
• frequency-based wavelet features (W ).

The LC feature vector consists of 177 (=59 × 3) LBP features
extracted from red, green, and blue color channels concatenated
together to make a single feature vector. LG consists of 59 LBP
features extracted from gray skin image. In CV , S , andW feature
vectors, there are 12, 11, and 416 features, respectively. These dif-
ferent types of features are employed in order to include sufficient
information regarding texture, color, and domain-specific border
shape properties of skin images which may help to achieve good
performance. In this work, a GP individual consists of five trees
where each tree evolves from a single set of features as its terminals.

The function set consists of seven operators: four arithmetic
{+,−,×, /}, two trigonometric {sin, cos}, and one conditional {if }
operator. Among the arithmetic operators, division is protected and
the other three arithmetic operators have the standard arithmetic
meaning. Protected division returns zero when a number is divided
by zero. The {if } operator takes four inputs; it returns the third
input if the first input is greater than the second input, else it returns
the fourth input.
3.2 Program Representation and Fitness

Function
A GP individual is usually constructed as a single tree. However,
it can be utilized to construct multiple trees in a single individual,
which is calledmulti-tree GP [26]. In this work, using the multi-tree
GP approach, GP constructs five trees in one individual during the
evolutionary process. The five trees represent the five constructed
features (CFs). Each CF is constructed from one and only one type
of features as described in the Section 3.1. These CFs are utilized to
transform the original training and test sets to new training and test
sets. The transformed training set with five new CFs is provided as
input to the ensemble classification algorithm, which is formed by
Support Vector Machines (SVMs), Decision Trees (J48), and Random
Forest (RF). These classifiers are trained on the training data during

the evolutionary process. MFCEC uses the accuracy produced on
the training data by the ensemble classifier as its fitness function,
where each image is classified based on the majority voting. The
balanced accuracy is used, which is defined as follows:

fitness =
1
m

m∑
i=1

TPi
TPi + FNi

(2)

wherem is the number of classes. TP and FN are the true positives
and false negatives, respectively. The ratio TPi

TPi+FNi
shows the true

positive rate of one class. The intuition behind using balanced
accuracy is that the two medical datasets are highly imbalanced. To
avoid bias towards the majority class, we used balanced accuracy
instead of standard overall accuracy throughout in this work.

3.3 Crossover and Mutation
Since the proposed method requires to construct each tree from a
single set of features, we have used same-index-crossover/mutation
[20]. Through experiments, it has been observed that mixing differ-
ent types of features to evolve a single tree does not provide good
discriminative CFs. During the evolutionary process, GP evolves
five trees (CFs) in a single individual namely CF(LC ), CF(LG ),
CF(CV ), CF(S), and CF(W ) as shown in Figure 4. The same-index-
crossover/mutation ensures that CF(LC ) in one GP individual can
only crossover/mutate with CF(LC ) of another GP individual, and
it cannot crossover/mutate with CF(LG ), CF(CV ), CF(S), and CF(W ).
More details can be found in [2] and [20].

3.4 The Overall Algorithm
The overall structure of the proposed method is presented in Figure
4. First the images are transformed to feature vectors using the
feature extraction methods described in Section 2. Note that the
feature extraction is performed before the training and test data
split because features are extracted image by image, so test images
are not used for extracting features from training images, i.e., no
bias produced. For each image, we get five feature vectors, namely
(LC ), (LG ), (CV ), (S), and (W ). The dataset is then divided into train-
ing and test sets. GP utilizes the training set to construct multiple
features in one GP individual. Each tree in a GP individual is consid-
ered one CF. These constructed features are expected to have more
discriminating ability between classes as compared to the original



Table 1: Real-world skin cancer image datasets.

Name Classes Instances Image size Optical Device

PH
2 Common Nevi 80 763 × 553 − 769 × 577

Atypical Nevi 80 764 × 575 − 768 × 576 Dermatoscope
Melanomas 40 764 × 576 − 768 × 576

D
er
m
ofi

t

Actinic Keratosis 45 193 × 221 − 777 × 702
Basal Cell Carcinoma 239 189 × 206 − 1341 × 1130
Melanocytic Nevus / Mole 331 177 × 189 − 857 × 828
Squamous Cell Carcinoma 88 269 × 273 − 1341 × 1097 Standard
Seborrhoeic Keratosis 257 189 × 229 − 1825 × 1329 Camera
Intraepithelial carcinoma 78 565 × 265 − 2176 × 2549 (non-
Pyogenic Granuloma 24 292 × 235 − 1870 × 1834 dermoscopy)
Haemangioma 96 328 × 193 − 914 × 890
Dermatofibroma 65 436 × 338 − 1498 × 1492
Melanoma 76 367 × 439 − 3055 × 1630

Table 2: GP Parameter Settings.

Parameter Value Parameter Value

Generations 50 Initial Population Ramped half-and-half
Population Size 1024 Selection type Tournament
Crossover Rate 0.80 Tournament size 7
Mutation Rate 0.19 Tree depth 2–6
Elitism 0.01

sets of features. SVM, J48, and RF are selected as the three classi-
fiers in the ensemble as they show the best performance among
other settings of classifier selection in the ensemble. Since multiple
classification algorithms (SVM, J48, and RF) are incorporated as an
ensemble to use these CFs as input, the CFs constructed are generic
to all the classification algorithms. The CFs are non-tailored to one
specific classifier, rather generated regardless of which classifier is
used to classify them. After finishing the evolutionary process, we
get the three (SVM, J48, and RF) trained classification models. The
original test set is transformed by utilizing the same CFs to a new
test set. This new test set is used to evaluate these trained models to
get the test performances. The highest accuracy produced among
the three models is selected as the test accuracy.

4 EXPERIMENT DESIGN
4.1 Benchmark Datasets
The dataset is divided using 10-fold cross validationwhere nine folds
are used for training and one for testing. The proposed method is
examined on two real-world skin cancer image datasets: 1) PH2

[24], and 2) Dermofit Image Library [6]. Details of these datasets
are given in Table 1. The size of images in PH2 dataset is almost
same (≈768 ×570), however there is a huge variation in image sizes
in Dermofit dataset ranging between 177 × 189 and 3055 × 1630.
A specialized instrument called dermatoscope is used to capture
the images in PH2, whereas Dermofit has standard camera images.
Among the three classes in PH2, since atypical nevi refers to moles
which are currently non-malignant but may develop melanoma
later, this class is combinedwith common nevi which refers tomoles,
to form one class called “benign” to perform binary classification
experiments. For Dermofit, the two classes: Melanocytic Nevus
and Melanoma are used for binary classification experiments. For
multi-class classification experiments, PH2 has three classes (easy
task) and Dermofit has ten classes (difficult task).

4.2 Benchmark Techniques
In this study, we compare the performance of our proposed method
with ten commonly used machine learning algorithms: Naïve Bayes

     

     

(a) PH2

      

     
(b) Dermofit

Figure 5: Image samples from the two benchmark datasets.

(NB), k-Nearest Neighbor (k-NN), Support Vector Machines (SVMs),
Decision Trees (J48), Multi-layer Perceptron (MLP), Random Forest
(RF), Bagging, AdaBoost, LogitBoost, and Random Committee. The
number of k is set to 5 in k-NN. SVM uses a Radial Basis Function
(RBF). In RF, the number of trees and the maximum depth of a tree
are set to 10 and 5, respectively. In MLP, the momentum, learning
rate, training epochs and the number of units in one hidden layer
are 0.2, 0.1, 60, and 20, respectively. These settings are adopted from
a previous study [3], where they have been empirically searched via
experiments. All other settings are set to default as in the Waikato
Environment for Knowledge Analysis (WEKA) package [16]. The
ten classification algorithms are trained one time on the five sets of
features, appended to make a single feature vector with 675 (= 177
LC + 59 LG + 12CV + 11 S + 416W ) features. The trained classifiers
are then tested to obtain their test performance.

For GP implementation, the Evolutionary Computation in Java
(ECJ) package is used [21]. We also compare MFCEC with the two
existing GP approaches for skin cancer image classification:

• Embedded-GP [2] uses four types of features (LC , LG , CV ,
and S) to evolve four trees in its GP individual. Since this is an
embedded approach where GP also performs classification,
each tree acts as a binary classifier. The best tree with highest
accuracy on the training data is used to test the performance
on the test data.

• Wrapper-GP [3] uses five types of features explained in Sec-
tion 2 to evolve five trees in a single GP individual. These
trees act as CFs to be classified by a machine learning algo-
rithm such as decision tree. The trained model is applied on
the test set to check the performance of this method.

In addition, we compare MFCEC with the state-of-the-art CNN
methods recently developed for the PH2 and Dermofit datasets:

• Patiño et al. [28] developed a lesion segmentation and classi-
fication method using morphological operations to estimate



Table 3: Results of binary classification on the two real-world skin cancer datasets (in terms of Sensitivity, Specificity, and
balanced accuracy, where ↑ and + signs show the results of applying statistical significance tests).

Algorithm PH2 Dermofit

Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy

Non-GP Methods

NB 60.00 94.38 77.19 ↑ 97.32 96.67 96.99 ↑

SVM 25.00 99.38 62.19 ↑ 27.68 100.0 63.84 ↑
k -NN 57.50 90.63 74.06 ↑ 76.07 98.79 87.43 ↑
J48 57.50 87.50 72.50 ↑ 93.57 97.27 95.42 ↑
MLP 62.50 ± 4.59 95.82 ± 3.36 78.66 ± 2.43 + 92.50 ± 2.50 98.79 ± 1.20 96.29 ± 1.53 +

Ensemble Methods

RF 55.00 98.13 76.56 ↑ 61.79 99.70 80.74 ↑
Bagging 80.71 90.35 76.56 ↑ 90.15 97.64 93.46 ↑
AdaBoost 59.05 87.41 68.44 ↑ 96.75 99.41 98.30 ↑

LogitBoost 70.12 87.82 70.00 ↑ 97.78 99.12 97.82 ↑
RandomCommittee 85.17 89.25 74.69 ↑ 94.92 96.54 91.54 ↑

Embedded-GP [2] − 73.65 ± 4.92 84.09 ± 5.10 78.87 ± 2.92 + 75.82 ± 3.08 73.32 ± 3.45 74.57 ± 1.86 +

Wrapper-GP [3]

NB 86.42 ± 1.16 93.12 ± 0.70 89.77 ± 1.84 + 95.60 ± 0.49 97.22 ± 0.32 96.21 ± 1.09 +
SVM 73.83 ± 1.27 99.13 ± 0.25 86.48 ± 2.35 + 95.18 ± 0.60 99.61 ± 0.11 97.26 ± 1.25 +
k -NN 30.00 ± 0.68 96.68 ± 0.28 63.34 ± 2.67 + 73.00 ± 0.45 99.42 ± 0.13 86.04 ± 2.52 +
J48 77.08 ± 0.08 98.14 ± 0.04 87.61 ± 3.08 + 95.11 ± 0.54 99.14 ± 0.51 96.99 ± 0.70 +

MFCEC − 98.46 ± 1.67 100.0 ± 0.00 98.75 ± 1.64 99.13 ± 1.79 100.0 ± 0.00 99.86 ± 0.21

asymmetry, border and color features of the lesions in the
PH2 dataset. The method incorporated SVM, logistic regres-
sion and a fully connected neural network where the neural
network has shown the best performance achieving 86.5%
on average for multi-class classification.

• Kawahara et al. [18] trained a logistic regression classifier
with deep features extracted from a convolutional neural net-
work, pre-trained on natural images, to classify ten classes of
skin lesions in theDermofit dataset. They reported a standard
overall accuracy of 81.80%, whereas the balanced accuracy
computed from the confusion matrix is 60.12%.

4.3 Parameter Settings
The parameters set for GP are listed in Table 2. GP keeps improving
the performance of the ensemble classifier by either iterating over
a maximum of 50 generations, or a perfect ensemble classifier is
generated giving 100% accuracy on the training data.

5 EXPERIMENT RESULTS
The results are represented as the mean and standard deviation
(x̄ ± s) of the 30 GP runs, and are listed in Table 3. Since 10-fold
cross validation is used, the result of one GP run is the mean of
the accuracies of the 10-folds. Wilcoxon signed-rank test (with a
significance level of 5%) is applied to compare MFCEC to the other
stochastic methods. One-sample t-test is applied to compare MFCEC
to the other deterministic methods. For Wilcoxon signed-rank test,
“+”, “−” or “=” represents that MFCEC is significantly better, worse,
or similar to the other algorithms. For one-sample t-test, ↑ or ↓
represents that MFCEC is significantly better or worse to the other
algorithm.

5.1 Binary Classification
The binary classification results are presented in Table 3. Among
the non-GP methods, MLP has shown the highest accuracy 78.75%
on PH2, whereas NB produced the best accuracy 96.99% on Der-
mofit. Among the four ensemble methods, Bagging outperformed
the other three methods giving 76.56% accuracy on the dermoscopic
(PH2) dataset. AdaBoost showed the highest accuracy 98.30% on the
standard camera (Dermofit) dataset. Although the Embedded-GP

Table 4: Results of multi-class classification on the two real-
world skin cancer datasets in terms of balanced accuracy.

Algorithm PH2 Dermofit

Non-GP Methods

NB 71.00 ↑ 45.92 ↑
SVM 59.50 ↑ 51.08 ↑
k -NN 65.50 ↑ 43.54 ↑
J48 58.00 ↑ 50.08 ↑
MLP 67.50 ± 3.47 + 64.92 ± 4.31 +

Ensemble Methods

RF 71.50 ↑ 47.92 ↑
Bagging 71.50 ↑ 62.38 ↑
AdaBoost 56.50 ↑ 29.46 ↑
LogitBoost 66.50 ↑ 62.62 ↑

RandomCommittee 70.00 ↑ 58.38 ↑

Wrapper-GP [3]

NB 80.31 ± 2.03 + 58.99 ± 1.25 +
SVM 84.92 ± 2.31 + 53.05 ± 1.57 +
k -NN 63.46 ± 2.55 + 47.46 ± 1.85 +
J48 85.82 ± 1.60 + 74.05 ± 1.52 +

MFCEC − 98.03 ± 0.85 85.20 ± 1.20

approach provided good accuracy on dermoscopic datasets outper-
forming all the non-GP and ensemble methods, they remain unable
to achieve good results for standard camera images, where ensem-
ble methods dominated all the non-GP and Embedded-GP meth-
ods. Similarly, among the non-GP, ensemble, Embedded-GP and
Wrapper-GP methods, Wrapper-GP produced the best results on
dermoscopic datasets, whereas ensemble AdaBoost method remain
prominent on Dermofit images. However, MFCEC produced the
best results among all the methods achieving 98.75% and 99.86% ac-
curacies on dermoscopic and standard camera images, respectively.
This shows that feature construction in ensemble learning has huge
potential to solve complex real-world problems like melanoma de-
tection. Themain reason of dominance of MFCEC overWrapper-GP
is that MFCEC constructs features for an ensemble of classifiers
which are expected to be more general as compared to features
constructed for a single classifier in Wrapper-GP.

5.2 Multi-class Classification
The multi-class classification results are presented in Table 4.
Among the five non-GP algorithms, RF achieved the best accu-
racy 71.50% on PH2, whereas MLP achieved the best accuracy
64.92% on Dermofit. Similar to binary classification results, among
the ensemble methods, bagging provided the best results for PH2



whereas Boosting (LogitBoost) provided highest accuracy for Der-
mofit. Wrapper-GP with J48 outperformed all the non-GP and en-
semble methods providing an increase in accuracy by around 14%
and 7% on average on the PH2 and Dermofit datasets, respectively.
It is worthwhile to note here that PH2 has 3 classes and Dermofit
has 10 classes (more difficult). For Wrapper-GP, most of the single
classifiers are performing well for a 3-class problem such as SVM
and J48 producing 84.92% and 85.82% average accuracy, respec-
tively, however, only J48 performed well enough for the complex
10-class problem reaching 74.05% average accuracy. MFCEC re-
mained prominent among all the methods in multi-class classifica-
tion as well achieving 98.03% and 85.20% on average on the PH2

and Dermofit datasets, respectively.
From the results of the statistical tests presented in Table 4,

clearly MFCEC outperformed all the non-GP, ensemble as well
as the Wrapper-GP methods on the easy (PH2) and difficult (Der-
mofit) datasets, which shows its effectiveness for these complex
skin cancer image classification problems.

5.3 Comparison to the State-of-the-arts
For PH2, the most recent state-of-the-art reported by Patino et al.
[28] achieved 86.5% balanced accuracy using 10-fold cross valida-
tion. Since the experimental setup is the same as MFCEC, we can
make a direct comparison. MFCEC outperformed this method by
providing an increase of nearly 11% accuracy. To the best of our
knowledge, the state-of-the-art result on Dermofit for this 10-class
skin image classification problem is presented by CNNs [18]. The
authors reported an overall accuracy of 81.80% using 5-fold cross
validation which came out to be 60.12% balanced accuracy (as cal-
culated from the confusion matrix provided in the study). Since
comparison cannot be done directly (5-folds vs 10-folds), we have
provided a general idea what accuracy has been achieved by the
current state-of the art on Dermofit dataset.

6 FURTHER ANALYSIS
6.1 Overall analysis
The average of best-of-generation fitness value of the 30 indepen-
dent GP runs using different seed values on the training data of the
PH2 dataset in multi-class classification experiments is depicted in
Figure 6. The plot shows how the accuracies of individual classifiers
(SVM, J48, and RF) progress with the increase in generations and
how much each of them contribute to the ensemble classification
curve. Since elitism is applied on the ensemble classification and not
on the individual classifiers, the individual classifiers’ accuracies
show behaviours of increase and decrease during the evolution-
ary process. However, they ensure that the collective performance
increases as the number of generations increase. The benefit of
using ensemble of classifiers is evident from this plot which clearly
illustrates that if one classifier cannot produce good results, the
ensemble can still rely on other classifiers to maintain good perfor-
mance. From this plot, we observe that RF and J48 are producing
far better results individually than SVM. However, when there is
a decrease in the performance of RF and J48 in the subsequent
generation, SVM makes larger jumps to maintain or even improve
the performance of the ensemble classifier. This behaviour is seen
in the third and fourteenth generations.

Figure 6: Graph between generation and accuracy values for
SVM, J48, RF, and ensemble of these three classifiers.

Figure 7: Graph between generation and accuracy values to
compareMFCEC and the four existingWrapper-GP [3] with
NB, SVM, k-NN, and J48, respectively.

We also compare the evolutionary process of MFCEC with the
previousWrapper-GP [3] method as shown in Figure 7. TheMFCEC
curve shows an abrupt increase in the first five generations, being
more powerful it achieves good performance in a very few earlier
generations. However, the existing Wrapper-GP individual classi-
fiers (NB, SVM, k-NN, and J48) start with lower average accuracy
than MFCEC, thereby get the chance of making larger jumps as
shown in first twenty generations. It is evident that MFCEC re-
mained prominent and outperformed all the Wrapper-GP methods.

6.2 Analysis of an evolved GP program
GP has the ability to evolve models that can be interpretable. To
analyse why MFCEC can achieve good performance, we show a
good evolved GP individual in Figure 8. This individual is taken
from the PH2 experiments for the binary classification task. It has
five trees evolved using the five types of features: a) LG , b) CV, c)
S, d) LC, and e) W. These CFs achieved 100.0% fitness produced by
the ensemble classifier, where SVM produced 99.33%, J48 produced
99.83%, and RF produced 100% accuracy on the training data. Hence,
selecting the highest performing RF model when applied to the
test data, produced 100% accuracy on the test data. In Figure 8,
colored nodes represent terminals (each color represents one type
of features) and white nodes represent functions.

With the ability of FS and FC, GP plays a vital role in dimension-
ality reduction. From the evolved GP individual shown in Figure
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Figure 8: A good MFCEC evolved individual on the PH2

dataset in the binary classification task.

8, GP has selected only 6 features among a total of 416 wavelet
features, only 2 features among the 177 LC features, only 3 features
among the 59 LG features, only 3 features among the 12 CV features,
and 3 features among the 11 S features. The wavelet texture-based
features appearing in a tree of the GP individual shown in Fig-
ure 8(a) are listed in Table 5. The following conclusions can be
derived from this table: 1) three out of six features belong to the
nodes from the third level, which indicates our use of three-level
wavelet decomposition as further decomposition may not obtain
informative features for the purpose of classification, 2) texture
features extracted from all the four color channels are selected to
construct this informative CF, 3) the selected features are derived
from both the low and the middle frequency channels as shown by
the node column in Table 5, 4) among the eight statistical measures,
norm, kurtosis, and entropy are prominent selected features. More-
over, the sub-trees “cos(W13 × W349)” and “(W116 / W124) / W124”
appear twice and thrice, which shows the potential of these sub-
trees getting selected multiple times to construct this informative
wavelet-based CF.

Among the LC and LG features, the CFs shown in Figure 8(a)
and (b) selected prominent LBP patterns corresponding to corners,
edges and flat areas in these skin lesion images. Edges and corners
identify various visual patterns such as streaks, blobs and pigment
network inside a lesion area, whereas flat areas identify blue whitish
veil and regions inside the blobs in the skin images. Therefore, these
GP trees have selected prominent LBP patterns corresponding to
significant visual characteristics of the skin lesions to build even

Table 5: Wavelet features appearing in the GP individual
shown in Figure 8(e).

Feature Measure Channel Level node

W13 Norm Green 0 −

W116 Kurtosis Red 3 3.4
W124 Kurtosis Red 3 3.1
W278 Entropy blue 2 2.4
W206 Entropy Green 3 3.3
W349 Norm Luminance 1 1.1

more informative CFs. The CV tree in Figure 8(b) is built from three
features CV3, CV7, and CV11 which correspond to variance of red
color channel (σR), ratio between mean of red and mean of blue
color channels ( µR

µB
), and ratio betweenmean of blue color channel of

lesion area and mean of blue color channel of skin area µB
µB

. They are
combined in simple arithmetic operators to produce a significant CF.
In addition, the mathematical expression “CV3×(CV11 × sin(CV7))”
appears twice which shows that this sub-tree captures significant
information. In S tree (Figure 8(c)), S0 and S2, S8 correspond to area
of the lesion, greatest diameter, and the difference between greatest
and shortest diameter of the lesion region, respectively. The lesion
area, greatest and shortest diameter are vital in capturing the shape
of the lesion. Here, rather selecting shortest diameter as individual
feature, GP selected the difference of the greatest and shortest
diameter, thereby incorporating important hand-crafted features
effectively in evolving S tree. These border shape features can
hugely assist the dermatologist in real-time situations by providing
significant knowledge about the lesion geometrical properties and
hence, making a diagnosis much easier.

7 CONCLUSIONS
This study develops an ensemble classification method based on GP
for feature construction to solve the complex task of skin cancer
image classification. The method constructs new powerful features
from the pre-extracted texture, color, frequency-based, local and
global features. These new CFs when provided to an ensemble of
classifiers in a GP framework result in generating good trained
models. The results have revealed that the CFs constructed for
ensemble of classifiers have more distinguishing ability between
classes as compared to CFs constructed for a single classifier. The
results are compared to the exiting GP approaches for skin can-
cer image classification, where the proposed method significantly
outperformed all of them. In comparison to the state-of-the-art
CNN methods for the two datasets, the proposed method has pro-
duced significantly better results. Moreover, the proposed method
significantly outperformed the commonly used classification (NB,
SVM, k-NN, J48, and MLP) and ensemble methods (RF, Bagging,
AdaBoost, LogitBoost, and RandomCommittee). Since the CFs are
interpretable, the insights of good evolved CFs identified important
features selected from the original set of features. This information
can be helpful to the dermatologist in making a diagnosis.

Although the proposed method has achieved very good results,
its performance can be increased by generating more CFs and in-
vestigating suitable number of CFs. Selecting only prominent CFs,
e.g. measuring their information gain, and providing those selected
CFs to the ensemble classifiers may improve results and will be
investigated in the future.
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